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Abstract 

Crops like maize, rice and wheat are economically of high importance, however current 

yield will not sustain the world’s demands in the long run. Plant roots are crucial for 

uptake and transport of minerals, hormones and water via their vasculature and are 

therefore of interest for yield improvement. Unfortunately, root development is not yet 

completely understood and the research that has been performed to date has mainly 

focused on the dicotyledon (dicot) model system Arabidopsis thaliana (Arabidopsis). 

Dicots differ substantially from most crops, the majority of which are monocotyledons 

(monocots). for which Brachypodium distachyon (Brachypodium) was recently proposed 

as a good model system. It is closely related to wheat and barley, and more distantly to 

rice, with a smaller genome and simplified growth conditions that make it suitable for 

research. My thesis has therefore focused on transferring knowledge from Arabidopsis 

root development into Brachypodium in order to determine to what degree research in 

dicots can be applied to monocot root development. The first gene that I studied was 

AUX1 which is coding for an auxin importer. Mutations in Arabidopsis AUX1 only resulted 

in mild root phenotypes whereas in monocots, including Brachypodium, the phenotypes 

also include shoot dwarfism and even sterility. Furthermore Brachypodium aux1 mutant 

displays increased root cell elongation and reduced cell diameter. Other genes that were 

further investigated during this thesis are OCTOPUS (OPS), BREVIS RADIX (BRX), 

CLAVATA3/EMBRYO SURROUNDING REGION 45, BARELY ANY MERISTEM 3 and 

BRASSINOSTEROID INSENSITIVE 1. All of them affect protophloem development in 

Arabidopsis and mutations in OPS and BRX result in small roots due to undifferentiated 

cells within the protophloem. In order to analyze these gene families in Brachypodium, we 

developed a CRISPR-Cas9 genome editing system to create the corresponding mutants. 

We discovered that most Brachypodium homologs were part of bigger gene families and 

therefore multiple members may have to be mutated in order to observe putative 

phenotypes. This project is still ongoing, however preliminary data suggests that indeed 

for BRX family members, single, double and triple mutants do not induce phenotypes. 
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Also preliminary results for double ops family member mutants, indicate the lack of root 

phenotypes. As for AUX1, these preliminary results differ from the phenotypes observed 

in Arabidopsis and underlines the importance of research in a monocot model plant in 

order to understand crop development better and hopefully improve yield on the long 

term. 
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Résumé 

Le maïs, le riz et le blé jouent une grande importance économique. Toutefois, les 

rendements actuels ne permettront pas de répondre à la demande mondiale à long terme 

et doivent être améliorés. Comme les racines des plantes assurent le transport de l’eau, 

des minéraux et de certaines molecules de signalisation, elles sont d'un grand intérêt 

pour l'amélioration des rendements. À ce jour, les recherches sur le développement des 

racines ont principalement porté sur l’étude de la plante modèle dicotylédone (dicot) 

Arabidopsis thaliana (Arabidopsis). Les dicots diffèrent substantiellement des cultures 

monocotylédones (monocots) mentionnées précédemment, pour lesquelles 

Brachypodium distachyon (Brachypodium) a récemment été proposé comme bon model 

d’étude. Ma thèse a donc porté sur le transfert des connaissances d'Arabidopsis en 

termes de développement racinaire vers Brachypodium, le but étant de déterminer dans 

quelle mesure la recherche sur les dicots peut être appliquée au développement des 

racines des grandes cultures. En premier lieu, j'ai étudié la function du gène AUXIN 

RESISTANT 1 (AUX1), qui importe l'auxine dans la cellule. Chez Arabidopsis le mutant 

aux1 ne présente que des phénotypes discrets au niveau de la racine. En revanche, chez 

les monocots, y compris chez Brachypodium, lorsque la function d’AUX1 est affectée, les 

plantes sont aussi naines et stériles. De plus, le mutant aux1 chez Brachypodium 

présente une augmentation de l’élongation cellulaires au niveau de la racine ainsi qu’un 

diamètre cellulaire réduit. D’autres gènes, impliqués dans le développement du 

protophloème chez Arabidopsis, ont été étudiés au cours de cette thèse: OCTOPUS 

(OPS), BREVIS RADIX (BRX), CLAVATA3/EMBRYO SURROUNDING REGION 45, 

BARELY ANY MERISTEM 3 et BRASSINOSTEROID INSENSITIVE 1. Chez Arabidopsis 

la perte de fonction des gènes OPS et BRX provoque à l’échelle macroscopique une 

reduction de la croissance racinaire ainsi qu’une différentation stochastique du 

protophloème. A l’échelle microscopique certaine cellules au sein de la fille cellulaire 

phloèmienne présentent des caractéristiques de cellulues indifférenciées. Afin d’étudier 

ces familles multigéniques chez Brachypodium, j’ai adopté le système CRISPR-Cas9 
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pour Brachypodium et édité son génome en conséquence. Afin de s’affranchir d’une 

putative redondance fonctionelle, il sera peut-être nécessaire de muter plusieurs 

membres d’une même famille. Les données préliminaires de ce projet suggèrent que 

pour les membres de la famille de BREVIS RADIX, les mutants simples, doubles et 

triples n'induisent pas de phénotypes. Les résultats préliminaires concernant les doubles 

mutants au sein de la famille OPS ne presentment pas de phénotypes macroscopique au 

niveau de la racine. Quant à AUX1, il diffère des phénotypes observés chez Arabidopsis 

et ce qui souligne l’importance de la recherche sur une plante modèle tel que 

Brachypodium et l’intérêt majeur d’étudier les monocotylédones afin de mieux 

comprendre le développement des cultures et ainsi d’améliorer leurs rendements à long 

terme. 

Traduit avec l’aide de Dr. Pauline Anne 
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Résumé vulgarisé - Caractérisation du développement racinaire 
chez Brachypodium distachyon 

Alja van der Schuren – Hardtke Lab, DBMV UniL 

À long terme, nous consommerons beaucoup plus de nourriture que nous ne pouvons en 

produire actuellement. Il est donc urgent d'améliorer les rendements agricoles. Chez les 

plantes, les racines sont responsables de l'absorption de l’eau et du transport des 

minéraux et des hormones, ainsi l’amélioration du système racinaire pourrait être une 

solution. Malheureusement, les céréales comme le blé et le riz, qui constitue la base de 

notre alimentation, sont difficiles à cultiver en laboratoire. C’est pourquoi la petite 

adventice (mauvaise herbe) Arabidopsis thaliana (Arabidopsis) est largement étudiée, 

mais elle est encore assez différente des cultures. Par conséquent, une nouvelle espèce 

modèle a récemment été suggérée: Brachypodium distachyon (Brachypodium). Au cours 

de ma thèse, j’ai donc déterminé dans quelle mesure les recherches déjà effectuées 

chez Arabidopsis pourraient être transposées chez Brachypodium. J'ai étudié AUX1, une 

protéine qui transporte une hormone végétale appelée auxine. Une version non 

fonctionnelle de ce transporteur chez Arabidopsis fait perdre aux racines leur sens de 

l'orientation. La même mutation chez les céréales et Brachypodium a des effets 

supplémentaires : les pousses sont naines et parfois les plantes sont stériles. J'ai 

également étudié les gènes impliqués dans le développement du système vasculaire de 

la racine. Lorsque les gènes OCTOPUS (OPS) et BREVIS RADIX (BRX) ne sont pas 

fonctionnels chez Arabidopsis, ce système ne s’établit pas correctement et les racines 

restent courtes. J'ai créé un système permettant de muter ces gènes chez Brachypodium 

afin de déterminer leur fonction. Pour le moment, je n’ai pas pu isoler de combinaison de 

mutants ayant entraîné des racines courtes chez Brachypodium. Tous ces résultats 

montrent à quel point il est primordial d’étudier des espèces davantage similaires aux 

grandes cultures si nous voulons les améliorer.       

    Traduit avec l’aide de Dr. Pauline Anne et Matthieu Leclerc
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1. Introduction 

The world has more than fifty thousand edible plants, however only major crops like rice, 

maize and wheat provide for almost sixty percent of the world food energy intake. World 

cereal production reaches more than two and a half million tons per year and wheat alone 

makes up thirty-one percent of it (Food Agriculture Organization of the United Nations 

2018). However its current yield increase will not sustain worlds demand on the long term 

(Chochois, Vogel, and Watt 2012). It is predicted that crop yield must almost double by 

2050 in order to sustain current the world’s needs (Hsia et al. 2017). A fundamental 

understanding of how these plants grow and develop is therefore crucial to address 

challenges for cereal breeding. 

1.1 An introduction to plant development  

Plant development starts with the fertilization of an egg cell by a male gamete (Alberts 

2002). A root-shoot axis is established when a well-controlled and oriented division takes 

place to produce an embryo proper and a suspensor. More rounds of divisions take place 

and embryonic cells close to the suspensor develop into the root, while the opposite end 

of the embryo produces one or two cotyledons that will form the seedling shoot. Groups 

of stem cells embedded in the growth regions at the end of the shoot and the root, the so-

called meristems, ensure that the plant can keep growing by continuously creating new 

cells. The position of shoot and root apical meristems is already determined at the 

embryonic stage. From the meristem, cells go through three orderly phases: division, 

elongation and differentiation from where they will not develop any further (Alberts 2002; 

Ivanov and Dubrovsky 2013). 

Plants derived from embryos with one cotyledon (monocotyledons or monocots), differ 

substantially from plants grown from embryos with two cotyledons (dicotyledons or 

dicots). Apart from differences in the amount of cotyledons, they also display differences 

in vascular tissue organization in the leaf and in root growth (McSteen 2010; Pacheco-

Villalobos and Hardtke 2012). This often-invisible part of plants, the root system, is as 
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important as the shoot. It provides an anchor into the soil, ensures nutrient and water 

up-take, functions in defense against pathogens and is important in the transport and 

synthesis of hormones (Aiken and Smucker 1996; Osmont, Sibout, and Hardtke 2007; 

Lucas et al. 2013). In order to improve crops in terms of the use of water, fertilizers or 

necessary land area, understanding the root system and its development plays a crucial 

part (Chochois, Vogel, and Watt 2012; Coudert et al. 2010).  

1.2 Dicotyledon versus monocotyledon root development 

A good example of a dicot root system is seen in the model plant Arabidopsis thaliana 

(Arabidopsis). It develops one primary root with several branched (lateral) roots. The 

primary root consists of several single-celled layers, from outside to inside: epidermis, 

cortex, endodermis, pericycle and the stele (Peret et al. 2009; Anne and Hardtke 2018) 

(Figure 1A,C,D). The stele contains the vasculature (xylem, phloem and cambium) that 

ensures the transport between root and shoot.  

The root system of monocots is much more complex than dicot root systems. Apart from 

the primary root with lateral roots, some monocots develop additional embryonic roots, 

also called seminal roots. Later on, all monocots develop shoot-borne roots (crown roots) 

that eventually take over the function of the embryonic root system (Draper et al. 2001; 

Hochholdinger et al. 2004; Pacheco-Villalobos and Hardtke 2012) (Figure 1A, B). An 

example of a monocot root system can be seen in Figure 1B (Pacheco-Villalobos and 

Hardtke 2012, unpublished data). In this case the primary root consists of a single layer 

of epidermal cells, three to five cortical layers, one endodermal cell layer and the 

vasculature (Coudert et al. 2010; Pacheco-Villalobos and Hardtke 2012) (Figure 1E,F). 

The central vascular cylinder consists of one or sometimes two large central metaxylem 

cell files with eight peripheral xylem tracheary elements in a circle around it (Coudert et 

al. 2010; Pacheco-Villalobos and Hardtke 2012, unpublished data). The latter are 

alternating with phloem that is composed of a protophloem sieve tube associated with 

two companion cells and the metaphloem (Pacheco-Villalobos et al. 2013) (Figure 1F). 
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This stele arrangement with closed polyarch vasculature of alternating xylem and 

phloem around the central pith is typical for monocotyledons; in dicots xylem is arranged 

in a diarch to hexarch shape with phloem in between the extensions of xylem (Scarpella 

and Meijer 2004; Coudert et al. 2010; Pacheco-Villalobos and Hardtke 2012; Chochois, 

Vogel, and Watt 2012). Furthermore, cambium is not present in monocotyledon roots 

while in dicots it is important in a process called secondary growth (Scarpella and Meijer 

2004; Chochois, Vogel, and Watt 2012). Roots undergo radial growth from the cambium, 

whose initials originate from procambium within vascular bundles or from parenchyma 

cells between vascular bundles (Scarpella and Meijer 2004). Several other differences, 

like the development of root hairs, origin of lateral roots, origin of epidermis and the 

existence of rhizosheats are not the focus of this thesis and will therefore not be 

discussed in detail here (Hochholdinger et al. 2004; Dinneny and Yanofsky 2004; 

Scarpella and Meijer 2004; Coudert et al. 2010; McSteen 2010; Pacheco-Villalobos and 

Hardtke 2012; Lucas et al. 2013; Kirschner et al. 2017).  

1.3 Brachypodium distachyon as a monocotyledon model species 

It has become clear that monocotyledons that include important crops like maize (Zea 

mays L.), rice (Oryza sativa), wheat (Triticum Aestivium) and barley (Hordeum vulgare L.) 

differ from dicotyledons in many aspects. Due to these differences, it is difficult to transfer 

knowledge directly from the dicot Arabidopsis to these economically important crops 

(Draper et al. 2001; Hsia et al. 2017). Direct research on crops has been challenging 

owing to the requirement of special growth conditions; crops are in general larger and are 

therefore difficult to maintain in a growth chamber, especially rice needs well-adjusted 

growth conditions (Vogel, Garvin, et al. 2006; Scholthof et al. 2018). Furthermore, crops 

have longer generation times and a greater genome size that includes genome 

duplications and in the case of wheat even hexaploidy (Keller and Feuillet 2000; 

Pacheco-Villalobos and Hardtke 2012; Tao et al. 2016). 
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Figure 1: Representation of root growth of dicot (Arabidopsis: A,C,E) versus monocot (Brachypodium: 
B,D,F). A&B) Pictures of root systems, taken from Pacheco-Villalobos et al 2012. A) Typical dicotyledon 
root system architecture in 10-day-old Arabidopsis thaliana plants. Arabidopsis forms only one primary 
root during its development, which branches out through lateral roots. (B) Typical monocotyledon root 
system architecture in a 30-day-old Brachypodium distachyon plant, composed of a primary root, crown 
roots and lateral roots. PR, primary root; LR, lateral root; CR, crown root. Scale bars represent 1 cm. C-
F) Schematic representations of roots, different cell types are annotated in different colors. C) Cross-
section of Arabidopsis root elongation zone, showing the diarch shape with phloem in between 
extensions of xylem. Image adjusted from Vaughan-Hirsch et al. 2018. D) Cross-section of 
Brachypodium root elongation zone, showing the closed polyarch structure of alternating xylem and 
phloem around a central pith. Image is based on real photo obtained during this thesis. E) Median 
longitudinal section of Arabidopsis root tip, showing development of phloem. Picture adjusted from Anne 
et al 2018. F) Median longitudinal section of Brachypodium root tip, image is based on real photo 
obtained during this thesis. 

In order to perform routine research on a plant, it requires specific characteristics: a 

relatively small genome size, simple growth conditions, fast regeneration time and self-

pollination. Furthermore the existence of T-DNA libraries, BAC-libraries and yeast-two-

hybrid libraries are beneficial to speed up research (Scholthof et al. 2018). Recently the 

C3-plant Brachypodium distachyon (Brachypodium) (Figure 1B) was proposed as a good 

monocot model species since it fits the requirements mentioned above and is part of the 

Poaceae family of grasses (Draper et al. 2001). This family includes among others 

sugarcane, maize, rice, wheat, barley, sorghum and rye. Brachypodium is more closely 
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related to cereals like barley, rye and wheat than it is to rice and maize (Figure 2). This 

makes it very suitable to conduct research and transfer the knowledge to these major 

crops (Draper et al. 2001; Vogel, Gu, et al. 2006; Pacheco-Villalobos and Hardtke 2012; 

Pacheco-Villalobos et al. 2013; Scholthof et al. 2018; Kapp et al. 2015). The root system 

of Brachypodium is less complex than for example wheat, rice or maize that have many 

more roots, however root anatomy is similar between the different species (Chochois, 

Vogel, and Watt 2012; Pacheco-Villalobos and Hardtke 2012). Furthermore, at later 

stages Brachypodium develops several crown roots like rice, maize and wheat.  

 

Figure 2: Schematic phylogenetic relationship of Brachypodium distachyon to other Poaceae, taken from 
Draper et al. 2001. Brachypodium is more closely related to wheat and barley, than it is to rice and maize. 

Twenty different Brachypodium taxa are known, of which only three are annual species. 

They can be auto- or allogamous, diploid, tetraploid or hexaploid with chromosome 

numbers varying from five to fifteen. There are late and early flowering lineages 

(Scholthof et al. 2018). Brachypodium distachyon is autogamous, diploid with five 

chromosomes and an annual species. It is found in relatively cool, wet and high places 

with open habitats and is a not-so-efficient water user. To date, two lines of B. distachyon 

have been fully sequenced; the accession classified as “extremely rapid flowering” Bd21 

(or Bd21-0 as we named it in our lab) and the “rapid flowering” Bd21.3 (Sancho et al. 

2018; Scholthof et al. 2018). In parallel, some tools have recently been developed, like a 

diverse collection of B. distachyon accessions and several mutant libraries, including T-
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DNA insertion lines (Vogel and Hill 2008; Bragg et al. 2012; Scholthof et al. 2018).  

1.4 The plant hormone auxin (IAA) 

Both monocots and dicots need to modulate many different cellular processes to grow 

properly and respond to environmental stimuli (Alberts 2002). In order to control these 

processes, plants make use of signaling molecules, many of which are transported 

throughout the plant via the vasculature. Some of these molecules are phytohormones, 

whose existence was discovered in 1927 through a specific hormone called auxin or 

indole-3-acetic acid (IAA) (Went 1927). Years of additional research have now shown the 

existence of many more phytohormones that include, amongst others, indole-containing 

molecules, ethylene and brassinosteroids (Simon and Petrasek 2011; Balzan, Johal, and 

Carraro 2014). Even though these other indole-containing molecules have similar 

functions to IAA, the latter is still seen as the most important auxin. It is involved in many 

aspects of plant development, including cell division, elongation, differentiation and 

tropisms (Ljung et al. 2005; Simon and Petrasek 2011; Balzan, Johal, and Carraro 2014).  

IAA is derived from tryptophan via several possible pathways. However the major 

pathway involves the enzyme TRYPTOPHAN AMINOTRANSFERASE OF 

ARABIDOPSIS 1 (TAA1) or TAA1-RELATED (TAR) (Stepanova et al. 2008; Tao et al. 

2008). It converts tryptophan into indole-3 pyruvic acid (IPA), which is then converted by 

YUCCA enzymes into indole-3-acetic acid (Zhao et al. 2001) (Figure 3). This last step is 

rate limiting in the production of auxin (Zhao et al. 2001; Pacheco-Villalobos et al. 2013). 

Production of auxin mainly takes place in the aerial parts of the plant, the meristematic 

region of the root and, although at lower amounts, in other parts of the root (Ljung et al. 

2005). IAA is then transported from its site of production throughout the plant via the 

vasculature (Taiz et al. 2015; Swarup and Peret 2012). In order for auxin to enter cells, 

the pH of the apoplast between cells is of importance. This pH ranges from 5 to 5.5, 

which will cause 15-36% of auxin to be in its protonated form (IAAH), allowing it to 

passively cross the membrane. The charged IAA- requires a transporter to enter cells. 
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Since the pH within cells ranges between 7 and 7.5, IAA- is the major auxin found inside 

cells and it requires exporters to exit the cell (Taiz et al. 2015; Swarup and Peret 2012). 

The major auxin-efflux carriers are PIN-FORMED (PIN) and P-GLYCOPROTEIN (PGP), 

while the AUX1 / LIKE-AUX1 (AUX/LAX) family imports auxin into cells. Especially PIN-

proteins are important for the directional movement of auxin due to their asymmetrical 

localization in cells (Swarup and Peret 2012; Balzan, Johal, and Carraro 2014). 

When auxin concentration within cells is low, so-called AUX/IAA proteins repress auxin 

responses by binding to specific transcription factors (AUXIN RESPONSE FACTORS or 

ARFs). As auxin levels increase, AUX/IAAs are ubiquitinated and degraded by the 

proteasome. This releases ARFs to induce the expression of auxin response genes. 

AUX/IAAs are seen as general corepressors that inhibit auxin-dependent gene regulation 

(Li et al. 2016; Weijers and Wagner 2016). Furthermore it has been shown several times 

that the auxin pathway interacts with ethylene. Auxin upregulates 

AMINOCYCLOPROPANE-1-CARBOXYLATE (ACC) SYNTHASE, an important enzyme 

for ethylene production (Abel et al. 1995). On the other hand, ethylene can influence the 

expression of TAR- and YUCCA-genes (Stepanova et al. 2008; Mashiguchi et al. 2011; 

Pacheco-Villalobos et al. 2013).  

1.5 The auxin importer AUX1 

Even though auxin can diffuse into the cell on its own, it was shown that 75% of auxin 

uptake relies on active transport via importers (Swarup and Peret 2012). In Arabidopsis 

the auxin importer family consists of four members, called AUX1 and LIKE-AUX1 1 to 3 

(LAX1-3). In the shoot all AUX/LAX proteins seem important. Higher-order mutants 

display phenotypes in vascular development and phyllotactic patterning (Bainbridge et al. 

2008; Fabregas et al. 2015). In roots, AUX1 seems to be the most important member of 

the family, as corresponding mutants have the most severe phenotype. It was shown that 

AUX1 plays a role in gravitropism, lateral root (LR) initiation and root hair development 

(Maher and Martindale 1980; Yamamoto and Yamamoto 1998; Marchant and Bennett 
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1998; Marchant et al. 2002; Swarup et al. 2001; Swarup et al. 2005; Peret et al. 2012). 

To date a function for LAX1 and LAX2 in roots has not been reported and LAX3 only 

plays a role in LR emergence (Swarup et al. 2008; Peret et al. 2012). 

Arabidopsis AUX1 (AtAUX1) has eleven membrane-spanning helices and is located at 

the plasma membrane of cells. The N-terminus is located on the cytoplasmic side, while 

the C-terminus resides in the apoplast (Swarup et al. 2004). Normally AUX1 is localized 

asymmetrically to the apical side of developing protophloem cells, without polarity in root 

cap cells and axial in the epidermal cells, although at a lower level (Swarup et al. 2001; 

Swarup et al. 2004; Dharmasiri et al. 2006). It is also expressed in the columella, in 

vegetative meristems, in flower primordia and in leaves (Swarup et al. 2001; Bainbridge 

et al. 2008; Peret et al. 2012; Lampugnani, Kilinc, and Smyth 2013), however Ataux1 

mutants only display phenotypes in the root. Here it plays a dual role in auxin distribution; 

it transports the phytohormone from the shoot to the root tip (acropetal movement) and 

then distributes it away from root tip into outer tissues, the lateral root cap (LRC) and 

epidermis (basipetal movement) (Swarup et al. 2001; Ljung et al. 2005). The role of 

AUX1 is most prominent in basipetal movement (Swarup et al. 2005; Band et al. 2014). 

The distribution of auxin into the outer root tissues is important for correct gravity 

responses and is facilitated by PINs (Swarup et al. 2005; Sato et al. 2015). Gravity 

responses supposedly initiate by sedimentation of starch-filled amyloplasts in columella 

cells (Sato et al. 2015). In response PIN3 and PIN7 are relocated to the lateral face of 

columella cells, transporting auxin from lateral root cap cells to epidermal cells in the 

elongation zone. The basipetal transport into and through the elongation zone is further 

mediated by AUX1 and PIN2 (Sato et al. 2015). PIN2 is internalized and degraded on the 

upper side of gravistimulated roots, which is prevented by auxin in the bottom cells. Auxin 

then induces cell elongation in the upper root by cell-wall remodeling enzymes, while in 

the lower root a higher concentration of auxin inhibits cell elongation (Sato et al. 2015). 

Ataux1 mutants fail to deliver sufficient amounts of auxin to the root tip and then distribute 

it asymmetrically into epidermal cells, thus the roots cannot respond properly to gravity 
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(Swarup et al. 2001; Swarup et al. 2005; Band et al. 2014). A synthetic auxin called 1-

NAA is able to rescue gravitropic responses, since it can easily diffuse into cells, whereas 

importer-dependent auxins like 2,4-D are unable to rescue (Marchant et al. 1999). 

1.6 Auxin signaling in monocots and dicots 

For many mechanisms that involve auxin it is not yet known exactly what differences 

there are between monocots and dicots (McSteen 2010). To date, investigated monocot 

auxin transporters seem to have similar functions as in Arabidopsis, however some 

transporter families are bigger and include members with new functions (Balzan, Johal, 

and Carraro 2014). An example is Sister-of-PIN1 (SoPIN1) in Brachypodium, which is not 

found in Arabidopsis. It determines the sites of organ initiation by producing auxin 

maxima in the shoot (O'Connor et al. 2014). Also the AUX/LAX family in monocots might 

have adopted new functions. In addition to the problems in gravitropism observed in 

Arabidopsis aux1, in monocots these mutants sometimes display reduced plant height 

and increased root lengths (Yu et al. 2015; Zhao et al. 2015; Huang et al. 2017; van der 

Schuren et al. 2018) (Chapter 3). Moreover, rice, sorghum, Setaria viridis and maize 

contain five different LAX-genes instead of four like in Arabidopsis (Shen et al. 2010; 

Huang et al. 2017).  

Another example of differences between dicots and monocots in the field of auxin was 

published in 2013. Pacheco-Villalobos et al. discovered that the auxin-ethylene crosstalk 

in Brachypodium might differ substantially from dicots (Pacheco-Villalobos et al. 2013). 

The research was performed on a mutant in one of the two TAA1-RELATED (TAR) 

homologs in Brachypodium. The expression of this Brachypodium TAR homolog is 

severely reduced in the mutant but not totally abolished, therefore it is a hypomorphic 

mutant (Bdtar2lhypo, Pacheco-Villalobos et al. 2013). As TAA/TAR is involved in the auxin 

biosynthesis pathway, in Arabidopsis the down-regulation of TAA1 reduces the amount of 

auxin and therefore root growth is impaired (Stepanova et al. 2008; Tao et al. 2008) 

(Figure 3). Surprisingly Bdtar2lhypo mutants had an increased root length and displayed 
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increased auxin levels (Pacheco-Villalobos et al. 2013). Moreover root phenotypes, 

including auxin levels, could be restored by the addition of the ethylene precursor ACC. 

This was however not due to a change in BdTAR2L or BdTAR1L expression. Rather, the 

ACC-treated roots displayed reduced levels of YUCCA expression, the last enzyme 

involved in tryptophan-dependent auxin biosynthesis. To explain these paradoxical 

observations, a model was proposed in which ethylene suppresses instead of induces 

YUCCA expression in Brachypodium (Pacheco-Villalobos et al. 2013). It is known that 

ethylene is linked to the auxin biosynthesis intermediate IPA via VAS1-like enzymes 

(Zheng et al. 2013; Pacheco-Villalobos et al. 2016), therefore lower levels of IPA in 

Bdtar2lhypo mutants result in lower levels of ethylene. This de-represses the rate-limiting 

YUCCA step in auxin biosynthesis and results in higher levels of auxin as long as 

BdTAR2L expression does not drop below a certain threshold (Pacheco-Villalobos et al. 

2013) (Figure 3). 

 

 

Figure 3 Auxin-ethylene crosstalk model as proposed by Pacheco-Villalobos et al 2013. Ethylene promotes 

YUCCA expression in Arabidopsis, while it suppresses YUCCA in Brachypodium. 

Many experiments have shown that correct auxin levels are crucial for normal root 

development and the addition of external auxin inhibits root growth (Hobbie and Estelle 

1995; Marchant et al. 1999; Swarup et al. 2001; Ivanchenko, Muday, and Dubrovsky 
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2008; Stepanova et al. 2008; Yu et al. 2015). In rice it was concluded that this auxin-

induced inhibition of root growth was not caused by ethylene, rather roots need a certain 

level of ethylene to cope with auxin (Yin et al. 2011). Nonetheless YUCCA in rice is 

induced by ethylene (Qin et al. 2017). Lee et al. showed that addition of ethylene in a 

gravity response assay in maize roots makes the root continue to curve where non-

treated roots would stop curving. The opposite effect is seen with auxin transport or 

ethylene inhibitors (Lee, Chang, and Evans 1990). This seems more in line with the 

model proposed for Arabidopsis. Also results by Mulkey et al. in maize seem more in line 

with the model for Arabidopsis; in maize roots that were pre-treated with ethylene 

inhibitors, low concentrations of auxin strongly promoted growth (Mulkey, Kuzmanoff, and 

Evans 1982). Neither Yin, nor Lee and Mulkey et al. provide any analysis of amounts of 

auxin or transport of auxin in roots. Their manipulations were purely pharmacological, 

whereas the work in Brachypodium is based on genetics. This makes it difficult to draw 

any detailed conclusions on auxin-ethylene cross talk or on differences between 

monocotyledons and dicotyledons.  

1.7 The importance of phloem for the plant 

As discussed before, both dicots and monocots have a complex vasculature, consisting 

of xylem and phloem that connects shoot and root. Xylem transports water and minerals 

from the root to the other parts of the plant, while phloem transports photosynthetic 

assimilates and signaling molecules (like auxin) to the developing tissues such as the 

root (Heo et al. 2014; Dinneny and Yanofsky 2004; Lucas et al. 2013; Pacheco-Villalobos 

and Hardtke 2012; Rodriguez-Villalon et al. 2014; Marhava et al. 2018; Anne and Hardtke 

2018). The development of a vasculature is thought to be one of the major reasons for 

successful adaptation of plants to the land environment (Lucas et al. 2013; Heo et al. 

2014). Fossils and some of the most primitive land plants, like mosses, do not have a 

vasculature; instead they have water- and food-conducting cells (Lucas et al. 2013). More 

evolved xylem in higher-order plants like angiosperms consists of dead vessel elements 

that are all connected to reduce the resistance for water flowing through (Evert 2006; 
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Lucas et al. 2013). More complex phloem consists of sieve elements with perforated 

walls at the transversal junctions between two cells, also called sieve plates. The sieve 

elements form a working sieve tube that permits continuous sap flow within the phloem 

(Evert 2006; Lucas et al. 2013; Heo et al. 2014; Breda, Hazak, and Hardtke 2017). Unlike 

xylem, these sieve elements are not completely dead when they mature and they are 

closely linked to companion cells that provide essential metabolic molecules (Evert 2006; 

Lucas et al. 2013; Rodriguez-Villalon et al. 2015; Heo et al. 2014).  

The exact development from stem cell initial to working sieve element in the root is so far 

mainly described in Arabidopsis (Mahonen et al. 2000; Lucas et al. 2013; Rodriguez-

Villalon et al. 2014; Rodriguez-Villalon et al. 2015; Heo et al. 2014). Phloem develops 

from a precursor cell that undergoes two periclinal divisions; the first division forms a 

procambial precursor and a sieve element precursor, whereas a second division of the 

latter cell creates proto- and metaphloem cell files (Bauby et al. 2007; Rodriguez-Villalon 

et al. 2014; Anne and Hardtke 2018) (Figure 1E). The protophloem in Arabidopsis 

differentiates earlier than other cell types in the root, which is associated with changes in 

cell wall composition, cell elongation, cytoplasm remodeling and loss of several 

organelles including the nucleus (Evert 2006; Lucas et al. 2013; Rodriguez-Villalon et al. 

2014; Heo et al. 2014; Breda, Hazak, and Hardtke 2017; Ruiz Sola et al. 2017). From 

here on surrounding companion cells provide essential metabolic functions that sieve 

tubes cannot produce themselves anymore (Evert 2006; Lucas et al. 2013; Rodriguez-

Villalon et al. 2015). These companion cells are derived from the procambium initial and 

not like the protophloem from the sieve element precursor. Further up in the root the 

metaphloem develops into functional sieve elements that take over the function of 

protophloem (Evert 2006; Lucas et al. 2013; Rodriguez-Villalon et al. 2014; Rodriguez-

Villalon et al. 2015) (Figure 1C,D). (Mahonen et al. 2000; Rodriguez-Villalon et al. 2014; 

Ruiz Sola et al. 2017). Solutes are loaded into the phloem at their site of production in the 

shoot and transported through the metaphloem to the root. Close to the root tip, the 

protophloem takes over the function of the metaphloem. Since the meristem needs a lot 
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of energy to sustain organ growth, the phloem unloads its content there (Lucas et al. 

2013; Ruiz Sola et al. 2017; Anne and Hardtke 2018).  

Phloem-specific root mutants have been studied for several years now and some 

important factors have been identified in Arabidopsis. One of them is wooden leg (wol), 

which completely lacks phloem cell lineages since it is required for the stem cell divisions 

that give rise to them (Scheres et al. 1995; Mahonen et al. 2000; Truernit et al. 2012). 

Another example is the ALTERED PHLOEM DEVELOPMENT mutant (apl), where 

phloem initials do develop however phloem differentiation fails (Bonke et al. 2003). 

Furthermore several regulators have been discovered that are specifically involved in 

phloem and not xylem development (discussed in more detail below) (Bauby et al. 2007; 

Mouchel, Briggs, and Hardtke 2004; Truernit et al. 2012; Depuydt et al. 2013; Rodriguez-

Villalon et al. 2014; Anne and Hardtke 2018). Mutations in these regulators often result in 

the “disturbed protophloem syndrome”, where roots are smaller than in wild type with an 

increased amount of lateral roots (Mouchel, Briggs, and Hardtke 2004; Truernit et al. 

2012; Depuydt et al. 2013; Rodriguez-Villalon et al. 2015; Breda, Hazak, and Hardtke 

2017; Anne and Hardtke 2018). This can be visualized by several cues: the first periclinal 

division of the sieve element precursor cell is often delayed or even absent and 

undifferentiated cells that retain a nucleus, lack characteristic cell wall changes and lack 

an increase of actin filament abundance appear as “gaps” in a protophloem strand 

(Scacchi et al. 2010; Rodriguez-Villalon et al. 2014; Anne and Hardtke 2018). In more 

mature roots, non-differentiated phloem cells can also be observed by continued instead 

of reduced toluene blue staining (Rodriguez-Villalon et al. 2014; Ruiz Sola et al. 2017). 

Because of the gaps the flow of protophloem sap as well as auxin to the meristem is 

interrupted, which interferes with normal development of the root (Truernit et al. 2012; 

Rodriguez-Villalon et al. 2014; Rodriguez-Villalon et al. 2015; Anne and Hardtke 2018; 

Marhava et al. 2018).  
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1.8 Regulators involved in the disturbed protophloem syndrome 

Originally the disturbed protophloem syndrome was discovered in the brevis radix (brx) 

mutant. It was isolated from a screen for regulators in root growth on natural accessions 

of Arabidopsis. The Umkirch-1 (Uk-1) accession stood out because of its short primary 

root and several adventitious roots due to a mutation in BRX (Mouchel, Briggs, and 

Hardtke 2004). A few years later a similar mutant was discovered and named octopus 

(ops) (Truernit et al. 2012; Rodriguez-Villalon et al. 2014). Both BRX and OPS are 

important for adopting sieve element fate and are therefore considered positive regulators 

of protophloem development (Depuydt et al. 2013; Rodriguez-Villalon et al. 2014; Anne 

and Hardtke 2018). During a screen for genetic suppressors of brx, more regulators 

involved in the control of protophloem differentiation where identified (Depuydt et al. 

2013; Rodriguez-Villalon et al. 2014; Rodriguez-Villalon et al. 2015; Kang and Hardtke 

2016; Breda, Hazak, and Hardtke 2017; Cattaneo and Hardtke 2017; Anne and Hardtke 

2018). A second-site mutation in BARELY ANY MERISTEM3 (BAM3) could fully 

suppress the brx phenotype and seemed specifically involved in protophloem 

development (Depuydt et al. 2013). Second-site mutations in COTYLEDON VASCULAR 

PATTERN 2 (CVP2) and MEMBRANE-ASSOCIATED KINASE REGULATOR 5 (MAKR5) 

could only partially rescue the brx phenotype (Rodriguez-Villalon et al. 2015; Kang and 

Hardtke 2016). Another factor discovered in the screen was BIG BROTHER (BB), whose 

mutant displayed increased meristematic activity that is not specifically linked to 

protophloem (Cattaneo and Hardtke 2017). The most important factors in protophloem 

development will be discussed in more detail below. 

Other studies revealed that phytohormones are also involved in the regulation of 

protophloem development (Kang, Breda, and Hardtke 2017; Marhava et al. 2018). Indeed 

the induction of brassinosteroid signaling in ops or brx can partially rescue distinct 

aspects of their root phenotypes (Mouchel, Osmont, and Hardtke 2006; Anne et al. 2015; 

Kang, Breda, and Hardtke 2017). In accordance with that, a recent study has shown the 

implication of the receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1) and its 
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homologs with protophloem development (Cano-Delgado et al. 2004; Kang, Breda, 

and Hardtke 2017). This will be discussed in more detail below. 

BRX 

AtBRX (At1g31880) is expressed at very low levels in the root (Mouchel, Briggs, and 

Hardtke 2004); it is only expressed in the columella and the developing protophloem 

(Scacchi et al. 2009; Depuydt et al. 2013). In the protophloem, BRX protein is polarly 

localized to the rootward end of cells (Mouchel, Osmont, and Hardtke 2006; Bauby et al. 

2007; Scacchi et al. 2009; Marhava et al. 2018). Overexpression of BRX results in 

increased hypocotyl length and delayed root gravitropism (Scacchi et al. 2009). BRX 

homologs are found in all higher order plants (Mouchel, Briggs, and Hardtke 2004). They 

all have four characteristic, highly conserved domains: a 10 and a 25 amino acid stretch 

at the N-terminus and a tandem of two homologous domains of 55 amino acids with a 

100-150 amino acid spacer in between (tandem BRX domain) (Briggs, Mouchel, and 

Hardtke 2006). In Arabidopsis four homologs of BRX can be found (BRXL1-4), however 

none seem to act redundantly with BRX (Mouchel, Briggs, and Hardtke 2004; Briggs, 

Mouchel, and Hardtke 2006). Only expression of BRX itself, or BRXL1 expressed 

constitutively or under the control of BRX promoter can rescue the root phenotype of brx 

mutants (Mouchel, Briggs, and Hardtke 2004; Briggs, Mouchel, and Hardtke 2006; 

Scacchi et al. 2009). BRXL1 in wild type roots is expressed at much lower levels than 

BRX, which, together with its restriction to mature roots, could explain the lack in 

redundancy with BRX (Briggs, Mouchel, and Hardtke 2006; Scacchi et al. 2009). Apart 

from the discovery of a lack of redundancy with BRX, the remaining homologs of BRX in 

Arabidopsis have not yet been analyzed in detail.  Interestingly, brx mutant could be 

rescued by ectopic expression of several monocot BRX homologs, leading to the 

conclusion that BRX genes might be more diversified in dicots than in monocots (Beuchat 

et al. 2010).  

The detailed function of BRX and the BRX domain remains to be elucidated. It is known 
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that the N-terminus is important for the localization of BRX to the plasma membrane 

(Scacchi et al. 2009), and a chimeric fusion of AtBRX-N-terminus with AtBRXL2-C-

terminus can rescue brx (Beuchat et al. 2010). The N-terminus alone, however, cannot 

complement brx, whereas the C-terminus by itself can partially complement the brx 

mutant. The latter localizes both to the plasma membrane and the nucleus and may even 

induce overexpression phenotypes (Scacchi et al. 2009). Furthermore BRX can inhibit 

the export of the plant hormone auxin, whereas high intracellular concentrations of auxin 

displace BRX protein from the membrane (Scacchi et al. 2009; Marhava et al. 2018). 

Increased auxin efflux then reduces cellular auxin concentrations, causing BRX to re-

associate with the membrane and block auxin efflux again (Marhava et al. 2018). This 

creates an equilibrium in which BRX is thought to be fine-tuning cellular auxin efflux in 

developing sieve elements. 

OPS 

Before the discovery of its mutant phenotype, OCTOPUS (At3g09070) was already 

identified as a good marker for phloem development (Nagawa et al. 2006; Bauby et al. 

2007). OPS is expressed in phloem vascular initials in embryo, root and leaf that later 

develop into protophloem and metaphloem, and also in shoot vasculature (Bauby et al. 

2007; Truernit et al. 2012; Ruiz Sola et al. 2017). OPS seems to be expressed earliest of 

all the factors involved specifically in protophloem development, namely as early as the 

sieve element precursor. It is considered a master regulator in protophloem differentiation 

since an extra copy of OPS can rescue several other mutants with the disturbed 

protophloem syndrome, including brx (Scacchi et al. 2009; Rodriguez-Villalon et al. 2014; 

Breda, Hazak, and Hardtke 2017; Anne and Hardtke 2018). Even though the ops root 

phenotype resembles brx, the root phenotype of brx ops double mutant is even more 

severe than either single mutant, suggesting that both genes work in parallel pathways 

but affect the same downstream targets (Breda, Hazak, and Hardtke 2017). Moreover, 

unlike brx, ops also displays reduced vascular complexity in cotyledons and leaves 

(Truernit et al. 2012; Ruiz Sola et al. 2017). OPS overexpression lines display elongated 
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hypocotyls, increased vascular pattern complexity, premature protophloem 

development and wavy roots (Truernit et al. 2012; Anne et al. 2015; Breda, Hazak, and 

Hardtke 2017). In strong overexpression lines root growth inhibition was reported, 

possibly because excess levels of OPS push cell into premature differentiation (Breda, 

Hazak, and Hardtke 2017). 

The OPS protein contains one domain, the DOMAIN OF UNKNOWN FUNCTION 740 

(DUF740), for which, as the name suggests, a function still has to be elucidated. AtOPS 

remains functional when specific conserved regions are removed since most tested 

truncated OPS variants could still complement ops single mutants and partially 

complement brx or brx ops double mutants (Breda, Hazak, and Hardtke 2017). OPS is a 

membrane-associated protein that in roots is localized to the shootward side of phloem 

cells, however it is also found in the cytoplasm. Interestingly, polar localization does not 

seem to be essential for its function in protophloem differentiation, since rootward 

localization of OPS and constructs with a relatively high cytoplasmic-abundance can still 

complement the ops mutant (Truernit et al. 2012; Breda, Hazak, and Hardtke 2017). 

However, the charge of specific phosphosites in OPS is crucial for its function. A more 

positively charged OPS can more efficiently rescue ops, brx and brx ops double mutant 

phenotypes and additionally induce overexpression phenotypes, contrary to more 

negatively charged OPS (Breda, Hazak, and Hardtke 2017). In evolution, the appearance 

of proteins containing the DUF740 domain is thought to correlate with the appearance of 

sieve elements. It is conserved over all angiosperms sequenced to date, but not found in 

ferns or gymnosperms (Breda, Hazak, and Hardtke 2017). Interestingly, even an ortholog 

of the most basal angiosperm Amborella trichopoda could rescue the Arabidopsis ops 

mutant, suggesting a strong selective pressure on OPS family members over time 

(Breda, Hazak, and Hardtke 2017). In Arabidopsis five genes that carry DUF740 have 

been detected. The five genes group into two classes and OPS clusters with two more 

homologs in the same group (Nagawa et al. 2006). These were named OPS-LIKE 1 and 

2 (OPL1 and OPL2) (Ruiz Sola et al. 2017). OPL1::GUS but not OPL2::GUS reporter 
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gene staining was detected in roots (Nagawa et al. 2006), however Sola et al. 2017 

report weak OPL2 expression in developing phloem when using a fluorescent reporter 

(Ruiz Sola et al. 2017). In addition they report that OPL1 is mainly expressed in xylem 

and mature plant tissue and therefore seems an unlikely candidate for redundancy with 

OPS (Ruiz Sola et al. 2017). OPL2 is expressed everywhere at younger stages and only 

becomes restricted to vasculature in mature root and leaves (although weaker than 

OPS), whereas OPS is always restricted to provascular cells, even in the embryo 

(Truernit et al. 2012; Ruiz Sola et al. 2017). Like OPS, OPL2 in the protophloem was 

restricted to the shootward side of cells at the plasma membrane, which was not always 

the case in other cell types (Ruiz Sola et al. 2017). Atopl2 single mutants do not show a 

root phenotype, however ops opl2 double mutants display a more severe phenotype than 

ops alone, judged from root length, phloem differentiation defects and shoot vasculature 

complexity. Furthermore the expression of OPS::OPL2 could partially rescue the root 

phenotypes of the ops mutant (Ruiz Sola et al. 2017). Interestingly Breda et al. published 

that OPL1 could also complement ops and even ops brx double mutants when expressed 

under the control of the OPS promoter, arguing that the OPS proteins are functionally 

redundant (Breda, Hazak, and Hardtke 2017).  

BAM3 and CLE45 

BAM3 (At4g20270) and CLAVATA3/EMBRYO SURROUNDING REGION 45 (CLE45 or 

At1g69588) form a receptor-ligand pair that is hyperactive in brx mutants (Depuydt et al. 

2013). Many homologs for both receptor and ligands exist in Arabidopsis and ligands may 

bind to different receptors with different affinities constructing a complicated network of 

possible interactions (Hazak and Hardtke 2016; Hazak et al. 2017; Anne et al. 2018). In 

Arabidopsis 32 different CLE peptide-encoding genes can be found. The processed, 

active peptides that are secreted are only 12-13 amino acids in size (Czyzewicz et al. 

2015; Hazak and Hardtke 2016; Anne et al. 2018; Yamaguchi et al. 2017). Most of them 

inhibit root growth when applied to Arabidopsis roots in nano- to micromolar 

concentrations (Kinoshita et al. 2007; Depuydt et al. 2013; Czyzewicz et al. 2015; Anne et 
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al. 2018). Only CLE45 and its close homolog CLE26 have so far been specifically 

related to protophloem development. Whereas CLE45 is expressed from early stages on 

in the protophloem cell lineage, CLE26 expression is only observed at later stages 

(Rodriguez-Villalon et al. 2014; Czyzewicz et al. 2015; Anne et al. 2018; Anne and 

Hardtke 2018). Treating seedlings with CLE45 induces the disturbed protophloem 

syndrome (Depuydt et al. 2013; Rodriguez-Villalon et al. 2014). Overexpression of fully-

functional CLE45 is lethal, whereas a weaker version can mimic brx and ops phenotypes 

(Depuydt et al. 2013). A knock-down and knock-out of CLE45 were published, however 

no root phenotypes were reported (Endo et al. 2013; Yamaguchi et al. 2017). A mutant 

with reduced CLE26 expression resulted in slightly increased root lengths in Arabidopsis 

(Czyzewicz et al. 2015), which was observed as well in over expression lines (Strabala et 

al. 2006). In monocots, some CLE peptides have been linked to root meristem 

differentiation, shoot meristem development and cyst nematode infections (Hazak and 

Hardtke 2016; Kirschner et al. 2017). When AtCLE-peptides were tested on rice roots, 

they seemed to have similar effects as in Arabidopsis (Kinoshita et al. 2007). Interestingly 

the closest homolog of AtCLE26 in several monocots included a substitution of an amino 

acid that was crucial for its function in Arabidopsis (Czyzewicz et al. 2015). When 

monocot and dicot CLE peptides were tested, they indeed induced different effects in 

monocots and Arabidopsis. In both species, AtCLE26 reduced primary root length, 

whereas Bradi1g05010 (the closest homolog of CLE26 in Brachypodium) slightly 

increased primary root length. It was suggested that there might possibly be another, yet 

unknown, ortholog of AtCLE26 in monocots (Czyzewicz et al. 2015). 

The bam3 mutant is resistant to CLE45 and suppresses the brx phenotype as a second 

site mutations, however as single mutant it lacks a phenotype under normal conditions 

(Depuydt et al. 2013). BAM3 is expressed in protophloem and surrounding tissues and is 

a negative regulator of protophloem differentiation that is under the negative control of 

BRX (Depuydt et al. 2013; Rodriguez-Villalon et al. 2014; Hazak et al. 2017). In 

Arabidopsis it is part of a three member family, with BAM1 and BAM2 being mainly 
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involved in shoot development and BAM1 also in cell proliferation in the root (Shimizu 

et al. 2015; Hazak and Hardtke 2016). Only the expression of BAM3 is restricted to the 

vasculature and it is so far the only family member implicated in protophloem 

development, however since its single mutant is lacking a phenotype it cannot be 

excluded that other receptor-like kinases may act redundantly (Hazak and Hardtke 2016). 

BRI1 

BRI1 (At4g39400) is involved in brassinosteroid signaling, a class of phytohormones that, 

like auxin, affect cell elongation and division (Kang, Breda, and Hardtke 2017). In 

Arabidopsis, BRI1 is the major receptor kinase for brassinosteroid signaling and it can 

trigger a signaling cascade inside the cell upon perception of brassinosteroids at the 

plasma-membrane. It contains several leucine-rich-repeats (LRR), a 70 amino acid island 

domain, a transmembrane domain and a cytoplasmic kinase domain (Cano-Delgado et 

al. 2004; Kinoshita et al. 2005). Three homologs can be found in Arabidopsis that are 

intron-less like BRI1 itself, however only BRI1-LIKE 1 and 3 (BRL1 and BRL3) encode 

functional brassinosteroid receptors (Cano-Delgado et al. 2004; Kang, Breda, and 

Hardtke 2017). This is possibly linked to the more divergent island domain in BRL2 as 

compared to the other homologs, as the island domain was found to be crucial for binding 

to brassinosteroids together with its flanking LRR (Cano-Delgado et al. 2004; Kinoshita et 

al. 2005). Single bri1 mutants do not display specific protophloem defects, rather they are 

known for extreme dwarfism in the shoot, male sterility and a reduced root size (Cano-

Delgado et al. 2004; Kang, Breda, and Hardtke 2017; Clouse, Langford, and McMorris 

1996; Gonzalez-Garcia et al. 2011). BRI1 expression is observed ubiquitously throughout 

the plant (Cano-Delgado et al. 2004). By contrast, BRL1 and BRL3 expression is 

restricted to the vasculature and they complement each other’s expression pattern; in the 

root BRL3 is restricted to protophloem (Cano-Delgado et al. 2004). Neither brl1 or brl3 

nor the brl1 brl3 double mutants display root phenotypes in Col-0 wild type background, 

possibly due to their redundancy with BRI1. Concomitantly, a triple bri1 brl1 brl3 mutant 

shows a more severe phenotype than any single mutant. It is even smaller than bri1, 
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even less fertile and displays gaps in the protophloem (Cano-Delgado et al. 2004; 

Kang, Breda, and Hardtke 2017). The amount of gaps in the triple mutant is lower than in 

ops or brx. Furthermore the mutant displays aberrant radial divisions in the root, leading 

to more cell files. Interestingly phloem-specific expression of BRI1 in triple bri1 brl1 brl3 

mutants could revert all observed root phenotypes back to wild type (Kang, Breda, and 

Hardtke 2017). Earlier it was already shown that brassinosteroid signaling in ops or brx 

can partially rescue distinct aspects of their root phenotypes (Mouchel, Osmont, and 

Hardtke 2006; Anne et al. 2015; Kang, Breda, and Hardtke 2017). In summary, even 

though BRI1 and its homologs may not be directly involved in protophloem development, 

they may still influence the process and represent interesting candidates for further 

studies. 

1.9 Tools for research in monocotyledon protophloem development 

In contrast to Arabidopsis, publications on protophloem development in monocot roots 

are rare. Moreover, mutants for OPS, CLE45/BAM3 and BRX homologs were not 

available from the T-DNA libraries in Brachypodium at the start of my PhD (Vogel, Garvin, 

et al. 2006; Bragg et al. 2012; Hsia et al. 2017). Therefore in order to perform research on 

protophloem development in Brachypodium, it was important to first establish the 

homologous mutants. Several possibilities to create mutants have been suggested in the 

literature: RNA-interference, the Zinc-Finger Nuclease-Technology, the Transcription 

Activator-Like Effector Nucleases and the Clustered Regulatory Interspersed Short 

Palindromic Repeat (CRISPR)/CRISPR-associated protein (Cas) genome editing system. 

Each will be discussed in more detail below. Due to its ease and cost-effective design, 

the CRISPR-Cas genome editing systems became the system of choice to attempt 

mutations in Brachypodium at the start of my PhD (Chapter 4).  

RNA-interference 

RNA-interference was first discovered in nematodes, where sequence-specific gene 

silencing occurred as a response to double-stranded RNA (Fire et al. 1998; Hannon 
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2002). It makes use of double-stranded RNA that is complementary to a gene of 

interest and is cleaved into small interfering RNAs (siRNA) by an enzyme called Dicer. 

The siRNA is then made single-stranded and one of the strands is incorporated in the 

RNA-induced silencing complex (RISC). The complex is guided to mRNA that is 

complementary to the incorporated siRNA, and in most cases this mRNA is then cleaved 

by Argonaute 2. This principle was harnessed to reduce the levels of specific RNAs in 

many species (Hannon 2002; Miki and Shimamoto 2004; Pacheco-Villalobos et al. 2016). 

A disadvantage of the system is that the amount of silencing is difficult to control and can 

vary between different lines with the same construct (Hannon 2002; Miki and Shimamoto 

2004; Pacheco-Villalobos et al. 2016), which led researchers to search for alternatives. 

ZincFinger Nuclease-technology 

An alternative to RNAi was proposed with the discovery of the ZincFinger Nuclease-

technology (ZFN) (Jiang 2013, Shiml 2016). This technique makes use of a restriction 

enzyme from Flavobacterium okeanokoites (FokI) that cleaves a short distance away 

from a specific DNA sequence (Wah et al. 1998). FokI is brought to selected parts of 

DNA by a combination of ZF domains that specifically recognize a triplet of DNA each. 

Once FokI opens the DNA, a process called Non-Homologues End Joining (NHEJ) is 

induced to repair the DNA, which often leads to deletions (Gaj, Gersbach, and Barbas 

2013; Gupta et al. 2012). A drawback of this system is that it is time-consuming and 

costly to design appropriate nucleases and difficult to predict their efficacy (Jiang 2013, 

Ma 2015, Shiml 2016).  

Transcription Activator-Like Effector Nucleases  

A second alternative to RNAi is the use of Transcription Activator-Like Effector Nucleases 

(TALENs) (Jiang 2013, Ma 2015, Shiml 2016). They also make use of the FokI enzyme, 

however instead of ZFs for the recognition of DNA, it requires TALs that are simpler to 

design. They are nearly identical tandem repeat units that each recognize one nucleotide 

and were shown to efficiently create mutations in several plant species including 
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Brachypodium (Shan, Wang, Chen, et al. 2013; Zhang et al. 2013). These repeats also 

cause a drawback: cloning may be difficult and repeats may lead to vector instability 

(Jiang 2013, Ma 2015, Shiml 2016).  

CRISPR-Cas genome editing system 

At almost the same time as the TALENs, another system was discovered: the Clustered 

Regulatory Interspersed Short Palindromic Repeat (CRISPR)/CRISPR-associated protein 

(Cas) system for genome editing (Cong et al. 2013; Mali et al. 2013; Jiang et al. 2013; 

Mao et al. 2013). This system makes use of RNAs and not proteins as DNA recognition 

units and is therefore much easier to design and clone. It was originally discovered in 

bacteria as a defense system against viruses and makes use of short pieces of the 

foreign DNA. This DNA sometimes gets incorporated in the bacterial CRISPR region and 

in future events it can be transcribed into CRISPR-RNA (crRNA). This crRNA is 

processed into small pieces (usually 20bp long) with the aid of trans-activating RNA 

(tracrRNA) and both types of RNA are incorporated in the Cas protein. The match of 

crRNA with foreign DNA guides the Cas complex to the complementary strand of foreign 

DNA. Cas has two nuclease domains that can cause Double Strand Breaks (DSBs) in the 

foreign DNA if it is bound just upstream of a Protospacer Adjacent Motif (PAM). In the 

case of Streptococcus pyogenes Cas9 (SpCas9), this PAM consists only of nucleotides 

NGG (Cong et al. 2013; Mali et al. 2013; Jiang et al. 2013; Miao et al. 2013; Shan, Wang, 

Li, et al. 2013). The system can be used to target specific DNA by fusing crucial parts of 

tracrRNA to any type of crRNA (called single guide RNA or sgRNA), under the control of 

an RNA polymerase III U3 or U6 promoter. Upon expression, the sgRNA can be loaded 

onto a Cas protein, which then cuts the targeted DNA. If DNA from an organism itself is 

targeted, the organism attempts to repair it by NHEJ, hereby often incorporating or 

deleting one or a few base pairs (Cong et al. 2013; Mali et al. 2013; Jiang et al. 2013; 

Miao et al. 2013). This can lead to frame shifts and create mutants that can be used for 

research. 
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The CRISPR-Cas system has been exploited to create numerous mutants in many 

different species (Cong et al. 2013; Mali et al. 2013; Jiang et al. 2013; Miao et al. 2013; 

Shan, Wang, Li, et al. 2013; Johnson et al. 2015; Ma et al. 2015; Schiml and Puchta 

2016). Two years after the discovery that CRISPR-Cas can be used for genome editing, 

a new Cas-protein was discovered, called CRISPR from Prevotella and Francisella 1 or 

CpfI (Zetsche et al. 2015). Two CpfI proteins had significant genome-editing activity in 

human cells, named Acidaminococcus CpfI (AsCpfI) and Lachnospiraceae CpfI (LbCpfI). 

Furthermore the new Cas protein has two advantages over SpCas9: it does not need 

tracrRNA to process crRNA and it introduces staggered double strand breaks and could 

therefore be interesting for NHEJ-based gene insertion. It requires a T-rich PAM site 

(Zetsche et al. 2015).  

1.10 Research outline 

All in all it seems that research in dicots like Arabidopsis is not always enough to 

understand monocot development, since not all findings from Arabidopsis can be 

transferred to monocots one to one. The role of auxin is still poorly understood in 

monocots, which is peculiar since the Poaceae family is economically very important 

(Vogel and Hill 2008; Kapp et al. 2015). Moreover the exact mechanisms of phloem 

development, involving factors like BRX, CLE45 and OPS, have to our knowledge not at 

all been studied in monocots. Experimental data has to be obtained in order to confirm 

conservation of underlying regulatory pathways. The focus of my PhD has therefore been 

to characterize more mutants in Brachypodium with putative defects in root development, 

through analogy with Arabidopsis.  

In order to get familiar with Brachypodium, I continued the work of David Pachecco-

Villalobos, a former postdoctoral researcher in the laboratory, which resulted in the 

publication presented in 7.1 The Effects of High Steady State Auxin Levels on Root Cell 

Elongation in Brachypodium. Since Brachypodium as a model species has only been 

proposed recently (Draper et al. 2001; Vogel and Hill 2008; Pacheco-Villalobos and 
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Hardtke 2012), many protocols were not yet optimized or even tested. Therefore, part 

of my PhD was spent on optimizing conditions and protocols to work efficiently with this 

new model species, as will be discussed in Chapter 2. My work with a T-DNA insertion 

mutant in AUX1 helped for a deeper understanding of auxin pathways and how to work 

with Brachypodium, which resulted in the publication discussed in Chapter 3. Moreover 

the T-DNA insertion lines available in Brachypodium (Vogel, Garvin, et al. 2006; Bragg et 

al. 2012; Hsia et al. 2017) did not cover homologs of OPS, CLE45/BAM3, BRX or BRI1. 

The main focus of my PhD was therefore to create and analyze mutants of homologs that 

were involved in the disturbed protophloem syndrome. This project started with the 

development of a functional CRISPR-Cas genome editing system in Brachypodium. Due 

to time-consuming transformation protocols and the existence of several homologs per 

gene of interest, the creation of these mutants took most of my time. Only in the last year, 

I succeeded in having multiple mutants. Therefore the testing of the CRISPR system and 

some preliminary results obtained for CRISPR-edited mutants will be discussed in 

Chapter 4.  

 



 

26 

26 
2. How to work with Brachypodium distachyon 

Even though researchers have been working with Brachypodium for a few years, many 

protocols have not yet been optimized and often details are missing, complicating 

growing Brachypodium or performing experiments. Therefore, a lot of time during my PhD 

was spent on optimizing protocols. This chapter contains all the updated information that I 

have gathered during my PhD on how to work with Brachypodium. It includes growth 

conditions, crosses, transformation of Brachypodium via the isolation of immature 

embryos, microscopy, embedding of roots, transversal sectioning and in situ hybridization 

on roots. All work was performed on accessions Bd21 and Bd21.3. They are most 

commonly used in research, due to their fully sequenced genome, diploidy, annual life 

cycle, self-crossing and status as rapidly flowering accessions (Sancho et al. 2018; 

Scholthof et al. 2018). The work presented here was done in collaboration with or 

continued from work of Dr. Pachecco-Villalobos, Dr. Takayuki Tamaki and Dr. Amelia 

Amiguet Vercher. 

2.1 Growth conditions: From seed to next generation seeds 

In order to sterilize seeds, they have to be husked. This can be done either by forceps or 

by hand. For 10-20 seeds per genotype, 12-well plates can be used while higher amounts 

of seeds can best be collected in petri dishes. The peeled seeds are sterilized for 30s in 

70% ethanol with agitation, then remove ethanol with a pipet boy and rinse with sterile 

deionized water. Add 1.3% sodium hypochlorite solution containing 0.01% triton x-100. 

Shake at 80rpm for 4 min (for embryo isolation) or 10min (for dried seeds). Rinse four 

times with sterile deionized water and leave seeds for 3 days at 4°C for the induction of 

germinatin (shorter time may result in unequal germination). Prepare 1/2MS plates 

pH=5.7 with 0.3% sucrose and 1% agar to prevent roots from growing into the medium, 

supplemented with either hygromycin (50 μg/mL) or paromomycin (200 µg/mL) if 

selection is required. For experiments with low pH, agar should be replaced by 1.2% 

phytagel. Plate the seeds using sterile forceps with the embryo away from the media, 



 

27 

27 
towards the bottom of the 120mm square plate (Figure 4A) in order to prevent shoots 

and roots from growing into the media or in the wrong direction. One row of seedlings 

should be placed at a height of about ¾ of the plate. In case root length will be measured 

before day 3 or if root length is not important, two rows of seeds can be placed per plate. 

Close the plates with 3M micropore tape to ensure a proper gas exchange with the air. 

Put the plates at an angle of about 19° to ensure that roots grow on the medium and not 

into the air (Figure 4B). Note that roots grow from the embryo, thus on the side of the 

seed that is not touching the medium. To avoid roots from growing into the medium a 

sterile mesh can be placed onto the 1/2MS plate and the seeds can be plated on it with a 

small amount of water to prevent them from falling when the plate is transferred. Leave 

seeds to grow for 2-4 days at 22°C in continuous light. Check regularly whether roots are 

indeed growing on the media and not in the air and die, adjust the angle if necessary.  

 

 

 

 

 

 

Figure 4: Pictures to show how to best grow Brachypodium seeds. A) Left: Seeds should be placed with the 
embryo pointing towards the top of the lid and towards the ground (red circle). Right: Seeds should not be 
placed with the embryo towards the medium (blue circle). B) Plates should be placed at 19° angle to assure 
correct root growth. 

After 2 days, seedlings are old enough to be transferred to soil, however wild type can be 

left up to 1 week on media without roots touching the bottom of the plate. If longer time 

spans are needed, seedlings can be transferred to square Magenta boxes (Magenta 

vessel GA-7, #V8505, Sigma) or 100mL glass boiling tubes after 2 days instead. Prepare 

1/2MS media with 0.3% sucrose and 0.2% phytagel and fill the box up to ½ or tube up to 

¾, then carefully place the seedling inside, making sure the root is pointing to the bottom. 
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Note that 3 months growth in tubes is not enough to evoke the production of lateral 

roots, however some crown roots may be formed. 

In order to grow seedlings on soil, they can be transferred after a minimum of 2 days on 

1/2MS plates (or in petri dishes with sterile filter and sterile mQ, closed with 3M micropore 

tape). Prepare square pots (8x8x8cm) and fill them with a mixture of soil and vermiculite 

(4:1), water the pots with 5mg/mL trigard and transfer one or two plants per pot (the latter 

to optimize space, however plants will give a reduced amount of seeds). Cover the pots 

with a propagator lid for the first 3 days. Leave the plantlets to grow at 22°C in 20h 

photoperiod in a growth room or greenhouse, while watering them two or three times a 

week. Note that 16h photoperiod is also possible, however plants will need 3 months 

extra to dry and they grow taller, making it impossible to grow them on shelves with 

similar heights as for example Arabidopsis. Brachypodium requires more water than 

Arabidopsis and insufficient water will reduce the amount of viable seeds. Plants between 

5-8 weeks are extremely sensitive to insufficient water, pests or treatments against pests. 

Normally after 5-6 weeks, crosses can be performed (see section 2.2 Crosses) and after 

7-8 weeks, embryos can be isolated (see section 2.3 Transformation). Note that 

accession Bd21 reaches these stages on average 1 week earlier than accession Bd21.3, 

as it is “extremely rapid flowering” versus “rapid flowering” for Bd21.3 (Sancho et al. 

2018). Once most seeds have developed, the plants can be transferred to 24h light 

period in order to dry them faster and prevent them from becoming too tall. They can be 

moved earlier to develop faster, however if plants are moved too early they will remain 

small and develop only few spikelets. Keep watering the plants until they have fully dried 

and no more green parts are visible (on average this takes 4 months), then leave the pots 

for 3-4 more weeks to also completely dry the soil. Germination problems will arise in the 

next generation if these guidelines are not followed. Collect seeds by cutting or pulling off 

the spikelets. 
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2.2 Crosses 

Crosses are well described by Michael Steinwand and John Vogel and the Garvin 

laboratory (Garvin 2009; Steinwand and Vogel 2010), I have adopted some parts of both 

protocols. It is crucial to select florets at the correct stage of development, which is 

normally only during one day for each flower. Good pictures to help deciding the correct 

stage are shown by Garvin 2009. Check the florets by carefully moving the floret away 

from the rest of the spikelet. If this is done near a lamp, it is easier to see anthers and 

stigma. Clip off the other florets and emasculate according to Garvin 2009, sometimes 

trimming the floret up to ¼ from the top. It works best to emasculate 1 or 2 days before 

pollinating (as described by Steinwand and Vogel 2010), like that younger florets can be 

used and it can be made sure that no self-pollination occurs since anthers that are 

removed are too young to dehisce. Another advantage of this method is that 1 or 2 days 

after emasculation, it is relatively easy to see whether gynoecia were damaged during the 

removal of the anthers. Stigma will look dried and not feathery if they were damaged, 

rather than having developed in every direction. It helps to mark emasculated florets with 

a wire or sticker to be able to find them back for the pollination step, otherwise it is likely 

to not re-find all of them. For pollen collection I normally remove entire spikelets and 

check the florets one by one to see what anthers are in the correct stage. To select the 

correct stage, Garvin 2009 has very good images to describe which anthers to pick. If 

anthers are too young, they will never dehisce and just dry out, so it is better to collect 

many and wait for some to dehisce. Anthers can be collected on microscopy slides. It is 

best to keep them warm, so they dehisce faster (can take between 5-30min depending on 

the age of the collected anthers), therefore I normally use a lamp that heats its 

surroundings and put it close to the slide with anthers. I then cover the slide with a small 

lid (that does not touch the anthers), to prevent them from drying too fast. Keep the slide 

and the lamp under a binocular, so it is possible to check often whether anthers are 

ready. Just before dehiscence, pollen become shiny and bulk out the edge of the anthers. 

As soon as the pollen are released, the anther including as many pollen as possible 
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should be moved to the female stigma to pollinate as quickly as possible. Close the 

floret carefully with a sticker and mark the name of the cross. Wait at least one week 

before checking whether the cross has indeed successfully given a seed, checking earlier 

might disrupt seed development. 

2.3 Transformation of immature embryos with Agrobacterium tumefaciens 

A protocoI for transformation was already available from Dr. David Paccheco-Villalobos 

and Dr. Amelia Amiguet Vercher, based on previous publications (Vogel, Garvin, et al. 

2006; Alves et al. 2009; Bragg et al. 2012). Transformation of Brachypodium most-used 

accessions (Bd21 and Bd21.3) is based on immature embryos. Protocols for some other 

accessions are also available for mature embryos (Vogel, Garvin, et al. 2006; Sogutmaz 

Ozdemir and Budak 2018). Most efficient transformation is obtained when making fresh 

media for each step in the protocol and closing the plates with 3M micropore tape for 

proper gas exchange. Most media is prepared with phytagel instead of plant agar, 

therefore plates will have to be poured the same day media autoclaved to avoid reheating 

the phytagel. An overview of the used media can be found in section 7.5 Media used 

during this thesis. For immature embryo isolation, timing is crucial, however less stringent 

than for crosses. It is best to grow 10-20 plants for 7-8 weeks (as said before Bd21.3 

needs more time than Bd21). Bd21 grows and dries faster, while Bd21.3 should be more 

efficient for transformations (Bragg et al. 2012), however in our hands we did not see a 

significant difference in transformation efficiency. A single embryo can be ready for 

isolation during several days, however the younger it is when isolated, the better the 

chances of it becoming good callus. To select the correct stage of spikelets, a seed that 

has grown all the way to the top of its floret and looks full, can be removed.  Now carefully 

damage the seed just above the spot where embryos are supposed to develop. If it is 

easy to damage/remove the green of the seed, this means that the embryo is at a correct 

stage. Seeds that contain older embryos are difficult to damage and often develop a 

yellow dot at the bottom of the seed (which is part of the embryo). If plants seem to be at 

the correct stage, collect the oldest spikelets of each plant (sometimes 2nd or 3rd 
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generation spikelets are also at the correct stage, however not all may develop into 

proper calli). Next peel the lemma and sterilize as described in section 2.1 Growth 

conditions: From seed to next generation seeds. Align the seeds in the lid of a petri dish 

and use a binocular and sharp forceps to isolate embryos (as described by Vogel, Garvin, 

et al. 2006). Young embryos are transparent and turn white once they grow older. It is 

best to isolate the embryos as young as possible, however some young white ones may 

also develop into calli. Once the embryo is isolated, it can be moved to a plate with basic 

media, preferably with the scutellum pointing upwards. When embryos are not correctly 

oriented, it may make the removal of shoots more difficult, but it will not affect calli 

development. In some cases the embryo may be too small to remove from the embryo 

sack; then move the full sack with the embryo to basic medium and remove the sack 

when cutting the shoots. Leave the embryo on basic plates to grow for 3 days at 28°C in 

the dark before cutting shoots (explained by Vogel, Garvin, et al. 2006). Note that some 

protocols say 2-3 days, however the younger the embryos are, the longer it will take to 

develop shoots, so 3 days is preferred. Extremely young embryos will never develop 

shoots. Cut the shoots as closely as possible to the embryo; normally clipping the shoots 

with sharp forceps works very well. Transfer the embryos to new basic plates, give them 

space to expand on the plate (about 30 embryos per plate) and leave them at 28°C in the 

dark. Check after one week whether some shoots were forgotten or have developed 

afterwards and cut them if there are any. Three weeks after transformation, calli should 

be subcultured. Only pick calli that have developed into hard, yellow and crumbly pieces 

and leave those that look watery, soft and transparent. Subculture with forceps by 

carefully pushing on the calli until they split in 3-4 pieces (they do not need to be equal 

size) and then transfer these pieces to new plates. Normally two to three times more 

plates are needed than before subculturing. Subculture again five weeks after 

transformation, calli will multiply by three or four. Between 1 and 5 days after 

subculturing, prepare liquid Agrobacterium tumefaciens cultures in Luria-Bertani media 

(LB); normally we prefer using 2 different colonies per construct in case one of them 

acquired a mutation after transformation into the bacterium or in case one does not grow 
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well. Note that most papers prefer the use of strain AGL-1, however in our hands 

commonly used GV3101 (Hellens, Mullineaux, and Klee 2000; Vogel, Garvin, et al. 2006; 

Alves et al. 2009; Bragg et al. 2012) is just as efficient and grows faster. Starting the 

liquid cultures 2 days after subculture is ideal.  

Once Agrobacterium cultures have grown well overnight, plate out 200uL on MGL-plates 

(section 7.5 Media used during this thesis) containing the correct antibiotics. Spread the 

bacteria well and leave at 28°C overnight. Some protocols describe growing the 

Agrobacterium for two nights (Vogel and Hill 2008; Alves et al. 2009; Bragg et al. 2012), 

however in our hands one night is enough to create a layer that completely covers the 

plate. Scrape of the bacteria, using a sterile pasteur pipet that is bent in an L-shape near 

the top (this can easily be done a few days before by heating the bending site by flame 

and carefully bend it, then autoclave in a box). Collect the bacteria in 50mL falcon tube 

(both colonies of same construct can be combined) and add between 30-50mL of CIM. 

Shake well and take 100µL into a cuvette to measure the OD at 600nm, mix it with 900µL 

of CIM and take 1mL of CIM as blank. Normally the optical density (OD) of this 10x 

diluted sample will be between 0.25 (for 1 colony) and 0.6 (for 2 colonies). Calculate the 

amount of bacteria-CIM mixture that is needed to make 20mL of mixture with OD=0.6 per 

transformation. Normally this is enough for 6-9 plates of subcultured calli. If 10 or more 

plates are to be combined, use 40mL of bacteria-CIM mixture at OD=0.6. Collect calli in a 

clean 50mL falcon tube, just like for subculturing squeeze them carefully so they fall into 

smaller pieces and have more surface for transformation. Right before adding the 

bacteria-CIM mixture, add 200µL of 10% synperonic acid in water (prepare well in 

advance, since it is difficult to dissolve) and 20µL of acetosyringone (final concentration 

200µM in water) to the 20mL mixture and mix well (section 7.5 Media used during this 

thesis). Add it to the calli and leave for 5min (timing does not seem to be crucial), while 

sometimes inverting the tube to mix calli with bacteria. After 5min let the calli sink to the 

bottom of the tube and pour off the excess of CIM (section 7.5 Media used during this 

thesis). The last bit can be removed by pipet and all calli can be transferred into a petri 
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dish with two sterile filter papers, spread them and let them dry for a few minutes. Then 

transfer them to new petri dishes with filter papers (normally 2-3 dishes is enough for 6-9 

subculture plates), close them with 3M micropore tape and leave them overnight at 22°C 

in the dark. Next day check whether the calli have dried well; when tapping the top of the 

petri dish, calli should statically attach to the lid and some parts of calli should show a 

white overlay. If this is not yet the case, leave them to dry longer or transfer them to new 

petri dishes with sterile filter papers and wait another 2-3 hours. When calli dry for too 

long, they turn brown and become smaller, which often results in them dying afterwards, 

therefore we prefer to transfer after 1 day of drying. Other protocols sometimes dry 2 

days, since the actual transformation supposedly takes place during this time (Vogel and 

Hill 2008; Alves et al. 2009; Bragg et al. 2012). For this, calli should be dried on 1-2 petri 

dishes instead of 2-3 so they remain wet enough. In our hands, no difference in 

transformation efficiency was found between 1 or 2 days of drying. 

Once properly dried, transfer calli to H40 or P400 selection plates (section 7.5 Media 

used during this thesis), depending on the required selection. Split the calli into smaller 

pieces, since the sticky CIM mixture often makes them form big aggregates. Note that 

again the amount of calli will exponentially increase as compared to the 6-9 subculture 

plates, thus ensure that enough media is available. Also transfer extremely small calli, 

they often result in good regenerants later on. Place about 30 calli per plate and leave 

them space to expand. Culture them for another 2 weeks in the dark at 28°C, while 

checking them every few days for signs of Agrobacterium overgrowth. If a circle of 

bacteria just around and below a callus is observed, immediately transfer the remaining 

calli to new plates. Be careful not to accidentally touch Agrobacterium with the forceps, 

since this will result in more contamination on the new plate. We suspect Agrobacterium 

contamination to be coupled to how well timentin was solubilized in the culture media, 

therefore it is important that everything is dissolved by vigorously shaking the media 

before pouring the plates. After 2-3 weeks, subculture the calli onto new selection plates 

(H30 or P400, section 7.5 Media used during this thesis). The concentration of 
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hygromycin is decreased as compared to the first selection media, otherwise even 

transformed calli will not develop properly. Do not perform this step much later than 2.5 

weeks after transformation, since calli will regenerate less well afterwards. Carefully 

squeeze calli and try to separate black parts from brown or yellow (healthy) calli. Black 

parts do not need to be transferred, however brown parts may sometimes still recover on 

H30 media. Often this step leads to about three-four times as many calli than before 

transfer. Paromomycin selection is weaker and normally yields only brown and yellow 

calli, therefore transfer to plates with the same amount of paromomycin can be done up 

to 3 weeks after transformation. After two more weeks of selection, calli can be 

transferred to regeneration media (H20 or P50, section 7.5 Media used during this 

thesis). Again, calli should be separated and black pieces of calli can be removed. In this 

step it is crucial to give calli enough space to expand (20 calli per plate) and poor thick 

plates, since thin plates may dry out. Close the plates well with 3M micropore tape and 

leave in 16h photoperiod at 28°C for as long as calli look healthy (light intensity around 

60µE m-2 s-1). 6-9 plates of calli for transformation often result in 3 or 4L of regeneration 

media, therefore it is important to have enough space to keep all calli under proper light 

conditions at this stage. From this point onwards, transformed pieces of callus should be 

numbered every time they are transferred to new plates and fall into smaller pieces; all 

pieces from one callus will have the same insertion site and should therefore have the 

same number. Check calli regularly to see if they are developing shoots. If plates start to 

dry or shoots are turning brown, transfer all calli to new regeneration plates. In our hands, 

changing the plates every 2 weeks for hygromycin selection helps to develop healthier 

regenerants. For paromomycin selection, drying out is less common, however calli can 

become large and therefore need to be transferred. Once calli have developed shoots 

that are about 2.5-3 cm, they can be transferred to rooting media. We normally obtain 

around 8 shoots per regeneration plate (not all ready at the same time). Also smaller 

shoots or shoots that are starting to turn brown can be transferred; however they often 

will not develop proper roots and die afterwards. This is possibly due to them being false 

positives. Normally after 2-3 months on selection media, no more new shoots will develop 



 

35 

35 
and plates can be thrown away. 

About 9 shoots can be kept per magenta box with rooting media. Leave the magenta 

boxes in the same light conditions (16h photoperiod at 28°C) as regeneration plates. 

Once some of the regenerants reach the lid of the magenta box and have developed 

several leaves, they can be transferred to soil. Conditions are the same as discussed in 

section 2.1 Growth conditions: From seed to next generation seeds. Note that normally all 

calli will have developed 1 or 2 roots, those that have not, will likely never develop roots 

and die when they are moved to soil. 

2.4 PCR or genotyping 

PCR protocols have been optimized for many years, however basic PCRs and 

genotyping remain challenging in Brachypodium. An enzyme that often gives good results 

is the Q5 high-fidelity polymerase (M0491 NEB) or PrimeSTAR GXL (R051B Takara). 

Sometimes addition of 1µM betaine or 10% DMSO could help. Also, the annealing 

temperature of 60°C could be changed by testing a PCR in a gradient PCR program, in 

some cases higher or lower temperatures may aid the PCR reaction. Furthermore, it is 

often necessary to split bigger PCRs into smaller pieces of 1-2kb and connect them 

afterwards with for example a Gibson reaction or overlap-extension PCR. Sometimes it 

can be beneficial to amplify a piece of DNA that is bigger than the target, since especially 

the end of UTRs are often GC-rich. Pick a region beyond the GC-rich part for the primer 

to anneal, and this may make the PCR more successful. 

DNA isolation 

For genotyping and simple PCRs, it is often not necessary to isolate DNA. In order to 

save time on DNA extraction and PCR itself, we use the Thermo Scientific Phire Tissue 

Direct PCR Master Mix (F170 Thermo Scientific). Collect a 2cm piece of shoot in 50µL of 

dilution buffer in an eppendorf tube. It is not necessary to crush the leaves, however 

when using the template for a PCR, it may be good to push the leave with the pipet tip. If 
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PCR remains unsuccessful, DNA can be isolated by hand. This protocol results in DNA 

that is sufficiently pure for genotyping and most PCRs. Take four to six young leaves (or 

half of old leaves) per plant in a 2mL-eppendorf tube. Add a wooden ball and freeze in 

liquid nitrogen. Then use a Tissuelyzer to lyse the tissue for 1min at 30 per second. After 

lysis check that no tubes have broken, otherwise replace them and add 600µL of 

Extraction Buffer (50mM Tris (pH=8.0), 10mM EDTA (pH=8.0), 100mM NaCl and 1% 

SDS). Incubate samples for at least 10min at 65°C. Add 120µL 5M potassium acetate, 

vortex and incubate on ice for at least 10min (longer is better). Centrifuge at 13000g at 

4°C for at least 10min and remove supernatant by decantation. Next rinse the pellet twice 

with 500µL 70% Ethanol and dry the pellet by vacuum rotation at 30°C. Do not over-dry 

the pellet. Resuspend the DNA in 50-100µL of water and measure the concentration. 

PCR with Phire Tissue Direct PCR Master Mix 

This protocol can be used for standard genotyping and simple PCR reactions. Add the 

following components to a PCR tube: 1µL 10µM forward primer, 1µL 10µM reverse 

primer, 7.5µL clean mQ, 10µL phire 2x buffer and 0.5µL DNA in dilution buffer. Run the 

following program: 98°C-5min, 98°C-5sec, (60°C-5sec, 72°C-30sec/kb) repeat 40x, 72°C-

10min, 12°C-10min. A disadvantage of this kit is that it often gives false positives, 

therefore care has to be taken to use new water and primer dilutions. 

PCR with GoTaq polymerase 

In our hands, GoTaq polymerase (M300, Promega) was mainly used to avoid false 

positives when genotyping with the Phire Tissue Direct PCR Master Mix. The PCR was 

assembled as follows: 1µL 10µM forward primer, 1µL 10µM reverse primer, 4µL 5x 

GoTaq buffer, 0.5µL 10mM dNTP, 1µL DMSO, 0.5µL DNA in dilution buffer or 200ng 

purified DNA, 0.1µL GoTaq polymerase and mQ up to 20µL. Then run the following 

program: 95°C-5min, (95°C-30sec, 60°C-30sec, 72°C-1min/kb) repeat 40x, 72°C-10min, 

12°C-10min.  
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PCR with Q5 high fidelity polymerase 

Q5 high fidelity polymerase (M0491 NEB) was most often used for cloning. Set up the 

following reaction: 1µL 10µM forward primer, 1µL 10µM reverse primer, 0.5µL 10mM 

dNTPs, 100-1000ng purified DNA, 5µL 5x Q5 reaction buffer, 0.25µL Q5 polymerase and 

mQ to 25µL. Addition of 1µL DMSO or 1µL 25mM MgCL2 could often aid the reaction. 

The run the following program: 98°C-3min, (98°C-30sec, 55-68°C-30sec, 72°C-30sec/kb) 

repeat 40x, 72°C-10min, 12°C-10min. The annealing temperature should be optimized 

with a gradient PCR for each different reaction. 

PCR with PrimeSTAR GXL premix 

If PCRs or genotyping remain unsuccessful with previously mentioned methods, a more 

expensive and time-saving solution could be the use of PrimeSTAR GXL premix (R051B, 

Takara). Assemble the PCR as follows: 1µL 10µM forward primer, 1µL 10µM reverse 

primer, 12.5µL primeSTAR mix, 1µL DMSO, 0.5µL DNA in phire dilution buffer or 200ng 

purified DNA, mQ up to 25µL. Takara advises lower concentration of primers, however in 

our hands these concentrations work better. Run the following program: (98°C-10sec, 

60°C-15sec, 68°C-1min/kb) repeat 40x. 

2.5 Observation of Brachypodium root via microscopy 

As said before, 2-4 day old roots, grown on ½ MS plates are good for analysis. Choose 

roots that have neither grown into the air nor into the medium and cut about 1cm of the 

root tip. Immediately transfer the root to fixative, since roots start to turn brown as soon 

as the plate is opened. 24-well plates with 1-2mL of fixative (if roots can be mixed) or 96-

well plates with 300µL of fixative (if every root has to be collected separately) are very 

useful to collect the roots. Since most fixative is toxic, perform these steps in a fumehood. 

Avoid the transfer of roots straight into an Ethanol-containing solution, this causes the 

roots to turn black within a few minutes and makes imaging very difficult. Once all roots 

have been transferred to fixative, they can be vacuum infiltrated to assure proper fixation. 
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Increase and decrease the vacuum three times and leave for 1-2h, then replace 

fixative and transfer plates to 4°C overnight. From here on protocols differ for the type of 

microscopy that needs to be performed, as will be discussed below. Once roots are ready 

to be checked with the microscope, they can be mounted on slides that have a small 

spacer. I often use a piece of tape and cut a square in the middle where the roots can be 

placed, this also prevents the mounting medium to leave the slide. 

DIC microscopy  

This protocol is obtained from Dr. David Pacheco-Villalobos, with some small 

adaptations. The procedure is best done in 2mL eppendorf tubes in the fumehood. The 

fixative (25mL) is prepared by: 1 mL glutaaraldehyde, 2.7 mL formaldehyde, 2.5mL NaPI 

(10x stock 0.5M pH7.2) and water up to 25mL. The NaPI stock can be made by adding 

56mL of 0.5M monobasic sodium phosphate, monohydrate (NaH2PO4) and 144mL of 

0.5M dibasic sodium phosphate (Na2HPO4) together. After overnight fixation at 4°C, rinse 

the roots 4 times with water. Then add 10% KOH solution until the roots are completely 

covered and incubate at 95°C in a thermoblock for 30min. After incubating in KOH the 

roots become very fragile, therefore take care not to damage them. Mount the roots in a 

few drops of 50% glycerol on top of a slide for microscopy and image the roots with a DIC 

microscope.  

ClearSee protocol 

This protocol was adapted from the Geldner laboratory, who based it on Kurihara et al 

(Kurihara et al. 2015; Ursache et al. 2018). Imaging with this protocol works better than 

mPS-PI staining, since penetration into the root is higher. The fixative used in this 

protocol is prepared by weighing 4g of paraformaldehyde and dissolving it in 100ml 1x 

PBS while heating it on stirrer up to max 60°C (do not boil solution). Raise the pH by 

adding drops of 1M NaOH until solution clears and then adjust pH to ~ 6.9 with HCl. Cool 

down the solution before use. After overnight fixation, wash roots twice in 1x PBS and 

then add ClearSee solution. This solution consists of 10% (w/v) xylitol, 15% (w/v) sodium 
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deoxycholate (wear mask) and 25% (w/v) urea. Prepare chemicals in water and mix 

solution well with magnetic stirrer (while warming to max 60°C) until everything is 

dissolved. Seal the plates and leave for 3-4 weeks at room temperature, replace solution 

every week and check whether roots are already cleared enough. Samples can be stored 

like this up to 5 months. 2 days before microscopy, stain the roots with a solution of 0.2% 

calcofluor in ClearSee. Incubate overnight in the dark and next day wash with agitation 

for 30min in ClearSee. Then replace the solution and leave in ClearSee overnight before 

imaging. After staining, roots can be kept in the dark for another week before imaging, 

however the signal will decrease. If imaging is performed later, redo Calcofluor staining. 

Mount the samples in 100-200µL of ClearSee solution per slide. Settings for the confocal 

microscope should be as follows: Calcofluor white: excitation 405 nm and emission 410-

509nm, GFP excitation 488nm and emission 493-523nm, NLS3xVenus excitation 488nm 

and emission 519-572nm, RFP excitation 561nm and emission 600-650nm. There is 

always background fluorescence in the meristem, therefore it is important to take proper 

images of controls without fluorophores. Brachypodium roots are too thick to be imaged 

from top to bottom, therefore microscopy is limited to a bit over halfway.  

2.6 Transversal sectioning of embedded roots 

This protocol was adapted from Dr. Yeon Hee Kang. Cut about 1cm of the root tip and fix 

as discussed before. Fixative is 1% glutaraldehyde, 4% formaldehyde and 50mM sodium 

phosphate buffer (pH 7.2). Next, roots are dehydrated by vacuum infiltration for at least 

1h in each of following solutions: 15%, 30%, 50%, 70%, 85% and 100% ethanol (EtOH), 

then 100% EtOH overnight at 4°C. Then infiltrate the roots with 50% infiltration solution 

(100mL Technovit 7100 and 1g Hardner I; (Kulzer technique 64709003)) and 50% EtOH 

under vacuum for 3-4 hours. Protect samples from light with aluminium foil. Replace 

infiltration solution and store at RT for at least overnight. Roots can then be embedded in 

PCR-tubes to remain relatively straight. Fill the tube with embedding solution (10mL 

TechnoVit 7100 and 1mL Hardner II) and add the root with the tip pointing to the bottom 

of the tube. Avoid the root sinking to the bottom before the liquid hardens. Close the lid of 
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the PCR tubes and avoid air bubbles. Once the solution has hardened, cut the PCR 

tubes and the upper part of the sample with a scalpel to make it straight. Also cut the thin 

part that was in the tip of the PCR tube, as close to the root tip as possible. Next attach it 

to a wooden block with fast-drying glue and wait for at least 1h before going for 

microtome. At the microtome (Leica RM2255), orient the roots as straight as possible 

(Brachypodium roots are rather easy to see) and trim the first part of the embedding block 

until the tip of the root, use high speed and 10µm sections (bigger sections may lead to 

breaking the sample or dis-attachment from the woodblock). Now change to sections of 

3µm in size with lower speed (3-5) and carefully collect the sections with forceps, don’t 

squeeze them. Transfer the sections to a preheated slide overlaid with water on a 42°C 

heating plate. The section should automatically unfold if it was not damaged during 

transfer. Microtome sectioning may take some time to learn, therefore it is advisable to 

start with unimportant test samples to get used to working with it. Be very careful with the 

knife, it should be completely new so that no lines are visible on the section near the 

sample (lines indicate that the knife is damaged and often pull the section into a different 

shape or even destroy the sample). If lines do appear, slightly move the knife so that the 

damaged part is not near the sample on the section. Making sections by manually 

adjusting the speed may help, as one can speed up or slow down at parts that sometimes 

break. After drying the sections, stain them by dunking the slides for 30seconds into 0.1% 

toluidine blue and wash several times in water. Visualize with a Leica DM5000 

microscope.  

2.7 In situ hybridization 

This protocol is a combination of protocols obtained from Dr. Zhongjuan Zhang, Dr. 

Pauline Anne, Cecilia Aligia, the Langdale Laboratory and the Rüdiger laboratory (Roth et 

al. 2001; Kirschner et al. 2017). For in situ hybridization it is very important to work in an 

RNAse free environment. Glassware and metal can be made RNAse free by baking in a 

180°C oven for at least 8 hours. Buffers can be made RNAse free by treatment with 

DEPC and plastic ware or surfaces should be cleaned with RNAseZAP (Sigma, R2020-
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250mL). The sample embedding takes 7 days, after which they will be sectioned 

(normally also takes 1 day), then the in situ itself takes another 3-5 days. The probe can 

be prepared during the days used for embedding. 

Creating the probe 

Probe design is crucial for good in situ hybridization. Use the cDNA of a gene of interest 

and BLAST it against the Brachypodium genome (Goodstein et al. 2012). Pick a region 

that has only few matches with other parts of the genome, preferably around 300 base 

pairs long. The 5’UTR can be included, however most of them have not been 

experimentally verified and may possibly not exist. 50 base pair overlaps with other parts 

of the genome may not be a problem, especially if they include some mismatches. The 

GC content should preferably lie between 40 and 60%. Add a SalI restriction site at the 

beginning and NotI at the end of the probe and synthesize probe. Note that these 

restriction sites were chosen since they will not leave a 3’-overhang, which is 

disadvantageous for probe amplification. Digest pBLUESCRIPT SK- with KpnI and SalI, 

perform a mungbean treatment to create blunt ends and purify the product. 

Dephosphorylate at 37°C for 1h and deactivate at 65°C for 5min. Ligate the probe into the 

KpnI-SalI digested pBLUESCRIPT SK- and obtain a miniprep of a good colony. Note that 

other vectors are possible as well, as long as they contain two of the following RNA 

polymerase sites: T7, T3 or SP6. Next linearize the plasmid with probe by digesting with 

KpnI (for antisense probes) or SalI (for sense probe). If digestion is complete, add 100µl 

phenol:chloroform:isoamylalcohol (25:24:1), vortex and spin 5min at 13000rpm and 

transfer upper phase in new EP tube (~100µl). From here on everything should be 

RNAse free. Precipitate with 0.1 volume of NaOAc (~10µL) and 2.5V EtOH (~250µL) and 

incubate 30min at -20°C (or overnight). Spin 10min at 4°C at 13000rpm and wash the 

pellet with 70% EtOH (RNase-free); air-dry and resuspend in H2O (RNase-free) to about 

0.5µg/µl (start with 15µl-20µL). Next, prepare the transcription reaction on bench to avoid 

precipitation of transcription buffer: 1µg of linearized plasmid (also works with down to 

0.2µg), 4µl 5x transcription buffer (Promega), 2µl 100mM DTT (Promega), 2µl 10x 
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Digoxygenin labelling mix (10mM, Roche, Cat.no. 11277073910), 1µl RNase-Inhibitor 

(Promega, Cat.no. N2111), 2µl appropriate RNA polymerase (Promega, T7-RNA-pol is 

Cat.no. P2075, T3-RNA-pol is P2083) and RNase-free water to 20µl. Incubate for 2h at 

37°C, then perform DNase treatment by adding 1µl DNase (RNase free) and incubate for 

15-30min at 37°C. Run 0.5µl on an agarose gel to check whether the transcript has the 

correct size. The RNA might have bands at multiple sizes due to secondary structures.  

If the designed probe is greater than 150bp, the probe could be hydrolyzed to about 

150bp pieces, however probes up to 500bp can still enter the cells without problems and 

have higher specificity. Add 80µl H2O and then 100µl 2x carbonate-buffer (80mM 

NaHCO3 120mM Na2CO3). Incubate at 60°C for x minutes. 

Original length of probe (kb) – desired length (0.15) 

X = --------------------------------------------------------------------------------- 

0.11 * original length * desired length 

Add 10µl 10% Acetic acid to stop the reaction and precipitate with 0.1 volume 3M NaOAc 

(21µl) and 2.5 volume EtOH (577µl) at -20°C for 1h to overnight. Spin at 13000rpm, 4°C 

for 20min and wash with 70% EtOH, then air dry the pellet. Resuspend in 50µl 50% 

formamide. Check 2µl with nanodrop and dilute probe for first trials; the following 

amounts of probe should be tested: 2.5, 0.5 and 0.1ng/µl/kb. If probe is 300bp and 100uL 

of hyb that gives:  75, 15 and 3ng per slide. Therefore make 15ng/µL probe dilution in 

50% formamide and use: 10µL, 2µL and 0.4µL resp. Aliquot and store at -80°C for up to 3 

months. Note that it may be useful to check the probe labeling by dotting different 

concentrations of probe on a membrane, this can also be useful to check whether the 

prepared solutions are indeed working and do not cause unexpected background. 

Sample preparations 

Cut 1cm of root and fix the samples in fixative (4% paraformaldehyde, 0,1% tween-20, 

0,1% triton x-100, 1XPBS). Infiltrate in vacuum on ice, add an release the vacuum 
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carefully 3 times (5 minutes each), then replace fixative and leave at 4°C overnight. 

The next day, wash twice in 1xPBS, then 1h in each of the following solutions 30%, 40%, 

50%, 60%, 70% and 85% EtOH in DEPC-treated water. Then 1h in 95% EtOH in DEPC-

treated water with 0.1% Eosin, move samples to 4°C and leave overnight. If necessary, 

samples can be transferred to 4°C and left overnight already from 60% EtOH step 

onwards. The next day, wash the samples in 100% EtOH in DEPC-water twice for 30min 

and twice for 1h while shaking. Next transfer the samples to falcon tubes and add 25% 

histoclear and 75% EtOH for 1h (while shaking), then 1h each in 50% histoclear/50% 

EtOH, 75% histoclear/25% EtOH and 100% histoclear. Next replace histoclear with new 

100% histoclear and add a quarter volume of Paraplast Plus (P3683 Sigma) solid pieces 

and leave overnight at room temperature. Next day, warm sample to 42°C until wax is 

dissolved, then add a quarter more (solid) wax and keep at 42°C until all wax has melted, 

then place at 60°C for few hours. In the meantime, dissolve more wax in an RNAse free 

bottle and after 4-5hours replace the wax-histoclear mixture with pre-melted wax. Since 

wax solidifies very easily, this is best done with a portable waterbath or preheated DEPC 

water in an RNAse-free bucket. Keep an RNAse-free falcon tube holder in the water bath 

or bucket and quickly poor off the wax-histoclear mixture, put it in the 60degrees water 

and poor new wax. Make sure that the wax in the sample does not solidify in the process. 

Then leave overnight at 60°C. For the next two days, replace the wax twice a day with 

pre-melted wax in order to remove all the histoclear from the samples. Now the samples 

can be sectioned, therefore heat a heat-plate to ~65°C, pre-warm small petri dishes 

wrapped in aluminium molds on it and pour liquid wax with samples into the petri dishes. 

Keep the molds warm until samples are oriented correctly, which can be done with 

RNAse-free forceps that were heated at a fire to prevent the wax from sticking to them. 

Roots can be placed with the tips in the same direction with ~5mm space or more in 

between them. Let the wax solidify for at least 30min, then move them to 4°C. Before 

sectioning, the wax can be cut with a thick razorblade to get close to the sample, however 

be careful not to break samples in the process. Carefully mark the lines to cut and then 

slowly apply more preasure. Cut the wax in pieces that have a trapezoid shape, both 
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sides parallel, leaving ~1mm space to the sample. Attach the samples to the wood 

blocks by melting wax in 2mL eppendorf tubes. Also quickly heat the bottom of the 

sample on the heat block, then poor some liquid wax on a wood block and push the 

sample into it. Samples can be stored like this at 4°C for a few weeks. Next cut 10µm 

sections as discussed in section “microtome” and collect them on a superfrost slide with 

DEPC-treated dH20 that was preheated on 42°C heating plate. Dry the slides and store 

them in sterilized glass boxes at 4°C. 

In situ hybridization 

Prepare 250mL (per slide rack of 10 slides) of following solutions:  

· _Pronase 0,125mg/ml (250ml for 10slides: 12.5ml 2M Tris pH=7.5, 25ml 0.5M EDTA in 

DEPC, add 625uL 50mg/mL pronase stock when stated in protocol)  

· _Glycine 0.2% in 1x PBS (250mL for 10slides; 5mL 10% Glycine in 245mL 1x PBS) 

· _4% PFA in PBS (prepared like for the fixation of the root in the beginning, but without 

Tween and Triton) (250mL for 10slides, 10g PFA in 225mL DEPC, 25mL 10x PBS add 

125uL 1M NaOH, pH = 7) 

· _Acetic anhydride in 0.1M triethanolamine pH8 (for 250ml: 3.25mL triethanolamine, 

0.875ml HCl, 243.88mL H2O; measure pH with pH strips) 

Add right before/during use: 2ml acetic anhydride; stir well. 

· _0.85% NaCl (250 mL for 10slides, 25mL 8.5% NaCl, 225mL DEPC water) 

· _95% EtOH (300mL for 10slides, 285mL EtOH, 15mL DEPC water) 

· _85% EtOH, 0.85% NaCl (300mL for 10slides, 255mL EtOH, 15mL DEPC water, 30mL 

8.5% NaCl) 

· _70% EtOH, 0.85% NaCl (300mL for 10slides, 210mL EtOH, 60mL DEPC water, 30mL 

8.5% NaCl) 

· _50% EtOH, 0.85% NaCl (300mL for 10slides, 150mL EtOH, 120mL DEPC water, 30mL 

8.5% NaCl) 

· _30% EtOH, 0.85% NaCl (300mL for 10slides, 90mL EtOH, 180mL DEPC water, 30mL 

8.5% NaCl) 
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· _1x PBS (500mL for 10slides, 50mL 10xPBS in 450mL DEPC) 

Put the solutions in glass or plastic boxes, labeled as mentioned in table below (5 labeled 

RNAse free glass boxes in fumehood and 12 labeled RNAse free plastic boxes). Do not 

add pronase yet to box 12, but move the pronase buffer to 37°C keep box 14 in the fridge 

until noted in the table and add acetic anhydride to box 16 when noted in table. Add 

RNAse free stirrer and something to keep slides above the stirrer to boxes 1,2 and 16. 

Put RNAse free stirring machine ready in hood. 

Glass box 1, stir FUMEHOOD Histoclear 1 10min 
Glass box 2, stir 
Add pronase to box12 

FUMEHOOD  Histoclear 2 10 min 

Glass box 3 FUMEHOOD  100% EtOH 1min 
Plastic box 4, dunk 15x          100% EtOH  30 sek  
Plastic box 5, dunk 15x  95% EtOH  30 sek  
Plastic box 6, dunk 15x  85% EtOH, 0.85% saline  30 sek  
Plastic box 7, dunk 15x  70% EtOH, 0.85% saline  30 sek  
Plastic box 8, dunk 15x  50% EtOH, 0.85% saline  30 sek  
Plastic box 9, dunk 15x  30% EtOH, 0.85% saline  30 sek  
Plastic box 10, just sit   0.85% saline  2 min  
Plastic box 11, just sit   PBS1  2 min  
Plastic box 12, just sit   
Prepare box 14 (Keep PFA 
cold till use) 

 Pronase  10 min 37°C (water 
bath or oven) 	

Plastic box 13, just sit     0.2% Glycine  2 min 	
Plastic box 11, just sit     PBS1  2 min  
Glass box 14, just sit  FUMEHOOD Paraformaldehyde  10 min  
Plastic box 11, just sit   FUMEHOOD PBS1  2 min  
Plastic box 15, just sit   FUMEHOOD PBS2  2 min  
Glass box 16, add acetic 
anhydride while stirring 
Prepare box 16  

FUMEHOOD acetic anhydride in 0.1M 
triethanolamine 

10min 

Plastic box 15, just sit   FUMEHOOD PBS2 2min 
Plastic box 10, just sit  0.85% saline  2 min  
Dehydrate:  Dehydrate: 
Plastic box 9, dunk 15x  30% EtOH, 0.85% saline  30 sek  
Plastic box 8, dunk 15x  50% EtOH, 0.85% saline  30 sek  
Plastic box 7, dunk 15x  70% EtOH, 0.85% saline  30 sek  
Plastic box 6, dunk 15x  85% EtOH, 0.85% saline  30 sek  
Plastic box 5, dunk 15x  95% EtOH  30 sek  
Plastic box 4, dunk 15x  100% EtOH  30 sek  
Plastic box 17, dunk 15x  100% EtOH  30 sek  

 

Leave the slides on the clean bench to dry. Trash glass box 3 with histoclear waste, 

PBS1 with PFA waste, PBS2 with acetic anhydride waste. If more slide racks are to be 

prepared on the same day, replace histoclear, 100% EtOH, pronase solution, PBS1 and 

2 and triethanolamine solution in between, other solutions can be reused. A new slide 
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rack can most easily be started after the acetic anhydride step (during 2min in PBS 2). 

In the mean time thaw hybridization buffer (84µL per slide) and probes on ice, add 50% 

Formamide to the probe up to 16µL. As said before, if dilution is 15ng/µL of probe, then 

for 300bp probes in 100µL hybridization solution per slide, one should use 10µL, 2µL and 

0.4µL for the first trials. Place probes for 2min at 80°C and immediately cool them down 

on ice. Mark slides with Pap pen in a rectangle around the samples. Mix hybridization 

buffer with probe (16µl probe with 84µL hyb, gives 100µL per slide), this is very difficult, 

therefore use cut-off pipet tips and warm hybridization buffer before pipetting. Pipette 

100µL per slide and carefully place coverslip on top. Prepare a humidity box (2L 

Tupperware boxes per 10 slides) by soaking paper with 50% formamide. Put the slides in 

RNAse-free spacers and transfer them to the box without touching the solution. Incubate 

overnight at 50°C (in oven). Temperature can be somewhere between 45-55°C 

depending on the probe, however the washing steps should take place at the same 

temperature. Prepare wash buffer for the next day (2 X SSC, 50% formamide) and keep 

in oven overnight as well. The amount of SSC can vary between 0.5x and 5x depending 

on the probe used, also many protocols do not use formamide. Next day, dip slides into 

trough with pre-warmed 50°C wash buffer to carefully remove coverslips. If they are 

removed by force this will destroy the samples. Move slides to slide-rack in new box with 

pre-warmed wash-buffer and incubate at 50°C for 30min, then replace wash buffer and 

leave for 1.5h at 50°C. If more than one slide rack is to be prepared, keep 7 to 8 minutes 

in between them to not get into trouble for the timing of the following steps. From here on, 

buffers do not need to be RNAse free anymore. Prepare 1.5L 1 x NTE per slide rack 

(150mL 10 X NTE in 1350mL dH2O) and move to 37°C oven or waterbath to preheat. 

Prepare DIG-buffer 1, 2 and 3 (section 7.5 Media used during this thesis). Wash in 1x 

NTE at 37°C for 2x5min, during the second washing step pre-incubate 1xNTE containing 

20µg/ml RNase in a new glass box for 5min at 37°C. Then move slide-rack into pre-

incubated box with RNase A for 30min at 37°C. Wash in NTE three times for 5min at 

37°C. These steps in NTE-buffer can be omitted if RNase treatment of non-bound probe 
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is not needed. Next wash the samples in wash buffer for 1h at 50°C and then in 1X 

PBS for 5min at RT. If needed, samples can be stored at 4°C in fresh PBS, however the 

signal will be less intense. Incubate slides (while gently shaking) in the following 

solutions: for 5min in 1 x DIG-buffer 1, 30min in DIG-buffer 2 and for 30min in DIG-buffer 

3. During these washes, cut parafilm in the size of coverslips and carefully loosen one 

corner without folding the parafilm. Remove the slides from the rack and place them into 

slide-holders in humid boxes with water (no formamide). Pipette 100µl buffer 4 on top of 

each slide; cover carefully with parafilm (avoid bubbles) and store them for 2h at RT in 

the dark on the bench. If needed, slides can then be transferred to the fridge overnight 

(move them carefully), however it is better to continue to the detection step. Prepare 

buffer 5 and 6 (keep cold and in the dark) during the waiting. After the antibody step, 

carefully remove paraflim with forceps without damaging the samples. Then move slides 

back to racks and wash (while gently shaking): four times 20min in Buffer 3, then 5min in 

Buffer 1 and 5min in Buffer 5. Place the slides back in humidity box and pipette 200µL 

buffer 6 on top, cover carefully with coverslip and leave at RT on the bench in the dark. 

Check staining on the next day, this is best done under a microscope. If longer staining is 

needed, BCIP-solution has to be changed every day by carefully pipetting more near the 

edge of the coverslip. Once signal is observed (a purple color), stop the reaction by 

washing in water or TE-buffer. Now slides can be checked immediately by microscope, 

samples should be mounted in 50% glycerol (up to 72hours). In case longer storage is 

required, put the slides back into the racks and wash for 30sec in the following solutions: 

dH2O, 70% EtOH, 95% EtOH, 100% EtOH, 95% EtOH, 70% EtOH and dH2O. Incubate 

slides in 0.1% calcofluor for 5min and wash briefly in dH20. Air dry slides in fume hood, 

add 2-3 drops of Entellan mounting medium, cover with cover slip and dry in the fume 

hood overnight.  
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3. Broad spectrum developmental role of Brachypodium AUX1 

Alja van der Schuren, Catalin Voiniciuc, Jennifer Bragg, Karin Ljung, John Vogel, Markus 

Pauly and Christian S. Hardtke. 

New Phytologist, June 2018, Vol. 28: 1009–1024 

Key Findings 

• BdAUX1 is essential for Brachypodium development and seems to be 

involved in many more processes than AUX1 in Arabidopsis. 

• Bdaux1 roots display increased cell elongation and counterintuitively have a 

higher free auxin content.  

• Bdaux1 and Bdtar2lhypo mutants have a very similar phenotype.  

My contribution 

With the exception of Figure 3, I designed and performed all experiments in this paper in 

discussion with Dr. Christian S. Hardtke. Auxin analysis (Fig 3A) was performed by Dr. 

Karin Ljung and cell wall analysis (Fig 3B) was performed by Dr. Catalin Voiniciuc. The 

cloning of BdAUX1::NLS3xVENUS and BdAUX1::BdAUX1 was performed by Dr. Amelia 

Amiguet Vercher, the latter I used as a template to create the BdAUX1::GFP-BdAUX1. I 

performed phenotype analyses, from seedling to mature plants and flowers. I also 

introduced the BdAUX1::NLS3xVENUS and BdAUX1::GFP-BdAUX1 constructs in planta. 

After optimization of confocal microscopy analysis, I characterized the expression pattern 

and protein localization of these constructs. I performed crosses between Bdaux1 and 

Bdtar2lhypo and analyzed their offspring phenotypes. I optimized microtome sectioning and 

counted cells for all presented genotypes. I created a CRISPR-Cas vector and used it to 

create Bdaux1 CRISPR mutants. 
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Summary

! Targeted cellular auxin distribution is required for morphogenesis and adaptive responses of
plant organs. In Arabidopsis thaliana (Arabidopsis), this involves the prototypical auxin influx
facilitator AUX1 and its LIKE-AUX1 (LAX) homologs, which act partially redundantly in various
developmental processes. Interestingly, AUX1 and its homologs are not strictly essential for the
Arabidopsis life cycle. Indeed, aux1 lax1 lax2 lax3 quadruple knock-outs are mostly viable and
fertile, and strong phenotypes are only observed at low penetrance.
! Here we investigated the Brachypodium distachyon (Brachypodium) AUX1 homolog
BdAUX1 by genetic, cell biological and physiological analyses.
! We report thatBdAUX1 is essential for Brachypodiumdevelopment.Bdaux1 loss-of-function
mutants are dwarfs with aberrant flower development, and consequently infertile. Moreover,
they display a counter-intuitive root phenotype. Although Bdaux1 roots are agravitropic as
expected, in contrast to Arabidopsis aux1mutants they are dramatically longer than wild type
roots because of exaggerated cell elongation. Interestingly, this correlateswith higher free auxin
content in Bdaux1 roots. Consistently, their cell wall characteristics and transcriptome signature
largely phenocopy other Brachypodium mutants with increased root auxin content.
! Our results imply fundamentally differentwiringof auxin transport in Brachypodium roots and
reveal anessential roleofBdAUX1 in abroad spectrumofdevelopmental processes, suggesting a
central role for AUX1 in pooideae.

Introduction

Modulation of auxin activity through differential auxin distribu-
tion plays a central role in developmental and adaptive growth
processes (Benjamins & Scheres, 2008; Zazimalova et al., 2010). It
is largely achieved through plasma membrane-integral auxin efflux
carriers, the PIN-FORMED (PIN) proteins, whose polar cellular
localization can lead to asymmetric auxin secretion. Coordination
of PIN polarity across cell files thus can promote targeted, so-called
polar auxin transport at the tissue and organ level (Benjamins &
Scheres, 2008; Zazimalova et al., 2010). In contrast to the carrier
requirement for auxin efflux, cellular auxin influx can occur
through diffusion, because in the acidic environment of the
apoplast auxin is mostly protonated and thus lipophilic enough to
cross the plasma membrane (Zazimalova et al., 2010). Neverthe-
less, dedicated auxin influx facilitators, AUX1 and the LIKEAUX1

(LAX) proteins that accelerate auxin uptake have been identified
(Maher &Martindale, 1980; Bennett et al., 1996; Marchant et al.,
2002; Yang et al., 2006; Peret et al., 2012). Their differential
expression, as well as often polar localization, can modulate polar
auxin transport to reinforce or attenuate local auxin accumula-
tions. Arabidopsis thaliana (Arabidopsis) mutants in the proto-
typical auxin influx facilitator AUX1 have been identified
because of their root agravitropism (Maher & Martindale,
1980), which can be rescued by addition of the lipophilic auxin
analog 1-naphthylacetic acid (1-NAA) (Swarup et al., 2001).
Mutants in the three AUX1 homologs, LAX1-3, display either
no, or less conspicuous phenotypes (Ugartechea-Chirino et al.,
2010; Vandenbussche et al., 2010; Peret et al., 2012). However,
corresponding multiple mutants reveal (partially) redundant
roles of AUX1 and LAX1-3, for instance in phyllotaxis
(Bainbridge et al., 2008) and embryogenesis (Robert et al.,
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2015), although mutant phenotypes are not always fully
penetrant. Moreover, AUX1 and LAX1-3 proteins are not fully
interchangeable in every cellular context (Peret et al., 2012).

Compared to the well characterized roles of AUX1/LAX1-3 in
Arabidopsis, little is known about the developmental role of auxin
influx facilitators in monocotyledons (Balzan et al., 2014). Yet,
AUX1 homologs can be readily identified, since they are highly
conserved. For example, in rice (Oryza sativa) and the more
distantly related panicoid grasses maize (Zea Mays L.) and Setaria
viridis (Setaria), five AUX1 homologs have been identified (Zhao
et al., 2012; Huang et al., 2017). In maize, the closest AtAUX1
homolog has 73% sequence identity (Hochholdinger et al., 2000).
Functional studies of mutants in AUX1 homologs in maize and
Setaria demonstrated involvement of those genes in inflorescence
development and root gravitropism (Huang et al., 2017). Also,
the OsAUX1 gene has subsequently been implicated in lateral root
formation and shoot elongation (Zhao et al., 2015), as well as
seminal root elongation and root hair elongation (Yu et al., 2015).
Although rice, maize and Setaria can be considered model systems
for the grasses, it remains unclear whether findings from these
species can be directly transferred to other groups within the
poaceae. One such group is the pooideae, which comprise the
major cereal crops wheat, rye and barley. The monocotyledon
Brachypodium distachyon (Brachypodium) is a model species for
these temperate cereals (Brkljacic et al., 2011; Girin et al., 2014).
AUX1 homologs can be readily identified in the Brachypodium
genome. However, unlike rice, maize or Setaria with five
homologs, Brachypodium only possesses three AUX1 homologs,
which display almost sequence identity with their Arabidopsis
counterparts (Supporting Information Fig. S1). Nevertheless,
slightly divergent N- and C-termini and the gene sequences
allow the assignment of clear one-to-one homologies in sequence
similarity analyses (Fig. 1a). Here we investigated the develop-
mental role of the closest AUX1 homolog of Brachypodium, the
Brachypodium distachyon AUX1 (BdAUX1) gene. We report that
BdAUX1 loss-of-function results in counter-intuitive root phe-
notypes and reveals its essential role in a broad spectrum of
developmental processes, suggesting a more central and diversified
role for AUX1 in pooideae.

Materials and Methods

Plant materials, genotyping and growth conditions

The Bdtar2lhypo mutant has been described before (Pacheco-
Villalobos et al., 2013). The Bdaux1 mutant line JJ5658 was
obtained from a Brachypodium T-DNA insertion library (Bragg
et al., 2012). RT-PCR was performed to verify that the T-DNA
insertion indeed leads to a truncatedBdAUX1mRNA. To this end,
the following oligonucleotides were used: F1 50-ATG GTG CCG
CGC GAG CAT G-30, located at the start-codon; R1 50-GCA
TGA TCT CCA CTG TGA CG-30, at the border of the T-DNA
insertion;R2 50-GGTGAAGCTGACGAGTAGCG-30, located
285 bp before the STOP-codon; andR3 50-GATCCGGTAGTT
GTG GAA GG-30, located 160 bp before the T-DNA insertion
(see Fig. S2A). Bdaux1CRISPR mutants were obtained directly as

homozygotes from transformations (see below, ‘Transformation’)
and could not be amplified due to their sterility.Bdtar2lhypo Bdaux1
double mutants were obtained by crossing. For tissue culture, seeds
were sterilized as described (Bragg et al., 2012) and stratified for 3 d
at 4°Cbefore transfer to plates with half-strengthMurashige-Skoog
(MS) media (2.45 g l!1 MS salts with vitamins, 0.3% sucrose, 1%
agar, pH5.7) placed vertically at a slight angle to prevent roots from
growing into the media or the air. Unless indicated otherwise,
analyses were performed on 2-d-old seedlings raised as previously
described (continuous light of 100–120 lE intensity, 22°C,
PhilipsF17T8/TL741 fluorescent light bulbs) (Pacheco-Villalobos
et al., 2013). Roots that had grown into the media or the air were
excluded from analysis. For gravitropism assays, seeds were grown
for 1 d on vertically oriented plates, which were then rotated 90°
and seedlings were left to grow for another 2 d. Root length was
measured using FIJI software (https://imagej.net/Fiji?Downloads).
For auxin analysis, cell wall analysis and RNAseq, 1 cm seminal
root segments harvested 2–3 mm above the root tip were used
(Pacheco-Villalobos et al., 2016). Genotyping of Bdtar2lhypo was
performed as described (Pacheco-Villalobos et al., 2013). For
Bdaux1 genotyping, the wild type allele was monitored with
primers 50-GTG AAC TTT CCA CAC TGA GC-30 and 50-TCA
CAA GAG CTG GGC AAT GG-30, and the T-DNA
insertion with 50-GTG AAC TTT CCA CAC TGA GC-30 and
50-CAG GAA TTC ATG CCG ACA GC-30. Double mutants
were genotyped with the same methodology for both T-DNA
insertions.

Plasmid construction

To create a vector with kanamycin resistance, the nptII sequence
was amplified with primers 50-CCA CTC GAG GAT CTC CAC
TCT AGT CGA G-30 and 50-TGT CTC GAG TTG AAC GAT
CGG GGA TCC-30. The fragment was digested with XhoI and
cloned into XhoI-digested pCAMBIA1305.1 to replace the
hygromycin-resistance gene to give pCAMBIA1305.1-nptII.
Next, BdAUX1::BdAUX1 was amplified in three pieces from
genomic DNA with primers 50-CAT GAT TAC GAA TTCGAG
CTC GTC ACT TAA TCT CGT C-30 and 50-CGA ATT TCC
TCT CTG TCT CC-30 for piece 1, 50-GGA GAC AGA GAG
GAAATTCG-30 and 50-CAATGCACCTCATCGTTCCA-30

for piece 2, and 50-CAA TGC ACC TCA TCG TTC CA-30 and
50-GGAAATTCGAGCTGGTCACCTAGCAAGCATTAC
TGG GTT-30 for piece 3. The fragments were combined into
SacI–SalI-digested pCAMBIA1305.1-nptII usingGibson ligation.
BdAUX1::NLS3xVENUS was created by insertion of amplified
NLS3xVENUS into HindIII–Pml I-digested pCAMBIA1305.1-
nptII. The BdAUX1 promoter was then amplified with primers 50-
CTA GAG CTC TGG ACG TGG TTT TGT CCT AG-30 and
50-ACG CGT CGA CAT CTC TTC AAC GCG CTG TC-30,
and inserted in front of NLS3xVENUS using SacI and SalI
digestion. For BdAUX1 localization, a GFP fusion tag was added
to the protein. To this end, BdAUX1 promoter was amplified with
primers 50-GCG ACT GTG CCA ACA CCC-30 and 50-GCC
CTTGCTCAC CAT CTC TTC AACGCG CTG TCC TC-30,
the transcript region was amplified with primers 50-GTC GAC
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TCT AGAGGATCCATGGTGCCGCGCGAGCAT-30 and
50-TTT TTC CTC GGG TTA GTT AAT TAA TTC-30, and
GFP was amplified from pVec8GFP with primers 50-ATG GTG
AGC AAG GGC GAG G-30 and 50-ATC CTC TAG AGT CGA
CCT TGT ACA GCT CGT CCA TGC-30. The three fragments
were then combined into XmaI–PacI-digested pCAMBIA1305.
1-nptII in a Gibson reaction. The BdAUX1CRISPR/Cas9 cassette

was created by amplifying the Zea mays UBIQUITIN (UBQ)
promoter (Bragg et al., 2012) using primers 50-GAG CTC CAG
CTT GCA TGC CTG CAG TG-30 and 50-GAG CTC TCT
AGA GTC GAC CTG CAG AA-30 and ligation of the fragment
into SacI-digested pCAMBIA1305.1. A Brachypodium-optimized
Cas9 with FLAG-tag and nuclear localization signal (Methods S1),
followed by a multiple cloning site, was synthesized and cloned
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Fig. 1 Root and shoot phenotypes of theBdaux1mutant. (a) Sequence similarity (Clustal alignment, neighbor joining,with distance correction) of Arabidopsis
and BrachypodiumAUX1homologs. (b) Schematic presentation of the T-DNA insertion line forBdAUX1. (c) Representative seedlings (2-d-old) segregating in
the progeny of a heterozygousBdAUX1/Bdaux1 (!) mother plant, genotypes are indicated. (d, e) Seminal root length of indicated genotypes (dag, days after
germination). (f) Shoot development ofBdaux1plants in comparison to its Bd21-3wild typebackground at different stages of the life cycle. (g)Different stages
of flower development in Bdaux1 plants as compared to Bd21-3. (h) End of life seed set in indicated genotypes. Box plots display second and third quartiles,
maximum, minimum and mean (white dot). Statistically significant differences are indicated (Student’s t-test; a, P < 0.001).
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behind the UBQ promoter after KpnI and BsteII digestion, to
create vector p5Cas. Next, a 770 bp cassette containing a
Brachypodium U6 promoter, BsaI restriction sites, tracrRNA, a
rice U6 promoter, BtgZI restriction sites and tracrRNA was
synthesized (see Methods S1) and cloned into BamHI–EcoRI-
digested pDONR221. This allowed two sgRNA sequences to be
added, using BsaI and BtgZI restriction sites, respectively. The
Bdaux1 knock-out cassette was then assembled by annealing,
phosphorylating and ligating the following primer pairs into the
BsaI–BtgZI-digested pDONR vector: 50-TCT CGT CAC CAG
CTT CCT CTG GCA-30 and 50-AAA CTG CCA GAG GAA
GCT GGT GAC-30 for sgRNA1, and 50-GTG TGA TCC GGT
AGT TGT GGA AGG-30 and 50-AAA CCC TTC CAC AAC
TAC CGG ATC-30 for sgRNA2. The sgRNA cassette was then
isolated and ligated into p5Cas via BamHI–HindIII restriction
digest. Target specificity of the sgRNA was checked bioinformat-
ically (http://bioinfogp.cnb.csic.es/tools/breakingcas/?gset=8x2_
GENOMES_EnsemblGenomes_39).

Transformation

For Brachypodium transformations (Pacheco-Villalobos et al.,
2013) the Agrobacterium tumefaciens strain GV3101 pMP90 was
used. BdAUX1::NLS-3XVENUS, BdAUX1::BdAUX1 and
BdAUX1::GFP-BdAUX1 transformants in Bd21-3 and Bdaux1
were selected on media with 400 lg ml!1 paramomycin and
600 lg ml!1 CuSO4. Regeneration media contained 50 lg ml!1

paramomycin and 600 lg ml!1 CuSO4. Transformants for the
CRISPR/Cas9 BdAUX1 knock out construct were selected on
hygromycin as described (Pacheco-Villalobos et al., 2013), with the
addition of 600 lg ml!1 copper sulfate (CuSO4) to the regener-
ation media.

Metabolic analyses, qPCR and RNAseq

For auxin measurements, three independent batches of two
replicates each, containing 20 pooled 1-cm root segments per
genotype were analyzed as described (Pacheco-Villalobos et al.,
2013, 2016). For cell wall polysaccharide quantifications, three
independent pools of 100 to 120 segments per genotype were
collected and freeze-dried overnight. The monosaccharide
composition and glycosidic linkages of the wall material was
analyzed as described (Pacheco-Villalobos et al., 2016). qPCR
on Brachypodium AUX1 homologs was performed as described
normalizing against UBIQUITIN CONJUGATING ENZYME
18 (BdUBC18) (Pacheco-Villalobos et al., 2013). The follow-
ing specific primers were used: 50-CCA TGT CAT CCA GTG
GTT CG-30 and 50-GAT GAG CTG GAT GAC GGA GC-30

for Bradi1g68350; 50-CGT CAT CCA GTG GTT TGA GG-
30 and 50-CAG CCG ATG AGC TGG ATC AC-30 for
Bradi3g21090. For RNAseq, two independent pools of
segments were collected from 12 roots per genotype. RNAseq
was performed as described (Pacheco-Villalobos et al., 2016).
The raw data have been deposited in the NCBI Sequence
Read Archive (https://www.ncbi.nlm.nih.gov/sra/) under acces-
sion SRP137652.

Microscopy

For microscopic imaging, seminal roots of 2-d-old seedlings were
fixed 1 wk in 4% (w/v) paraformaldehyde in 19 phosphate-
buffered saline (PBS) solution (pH 6.9). Roots were then washed
two times in 19 PBS before transfer into ClearSee solution for at
least one month, which was necessary to quench the challenging
autofluorescence of Brachypodium roots. ClearSee solution was
changed weekly. Then, 2–3 d before imaging, roots were stained
with 0.2% Calcofluor White (in ClearSee) solution for 1–2 h with
gentle shaking, next washed in ClearSee solution until imaging.
Root hairs were imaged in differential interference contrast using a
Leica DM5000 microscope. For meristem analyses, stained roots
were mounted in ClearSee solution and imaged with Zeiss 880 or
LSM710 inverted confocal microscopes using 940 oil objectives.
For Calcofluor imaging, roots were excited with a 405 nm laser and
emission signal was captured over 410–509 nm. GFP was imaged
with sequential scans using the 518 nm Argon laser and a 493–
523 nm emission spectrum to reduce background. NLS-
39VENUS was imaged as a sequential scan and excited with a
488 nm laser, emission was recorded at 519–572 nm to reduce
background. Cell length measurements were performed with FIJI
software.

Microtome sectioning and analysis

Seminal roots of 2-d-old seedlings were fixed overnight at 4°C in
1% glutaraldehyde, 4% formaldehyde and 50 mM sodium
phosphate buffer (pH 7.2). Roots were dehydrated for at least 1 h
each in 15%, 30%, 50%, 70%, 85% and 100% ethanol (EtOH).
Samples were pre-incubated and embedded in TechnoVit 7100
solution as described (Pacheco-Villalobos et al., 2013). 0.3-lm
sections were obtained on a Leica RM2255 microtome. Sections
were stained with 0.1% toluidine blue before visualization with a
Leica DM5000 microscope. Cell numbers were counted in one
representative image per root using the cell counter plugin of
IMAGEJ software. (https://imagej.nih.gov/ij/plugins/cell-counter.
html)

Results and Discussion

To investigate the role of auxin influx facilitators in Brachypodium,
we obtained a T-DNA insertion line in Bradi2g55340 (BdAUX1
hereafter), the closest homolog of Arabidopsis AUX1 (AtAUX1) in
Brachypodium. In thisBdaux1mutant allele,BdAUX1 is disrupted
by an insertion in the 6th intron, which leads to a truncated mRNA
(Figs 1b, S2). Plants that were homozygous for this insertion
displayed agravitropic roots (Fig. 1c), similar to Ataux1 loss-of-
function mutants (Maher & Martindale, 1980; Bennett et al.,
1996). Thus, the T-DNA insertion apparently results in BdAUX1
loss of function. However, unlike Ataux1mutants, Bdaux1mutant
roots were considerably longer than those of their wild type siblings
or the corresponding Bd21-3wild type background line (Figs 1c–e,
S3A). Quantitative RT-PCR (qPCR) suggested that this pheno-
type was not due to possible (over)compensatory up-regulation of
the two other AUX1 homologs in Brachypodium (Fig. S2B).
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Bdaux1 plants also displayed a dwarf shoot phenotype with
aberrant flower development (Fig. 1f,g).Bdaux1mutantswere thus
sterile (Fig. 1h) and could not be maintained as homozygotes in
practice. Both the root and shoot phenotypes could be comple-
mented by introduction of transgenes that expressed either
BdAUX1 or GFP-BdAUX1 fusion protein under control of the
native BdAUX1 promoter (BdAUX1::BdAUX1 and BdAUX1::
GFP-BdAUX1) into the Bdaux1 background (Fig. S3B,C). More-
over, the mutant phenotypes were also observed in Bdaux1
homozygous knock out plants that were generated by the CRISPR/
Cas9 technique (Bdaux1CRISPR). This included the severe shoot
phenotype and infertility (Fig. S3C,D), which also precluded
recovery of the lines. Therefore, Bdaux1 loss-of-function was
causative for the observed mutant phenotype.

A more detailed characterization of the mutants revealed that
their increased root elongation could be attributed to increased
mature cell length (Fig. 2a). Moreover, Bdaux1 roots were
markedly thinner than wild type roots (Fig. 2b). Although the
number of cell files was significantly reduced in every tissue
except xylem and phloem (Fig. 2c), this alone could not entirely
account for the overall reduction in root thickness. Rather, cells
generally appeared slightly smaller in radial sections (Fig. 2b),
and at the same time, root hairs were markedly shorter, reduced
in number and appeared later than in wild type (Fig. 2d).
Therefore, the Bdaux1 root elongation phenotype was appar-
ently caused by overall higher cellular anisotropy. Interestingly,
it thus resembles the roots of hypomorphic mutants in the
Brachypodium TAR2-LIKE (TAR2L) gene (Pacheco-Villalobos
et al., 2013). Bdtar2lhypo mutants are partially impaired in a rate-
limiting step of auxin biosynthesis, which results in higher
cellular auxin levels in the root because of the particular
regulatory wiring in Brachypodium (Pacheco-Villalobos et al.,
2013, 2016). To further explore the similarity between Bdaux1
and Bdtar2lhypo mutant roots, we also determined cellular auxin
levels in Bdaux1 root tips. Indeed, we again observed increased
auxin levels (Fig. 3a). This result was surprising, given the
Arabidopsis precedent that AUX1 is needed for efficient shoot to
root mobilization of auxin, and Ataux1 mutants therefore have
reduced, rather than increased, auxin levels in the root
(Marchant et al., 2002). In Bdtar2lhypo plants, the root pheno-
type was also associated with slight alterations in cell wall
composition, notably a reduction in 1,3-galactosyl and 1,2-
galactosyl residues, suggesting an altered arabinogalactan struc-
ture, and an increase in 1,4-glucosyl residues (Pacheco-Villalobos
et al., 2016). Similar changes were observed in Bdaux1 root tips
(Figs 3b, S3E), again confirming similarity with Bdtar2lhypo

plants. Finally, a survey of the Bdaux1 transcriptome in
elongating root tip segments revealed a number of differentially
expressed genes, mostly in cell wall modifiers (Table S1), which
were c. 10-fold over-represented (P = 2.33E-5). Again, this
observation matches what has been described for Bdtar2lhyporoot
segments (Pacheco-Villalobos et al., 2016), although the scope of
transcriptional changes was less dramatic in Bdaux1. A notable
commonality was the strong upregulation of expansins, which
are thought to be primary targets of auxin-induced cell
elongation (Cosgrove, 2005). Confirming the qPCR analysis,

no differential expression of the two other AUX1 homologs was
observed in the Bdaux1 transcriptome (Table S2). In summary,
in many ways Bdaux1 roots phenocopy Bdtar2lhypo roots.

Similarities with Bdtar2l mutants could also be observed in the
shoot. In mutants of the hypomorphic Bdtar2lhypo allele, the root
phenotype is accompanied by a slight reduction in leaf blade length
and width (Pacheco-Villalobos et al., 2013). However, in mutants
of the null allele Bdtar2lqnull, the root phenotype is weaker and
transient, while the shoot displays a dwarf phenotype that is
accompanied by severely reduced fertility (Pacheco-Villalobos
et al., 2013). Thus, the shoot phenotype of Bdtar2lqnull plants is
similar to Bdaux1 plants. The strongly reduced fertility of Bdaux1
appeared to be due to delayed development of anthers as compared
to gynoecia as well as poor pollen viability (Fig. 1g). Nevertheless,
because plants heterozygous for Bdaux1 were similar to wild type,
we could create double mutants with the Bdtar2lhypo allele. Overall,
the phenotype of these Bdaux1 Bdtar2lhypo double mutants
appeared to be additive as compared to their segregating single
mutants and wild type siblings (with the caveat that background
loci might modulate the phenotypes to some degree because the
two single mutants had different wild type parents). The dwarfism
of Bdaux1 plants was more exaggerated in Bdaux1 Bdtar2lhypo

double mutants (Fig. S3B,F), and the double mutant roots were
thinner than in either single mutant and longer than in Bdtar2lhypo

alone (Fig. S3G). This could be attributed to an even highermature
cell length, and an additional reduction in cell files (Fig. S2H).
However, unlike the single mutants, the double mutants displayed
a reduced root meristem size that was accompanied by slight
changes in root meristem organization, such as an apparently
smaller quiescent center (Fig. S3I,J). Overall, the data suggest
parallel impacts ofBdAUX1 andBdTAR2Lmutation that reinforce
each other. This is also consistent with the absence of significant
expression changes in rate-limiting auxin biosynthesis genes in
Bdaux1 (Table S2).

The BdAUX1::GFP-BdAUX1 plants, as well as BdAUX1::NLS-
3XVENUS plants, allowed us to assess the expression pattern of
BdAUX1 in the root. AtAUX1 is expressed specifically in the
Arabidopsis root protophloem, epidermis and root cap-columella
(Marchant et al., 2002). BdAUX1 transcriptional and translational
reporters displayed similar expression patterns, with the exception
of expression in the root cap. Moreover, unlike AtAUX1, BdAUX1
was also expressed throughout the stele and in the outer cortex
layers (Fig. 4a–c). Thus, the expression pattern of BdAUX1
encompasses the combined domains of AtAUX1, AtLAX2 and
AtLAX3 (Peret et al., 2012) with the exception of the root cap, and
therefore, possibly, their combined functions in these tissues.
Consistent with its homology to AtAUX1, GFP-BdAUX1 protein
was localized at the plasma membrane, in a typically polar fashion
(Fig. 4d,e). In the stele, the orientation was generally shootward
(Fig. 4e), while in the outer cell layers, BdAUX1 polar localization
appeared mostly rootward (Fig. 4f). However, in the later epider-
mis, BdAUX1was detected on both the apical and basal sides of the
cell, as well as facing inside (Fig. 4g). In summary, the localization is
consistent with a role of BdAUX1 in promoting auxin transport
from the shoot to the root tip, and in evacuating auxin from the tip
via the epidermis. Notably, despite the increased auxin level in
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Bdaux1 root tips (Fig. 3a), the Bdaux1 root agravitropism could be
somewhat rescued by application of 1-NAA (Fig. 5a), similar to
Ataux1 (Swarup et al., 2001). However, 1-NAA levels that rescued
agravitropism did not restore normal root elongation (Fig. 5b),
which was always higher in Bdaux1 than in Bd21-3, indicating that
the roles of BdAUX1 in cell elongation and gravitropism are
physiologically separable.

In summary, our detailed analyses of Bdaux1 mutants revealed
phenotypes that are counterintuitive with respect to the expecta-
tions set by the precedent of corresponding Arabidopsis mutants.
However, interestingly, an exaggerated root elongation phenotype
has also been described for Osaux1 mutants (Yu et al., 2015),

although it has not been noticed by others working with the same
lines (Zhao et al., 2015). Moreover, Osaux1 mutants also display
slightly reduced shoot organ elongation (Zhao et al., 2015). Yet,
compared to the Bdaux1 mutants, these phenotypes appear
relatively mild, and no flower development or reproductive
phenotypes were reported. Likewise, AUX1 mutants in maize and
Setaria also display apparently milder inflorescence and root
phenotypes than BdAUX1 (Huang et al., 2017). Possibly, this
reflects partial genetic redundancy in rice, maize and Setaria, which
contain twomore AUX1 homologs than Brachypodium, including
close OsAUX1, ZmAUX1 and SvAUX1 homologs (Zhao et al.,
2012, 2015;Huang et al., 2017). Thus, the auxin uptake facilitator
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network in Brachypodium might be less complex than in other
grasses, confirming once more that the regulatory wiring of auxin
biosynthesis or transport can vary between species, and thus can
trigger distinct physiological and morphological consequences if
tampered with (Pacheco-Villalobos et al., 2013; O’Connor et al.,
2014). In summary, our data suggest that in Brachypodium,
BdAUX1 primarily assures correct local auxin accumulation and
has a broad role in root and shoot development. This role is
apparently broader than the role of AtAUX1 in Arabidopsis, and
could potentially encompass activities of AtLAX homologs
(Marchant et al., 2002). However, a detailed analysis of the other

Brachypodium AUX1 homologs will be required to conclusively
resolve whether this is indeed the case.
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3.1 Follow-up experiments 

As discussed in the paper, some questions remain to be answered. An important 

question was where auxin is localized in the roots that have increased cell elongation. 

The DR5 marker has often been used as a reporter to evaluate auxin response (Ulmasov 

et al. 1997; Gallavotti et al. 2008; Swarup et al. 2008; Lampugnani, Kilinc, and Smyth 

2013; O'Connor et al. 2014; Zhao et al. 2015). This artificial promoter consists of five 

AuxRE elements that can be bound by ARFs. It can drive the expression of beta-

glucuronidase (GUS) or fluorescent markers like the Red Fluorescent Protein (RFP), 

making it possible to evaluate auxin response in a cell (Ulmasov et al. 1997; Gallavotti et 

al. 2008; O'Connor et al. 2014; Liao et al. 2015). Several attempts were made to cross 

the DR5::eRFP marker obtained from Dr. Devin O’Connor into Bdaux1, Bdtar2lhypo, 

Bdaux1 x Bdtar2lhypo and corresponding wild type backgrounds (Bd21.0 and Bd21.3). 

Unfortunately the only stable line of DR5::eRFP available at that time already had a 

flower phenotype by itself and was therefore impossible to cross into other backgrounds. 

Therefore, I replaced the basta resistance gene by neomycin phosphotransferase II 

(nptII), which confers resistance to paromomycin and made new transformants. 

Preliminary results of these transformations are depicted in Figure 5. Interestingly 

DR5::eRFP seems decreased in Bdaux1 root tip as compared to its corresponding 

heterozygote or wild type background (Figure 5A,B). Furthermore auxin response in 

Bdtar2lhypo root tips seems similar to its corresponding wild type (Figure 5C,D), in line with 

the publication of Pacheco-Villalobos on root tips (Pacheco-Villalobos et al. 2013). Since 

Bdaux1 x Bdtar2lhypo has a mixed background of two wild type accessions, in T1 not yet 

enough data was obtained to draw conclusions and analysis of the T2 should give more 

conclusive results. The expression pattern of DR5::eRFP is not changed in any of the 

mutants as compared to their wild type backgrounds, highest expression is found in and 

around the quiescent center, the epidermis near the root tip and the xylem poles also in 

older parts of the root (Figure 5F-I). Weak expression can sometimes be found in 

protophloem cell files. It is important however to note that variation between transgenic 
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lines is common and could for instance reflect differences in copy numbers. Therefore, 

additional lines, and ideally crosses have to be analyzed to draw definite conclusions. 

 

Figure 5: Preliminary results of confocal microscopy on 2-day old roots with DR5-eRFP marker in different 
Brachypodium backgrounds. A-D) Longitudinal sections of root meristems with eRFP channel (left) and 
overlay of eRFP and calcofluor channel (right) in Bdaux1, control background for Bdaux1, Bdtar2lhypo and 
Bd210 resp. Scalebars are 100um. E) Approximate positions of cross-sections along a root used to create 
figure F-I. F-I) Cross-sections of root meristems with eRFP channel (left) and overlay of eRFP and calcofluor 
channel (right) in Bdaux1, control background for Bdaux1, Bdtar2lhypo and Bd210 resp. Scalebars are 20um. 

Another important auxin marker is DII-VENUS, which is a fusion of the auxin-degradable 

domain II of AUX/IAAs to the fluorescent marker VENUS (Liao et al. 2015). The absence 

of DII-VENUS signal marks the presence of auxin. However, since some cells already 

have a lower expression level of DII-VENUS by default, the signal should be quantified 
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relative to specific cell types or the stage of development of a cell. To this end mDII-

TdTomato was created, which contains a small mutation in the DII-domain and prevents 

its auxin-dependent degradation. The red fluorescent protein TandemTomato (TdTomato) 

was used for visualization. Both DII-VENUS and mDII-TdTomato were combined in the 

same vector and driven under a constitutive promoter in Arabidopsis (Liao et al. 2015). In 

order to use this vector in Brachypodium, I modified it in the following ways: The promoter 

was changed to UBIQUITIN promoter from Zea mays (ZmUBI) since no clear homologs 

of pRPS5A promoter could be found in Brachypodium and ZmUBI had already been 

tested several times in Brachypodium (Vogel and Hill 2008; Bragg et al. 2012). Also no 

Brachypodium transformation protocols were available for methotrexate selection and 

therefore it was decided to transfer the DII-VENUS and mDII-TdTomato cassettes into 

pCAMBIA1305.1-UBI5’UTR-nptII (pCAMBIA1305.1 Genbank accession number 

AF354045), where selection is based on paromomycin. Unfortunately, regenerants were 

not ready for analyses at the time of writing this thesis.  

In order to look deeper into the AUX/LAX family amongst species, I created a new 

phylogenetic tree with protein alignments made by Clustal Omega Simple Phylogeny 

(Sievers and Higgins 2018). It contains all family members for Arabidopsis, 

Brachypodium and monocots closely related to Brachypodium for which research has 

been performed on the family (Figure 6). Therefore Zea mays, Oryza sativa, Setaria 

viridis and Sorghum bicolor were included as well (Goodstein et al. 2012; Kersey et al. 

2018). When all family members are considered, three different groups become visible. 

Group 1 contains AtAUX1, AtLAX1, AtLAX2, BdAUX1 and the most closely related AUX1 

homologs from other monocots. Interestingly all plants taken along, have two different 

family members in this group, whereas Brachypodium only has one. Group 2 consists of 

AtLAX3 and two homologs for all monocots tested, divided into two subgroups. Again, 

Brachypodium is an exception, since it only has one homolog in the subgroup that lacks 

an Arabidopsis counterpart. Group 3 seems to be specific for the monocots taken along 

in this tree and contains one homolog for each monocot. All in all, this cladogram could 
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point to an evolutionary difference between monocots and dicots and especially the 

existence and function of the third group in monocots may be interesting to investigate 

further. 

 
Figure 6: Phylogenetic tree of AUX1-family member proteins from several monocots and Arabidopsis, based 
on Clustal Omega Simple Phylogeny protein alignments (Sievers and Higgins 2018). The homologs are 
divided in three groups, and group 1 is split in a red group (one homolog from each monocot and three from 
Arabidopsis) and a yellow group (second close homolog is all monocots except Brachypodium). Other 
Brachypodium AUX1-family members are highlighted in green.  
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4. Development of a functional CRISPR-Cas genome editing 

system for Brachypodium distachyon 

Since we are interested in phloem development, my goal was to investigate some known 

gene homologs of Arabidopsis for their function in Brachypodium. As discussed before, 

the T-DNA libraries that are currently available for Brachypodium (Vogel, Garvin, et al. 

2006; Bragg et al. 2012; Hsia et al. 2017) do not include these genes. Therefore we set 

off to develop a CRISPR-Cas genome editing system in Brachypodium and target genes 

that are known to be involved in protophloem development (BRX, OPS, CLE45, BAM3, 

APL and BRI1).  

4.1 Optimizing CRISPR-Cas 

In order to establish an efficient CRISPR-Cas genome editing system in Brachypodium, 

we designed several vectors (Section 7.2 Materials and methods). We chose a promoter 

that expresses the Cas9 nuclease ubiquitously in the plant, since this should also be 

expressed in immature embryos. In Brachypodium not yet many of these promoters are 

known, however the Joint Genome Institute (institute 2019) reports efficiencies for several 

tested promoters. The use of the maize UBIQUITIN with intron (ZmUBI) to drive the 

expression of selection markers led to the highest transformation efficiency in immature 

embryos. Next we designed a Cas9 that was Brachypodium codon-optimized, based on 

an Arabidopsis-optimized Cas9 that was published before (Mao et al. 2013) (Section 7.6 

Sequences used during this thesis). To drive expression of sgRNA, normally species-

specific RNAse polymerase III U6 and U3 promoters are used (Cong et al. 2013; Jiang et 

al. 2013; Ma et al. 2015; Xie, Minkenberg, and Yang 2015). However, some reports 

suggest U3 promoters being less efficient than U6 promoters (Ma et al. 2015; Mikami, 

Toki, and Endo 2015). Therefore we chose a Brachypodium-specific U6 promoter 

(Section 7.6 Sequences used during this thesis). During the course of my PhD also the 

use of rice pol III promoters was reported successful in Brachypodium (O'Connor et al. 

2017) and we made use of these during later trials to make a working CRISPR-Cas 

system. The design of sgRNA is the most crucial part of creating a successful genome 
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editing system (Zhou et al. 2014; Ma et al. 2015; Mikami, Toki, and Endo 2015). 

sgRNA consists of a 20bp crRNA to target the plant genome and a tracrRNA that is 

needed for correct folding and maturation of the crRNA so that it can guide the Cas9. 

Different types of tracrRNA have been tested over the years, however an 85bp-long 

version has been reported most successful and is most commonly used (Cong et al. 

2013; Zhou et al. 2014). All sequences and vector maps can be found in Section 7.6 

Sequences used during this thesis. 

For the first trial we targeted thirteen different genes: homologs of BRX, BAM3, CLE45, 

OPS and APL (discussed below in more detail). crRNAs were designed to target the first 

exon and with the knowledge that PAM-sites should contain the NGG-nucleotide 

sequence (Suppl. table 1). Unfortunately, none of these resulted in edited genomes. We 

speculated that there could be a problem with our Brachypodium codon-optimized Cas9 

(BdCas9) and therefore we sought to test AtCas9 that was used successfully in 

Arabidopsis (Mao et al. 2013; Fauser, Schiml, and Puchta 2014; Johnson et al. 2015). 

We also sought to test Brachypodium-optimized versions of previously mentioned AsCpfI 

and LbCpfI (Zetsche et al. 2015) (Section 7.6 Sequences used during this thesis). In 

order to compare the efficiency of all four Cas9 proteins in vector p5Cas (BdCas9, 

AtCas9, AsCpfI and LbCpfI), we targeted BdBRI1 (Bradi2g48279 in Brachypodium 

genome assembly version 3.0 (Kersey et al. 2018)). Mutants for this gene were already 

published and have a dwarf phenotype that is easily recognizable (Feng et al. 2015). It 

was therefore a good candidate for comparison of the efficiencies of different Cas9 

proteins. Again, crRNAs were designed solely based on the criteria mentioned above: 

targeting a sequence in the first exon with a PAM-site containing NGG and no mutants 

were obtained. 

Since our cassettes were designed, more research has been published on the use of 

CRISPR-Cas in plants and the design of sgRNAs was optimized over time (Johnson et al. 

2015; Ma et al. 2015; Xie, Minkenberg, and Yang 2015; Schiml and Puchta 2016). By 

now, several tools are publicly available to aid the design of efficient crRNAs and apart 
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from using PAM-sites as a criterion they also assign a score to the position of specific 

nucleotides within the crRNA (Xie et al. 2014; Oliveros et al. 2016; Rauscher et al. 2017). 

Furthermore these tools check for secondary positions in the genome that resemble the 

target sequence and they assign likelihood-scores to these so-called off-target 

sequences in order to reduce the possibility of unwanted mutations. We decided to use 

the BreakingCas tool for future design of crRNAs, since it includes the newest versions of 

the Brachypodium genome and is user-friendly (Oliveros et al. 2016). In the meantime 

Dominique Bergmanns laboratory demonstrated the successful use of a rice CRISPR-

Cas system in Brachypodium (Miao et al. 2013). When combining this vector with a 

BreakingCas-designed crRNA to target two Brachypodium homologs of BRX at the same 

time, we successfully created mutants. Meanwhile, systems containing multiple crRNAs 

in one vector were published, resulting in the mutation of several genes at once or the 

deletion of big DNA fragments (Miao et al. 2013; Zhou et al. 2014; Ma et al. 2015; Xie, 

Minkenberg, and Yang 2015; Zhao et al. 2016). Zhou et al. added BsaI- and BtgZI-sites 

to introduce crRNA more easily in a vector that already contains a U6 promoter and 

tracrRNA (Zhou et al. 2014). We therefore optimized our system accordingly, as 

discussed in more detail in 7.2 Materials and methods. With the use of this new system 

and the BreakingCas tool for designing sgRNAs (Oliveros et al. 2016), we obtained 

mutants with our self-designed system. This new strategy worked well for all targets that 

were tested (Suppl. table 1 and Suppl. table 3) and results will be discussed below.  

4.1 BRX 

At the start of my PhD, four different protein homologs were annotated as AtBRX 

homologs that contain the four BRX domains: the 10 and the 25 amino acid stretch at the 

N-terminus, and the tandem BRX-domains (Briggs, Mouchel, and Hardtke 2006) (based 

on Brachypodium distachyon version 1.0 genome assembly, accession 

GCA_000005505.1). We named them as follows: BdBRXL1 (Bradi3g52537), BdBRXL2 

(Bradi4g31550), BdBRXL3 (Bradi3g37710) and BdBRXL4 (Bradi5g20580). In a 

phylogenetic tree (Sievers and Higgins 2018), proteins annotated as BdBRXL1 and 
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BdBRXL4 grouped together and were most closely related to AtBRX and AtBRXL1 

(Figure 7A). BdBRXL2 and BdBRXL3 clustered in another group and are more distantly 

related to AtBRX and more closely to AtBRX2 and AtBRX3. Our original attempts 

targeted each of these genes individually with crRNA design based on aforementioned 

simple criteria, however no gene editing was detected. Since BdBRXL1 and BdBRXL4 

were most likely the closest homologs of AtBRX, they were prioritized in later attempts for 

genome editing. We successfully created double mutants using the CRISPR-Cas system 

by Miao et al. 2013 with a crRNA that was designed based on BreakingCas (Oliveros et 

al. 2016) and targeted both genes at the same time. Interestingly this system seems to 

preferentially delete 1,2 or 5 nucleotides within both genes and therefore many 

regenerants with similar mutations were obtained. All these mutations led to frameshifts 

in the beginning of the first exon resulting in preliminary stop-codons. These could 

therefore all be seen as loss-of-function mutants. One exception was a line with a 24 

nucleotide deletion in BdBRXL1, leading to a shorter protein. Moreover, the system was 

very efficient since most lines contained mutations in both genes. In the second 

generation it was difficult to obtain a single mutant for BdBRXL1 and not possible for 

BdBRXL4 out of the five different T1 lines that were continued to the next generation. 

Interestingly no macroscopic phenotypes could be observed in any of these mutants; root 

length was not altered and also shoots seemed similar to wild-type plants. Therefore, we 

sought to create triple mutants, including BdBRXL2 or BdBRXL3 mutations. To this end, 

we tested our newest CRISPR-Cas system with BreakingCas-designed crRNAs (Oliveros 

et al. 2016). Indeed we obtained Bdbrxl1,2,4 and Bdbrxl1,3,4 triple mutants for ten out of 

twelve and five out of eight T1 lines tested respectively. Again most mutations were one 

to five-nucleotide deletions that caused premature stop-codons. Furthermore, no 

macroscopic phenotypes were observed. 
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Figure 7: Phylogenetic trees comparing Brachypodium and Arabidopsis BRX-, OPS- and BRI1-gene family 
members, fig A, B and C resp. Based on Clustal Omega Simple Phylogeny protein alignments (Sievers and 
Higgins 2018). 

In a more recent release of the Brachypodium genome (Brachypodium distachyon 

version 2.0, accession GCA_000005505.2, (International Brachypodium 2010; Kersey et 

al. 2018)) another protein homolog of BRX was annotated, which we named BdBRXL5 

(Bradi1g01210). This homolog groups with BdBRXL1 and BdBRXL4 (Figure 7A) and 

might therefore act redundantly. This could explain the lack of macroscopic phenotypes 

observed in Bdbrxl1 Bdbrxl4 double mutant. Therefore we sought to create Bdbrxl1 

Bdbrxl4 Bdbrxl5 triple mutants and Bdbrxl1 Bdbrxl2 Bdbrxl4 Bdbrxl5 or Bdbrxl1 Bdbrxl3 

Bdbrxl4 Bdbrxl5 quadruple mutants by targeting BdBRXL5 with two crRNAs in exon 1. 

Whether this attempt was successful was not yet known at the time of writing this thesis. 

4.2 OPS 

In Brachypodium three homologs of the OCTOPUS-family can be found, named 

BdOPSL1 (Bradi2g23700), BdOPSL2 (Bradi2g55160) and BdOPSL3 (Bradi1g74330). 

There is one more protein that contains a DUF740 domain, however it does not have any 
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homologs in Arabidopsis and is distant from the other Brachypodium family members 

(Figure 7B). BdOPSL1 and BdOPSL2 are closely related to each other and more closely 

related to AtOPL2 than to AtOPS. Interestingly BdOPSL2 consists of two exons, whereas 

all other OPL homologs aligned by Breda et al. only consist out of one exon (Breda, 

Hazak, and Hardtke 2017). Breda et al. proved that BdOPSL1 could complement Atops 

mutant, thereby making it an interesting target for research in Brachypodium (Breda, 

Hazak, and Hardtke 2017). BdOPSL3 protein in pairwise alignments is most closely 

related to AtOPL4 and least to AtOPS and was not taken along in alignments performed 

by Breda et al. 2017. Therefore it was chosen to focus on BdOPSL1 and BdOPSL2.  

With the new CRISPR-Cas system and crRNAs whose design was based on 

BreakingCas software (Oliveros et al. 2016), we obtained several mutants (seven out of 

twenty-six T1 lines tested for BdOPSL1 and seven out of twenty-one T1 lines tested for 

BdOPSL2). We attempted to delete several exons from both genes by using two crRNAs 

that target each gene at two different positions. Unfortunately we could not detect any big 

deletions and only one to five nucleotide deletions were observed for each crRNA. When 

the T2 root lengths were tested for several of the mutants, we could not detect clear 

differences with wild type. It may be necessary to test T2 from fully homozygous lines to 

see root length phenotypes. Alternatively more homologs may need to be mutated, since 

in the phylogenetic cladogram (Figure 7B) (Sievers and Higgins 2018) BdOPSL3 protein 

did not group very far from BdOPSL1 and BdOPSL2 and could function redundantly.  

4.3 BRI1 

Since it was discovered recently that brassinosteroid receptors are involved in 

protophloem development (Kang, Breda, and Hardtke 2017), we became interested in 

studying these receptors in Brachypodium. It was already published that Bdbri1 mutants 

have a reduced shoot and root size as compared to wild type (Goddard et al. 2014; Feng, 

Yin, and Fei 2015). However it was not published whether there are problems in 

protophloem development. At the time of these publications, the closest homolog to 
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AtBRI1 was Bradi2g48280 (based on Brachypodium genome assembly version 1.0 

(International Brachypodium 2010; Kersey et al. 2018)), however in assembly version 3.0 

of the Brachypodium genome, it was re-named Bradi2g48279 (Kersey et al. 2018). It has 

63.8% sequence identity with AtBRI1 protein. Three other homologs that belong to the 

same family as BdBRI1 were found in Brachypodium, listed with decreasing sequence 

identity to AtBRI1: Bradi4g27440 (BdBRL1), Bradi3g21400 (BdBRL2) and Bradi1g72572 

(BdBRL3). BdBRL1 was more closely related to AtBRL1 and AtBRL3 than it was to 

AtBRI1, whereas BdBRL2 was more closely related to AtBRL2 as can be seen in a 

phylogenetic tree (Figure 7C) (Sievers and Higgins 2018). All homologs contain several 

leucine-rich-repeats (LRR), a 70 amino acid island domain, a transmembrane domain 

and a cytoplasmic kinase domain, like BRI1 (Cano-Delgado et al. 2004; Kinoshita et al. 

2005). It was shown before that the island domain is crucial for brassinosteroid binding 

and this is thought to be the reason for the divergent function of AtBRL2 (Kinoshita et al. 

2005). Therefore we looked at the existence of this island domain in Brachypodium. 

Surprisingly none of the Brachypodium homologs have a very close similarity to AtBRI1 

nor to AtBRL1 or AtBRL3 island domains. A possible exception is the AtBRL2 island 

domain, which overlaps with a higher similarity to BdBRL2. When looking more into the 

island domains within Arabidopsis we saw that also within this family, the domains are 

very divergent. Only AtBRL1 and AtBRL3 are very similar and therefore the island 

domain was deemed not valid as a criterion for predicting the most important homologs in 

Brachypodium. Another striking feature in Arabidopsis was that all homologs consist out 

of one exon. This is not the case for Brachypodium. In fact, BdBRI1 itself contains two 

exons and BdBRL3 even three; therefore this may also not be used to exclude 

candidates. Since the triple bri1 brl1 brl3 mutant in Arabidopsis is more interesting in 

terms of protophloem development than Atbri1 alone, a new attempt targeted BdBRI1 

(closest homolog to AtBRI1) and BdBRL1 (closest homolog to AtBRL1 and AtBRL3) 

separately with two different sgRNAs in the same vector. This attempt seemed 

successful, since indeed small bri1-like plants were obtained and genotyping is ongoing 

at the time of writing this thesis. Since it is possible that BdBRL3 and maybe even 
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BdBRL2 act redundantly, these may have to be targeted in future attempts. 

4.4 APL, CLE45 and BAM3 

As discussed before, our original attempt to create mutants with a CRISPR-Cas genome 

editing systems did not result in any mutations. Thereafter, I focused on BRX, OPS and 

brassinosteroid receptors and did not have time to create Brachypodium mutants for 

homologs of AtAPL, AtCLE45 and AtBAM3. Nonetheless, creating and investigating 

these mutants could be of interest in the future. AtAPL had two different annotated 

protein homologs based on the Brachypodium reference genome at the time that I started 

my PhD (Brachypodium distachyon version 1.0, accession GCA_000005505.1, 

(International Brachypodium 2010; Kersey et al. 2018)), which we named BdAPLL1 

(Bradi1g31837) and BdAPLL2 (Bradi3g05500). AtCLE45 had only one homolog based on 

Brachypodium in genome assembly v1.0: Bradi1g05010. In comparisons based on later 

assemblies of the Brachypodium genome (Brachypodium distachyon version 3.0, 

accession GCA_000005505.4) no homologs of AtCLE45 or AtCLE26 can be found and 

Bradi1g05010 is annotated as a homolog of AtCLE25. Furthermore a second CLE 

peptide is annotated as a close homolog to Bradi1g05010, namely Bradi1g54656. As 

mentioned before, Czyzewicz et al. investigated the CLE26 peptide homolog in monocots 

and revealed that it differs in a crucial amino acid from AtCLE26, resulting in a different 

effect on root meristem as AtCLE26 (Czyzewicz et al. 2015). When aligning the active 

peptide sequence of Bradi1g05010, Bradi1g54656, AtCLE26, AtCLE25 and AtCLE45, 

both Brachypodium CLE peptides share the most sequence identity with AtCLE25 (Suppl. 

table 1). It would therefore be interesting to compare the effects of active peptide 

AtCLE25 and Bradi1g05010 or Bradi1g54656. Furthermore, due to the lack of closer 

AtCLE45 or AtCLE26 orthologs, mutants of Bradi1g05010 and Bradi1g54656 may still be 

of interest regarding protophloem development.  

For AtBAM3, four different protein homologs were annotated based on Brachypodium 

genome assembly version 1.0, which we named BdBAM3L1 (Bradi1g07180), BdBAM3L2 
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(Bradi1g57900), BdBAM3L3 (Bradi1g69097), BdBAM3L4 (Bradi4g21830). In later 

releases of the Brachypodium genome (Brachypodium distachyon version 2.0, accession 

GCA_000005505.2 and Brachypodium distachyon version 3.0, accession 

GCA_000005505.4, (International Brachypodium 2010; Kersey et al. 2018)), a possible 

new homolog was annotated, which we named BdBAM3L5 (Bradi1g30160). It should be 

noted that AtBAM3 is part of a family in Arabidopsis and therefore some of these 

homologs in Brachypodium may be more closely related to AtBAM1 or AtBAM2 than to 

AtBAM3. More thorough comparison would be needed to confirm this, for example by 

making a phylogenetic tree to compare the different homologs between different species. 

4.5 Off-target analysis 

As stated before, the new CRISPR-Cas system worked efficiently. The efficiency varies 

between 27 and 83% for transformations where several independent regenerants were 

obtained (Suppl. table 3). Especially for crRNAs with high efficiency, there is a common 

concern that there is a possibility of off-target mutations (Xie and Yang 2013; Zhang et al. 

2014; Zhou et al. 2014; Oliveros et al. 2016; Schiml and Puchta 2016). BreakingCas 

predicts the likeliness of off-target mutations and assigns a score (Oliveros et al. 2016). 

Also Cas-OFFfinder (Bae, Park, and Kim 2014) can be used to predict off-target sites in 

Brachypodium, however when comparing its results with BreakingCas I discovered that 

Cas-OFFfinder makes use of an out-dated Brachypodium genome database and does 

not assign likelihood scores to each off-site prediction. Nevertheless, predicted targets 

between both programs were compared and except for targets in the newest genome 

database, most predicted targets overlapped. For several CRISPR-Cas generated lines, 

we chose the most likely off-targets to be tested in planta and the genomic areas around 

these sites were sequenced (Suppl. table 4). No off-target mutations were found, 

however only by full-genome sequencing one can be sure that no off-target mutations 

have taken place. This confirms that our CRISPR-Cas system with the use of 

BreakingCas for the design of sgRNA is a good system to create specific mutants and 

use them for research.  
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5. Discussion and future perspectives 

The goal of my PhD was to find out how similar dicotyledon (dicot) root development, in 

particular the protophloem tissue, is to that of monocotyledons (monocots), and to find 

out how applicable insights gained from research in dicots are to monocots. As some 

researchers already argued before (Draper et al. 2001; McSteen 2010; Pacheco-

Villalobos et al. 2013; Hsia et al. 2017), there seem to be some fundamental differences. 

Several genes that I have looked into during my PhD confirm this hypothesis. For 

example, the AUX1 auxin importer seems to have a broader function with more severe 

phenotypes in monocots as compared to dicots (Yu et al. 2015; Zhao et al. 2015; Huang 

et al. 2017; van der Schuren et al. 2018), especially with regard to stem and flower 

phenotypes. In Arabidopsis thaliana (Arabidopsis) the main phenotype observed for 

Ataux1 mutants is a problem in the response to changes in gravity, lateral root initiation 

and root hair development (Maher and Martindale 1980; Yamamoto and Yamamoto 

1998; Marchant et al. 1999; Swarup et al. 2001; Marchant et al. 2002; Swarup et al. 2005; 

Peret et al. 2012). Even though AtAUX1 is expressed in vegetative meristems, stem and 

flower, phenotypes can only be observed when other AUX/LAX family members are 

mutated in addition to aux1 (Bainbridge et al. 2008; Fabregas et al. 2015). In rice several 

contradicting papers were published; root length may be increased, shoot size may be 

reduced, lateral root density may be increased and root hair length is most likely reduced 

(Yu et al. 2015; Zhao et al. 2015; Giri et al. 2018). Since the same alleles were used in 

the different publications, possibly different growth conditions could explain the 

discrepancies in the phenotypes that were observed. Nonetheless, from all these data it 

is clear that more phenotypes can be observed in rice aux1 mutants than those reported 

for Arabidopsis single mutant. Also in Setaria viridis (Setaria) and maize stem phenotypes 

were more prominent than root phenotypes and included reduced shoot size and reduced 

tassel (Huang et al. 2017). Interestingly, lateral root density in Setaria was unaffected, 

whereas no data was given for maize (Huang et al. 2017). Lastly Brachypodium 

distachyon (Brachypodium) has a more severe phenotype than any other so far 
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described aux1 mutant. Roots are agravitropic, root length is increased, root hair 

length is decreased, stem size is greatly reduced and flowers are sterile (van der Schuren 

et al. 2018) (Chapter 3). To look more into how these differences may have developed, a 

phylogenetic tree was constructed based on Clustal Omega Simple Phylogeny protein 

alignments (Sievers and Higgins 2018) (Figure 6), containing Arabidopsis, Brachypodium 

and several monocots closely related to Brachypodium. This resulted in three different 

groups of homologs and group 1 contains the closest homologs of AtAUX1. In this tree, I 

used the newest genome assemblies for the different species, which contradicts some 

results that were published before. Hoyerova et al. published a division where monocot 

AUX1 homologs fall into a different group than dicot AUX1 homologs (Hoyerova et al. 

2008). They used OsAUX4 and GRMZM2G129413 for their alignments, which according 

to Figure 6 are indeed not the closest homologs of AtAUX1. Also Hochholdinger et al. 

annotated GRMZM2G129413 as the closest homolog to AtAUX1 and called it ZmAUX1 

(Hochholdinger et al. 2000). Later this homolog was renamed ZmLAX2 and indeed its 

mutant is not associated with root phenotypes, but rather with SAM size (Leiboff et al. 

2015). The alignments of Shen et al. 2010 and Yue et al. 2015 were very similar to Figure 

6. They lack the monocot-specific group (group 3) however, possibly because they 

compared fewer monocot species. Furthermore AtLAX2 is part of the second, not the first 

group in their alignments. The newest tree (Figure 6) could therefore possibly explain why 

more severe phenotypes in Arabidopsis are only observed in higher-order mutants, since 

it has three different homologs that fall into group 1.  

In the particular case of Brachypodium, there is a lack of the second homolog in group 1 

and group 2 as compared to all other plants included. This could explain why the aux1 

mutant phenotype is even more severe in Brachypodium as compared to other monocots. 

In Sorghum bicolor indeed both homologs from group 1 are most highly expressed in 

roots as compared to the other homologs (Shen et al. 2010). Zhao et al. showed that in 

rice OsAUX1 is most highly expressed in roots, but also OsAUX2 and OsAUX4 are 

possibly expressed in the root (Zhao et al. 2012). In maize both homologs from group 1 
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show a similar expression pattern and are more highly expressed in the roots than 

other homologs (Yue et al. 2015), To obtain clear evidence for the hypothesis that the 

second homolog may act redundantly, it is important to check whether double mutants for 

both group 1 homologs of Setaria, Sorghum, maize and rice AUX1 show similar 

phenotypes to Bdaux1. Also different AUX1 orthologs could be expressed in Bdaux1 to 

see if they can complement its phenotype.  

Transcriptome analyses of Osaux1 roots reveals many up- or downregulated genes as 

compared to wild type background and more than 83% of the genes were annotated in a 

category named “other” (Zhao et al. 2015). In an RNAseq on Brachypodium Bd21.3 

versus Bdaux1 roots, we observed fewer differentially expressed genes, the majority of 

which was involved with the production or modification of the cell wall (expansins, 

glucosylases, arabino galactan protein etc). It would be interesting to determine whether 

Osaux1 also includes differential expression of cell wall-related genes. Another 

interesting aspect is the increased level of auxin in Bdaux1 one centimeter root segments 

compared to wild type when chromatography was combined with mass spectrometry to 

determine auxin levels (van der Schuren et al. 2018). In contrast to these results, the 

preliminary data with DR5 promoter indicated reduced auxin response in the root tip 

(Figure 5). Also Arabidopsis and rice aux1 mutants have reduced auxin response as 

compared to their corresponding wild type backgrounds when DR5 promoter is examined 

in the root tip (Swarup et al. 2001; Marchant et al. 2002; Band et al. 2014; Yu et al. 2015; 

Zhao et al. 2015). This is corroborated by chromatography measurements on full roots in 

rice and on root tip in Arabidopsis aux1 (Swarup et al. 2001; Yu et al. 2015; Zhao et al. 

2015). Interestingly when Arabidopsis root segments further away from the tip (more than 

ten millimeter) were examined, aux1 mutants showed increased levels of auxin compared 

to the same segments in wild type roots (Marchant et al. 2002). Taking all these data 

together, it seems plausible that AUX1 in all species functions in acropetal transport only 

close to the root-tip and in aux1 mutants an auxin “traffic jam” could be caused just above 

the zone where AUX1 is normally functional. Possibly this zone was overrepresented in 
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the measurements on Brachypodium root segments, which could explain the 

contradicting results with DR5 marker in root tips. Cross-sections of auxin markers at 

specific distances from the root tip in different species should help to elucidate whether 

this hypothesis is correct.  

Also whether OsAUX1, BdAUX1, ZmAUX1 and SvAUX1 are indeed auxin importers, 

remains to be proven by, for example, auxin transport assays in Xenopus laevis oocytes. 

AUX1 localization in monocots was not researched in high enough detail to draw 

conclusions about its function in directional auxin transport. The expression pattern of 

OsAUX1 is similar to AtAUX1, namely in epidermis, root cap and depending on the 

publication also in the stele (Swarup et al. 2001; Yu et al. 2015; Zhao et al. 2015; Giri et 

al. 2018). The actual polar localization was only determined in one publication with an 

OsAUX1::OsAUX1-GFP marker line, however it focused on root hairs and lateral roots 

and they show that expression of OsAUX1 in root hair cells is different from AtAUX1 (Yu 

et al. 2015). In epidermal cells, the signal is localized in a similar fashion as BdAUX1, 

however no pictures are focused on the primary root phloem and therefore it is difficult to 

compare the localization pattern to BdAUX1 or AtAUX1 (Yu et al. 2015). This makes the 

data on primary roots that was published for BdAUX1 unique (van der Schuren et al. 

2018) (Chapter 3). BdAUX1 seems to localize in the same way as AtAUX1 (shootward in 

phloem and axial in epidermis), making it likely that it directs auxin to the root tip and 

more importantly into the epidermis for gravitropic response. However more thorough 

experiments would have to be performed in order to confirm this theory. An experiment 

could be to examine complementation of Bdaux1 or Osaux1 with only phloem- or 

epidermis-specific promoters driving the expression of AUX1. Furthermore it should be 

noted that BdAUX1 signal was not found in columella and this differs from both 

Arabidopsis and some publications from rice (Swarup et al. 2001; Yu et al. 2015). To date 

there is no explanation for this difference in expression pattern, however even in 

Arabidopsis no proof has yet been obtained for a function of AUX1 in the columella 

(Swarup et al. 2005). 
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All in all, much more research is needed in order to compare the functions and 

localizations of the different AUX1s that have been identified so far. But it has become 

evident that information obtained in dicots (Arabidopsis) cannot directly be applied to 

monocots. Clearly the phenotypes of Brachypodium are more in line with those observed 

in other monocots. Whether this observation is also applicable for genes involved in 

protophloem development, was another point of focus during my PhD. Again, looking at 

the evolution of specific gene families could provide some answers. As said before, the 

BRX domains were found in all higher order plants (Mouchel, Briggs, and Hardtke 2004). 

According to Phytozome BRX-domains could also be found in the liverwort Marchantia 

polymorpha, but not Spagnhum fallax and Physcomitrella patens, all very primitive 

landplants (embryophytes) (Goodstein et al. 2012). Unfortunately, no other primitive 

plants are available yet in the database, apart from several algae species. In algae no 

BRX domain was detected. This may argue for co-evolution of BRX domains with the 

existence of embryophytes and thus the land colonization of plants. This colonization is 

thought to have gone hand-in-hand with the occurrence of water- and food-conducting 

cells, that can be seen as pre-vascular systems (Lucas et al. 2013). It would be very 

interesting to test this theory by a more thorough bioinformatics search, which could 

possibly reveal a BRX domain in other mosses or liverworts as well. Complementation 

studies in Arabidopsis with moss-BRX domains or vice versa should reveal whether BRX 

function is conserved during the course of evolution. Furthermore it was already shown 

that the Atbrx phenotype could be rescued by the introduction of several monocot 

homologs in the mutant background, whereas within Arabidopsis only AtBRXL1 could 

complement (Beuchat et al. 2010). This is due to more conserved sequences within 

monocots than in Arabidopsis and may point to a stronger selective pressure for each 

individual member within the family. This could be a fundamental difference between 

monocots and dicots. BdBRXL2 was the only monocot family member tested at the time 

that could not rescue Atbrx. This is peculiar since BdBRXL2 protein and BdBRXL3 group 

together in Figure 7A, while BdBRXL3 was able to rescue Atbrx (Beuchat et al. 2010). An 

explanation was found when we aligned AtBRX protein sequences with Brachypodium in 
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Phytozome (Goodstein et al. 2012); BdBRLX3 showed a much higher similarity score 

with AtBRX than BdBRXL2. Furthermore, the sequence of BdBRXL2 was re-annotated in 

later genome assemblies of Brachypodium and a few nucleotides were added at the end 

of the BRX N-domain, which could explain why the BdBRXL2 tested by Beuchat et al. 

was not functional. It also remains to be elucidated whether BdBRXL5 can complement 

Atbrx phenotypes. Unfortunately within Brachypodium for the moment no combination of 

mutants had an observable phenotype, although we predict that a triple Bdbrxl1,4,5 

mutant may possibly give a notable phenotype. Furthermore, even if gaps are produced 

in brx mutants at the same frequency as in Arabidopsis, this may still not result in shorter 

roots, since Brachypodium has many more phloem poles that can compensate for 

defects in other phloem poles. 

OPS evolved later than BRX domains, as it is only found in angiosperms, but not in 

mosses, ferns or gymnosperms (Goodstein et al. 2012; Breda, Hazak, and Hardtke 

2017). This is interesting since OPS is seen as the master regulator of protophloem 

development (Breda, Hazak, and Hardtke 2017; Anne and Hardtke 2018). The function of 

OPS is not completely conserved over time, since a second homolog in Amborella 

trichopoda could only partially rescue the Atops root phenotype (Breda, Hazak, and 

Hardtke 2017). Within Arabidopsis, Atops could only be complemented when homologs 

were expressed under the AtOPS promoter. This shows that their level of redundancy 

may be determined by different expression patterns and may point to sub-

functionalization within the species (Breda, Hazak, and Hardtke 2017; Ruiz Sola et al. 

2017). Unfortunately BdOPSL2 and BdOPSL3 have not yet been tested in Arabidopsis 

and we cannot draw any conclusions on the function of OPS in Brachypodium either. 

Even though the seemingly most important homologs were knocked out during this PhD, 

it should be kept in mind that BdOPSL3 may act redundantly and only triple mutants may 

show a phenotype.  

Several homologs of other genes involved in protophloem development exist in 

Brachypodium as well. Therefore it is possible that multiple mutants have to be created 
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for all these gene families in order to see a phenotype corresponding to single mutants 

in Arabidopsis. For example, we targeted only two homologs of AtBRI1 so far, whereas 

Brachypodium has two more putative candidates that may be involved in protophloem 

development. In order to obtain a similar phenotype to the one observed in Arabidopsis 

bri1 brl1 brl3 triple mutants, the other homologs in Brachypodium may have to be 

targeted. As the previous attempts to create Bdbam3 mutants did not succeed due to the 

simplified criteria used to design sgRNAs, further attempts with improved criteria for 

sgRNA design should be performed to understand the role of this gene in Brachypodium. 

Since BdBAM3 is part of a big family in Brachypodium, possibly only higher-order 

mutants may show a phenotype. Furthermore, it may be possible that Bdbam3 mutant 

phenotypes only becomes visible in a background with the disturbed protophloem 

syndrome, as was seen for Arabidopsis (Depuydt et al. 2013; Anne and Hardtke 2018). 

The only gene of interest with no more than one homolog in older assemblies of the 

Brachypodium genome was CLE45. Bradi1g05010 was more closely related to AtCLE26 

and AtCLE25, of which the former was shown to be expressed in the protophloem as well 

(Rodriguez-Villalon et al. 2015; Anne et al. 2018; Anne and Hardtke 2018). In alignments 

based on later Brachypodium genome assemblies no more protein homologs of AtCLE45 

or AtCLE26 were annotated, however Bradi1g05010 remained a homolog of AtCLE25. 

Since external application of AtCLE25 and AtCLE26 has different effects in Arabidopsis 

and Czyzewicz et al. already showed that AtCLE26 and Bradi1g05010 seem to function 

differently, it would be interesting to compare the effects of active peptide AtCLE25 and 

Bradi1g05010 or Bradi1g54656 (Czyzewicz et al. 2015). As Czyzewicz et al. suggested, 

possibly a yet unknown ortholog of AtCLE45 and AtCLE26 remains to be found in 

monocots (Czyzewicz et al. 2015) and Bradi1g05010 may just be the equivalent of 

AtCLE25. This unknown ortholog may not have been found due to a problem in aligning, 

as the active CLE domain is only a small percentage of the full peptide sequence and the 

remaining sequence is not well conserved (Strabala et al. 2006; Kinoshita et al. 2007). 

Possibly alignments of only the active domains could solve the problem and give more 

reliable alignments between Brachypodium and Arabidopsis. Another possibility could be 
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that the function of common CLE peptide “precursors” has been split into more 

different CLE-peptides over time, like the closely related CLE25, 26 and 45 (Strabala et 

al. 2006; Yamaguchi et al. 2017), and they may have evolved differently between dicots 

and monocots. Even within Arabidopsis the effect of mutating CLE peptides has not yet 

been characterized in great detail or led to conflicting results like the increased root 

lengths when AtCLE26 expression was increased but also when it was reduced (Strabala 

et al. 2006; Yamaguchi et al. 2017). Therefore more research will be needed to answer 

these questions. Mutating Bradi1g05010, Bradi1g54656 and possible other homologs in 

Brachypodium could be a good start for a thorough comparison of CLE peptides between 

dicots and monocots.  

Apart from gathering evidence for possible differences between dicots and monocots, 

several other aspects have become evident over the course of my PhD. Working with 

Brachypodium is very time consuming and slow as compared to Arabidopsis. 

Nonetheless, it is doable and transformations have been optimized so they are normally 

successful. Many more protocols have been optimized for Brachypodium during this PhD 

that should help future research. Furthermore, a working CRISPR-Cas system was 

created. When our first attempts did not produce any mutations, we thought that there 

might be a problem with the expression of Cas9. Therefore we tested CpfI and 

Arabidopsis codon-optimized Cas9 (AtCas9) as well and discovered that none led to 

mutations. Therefore we cannot draw conclusions about efficiency differences between 

Cas9 or CpfI. Other researchers have proven that CpfI indeed results in good mutation 

frequencies in rice (Begemann et al. 2017; Hu et al. 2017; Wang et al. 2017; Yin et al. 

2017). It is even suggested that CpfI may have a higher efficiency than other Cas9 

nucleases (Begemann et al. 2017; Yin et al. 2017), however mutation frequency is very 

dependent on the genes targeted and the choice of guideRNA, whose design criteria are 

different for CpfI and Cas9. According to several publications, expression of Cas9 is 

generally not the limiting factor in the genome editing system (Zhou et al. 2014; Ma et al. 

2015; Mikami, Toki, and Endo 2015) and this was also proven during my PhD. Indeed we 
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realized that the correct design of crRNAs is crucial and that having an appropriate 

PAM-site is not the only criterium to be considered for choosing a crRNA. Efficiency 

scores can be attributed to the positions of specific nucleotides within the crRNA and 

therefore the use of online tools is crucial in their design. With our CRISPR-Cas system 

and the BreakingCas-tool (Oliveros et al. 2016) we obtained mutation efficiencies 

between 27 and 83% of all T1 regenerants tested (Suppl. table 3). This seems in line with 

other reports, where values vary from 20 to 100% efficiency for different plant species 

(Miao et al. 2013; Zhang et al. 2014; Zhou et al. 2014; Zhao et al. 2016; Zhu et al. 2016). 

This variability could depend on accessibility of target gene and chromosome structure 

(Zhu et al. 2016). Furthermore, a common concern of CRISPR-Cas editing systems is the 

possibility of mutations in positions that were not intentionally targeted with the CRISPR-

Cas system. Off-target sites in the genome have been computed and tested before (Xie 

and Yang 2013; Zhang et al. 2014; Zhou et al. 2014; Oliveros et al. 2016; Schiml and 

Puchta 2016). For the tests that were performed in plants, no off-target mutations were 

reported and in the rare case that there was an off-target, it was mutated in a much lower 

frequency than the actual target (Xie and Yang 2013; Feng et al. 2014; Zhang et al. 2014; 

Zhou et al. 2014; Baysal et al. 2016). It was proposed that the nucleotide position of 

mismatches within the guideRNA can be used to predict the likeliness of off-target 

mutations (Xie and Yang 2013; Upadhyay et al. 2013). Also in our hands, CRISPR-Cas 

did not lead to unwanted mutations when we tested predicted off-targets in lines with 

CRISPR-edited genomes (Suppl. table 4). This is likely due to the program that is used to 

design target crRNA, since BreakingCas assigns scores to each prediction and takes off-

targets and the position of mismatches into account (Oliveros et al. 2016). It should be 

kept in mind that one would have to sequence the full genome in order to be completely 

sure that no unwanted mutations have taken place anywhere else in the genome. 

In summary, there is much work left in the field of root development, especially when it 

comes to monocots. Several tools to aid this work have been developed by now, most 

importantly the use of model systems with the CRISPR-Cas system and in situ 
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hybridization to analyze the expression pattern of specific genes can save a lot of time. 

Phylogenetic trees and complementation studies may sometimes help to determine 

primary important candidates based on research in dicots and could guide research in 

monocots. However, ultimately it is necessary to perform experiments in monocot model 

systems and maybe even crops themselves in order to determine the exact function of 

the chosen gene in a specific species. 
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7.1 The Effects of High Steady State Auxin Levels on Root Cell Elongation 

in Brachypodium 

David Pacheco-Villalobos, Sara M. Díaz-Moreno, Alja van der Schuren, Takayuki 

Tamaki, Yeon Hee Kang, Bojan Gujas, Ondrej Novak, Nina Jaspert, Zhenni Li, Sebastian 

Wolf, Claudia Oecking, Karin Ljung, Vincent Bulone, and Christian S. Hardtke. 

The Plant Cell, May 2016, Vol. 28: 1009–1024 

Key Findings 

• Elevated auxin levels in elongating roots upregulate cell wall remodeling 

factors.  

• These changes are caused by reduced cell wall arabinogalactan complexity. 

• Root zones with higher auxin levels seem to have reduced proton secretion. 

My contribution 

In order to learn how to work with Brachypodium, I first corroborated some experiments 

that were already performed by previous researchers in our Laboratory. Next, to test the 

effect of differences in pH, I grew Brachypodium seedlings on MS media with different 

pH. Since normal agar could not resist low pH, I had to test several other gelating agents, 

choosing phytagel as the best reagent. I measured root length with and without transfer 

to different media and used DIC-microscopy to measure differences in cortex cell length 

at different conditions. Furthermore I measured the micro-pH-environment near root-tips 

with a micro pH meter, which confirmed the hypothesis that elevated auxin levels in roots 

do not result in increased, but rather possibly decreased excreted proton levels. 

Furthermore I performed the analyses on VAS1 RNAi lines. 
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The long-standing Acid Growth Theory of plant cell elongation posits that auxin promotes cell elongation by stimulating cell
wall acidification and thus expansin action. To date, the paucity of pertinent genetic materials has precluded thorough
analysis of the importance of this concept in roots. The recent isolation of mutants of the model grass species Brachypodium
distachyon with dramatically enhanced root cell elongation due to increased cellular auxin levels has allowed us to address
this question. We found that the primary transcriptomic effect associated with elevated steady state auxin concentration in
elongating root cells is upregulation of cell wall remodeling factors, notably expansins, while plant hormone signaling
pathways maintain remarkable homeostasis. These changes are specifically accompanied by reduced cell wall arabinogalactan
complexity but not by increased proton excretion. On the contrary, we observed a tendency for decreased rather than increased
proton extrusion from root elongation zones with higher cellular auxin levels. Moreover, similar to Brachypodium, root cell
elongation is, in general, robustly buffered against external pH fluctuation in Arabidopsis thaliana. However, forced acidification
through artificial proton pump activation inhibits root cell elongation. Thus, the interplay between auxin, proton pump activation,
and expansin action may be more flexible in roots than in shoots.

Coordinated cell division and expansion is crucial for plant or-
ganogenesis because cell walls restrict the movement of cells
relative to each other (Cosgrove, 1999; Wolf et al., 2012). The cell
wall is a complex structure of intertwined and sometimes cross-
linked polymers, comprising cellulose, xyloglucans, pectins, and
arabinogalactans, which resists the internal turgor pressure.
Therefore, cell wall elasticity has to be regulated to permit cellular
growth (Cosgrove et al., 1984; Cosgrove, 1993, 2005; Wolf et al.,
2012). This is achieved through selective loosening of cell wall
polymer interactions, which allows cellulose microfibrils and as-
sociatedmatrix polysaccharides todisplace relative toeachother.
As cellulosemicrofibrils are typically arranged in a nonrandom, parallel
orientation,most cells expandalongoneprincipal axis. Thisprocess is
easilyobservedinorganswithoneprincipalgrowthvector, for instance,
in hypocotyls or root tips. In both organs, hormones strongly influence

cell elongation. Among these, auxin is most prominent because it not
only orchestrates developmental programs, but also conveys envi-
ronmental inputs to trigger adaptive responses such as tropisms
(Sánchez-Rodríguez et al., 2010; Depuydt and Hardtke, 2011). It is
generallyassumed that auxinpromotescell elongationby inducing the
expression of cell wall remodeling factors (Sánchez-Rodríguez et al.,
2010;Wolfetal.,2012).These includeexpansins,whichareconsidered
facilitators of cell wall loosening by physically opening up the
fiber network, thereby facilitating the access of other enzymes to their
substrates (Cosgrove, 2005). Moreover, in parallel, auxin supposedly
stimulates cell elongation via a nongenomic pathway, since it en-
hances cell elongation within minutes in classical assay systems,
such as hypocotyls or coleoptiles. In these model organs, auxin
treatment correlates with increased acidification of the apoplast,
whichpresumably promotes cell elongationbecausecentral cell wall
looseningfactorsandenzymes,e.g.,expansins,polygalacturonases,
endoglucanases, and pectin methylesterases, work optimally under
acidic conditions. Cell wall acidification, in turn, is thought to arise
fromauxin-inducedactivationofplasmamembrane-localizedproton
pumps (PM-H+-ATPases). This long-standing concept, named the
AcidGrowthTheory,was formulated in the1970s (RayleandCleland,
1970, 1977, 1992; Hager et al., 1971).
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Whether the Acid Growth Theory is universally applicable to
plant cell expansion remains controversial. For instance, even for
the classic assay systems (coleoptiles or hypocotyls), some
authors have concluded that cell wall acidification indeed stim-
ulates growth, but that this is not an auxin-dependent effect
(Kutschera and Schopfer, 1985b, 1985a; Schopfer, 1989, 1993).
Validation of the Acid Growth Theory is most difficult in roots,
where analyses are complicated by the fact that as opposed to
hypocotyls or coleoptiles, cell proliferation and cell expansion are
deeply intertwined. Because both processes require variable
threshold auxin activities, they are difficult to uncouple, which
might account for the observation that auxin application generally
inhibits or at best only slightly promotes root growth (Moloney
et al., 1981; Evans et al., 1994). Likewise, Arabidopsis thaliana
rootsareshorteruponbothagenetically imposedstrongdecrease
aswell as a strong increase in auxin production (Chen et al., 2014).
Moreover, reducedmature cell length is typically accompanied by
reduced meristem size and vice versa (Moubayidin et al., 2010;
Scacchi et al., 2010; Rodriguez-Villalon et al., 2015), whichmakes
it difficult to distinguish whether observed phenotypes are pri-
marily caused by altered cell elongation or cell proliferation and/or
differentiation. Thus, a paucity of clear-cut conditions and perti-
nent genetic material has prevented conclusive analyses of the
Acid Growth Theory in Arabidopsis roots.

In this study, we took advantage of recently isolatedmutants of
the model grass species Brachypodium distachyon in the TAA1-
RELATED2-LIKE (TAR2L) and ETHYLENE INSENSITIVE2-LIKE1
(EIN2L1) genes.TAR2L encodes an enzymeof the TRYPTOPHAN
AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) and TAA1-
RELATED (TAR) family of proteins, which catalyze conversion of
tryptophan to indole-3-pyruvic acid (IPA) in the two-step auxin
biosynthesis pathway (Stepanova et al., 2011; Won et al., 2011).
IPA is subsequently converted to indole-3-acetic acid (IAA), the
major active auxin, by the YUCCA cytochrome P450 enzymes.
Two TAR homologs exist in Brachypodium, with TAR2L domi-
nating in the seminal root elongation zone, where cell differenti-
ation and elongation occur (Pacheco-Villalobos et al., 2013).
Bd-EIN2L1 is ahomologofArabidopsisEIN2, anessential positive
regulator of ethylene signaling (Alonso et al., 1999; Qiao et al.,
2012). Both hypomorphic Brachypodium tar2lhypo and ein2l1hypo

mutants display different degrees of elevated IAA levels in the
seminal root elongation zone as well as dramatically enhanced
cell elongation. This initially counterintuitive phenotype could be
explained by the observation that the regulatory logic of the two-
step auxin biosynthetic pathway is different in Brachypodium
compared with Arabidopsis: Whereas ethylene positively regu-
latesboth steps inArabidopsis, it negatively regulates the second,
rate-limiting step in Brachypodium (Pacheco-Villalobos et al.,
2013). The pathway intermediate IPA is metabolically linked to
ethylene biosynthesis through the VAS1 enzyme, which catalyzes
the formation of tryptophan from IPA using hydrophobic amino
acids, mostly L-methionine, as amino group donor (Zheng et al.,
2013).BecausethesizeoftheL-methioninepool limitsthebiosynthesis
of the rate-limiting ethylene precursor 1-aminocyclopropane-1-
carboxylate, not only IPA, but also ethylene biosynthesis are in-
creased inArabidopsisvas1mutants.Byanalogy, theBrachypodium
tar2lhypomutation apparently creates a situation where reduced TAR
activity leads to reduced IPA production and thereby also reduced

ethylene production, while ethylene signaling is directly dampened
in ein2l1hypo mutants. Thus, in both hypomorphic mutants, YUCCA
genesbecomederepressed todifferentdegreesandeventuallymore
IPA isconverted to IAAthan in thewild type (Pacheco-Villalobosetal.,
2013). Because a unique feature of both Brachypodium tar2lhypo and
ein2l1hypomutants is that their rootmeristem size and activity are not
affected, their longer seminal roots are entirely explained by the in-
creasedmaturecell length (Pacheco-Villalobosetal.,2013).Thus,cell
proliferation and cell expansion are uncoupled in seminal roots of
Brachypodium tar2lhypo and ein2l1hypo mutants, which both display
elevated auxin levels in conjunction with greatly exaggerated cell
elongation. Therefore, they offer an unprecedented opportunity to
monitor the consequences of high steady state auxin levels in
a monocotyledon root type.

RESULTS

Metabolic Analysis Confirms Higher Auxin Levels in tar2lhypo

Root Segments Despite Reduced Tryptophan
Aminotransferase Activity

The strongly enhanced mature root cell length in Brachypodium
tar2lhypo mutants (Figure 1A) (Pacheco-Villalobos et al., 2013) is
apparently cell autonomous because in regenerating excised
tar2lhypo root tips (Supplemental Figure1A), newly formedcells are
still longer than in its wild-type background, Bd21-0 (Figure 1B).
The same is true for ein2l1hypo compared with its wild-type
background Bd21-3 (Supplemental Figure 1B). In our subsequent
analyses, we primarily concentrated on the tar2lhypo mutant be-
cause of the relatively strong phenotype of tar2lhypo seminal roots.
For a more complete analysis of auxin metabolism in tar2lhypo, we
measured the tryptophan aminotransferase background activity
(Figure 1C) as well as total (Figure 1D) activity, in Bd21-0 and
tar2lhypo seminal roots, which revealed an approximately 30%
reduction in specific activity in the mutant (Figure 1D). Full-scale
analysis of auxin biosynthesis intermediates in 1-cm segments
from the root elongation zone of 4-d-old seedlings (Supplemental
Figure 1C) with comparable fresh weight in Bd21-0 and tar2lhypo

(Supplemental Figure 1D) produced amatchingmetabolic profile;
that is, tryptophan levels were slightly increased while IPA levels
were substantially decreased in the tar2lhypo mutant (Figure 1E).
Concurrently, the abundance of a few (inactive) auxin conjugates
was shifted, while as previously observed (Pacheco-Villalobos et al.,
2013), the level of free auxin (IAA) was significantly increased. Also
consistentwithpreviousfindings (Zhengetal.,2013),downregulation
of a Brachypodium VAS1-LIKE gene (VAS1L) by RNA interference
suppressed the tar2lhypo phenotype genetically (Supplemental
Figures 1E and F). In summary, these observations confirm our
previous finding that downregulation of TAR2L results in increased
rather than decreased cellular auxin levels and causes strongly en-
hanced root cell elongation (Pacheco-Villalobos et al., 2013).

High Auxin Steady State Is Associated with Remarkable
Transcriptional Homeostasis of the Auxin Signaling Network

The tar2lhypomutant offers auniqueopportunity to survey asteady
state high auxin concentration transcriptome that is associated
with enhanced cell elongation. To this end, we performed mRNA
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Figure 1. Reduced Tryptophan Aminotransferase Activity in Seminal Roots of Hypomorphic tar2l Mutants Results in Higher Cellular Auxin Levels and
Strongly Enhanced Cell Elongation.

(A) Four-day-old tissue culture-grown Brachypodium wild type (Bd21-0) and hypomorphic tar2l mutant (tar2lhypo) seedlings (left) and light microscopy
images of their mature cortex (c) and epidermal (e) cell layers (right). Double-sided arrows point out the longitudinal dimensions of individual cells.
(B) Mature cortex cell length in roots 4 d after regeneration from isolated Bd21-0 and tar2lhypo root tips (40 cells per root, 10 roots).
(C) Tryptophan aminotransferase background activity in Bd21-0 and tar2lhypo roots.
(D) Total tryptophan aminotransferase activity in Bd21-0 and tar2lhypo roots, background portion indicated in gray.
(E)Quantificationofauxinandauxinmetabolites in1-cmsegments fromthe rootelongation zoneof4-d-oldBd21-0or tar2lhyposeedlings.Error bars indicate
SE of themean (three to four biological replicates). Differences were not statistically significant (Student’s t test) unless indicated as follows: *P < 0.05, **P <
0.01, and ***P < 0.001.
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sequencing (RNAseq) of 1-cm root elongation zone segments,
grown and harvested in parallel with those used for the metabolic
analysis. Complementary to this experiment, we also performed
RNAseq on equivalent segments from wild-type plants that had
been transferred onto medium containing L-kynurenine for 2 d.
Mild concentrations of this tryptophan aminotransferase inhibitor
induce higher auxin levels and enhanced cell elongation in
wild-type roots, thusmimicking the tar2lhypophenotype (Pacheco-
Villalobos et al., 2013). The reads from the Bd21-0, tar2lhypo, and
L-kynurenine-treated Bd21-0 samples mapped onto more than
27,000 mRNA transcripts out of the 31,679 nuclear genes an-
notated in the Brachypodium reference genome sequence
(version 2.1) (Supplemental Data Set 1), with a pairwise overlap
between samples of more than 97%. Compared with the wild
type, 957 and 2657 genes were differentially expressed in tar2lhypo

and L-kynurenine-treated roots, respectively (q value < 0.01, fold
change > 23) (Figure 2A) (Supplemental Data Sets 2 and 3). The
highernumberofdifferentiallyexpressedgenes in the L-kynurenine-
treated samples is consistentwith anorgan-wide systemic effect of
the treatment that includes transcriptome remodeling towardanew
steady state. The overlap between the two sets was 344 genes,
which represents;4-fold enrichment over neutral expectation (P <
0.0001, x2 test). A similar RNAseq experiment was performed with
root segments from Bd21-3 and ein2l1hypo seedlings. Again, over
27,000 transcripts were detected and 356 genes were differen-
tially expressed (Supplemental Data Sets 1 and 4). Overlap
with the tar2lhypo and L-kynurenine-treated sets was 140 and
112, respectively, which again represented high enrichment
(;12- and;3.5-fold, respectively) over neutral expectation (P<
0.0001, x2 test). In summary, the RNAseq profiles indicated high
overlap between the mutants and the L-kynurenine condition, with
the extent of differentially expressed genes correlating with phe-
notype strength. Despite the similarities between their tran-
scriptome profiles, the samples were clearly grouped apart. Both
mutants were more similar to their wild-type backgrounds than to
each other, and the L-kynurenine-treated samples were most dis-
tant to all others (Figure 2B). A principal component analysis
confirmed that parental backgroundwas the dominant factor in the
grouping of samples (Figure 2C).

Analysis of theannotationsof thedifferentially expressedgenes
revealed a rather low occurrence of genes involved in auxin or
other hormone signaling pathways (Figure 3A). Significant dif-
ferential expressionwasobserved forsixoutof26annotatedauxin
response factors, seven out of 32 annotated AUX/IAA genes, and
one out of five annotated auxin receptor genes (Figure 3B;
SupplementalDataSet5).However, theexpressionchangeswere
moderate throughout. Likewise, mostly small effects were ob-
served for the few differentially expressed genes involved in polar
auxin transport, which included two auxin influx facilitators and
three auxin efflux carriers. Overall, the data indicate that the
transcriptional steady state of the auxin-signaling network is well
buffered with respect to variation in auxin levels. Interestingly,
however, some primary auxin target genes of the SMALL AUXIN
UP-REGULATED (SAUR) category were differentially expressed
(five out of 42 annotated genes) and mostly upregulated (four out
of the five) (Figure 3C). SAUR genes are classic auxin signaling
output genes, and it has been suggested that SAUR proteins an-
tagonize posttranslational inhibition of PM-H+-ATPases (Spartz

et al., 2014). Finally, with the exception of two genes that were
substantially downregulated (Figure 3D), Brachypodiumgenes that
encode PM-H+-ATPases displayed no differential expression.

High Auxin Steady State Is Associated with Transcriptional
Changes in Cell Wall Remodeling Factors

The majority of significantly enriched terms that stood out in
a word cloud made from annotation of differentially expressed
genes was related to the cell wall and associated processes
(Figure3A).Yet, onlyasmall proportionofgenesencodingcellwall
remodeling proteins displayed differential expression, and these
were restricted to a few groups. For example, while 6 out of 15
annotated xyloglucan endotrans-glycosylases/hydrolases were
up- or downregulated at roughly equal measure (Figure 3E), no
differential expression was observed among cellulose synthase
genes. The most prominent differentially expressed cell wall
modulators were expansins (23 out of 54 annotated expansin
genes), which were significantly enriched (P = 0.0078 for the
overlap between all samples, x2 test) and are also considered
classic auxin target genes. The majority (18 out of 23) displayed
comparatively strongupregulation (Figure3F). Finally, threegenes
encodingarabinogalactanpeptidesorproteinsstoodoutbecause
of their consistent upregulation (Figure 3G). Verification of dif-
ferential expression by qPCR was performed for a selected set
of genes of interest in independent RNA samples from tar2lhypo

and L-kynurenine-treated root segments, confirming the RNAseq
results (Figure 3H). In summary, the transcriptomic data indicate
that in the presence of higher cellular auxin levels, the auxin
signaling network maintains remarkable homeostasis at the
transcriptional level, while the bulk of expression changes are
observed in cell wall remodeling genes, notably expansins.

High Auxin Steady State Is Associated with a Specific
Change in Glycosidic Cell Wall Linkages

The robust changes in the arabinogalactan protein/peptide genes
were of particular interest in light of our results from chemical cell
wall analyses. To monitor the structural effect of altered expres-
sion in cell wall remodeling genes, we performed cell wall poly-
saccharide analysis of root segments from parallel samples that
were grown and harvested concomitantly with the segments
analyzed by RNAseq. The analysis of the glycosidic linkages
occurring in the cell wall polymers detected only few signifi-
cant differences between Bd21-0 and tar2lhypo, or Bd21-3 and
ein2l1hypo. However, both profiles were consistent, with a specific
significant decrease in 1,3-galactosyl residues in the mutants
relative to their wild-type backgrounds (Figures 4A and 4B). 1,3-
Linked galactose is found specifically in the glycosidic moiety of
the arabinogalactan proteins (AGPs) (Seifert and Roberts, 2007;
Ellis et al., 2010; Kitazawa et al., 2013; Knoch et al., 2014). 1,3-
Linked galactosyl residues represented;10% of all linked sugar
residues detected in both wild-type backgrounds and were re-
ducedbyabout2- to3-fold inein2l1hypoand tar2lhypo, respectively.
Moreover, the analysis of the cell wall neutral sugars indicated
similar relative abundance of the differentmonosaccharides in the
mutants and wild types, with one notable exception, fucose,
a minor cell wall sugar (Figures 4C and 4D). Relative fucose
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abundance was more than halved in tar2lhypo and reduced by
about one-third in ein2l1hypo. Interestingly, just like b-1,3-linked
galactose, fucose is found in AGPs (van Hengel and Roberts,
2002). Thus, the analysespoint to a very specific effect of elevated
cellular auxin levels on arabinogalactan complexity or abundance
in Brachypodium. To confirm this observation with an alternative
technique, we performed in situ Yariv staining on Bd21-0 and
tar2lhypo roots. The Yariv reagent is known to specifically detect
b-1,3-galactan (Yariv et al., 1967; Kitazawa et al., 2013). Staining

was considerably reduced in the root elongation zone of tar2lhypo,
thereby corroborating the chemical cell wall analyses (Figure 4E).
Moreover, we probed transverse sections in the root elongation
zone with antibodies directed against demethylesterified pectin
(2F4 antibody; Figure 4F), methylesterified pectin (JIM7 antibody;
Figure4G),andarabinogalactansidechains (LM2antibody;Figure
4H). None of these stainings showed a marked difference in
epitope abundance or distribution, except that in general, the
mean fluorescence signal of the LM2 antibody was reduced. This

Figure 2. Differential Gene Expression in Root Segments as Determined by RNA Sequencing.

(A)Venn diagrams illustrating overlaps between the gene sets thatwere differentially expressed in root segments of Bd21-0 versus tar2lhypo, Bd21-3 versus
ein2l1hypo, and mock-treated versus L-kynurenine-treated Bd21-0.
(B) and (C) Cluster analysis (B) and principal component (PC) (C) analysis of the different RNA sequencing samples.
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Figure 3. Differential Expression of Auxin- and Cell Wall-Related Genes in Root Segments.

(A)Word cloud from annotations of genes differentially expressed between Bd21-0 versus tar2lhypo, or mock-treated versus L-kynurenine-treated Bd21-0.
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might hint to lower AGP abundance; however, it is unclear towhat
degree the antibody stainings are quantitative. Importantly,
unlike the Yariv reagent, the LM2 antibody does not recognize
the b-1,3-galactan linkages in the arabinogalactan backbone,
but rather an epitope that comprises b-linked glucuronic acid,
which is found at the side chain termini (Smallwood et al., 1996;
Knoch et al., 2014). Therefore, collectively, the results point to
reduced AGP complexity.

High Auxin Steady State Is Not Associated with Markedly
Increased Proton Excretion

Our transcriptomic and cell wall analyses indicate that elevated
cellular auxin levels in Brachypodium roots are indeed associated
with differential expression of cell wall remodeling genes and
matching changes in cell wall composition. To determine whether
this also applies to the hallmark of the Acid Growth Theory,
apoplastic acidification, we next investigated the capacity of
Bd21-0 and tar2lhypo roots to acidify the medium. To this end, we
first visualized rhizosphere acidification by transferring seedlings
onto medium supplemented with pH indicator. Acidification was
readily detected within 4 h but was not apparently stronger for
tar2lhypo roots compared with Bd21-0 roots (Figures 5A and 5B).
Likewise, in a quantitative assay with liquid medium, acidification
could be readily followed over time; however, no difference in
proton pumping activity of root tips could be detected between
Bd21-0 and tar2lhypo (Figure 5C). Finally, we measured apoplast
acidification more directly at the root surface using fiber optic pH
microfiber sensors. To this end, five roughly equidistant mea-
suring points from the root tip through the elongation zone were
monitored along individual roots. As could be expected, these
measurements revealed a gradient of increasingly acidic pH from
the root tip to the differentiated cells. However, this gradient was
less rather than more pronounced in tar2lhypo compared with
Bd21-0 (Figure 5D). Likewise, in general, reduced rather than
increased acidification was observed in ein2l1hypo roots com-
pared with their Bd21-3 wild type background (Supplemental
Figure 2A). Finally, we monitored the phosphorylation state of
PM-H+-ATPases in root segments. Phosphorylation of the
penultimate amino acid within the autoinhibitory C-terminal
domain of PM-H+-ATPase and subsequent binding of 14-3-3
proteins is themajormechanismof enzyme activation (Palmgren
et al., 1991; Portillo et al., 1991; Speth et al., 2010). We therefore
monitored both the capability of 14-3-3 proteins to associate
with PM-H+-ATPase in microsomal membranes of root segments
(14-3-3overlay), reflectingitsphosphorylation level,andtheamount
of PM-H+-ATPase (Ottmann et al., 2007; Speth et al., 2010). In-
terestingly, phosphorylation-dependent binding of 14-3-3 proteins

to the PM-H+-ATPase was reduced, rather than increased, in mi-
crosomalpreparations from tar2lhypo rootsegmentscomparedwith
Bd21-0 (Figure 5E). This is in striking contrast to the effect of auxin
on PM-H+-ATPase phosphorylation in hypocotyl elongation in
Arabidopsis (Takahashi et al., 2012). Collectively, these experi-
ments suggest that higher cellular auxin levels in Brachypodium
roots are not associated with proton pump activation or markedly
elevated proton excretion at the mesoscopic level.

Forced Apoplastic Acidification Inhibits Root Cell Elongation

Next, to conversely determine whether acidity affects Brachypodium
root cell elongation, we monitored the response of the root to
externally imposed pH changes. In Arabidopsis, strong acidity
eventually impairs overall root growth by inhibiting meristematic
activity (Gujaset al., 2012), and thesameapplies toBrachypodium
(see below). Reducedmeristematic activity could altermature cell
length because it shifts the balance between proliferation and
differentiation (Moubayidin et al., 2010; Scacchi et al., 2010).
Therefore, we chose to examine mature cortex cell length after
transfer of seedlings from standard medium (pH 5.7) to mildly
more acidic conditions (pH 5.2), which nevertheless represent an
approximately 3-fold increase in H+ concentration. Only cells
formed after the transfer were scored. In these experiments, no
significant length difference was observed between cells formed
on either pH (Figure 6A) and overall root growth was not affected
(Supplemental Figure 2B). At the same time, fiber optic pH sensor
measurements along the root surface performed in parallel re-
vealed converging pH gradients under the two conditions (Figure
6B), to approximately pH 4.9 in the root elongation zone. Medium
acidification by Brachypodium root tips to pH 4.8 to 4.9 was
observed repeatedly and appears to represent a lower limit in
tissue culture. Therefore, we challenged roots with pH 3.7, a re-
spective approximately 10-fold increase in acidity. Surprisingly,
while overall root growth was substantially reduced at this acidic
pH (Figure 6C), this was entirely attributable to reduced meri-
stematic activity.Mature cell lengthwas againnot affected (Figure
6D). Likewise, even shortly after transfer of root tips into acidic
medium, at best a small and transient significant positive effect on
cell elongation could be observed (Supplemental Figure 2C). The
same applies to similar experiments where root tips were trans-
ferred into medium that contained fusicoccin, a proton pump
stimulant (Supplemental Figure 2D). In summary, these results
suggest that cell elongation in Brachypodium roots is robustly
buffered against external pH fluctuations.
To further explore the relation between apoplastic acidifica-

tion and cell elongation, we turned to a model system that allows
moredirectmanipulations,Arabidopsis.Similar toBrachypodium,

Figure 3. (continued).

(B) to (G) Expression changes (fold changes) for individual members of the indicated gene classes in Bd21-0 versus tar2lhypo and mock-treated versus
L-kynurenine-treated Bd21-0 (Bd21-0/mock set to 1 on the left, tar2lhypo/L-kynurenine-treated Bd21-0 values on the right). Only genes that showed
differential expression and a q value < 0.01 in at least one comparison are plotted. See Supplemental Data Set 5 for gene identifiers and expression values.
(H) qPCR verification of differential gene expression in independent RNA samples prepared from independent root segments (three biological rep-
licates). Error bars indicate SE of themean.Differenceswere not statistically significant (Student’s t test) unless indicated as follows: *P < 0.05, **P < 0.01,
and ***P < 0.001.
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Figure 4. Cell Wall Analyses of tar2lhypo and ein2l1hypo Root Segments Compared with Their Wild-Type Backgrounds.

(A) Glycosidic linkage analysis of Bd21-0 and tar2lhypo root segments.
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mature cortex cell lengthwas scarcely sensitive to pHvariations in
the medium (Figure 6E), meaning that again reduced overall root
growth on acidicmedium (Supplemental Figure 2E) can be largely
attributed to decreased meristematic activity, as previously ob-
served (Gujas et al., 2012). Thus, apparently root cell elongation is
also robustly buffered against external pHchanges in Arabidopsis
roots. To override this buffering effect, we sought to uncouple
proton pump activity from homeostatic inputs and stimulate it at
will. To this end, we again applied fusicoccin, which at low con-
centration again resulted at most in a small significant stimulation
of cell elongation, while higher concentration clearly reduced cell
elongation (Figure 6F). In a more direct, genetic approach, we in-
vestigated wild-type seedlings that carried an inducible transgene
forconditional expressionof theArabidopsisPM-H+-ATPaseAHA2
devoid of its C terminus (AHA2d95). This 95-amino acid deletion
removes theautoinhibitory domainof theprotein,which is therefore
turned into a hyperactive proton pump that is uncoupled from
regulatory inputs (Regenberg et al., 1995; Axelsen et al., 1999).
Similar to high fusicoccin concentrations, strong induction of the
AHA2d95 construct resulted in the cessation of meristem activity,
massive root cell swelling, and eventual rupture of the root tissues.
By contrast, at lower induction levels, which maintained root
growth, cell elongation was strongly reduced (Figure 6G). In these
conditions, somecellular swellingwasobserved,consistentwithan
increasedvacuolesize (Figure6H),yet thisvacuolarsize increaseby
itself was apparently not sufficient to drive significant cell elonga-
tion.Finally, inall conditions,both fusicoccinexposureandAHA2d95

induction resulted in reduced meristematic activity and thus re-
duced meristem size (Supplemental Figures 2F and 2G). Yet even
when strong vacuolar swelling was induced, we did not observe
longer cells.

DISCUSSION

The importance of auxin in plant development cannot be over-
stated. Auxin impinges on a large variety of physiological and
morphological processes, for which both absolute and relative
auxin levels can be determinants. For instance, this is illustrated in
root development, where auxin biosynthesis, polar transport, and
signaling are required for proper morphogenesis, growth, and
integration of environmental signals (Hardtke and Berleth, 1998;
Sabatini et al., 1999; Zhao, 2014; Adamowski and Friml, 2015). A
wealth of genetic and physiological data underpins the role of
auxin in root development, yet root responses to systemically
applied external auxin have been difficult to interpret. While

picomolar levels of auxin sometimes stimulate root growth,
physiological, nanomolar concentrations in general suppress root
growth (Sutcliffe andSexton, 1969;Evansetal., 1994;Overvoorde
et al., 2010). Likewise, genetically increased excess cellular auxin
production through ectopic overexpression of YUCCA enzymes
inhibits rather than enhances root growth (Chen et al., 2014).
These results indicate that in the absence of correct tissue con-
text, increased auxin levels fail to reveal the central role of auxin in
root growth, possibly because crucial auxin gradients are over-
ridden (Benjamins and Scheres, 2008). In summary, pertinent
auxinbiosynthesis, transport, or signalingmutantsand transgenic
lines,mostly inArabidopsis,donotdisplaysubstantially enhanced
root growth. Therefore, the Brachypodium tar2lhypo and ein2l1hypo

mutants represent a so far very unusual situation because
here locally increased auxin levels are associated with a spe-
cific and strong stimulatory effect on root cell elongation
while meristematic activity and meristem size are not affected
(Pacheco-Villalobos et al., 2013). This observation also contra-
dicts the sometimes voiced argument that root cell elongation is
typically maximal and therefore cannot be stimulated further by
hormone action.

A Transcriptome Associated with High Auxin Steady State

The remarkable phenotypic specificity of both Brachypodium
mutants with respect to root cell elongation offered us the unique
opportunity to survey a transcriptome that is associated with
a high auxin steady state. Auxin-regulated genes have so far been
mainly identified through their response to external auxin appli-
cation. This approach has been tremendously successful in
identifying the principal auxin target genes and the autoregulatory
feedback in the auxin signaling networks. Most prominently, they
include AUX/IAA genes, which encode repressors of auxin sig-
naling and respond rapidly and strongly to auxin application.
Compared with these classic auxin-responsive transcriptomes,
components of the auxin signaling network are rare among the
differentially expressedgenes inourRNAseqanalyses.Evenwhen
significant, their expression fold changes are very moderate
throughout, typically smaller than 1.5. Overall, the differentially
expressed auxin signaling genes are downregulated in our
samples, which could indicate a compensatory mechanism in
response tohigher cellular auxin levels. Thus,at the transcriptional
level, the auxin signaling networkmaintains a remarkably buffered
homeostasis. By contrast, a number of classic auxin target genes
that are considered physiologically relevant immediate outputs

Figure 4. (continued).

(B) Glycosidic linkage analysis of Bd21-3 and ein2l1hypo root segments.
(C) Neutral sugar analysis of Bd21-0 and tar2lhypo root segments.
(D) Neutral sugar analysis of Bd21-3 and ein2l1hypo root segments.
(E) Yariv staining (brownish) against b-1,3-galactan linkages in AGPs on longitudinal sections of Bd21-0 and tar2lhypo root tips.
(F) 2F4 antibody staining against demethylesterified pectin (green) on transverse sections from the elongation zone of Bd21-0 and tar2lhypo root tips.
(G) JIM7 antibody staining against methylesterified pectin (red) on transverse sections from the elongation zone of Bd21-0 and tar2lhypo root tips.
(H)LM2antibody stainingagainst AGPsidechains (red) on transversesections from theelongation zoneofBd21-0and tar2lhypo root tips. Error bars indicate
SEof themean (two technical replicatesper eachof threebiological replicates). Differenceswerenot statistically significant (Student’s t test) unless indicated
as follows: *P < 0.05, **P < 0.01, and ***P < 0.001.
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of auxin action are differentially expressed at higher levels in the
mutants and are upregulated overall. Most notably, these include
genes related to cell wall remodeling, among which substantial
differential expression of genes encoding expansins is most ro-
bust. In summary, these observations suggest that our mutant
transcriptomes could be indicative of physiologically relevant
auxin targets.
Between the five types of transcriptomes, we not only observed

increasing differential expression as a function of phenotypic
strength, or, in the case of roots grown on L-kynurenine, systemic
action, but also in relation to parental background. However, al-
though all samples were harvested in parallel, the ein2l1hypo and
Bd21-3 root segmentswere processed at a different time from the
other samples, and their RNAseq was performed in a separate
instrument run. Thus, it is possible that the ein2l1hypo versus
tar2lhypo transcriptome comparison is to some degree not only
constrained by parental background, but also by batch effect.
Although this limits the validity of any derived analyses, it is
noteworthy that across all possible cross-comparisons, the by far
most robust differential expression was observed for a gene that
encodes an arabinogalactan peptide.

A Specific Effect of High Steady State Auxin Levels on
Arabinogalactan Complexity

AGPs are a group of highly diverse cell surface glycoproteins
(Seifert and Roberts, 2007; Ellis et al., 2010). Their protein
backbone is characterized by dipeptide motifs that comprise
hydroxyproline residues, which serve as attachment points for
b-1,3-linked galactose oligosaccharides. These galactans can
themselves serve as secondary branch points for additional side
chains, which can contain a variety of other sugars, such as
arabinoseor fucose. Theexact rolesofAGPs inplantdevelopment
remain somewhat unclear, in part because of their structural
variety and the resultant fuzziness of analyses, but they havebeen
implicated in various growth-related processes (Seifert and
Roberts, 2007; Ellis et al., 2010). The most clear-cut evidence for
a role in root development so far comes from genetic analyses of
Arabidopsis plants with altered expression of enzymes that have
anexperimentally proven role in thebiosynthesisordegradationof
arabinogalactan side chains (Knoch et al., 2014). An interesting
finding from this small set of studies is thatwhile arabinogalactans
appear to be generally required for cell elongation, in mutants or

Figure 5. Medium Acidification by Bd21-0 and tar2lhypo Root Tips.

(A) Medium acidification through proton excretion from seminal roots of
3-d-old seedlings, 4 h after transfer onto fresh medium with pH indicator.
(B) Same as (A), 24 h after transfer.
(C)Progressive acidification of liquidmedium throughproton excretion from
seminal root tips starting with 2-d-old seedlings (six biological replicates).
(D) pH traces along the surface of root tips,measuredwith a fiber-optic pH
microsensor at five equidistant points as indicated (10 to 12 biological
replicates).
(E) Protein gel blot antibody detection of H+-ATPases in protein samples
isolated from microsomes of root segments and overlay with 14-3-3
protein binding. Error bars indicate SE of the mean. Differences were
not statistically significant (Student’s t test) unless indicated as follows:
*P < 0.05, **P < 0.01, and ***P < 0.001.
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transgenic lines with mildly reduced arabinogalactan complexity,
root elongation is substantially stimulated (van Hengel and
Roberts, 2002; Eudes et al., 2008; Knoch et al., 2013). However,
whether this is mainly due to enhanced cell elongation has not
been reported.

The published genetic data on the role of arabinogalactans
in Arabidopsis root development match our observations for
Brachypodium. In our root segments, we did not observe any
changes in the expression of Brachypodium homologs of proven
arabinogalactan metabolism enzymes. Yet, we observed a clear
reduction in b-1,3-galactan levels in biochemical and in situ
analyses of our mutants. Overall, the data suggest reduced
complexity and possibly also abundance of arabinogalactans.
It is conceivable that these observations could be linked to
changes in AGP expression in response to higher steady state

auxin levels. AGP protein backbones, which are typically ap-
proximately 100 amino acids long, are secreted and attached to
the plasma membrane via a glycosylphosphatidylinositol mem-
brane anchor that is added during their processing. The same
applies to the much shorter arabinogalactan peptides, which are
only 10 to 12 amino acids long (Schultz et al., 2004). Of the three
differentially expressed arabinogalactan backbone genes in our
data set, the one encoding an 11-amino acid arabinogalactan
peptide ismost dynamically and robustly overexpressed (4 to 73)
in thehighcellular auxin situationacrossall comparisons.Perhaps
this shift in arabinogalactan protein backbone length distribu-
tion to a higher proportion of short backbones could lead to a
looser, less complex AGP network. Future approaches, for in-
stance, transgenic overexpression, could be used to address this
notion directly.

Figure 6. Root Cell Elongation in Response to External pH Variation or Forced Apoplastic Acidification.

(A)Mature cortex cell length in Bd21-0 wild-type roots 2 d after transfer of 2-d-old seedlings from standard pH (5.7) to standard pH or more acidic pH (5.2)
(103 to 122 cells from six to eight roots). Only cells formed after transfer were scored.
(B) Root tip surface pH traces obtained with a fiber optic pH microsensor at five equidistant points as indicated (eight biological replicates).
(C) Root length of Bd21-0 wild-type seedlings 2 d after transfer of 2-d-old seedlings from standard pH (5.7) to standard pH or very acidic pH (3.7) (8 to 10
roots). Note that on pH 3.7, root growth is severely inhibited and meristematic activity gradually ceases.
(D) Mature cortex cell length of roots in (C) (75 to 97 cells). Only cells formed after transfer were scored.
(E)Mature cortexcell length in roots of 5-d-oldArabidopsisCol-0wild-type seedlingsgrownonmediawithdifferent pH (145 to157cells from19 to20 roots).
(F)Mature cortex cell length in roots of 4-d-old Arabidopsis Col-0 wild-type seedlings, 24 h after transfer from standardmedium ontomock- or fusicoccin-
supplemented medium. Only cells formed after transfer were scored (28 to 53 cells from six roots).
(G) Mature cortex cell length in roots of 4-d-old transgenic Arabidopsis AHA2d95 seedlings, 24 h after transfer on medium supplemented with 1 mM
dexamethasone to induce expression of the hyperactive proton pump (25 to 74 cells from five roots). Cells were scored in mock-treated roots, as well as
before (pretreatment) and after induction in the same roots.
(H)Confocal microscopy of epidermal root cells inmock-treated or dexamethasone-induced AHA2d95 seedlings, 4 h after induction, with FM4-64 staining.
Vacuoles can be easily distinguished in the inverted gray-scale images. Error bars indicate SE of the mean. Differences were not statistically significant
(Student’s t test) unless indicated as follows: *P < 0.05, **P < 0.01, and ***P < 0.001.
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Root Cell Elongation Is Robustly Buffered against External
pH Fluctuation

The Acid Growth Theory of plant cell elongation has been for-
mulated with respect to the elongation of shoot organs, with an
experimental focus on coleoptiles and hypocotyls. To what de-
gree it is pertinent for root cell elongation has been controversial
from the beginning because of early observations that auxin
application to intact rootsgenerally inhibitsgrowthorhasnoeffect
(Sutcliffe and Sexton, 1969). At best, growth stimulation could be
observed with very low auxin concentrations or in treatments of
auxin-depleted roots (Edwards and Scott, 1977; Pilet et al., 1979;
Evans et al., 1994). However, in all cases, the size of the effect was
small, and itwasnot reportedwhether theeffectwasdue toaltered
root meristem activity or cell elongation. In accordancewith these
results, the impact of auxin on proton excretion also did notmatch
observations in shoot organs and was generally variable. For
example, proton efflux upon treatment of maize (Zea mays) roots
was reported for nanomolar concentrations of auxin, while proton
uptake was observed with micromolar concentrations, with the
caveat that these roots had been pretreated with ethylene bio-
synthesis inhibitors (Mulkey et al., 1982). Others suggested that
growing parts of barley (Hordeum vulgare) roots take up protons,
while nongrowing parts secrete them (Weisenseel et al., 1979).
Finally, a recent study that monitored apoplastic pH using a
fluorescent molecular marker in planta found that auxin treat-
ment has little effect on pH in the meristem tip but leads to
alkalization rather than acidification in the root cell elongation zone
(Gjetting et al., 2012), corroborating similar earlier claims (Evans
et al., 1980; Moloney et al., 1981; Luthen and Bottger, 1993).
Eventually, for maize roots, it was concluded that the pH growth
curve exhibits a broad optimum ranging from pH 4.5 to 9, that any
acid-induced growth is of very short duration, that the low sen-
sitivity of root growth to external pH is independent of both pump
activity and buffering capacity of the bathing solution, and that
neither incubation in acidic buffer nor stimulation of the proton
pump reverts auxin-induced root growth inhibition (Luthen and
Bottger, 1993).

Our observations largely second these conclusions for
Brachypodium as well as Arabidopsis. Although it is evident
from our assays that the root tips acidify the rhizosphere as
could be expected, we did not detect enhanced proton ex-
cretion at the surface of mutant roots. Thus, although a few
SAUR genes are upregulated under the high auxin conditions in
our transcriptomes and could possibly stimulate proton pumps
indirectly, similar to Arabidopsis SAUR19 (Spartz et al., 2014),
this apparently does not translate into a detectable increase in
proton excretion at the mesoscopic level. Likewise, the two
proton pump genes that are downregulated under high auxin
conditions should have little impact on overall proton pump
abundance because they are only weakly expressed. The
by far preponderant proton pump gene that we detected
(Bradi5g24690) was expressed very robustly across all conditions
tested at levels over 10 times higher than the other nine proton
pump genes combined. Indeed, our protein gel blot analysis
confirmed that PM-H+-ATPase abundance in tar2lhypo was com-
parable to the wild type or at best mildly reduced. Moreover,
given that proton pump activity is mostly regulated through

posttranslational modifications, one would not expect that their
mild transcriptional regulation would play a major role.
Based on our data, we cannot exclude the possibility that el-

evatedprotonpumping is inducedbyhighercellular auxincontent,
but it does not propagate beyond the immediate vicinity of the
cell surface because of the concomitantly increasing membrane
potential. Such proton pumping could therefore not be detected
by our methods. Although our observation that PM-H+-ATPase
phosphorylation is decreased rather than increased in tar2lhypo

argues against this scenario, it is important to note that the in-
terpretation of our findings is constrained by the lack of single cell
resolution of our observations and morphological features, such
as the shorter root hairs in tar2lhypo mutants (Pacheco-Villalobos
et al., 2013). Perhaps very local and transient acidification is
sufficient to trigger cell elongation, which would make the ob-
servation that cell elongation in both Brachypodium and Arabi-
dopsis roots is robustly buffered against external pH fluctuation,
including imposed acidity, even more remarkable. Consistently,
throughout our experiments, excess acidity eventually sup-
pressed root growth by impairing meristematic activity rather
than cell expansion. This finding suggests that compensatory
mechanisms act to keep apoplastic root cell pH optimal for cell
elongation. Our finding that forced apoplastic acidification, for
instance, through inductionofaconstitutively activeprotonpump,
strongly impairs root cell elongation underlines this notion.
In summary, our data suggest that elevated steady state auxin

levels in Brachypodium seminal roots are associated with spe-
cific transcriptomic and cell wall changes. While some of those
changes match expectations, e.g., enhanced expression of
expansin genes, others come as a surprise, notably the specific
effect on arabinogalactans. Whether all of the observed changes
are direct effects of auxin or emerge indirectly, for example, from
hormonal crosstalk, notably with ethylene, remains to be de-
termined. At this point, our data provide a phenotypic reference
framework for future investigations that might also clarify to what
degree our observations are specific for Brachypodium. Robust
buffering of root cell elongation against pH fluctuation would
surely make sense in the universal biological context of root
growth. Unlike the shoot system, the root system is in close
contactwithasolidphaseenvironment, thesoil,which imposes its
pH. Roots can modify the rhizosphere pH by proton pumping to
increase the solubility of essential nutrients and promote their
uptake, which has an optimum in the range of pH 5.0 to 6.5. Given
the variability of soil pH values and their seasonal fluctuation, it
appears advantageous for the plant if root growth capacity is not
dictated by the soil environment pH. From this perspective, it
wouldmake sense that the interplay between auxin, proton pump
activation, and expansin action at the heart of the Auxin Growth
Theory is possibly more flexible in the root than in the shoot.

METHODS

Plant Materials and Growth Conditions

The Brachypodium distachyon mutants tar2lhypo and ein2l1hypo and
their respective wild-type backgrounds Bd21-0 and Bd21-3 have been
described before (Pacheco-Villalobos et al., 2013). Unless indicated
otherwise, analyses were performed on tissue culture-grown 4-d-old
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seedlings raised under previously described conditions (continuous
light, 100 to120mE intensity, 22°C,Philips F17T8/TL741 fluorescent light
bulbs) (Pacheco-Villalobos et al., 2013). Solidmediawere prepared using
Phytagel (Sigma-Aldrich) and Murashige and Skoog (MS) salts (Sigma-
Aldrich). Care was taken to place the 10-cm square Petri dishes at
a slight angle from the vertical to assure seminal root growth along the
agar surfaces. Roots that had grown into the plate were excluded
from analysis. For metabolic profiling, chemical cell wall analysis, and
RNAseq, parallel grown ;1-cm seminal root pieces harvested from 2 to
3 mm above the root tip were sampled (Supplemental Figure 1D). To
generate VAS1L RNAi knockdown lines, a DNA fragment of 422 bp
containing the VAS1L 39-UTR was amplified using the oligonucleotides
attB1-BdVAS1L-F 59-GGGGACAAGTTTGTACAAAAAAGCAGGCTTGGTA-
CAGTAACAGCCCATC-39 and attB2-BdVAS1L-R 59-GGGGACCACTTTG-
TACAAGAAAGCTGGGTGGAAGTGGCAGTTCTGTCAG-39 and cloned
into pDONR207 (Life Technologies). This 39-UTR-specific DNA fragment
was then cloned into the pANDARNAi vector (Miki and Shimamoto, 2004).
Transformation of the pANDA-BdVAS1Li plasmid into tar2lhypo embryo-
derived callus was performed as described (Pacheco-Villalobos et al.,
2013). Arabidopsis experiments were performed with the standard
Col-0 accession under the growth conditions described above. For
dexamethasone-inducible expression of AHA2 (AT4G30190) devoid of
its autoinhibitory C-terminal domain (AHA2d95) the corresponding
cDNA was amplified by PCR and cloned into pTA7002 (Aoyama and
Chua, 1997) via XhoI and SpeI restriction enzyme sites. Transgenic lines
were obtained after transformation of Col-0 plants using standard proce-
dures (Clough and Bent, 1998).

Tryptophan Aminotransferase Activity Assays

Seminal rootswere ground in liquid nitrogenwith a TissueLyser II (Qiagen).
Root tissuewashomogenized in aprecooledmortar on icewith one volume
ofextractionbuffer [100mM4-(2-hydroxyethyl)-1-piperazineethanesulfonicacid
buffer, pH 7.2, 250 mM sorbitol, 5 mM b-mercaptoethanol, 0.5% (v/v)
Triton X-100, and 0.1% (w/v) phenylmethylsulfonyl fluoride). The protein
extract was centrifuged at 16,000g for 30min at 4°C. The supernatant was
used for determination of tryptophan aminotransferase activity with the
Salkowski reagent as described (Szkop et al., 2012). Briefly, the reactions
were performed in 100mMphosphate buffer, pH 8.0, 10mM L-tryptophan,
10mMpyridoxal phosphate, and50mgof solubleproteins. Themixturewas
preincubated for 3min at 35°C. The transamination reactionswere initiated
by the addition of 3 mM 2-oxoglutarate and incubated for 15 min at 35°C.
To estimate the basal tryptophan aminotransferase activity of the crude
extracts, control samples without 2-oxoglutarate were also assayed. To
terminate the reactions, 1mL of Salkowski reagent (10mMFeCl3 and 35%
[v/v] H2SO4) was added and the samples were incubated in the dark for
10 min at room temperature. The absorbance at 530 nm of four replicates
was measured.

Detection of Proton Pump Phosphorylation Status

To determine the abundance of activated PM-H+-ATPase, microsomes
were prepared from root segments and analyzed with the overlay
assay as described (Ottmann et al., 2007), except that RGS-(His)6-
tagged 14-3-3 was applied. Bound 14-3-3 was visualized by means of an
antibody raised against the RGS-His6 epitope (20 mg/mL; Qiagen; catalog
no./ID 34610).

Auxin Metabolite Profiling

For full-scale profile of auxin metabolites, four independent replicate
samples of pooled 1-cm root segments were analyzed. Upon harvest,
samples were immediately frozen in liquid nitrogen and stored at 280°C
until they were analyzed as described (Novák et al., 2012).

RT-PCR

To monitor the expression of VAS1L full-length transcript by RT-PCR,
the full-length transcript was amplified using oligonucleotides 59-AT-
GAGCAGCTTTGCCAAGCT-39 and 59-GGAAGTGGCAGTTCTGTCAG-39.
UBIQUITINCONJUGATINGENZYME18 (seebelow)wasusedasacontrol.

RNA Sequencing and Data Analysis

For RNAseq, total RNA was extracted from 8 to 12 pooled root segments
using RNA extraction kits (Qiagen). cDNA libraries for sequencing were
then prepared with the TruSeq Stranded mRNA Library Prep Kit (Illumina)
using 1 mg of RNA starting material. Sequencing was performed on HiSeq
2500 instruments (Illumina) to yield 100-bp reads. The Bd21-0, tar2lhypo,
mock-treated Bd21-0, and L-kynurenine-treated Bd21-0 samples were
prepared and run in parallel, multiplexed in the same sequencing lane. The
Bd21-3 and ein2l1hypo samples, although grown and harvested in parallel,
were processed in a separate run in the same manner. The 100-bp single
reads were then mapped onto the Brachypodium primary transcripts
(version 2.1, http://phytozome.jgi.doe.gov/pz/portal.html) using kallisto
software (version 0.42.1, http://pachterlab.github.io/kallisto/) (Bray et al.,
2016) with default settings (100 bootstrap samples). Subsequent differ-
ential expression analysis was performed using sleuth software (version
0.27.3, http://pachterlab.github.io/sleuth/), againwithdefault settings. The
word cloud was produced using the wordle online tool (www.wordle.net).

qPCR

qPCR was performed on three biological replicates with a Stratagene
MxPro 3005P real-time PCR system (Stratagene), using SYBR Green to
monitorDNAsynthesis. Relativegeneexpression levelswerecalculated as
described in Pacheco-Villalobos et al. (2013). The following oligonucleo-
tides were used: reference gene UBIQUITIN CONJUGATING ENZYME18
(Bradi4g00660), 59-GGAGGCACCTCAGGTCATTT-39 and 59-ATAGCGGT-
CATTGTCTTGCG-39; EXPANSIN (Bradi1g74710), 59-GTCCTCTACCAA-
CAGGTGAAG-39and 59-AGTTCCTGGACATCTGGATC-39; EXPANSIN
(Bradi3g50740), 59-CGCGTGCTATCAGGTTAAATGC-39 and 59-
TCTTGTACTGGATTCTGAGGAC-39; AG-peptide (Bradi2g31980), 59-
AGTACCCCCTTCGGTTTCGT-39and59-TGGTCGATGGACGATGCGTC-39;
GH3 enzyme (Bradi2g20740), 59-ACCACTTACTCCGGGCTGTA-39 and
59-CGTGTACTCCACTAAAGACG-39; PM-H+-ATPase (Bradi1g12117),
59-AGATGGGAGGAAAGAGAGTC-39 and 59-AATGGCTAGCTGAT-
CACCTG-39; PM-H+-ATPase (Bradi3g18790), 59-CCAGAGGATGAA-
GAACTACACG-39and59-GATCGTCATGATTGTGCCATCG-39;ACCsynthase
(Bradi1g10030), 59-CCACTGGCATCATCCAGATG-39 and 59-TGAACCTCG-
CCAATGCATTC-39; and ETRL2 (Bradi3g55730), 59-GCAGAAAGCTTGTGCA-
GATGATG-39 and 59-GCATGACGGCGATGTATATTGC-39.

Yariv Staining

ForarabinogalactanstainingwithYariv reagent, roots isolated fromBd21-0
and tar2lhypo seedlings were embedded in 6% agarose and longitudinally
sectioned with a Leica-VT 1000S vibratome. Root sections were then
incubated in a Yariv reagent (Biosupplies) solution (freshly prepared ac-
cording to themanufacturer’s instructions) for 5min and directly examined
under a Leica DM5500B compound microscope.

Rhizosphere Acidification Assays

Media acidification assays were performed as described (Gujas et al.,
2012). To visualize rhizosphere acidification, 3-d-old Brachypodium
seedlings were transferred to half-strength MS-agar plates supplemented
with 0.15mMbromocresol purple (Sigma-Aldrich) (sensitivity range pH5.2
to 6.8). The plates were incubated in the same culture chamber and
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scanned after 4 and 24 h. For liquid medium pH assays, 2-d-old Bra-
chypodiumseedlingswere transferred on a sterilemesh attached to a tube
containing 10 mL of nonbuffered half-strength liquid MS medium and
0.15 mM bromocresol green (Sigma-Aldrich) (sensitivity range pH 3.8 to
5.4). Measurement of pH was performed in a time series at 4, 24, 48, and
240 h. Three replicates consisting of eight plants per tube were measured.
Negative controls (mock) without plants were measured in parallel.

Root Tip Regeneration Assays

For root tip regeneration experiments, ;1-cm root segments from above
the root tipwere excisedwith a razor blade. The isolated root tipswere then
incubated on the same plates under the same conditions. De novo root
tissue formation from the tipswasmonitoredbyscanning theplates after 1,
2, 3, and 4 d. Length quantification of newly formed cortex cell was per-
formed by microscopy at 4 d after excision.

Antibody Staining of Brachypodium Root Sections

Bd21-0 and tar2lhypo plants were grown on half strength MS plates con-
taining 1% sucrose and 0.9% agarose under long-day conditions (16 h
light/8 h dark) at 22°C. Four-day-old roots were then sectioned with a vi-
bratome (Leica VT1000 S). For immunolabeling of demethylesterified
pectin, freshly cut 100-mm cross sections were first rinsed with 2F4 buffer
(20mMTris-HCl, pH 8.2, 0.5mMCaCl2, and 150mMNaCl) for 10min. The
sampleswere then incubatedwith 2F4monoclonal antibody (Plantprobes)
diluted 1:250 in 2F4 buffer with 5% skim milk powder (w/v) under gentle
stirring for 1 h. After washing three timeswith 2F4 buffer, the samples were
incubated with secondary antibody (goat anti-mouse IgG (H+L), Alexa
Fluor 488 conjugate, ThermoFischer A-11001) diluted 1:1000 in 2F4 buffer
with 5% skim milk powder (w/v) for 3 h in the dark and then washed three
times in 2F4 buffer. For immunolabeling of methylesterified homo-
galacturonanandarabinogalactan, the sectionswere incubated in 13PBS
buffer with 1% BSA and 0.05% Tween, respectively, for 1 h at room
temperature, washed with 13 PBS and then incubated with JIM7 or LM2
(PLANTPROBES) diluted 1:25 in 13 PBS buffer with 1% BSA and 0.05%
Tween for 1 h at room temperature. The samples were washed three times
with 13PBSand incubatedwith secondary antibody (donkey anti-rat Cy3;
Jackson ImmunoResearch) diluted 1:500 in 13PBS for 1 to 3 h in the dark.
The sampleswerewashed three timeswith 13PBSbuffer after incubation.
Z-stackswere acquired using aZeiss LSM510Meta confocalmicroscope.

Analysis of Cell Wall Polysaccharides

Biological replicates consisted of two pools of root segments harvested
from 300 to 400 seedlings per genotype. The biological material was
freeze-dried overnight and ground to a fine powder using a Mixer Mill MM
400 (Retsch). Cell wall preparation was performed by incubating the
samples three consecutive times in 95% ethanol at 65°C for 30 min, fol-
lowedbya treatment in chloroform:methanol (2:1, v/v) at room temperature
for 1 h under gentle agitation. The insolublematerial was then successively
washed in70%(two times1.5h), 80%(1h), and95%(2h) ethanol anddried
under vacuum (SpeedVac Plus; Savant) after a final wash in acetone. The
resulting alcohol-insoluble residue was resuspended in 500 mL of an
a-amylasesolution (5units/mL;Sigma-Aldrich) in0.01Mphosphatebuffer,
pH 7.0, and incubated for 24 h at 37°C under continuous stirring (Mélida
et al., 2009). The resulting destarched cell wall residue was washed three
timeswith70%ethanol, followedby three timeswithacetone,andstoredat
room temperature for further analysis. Neutral sugar composition was
determined after sulfuric acid hydrolysis (Saeman et al., 1954). For this
purpose, the cell wall samples were resuspended in 72% sulfuric acid and
kept in this solution for 3 h at room temperature before being heated at
100°C for 3 h.Myo-inositol was used as an internal standard. The samples
were then passed through 0.2-mm nylon filters and diluted 53 with

deionizedwater. Thehydrolysateswere then subjected to high-performance
anion-exchange chromatography using aDionexCarbopacPA1 column and
a Dionex HPLC fitted with a pulsed amperometric detector (Dionex ICS 3000
system). The samples were eluted over 20 min with deionized water and the
neutral monosaccharides were detected following postcolumn addition of
300 mM sodium hydroxide at a flow rate of 0.5 mL/min. Glycosidic linkage
analyses were performed using 0.8 mg of cell wall samples. The latter were
swollen in 400 mL dry dimethyl sulfoxide for 3 h with stirring at room tem-
peratureprior tosugarderivatization topermethylatedalditol acetatesandgas
chromatography-mass spectrometry analysis, as described earlier (Mélida
et al., 2013). Neutral sugar and linkage analyses were performed in triplicate.

Fusicoccin Treatment and AHA2d95 Induction

Col-0 or AHA2d95 seeds were stratified for 4 d in water at 4°C and then
germinated and grown for 4 d in half-strength MS medium adjusted to pH
5.7. For fusicoccin treatment, Col-0 seedlings were transferred to solid
medium supplemented with DMSO (mock), or either 3 or 10 mM fusicoccin
(Sigma-Aldrich) and grown for an additional 24 h. For analysis of forced
apoplastic acidification, AHA2d95 seedlings were transferred to solid
medium supplemented with DMSO (mock) or 1 mM dexamethasone
(Sigma-Aldrich) andgrown for anadditional 24h. Propidium iodide-stained
roots were then analyzed under a Zeiss LSM780 confocal microscope.

pH Microelectrode Measurements

For rootsurfacepHmeasurements,weusedapHOpticamicrofiberoptic pH
system (World Precision Instruments) with pH1-micro-AOT-06-059 fiber
optic microsensors (PreSens) (pH range 4.0 to 9.0). Five equidistant points
along the root tipsurfaceweremeasured in4-d-oldseedlingsgrown in tissue
culture. Media pH was verified in a distant location from the seedlings.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL li-
braries under accession numbers Bradi2g04290 (TAR2L), Bradi4g08380
(EIN2L1), Bradi2g04860 (VAS1L), and AT4G30190 (AHA2). The RNAseq
rawdata are available at theNational Center for Biotechnology Information
Sequence Read Archive under accession number SRP072551.
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Supplemental Figure 1. Supplemental illustrations of Brachypodium
phenotypes.

Supplemental Figure 2. Supplemental illustrations of pH experiments.

Supplemental Data Set 1. RNAseq quantification and read counts for
all samples.

Supplemental Data Set 2. Gene expression level comparison of
tar2lhypo versus Bd21-0.

Supplemental Data Set 3. Gene expression level comparison of
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7.2 Materials and methods 

Creation of schematic images from Figure 1 

For the longitudinal section, a good confocal image of a Bd21.3 root was used where cell 

walls were stained with Calcofluor white. Next the picture was opened in Fiji version 

2.0.0-rc-69/1.52i (Schindelin et al. 2012) and the plugin Morphological segmentation was 

used to create a watershed image from a border image, with a tolerance of 15 (Legland, 

Arganda-Carreras, and Andrey 2016). Each cell was then filled in with a color using 

Photoshop. A similar method was used for the image of a cross-section, however for this 

a picture taken from a Bd21.3 microtome section was used. The morphological 

segmentation was performed from an object image with a tolerance of 8. 

Creating the CRISPR-Cas vectors 

As already discussed in Chapter 4, we designed four different vectors to test different 

Cas9 nucleases. We ordered an Arabidopsis-optimized Cas9 (AtCas9) as published 

before (Mao et al. 2013) and designed Brachypodium codon-optimized versions of 

AtCas9, AsCpfI and LbCpfI (Zetsche et al. 2015), named BdCas9, BdAsCpfI and 

BdLbCpfI resp. (Section 7.6 Sequences used during this thesis). I created the four 

different vectors by cloning BdCas9, AtCas9, AsCpfI or LbCpfI into a pCAMBIA1305.1-

UBI5’UTR vector (pCAMBIA1305.1 Genbank accession number AF354045) using KpnI 

and BstEII (Suppl. figure 1). The vectors are called p5BdCas9, p5AtCas9, p5BdAsCpfI 

and p5BdLbCpfI resp. For our original CRSIPR-Cas system, we ordered several 

cassettes with a RNA polymerase III U6 promoter from Brachypodium (BdU6prom), a 

20bp sgRNA target sequence for a gene of interest and a tracrRNA (Mao et al. 2013; 

Cong et al. 2013; Jiang et al. 2013). These cassettes could be transferred into the 

aforementioned vectors with the use of BamHI and HindIII restriction sites. In order to 

include several guideRNAs in one vector, another cassette was designed (pDON2, 

Suppl. figure 1), based on a publication by Zhou et al. 2014. sgRNAs were first 

transferred into the shuttle vector and could then be transferred into the p5Cas-vectors 
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with BamHI and HindIII. An advantage of the shuttle vector is that it can be used to 

add crRNA in the form of primers, instead of ordering a full cassette with promoter and 

tracrRNA. Primers have to be annealed and phosphorylated before ligating into the 

vector, as discussed herafter. The cassette contains BsaI and BtgZI restriction sites, 

wherein crRNAs can be ligated with the correct overlap with the vector (Miao et al. 2013; 

Zhou et al. 2014). 

Cloning crRNA into p5Cas (a specific Brachypodium CRISPR-Cas vector) 

Once a crRNA is chosen, primers can be ordered with a 4 nucleotide overhang to anneal 

to pDON2. For our CRISPR-Cas system, the forward primer for crRNA1 (in BsaI 

restriction site) requires tctc as overhang à tctc crRNA1. The reverse primer for crRNA1 

(in BsaI restriction site) is reverse complement of crRNA1 with aaac as overhang à aaac 

crRNA1reversecompl. Forward primer for crRNA2 (in BtgZI restriction site) requires gtgt 

as overhang à gtgt crRNA2 and reverse primer for crRNA2 (in BtgZI restriction site): is 

the reverse complement of crRNA2 with aaac overhang à aaac crRNA2reversecompl. 

Digest a big batch of vector pDON2 in Cutsmart buffer 10x with BsaI at 37°C. Stop 

reaction for 20min at 65°C. Add BtgZI and Cutsmart 10x and digest at 60°C. Stop 

reaction for 5min at 80°C. Run digested vector on gel and cut out the bands of 4001bp 

(backbone) and of 397bp (middle piece). Purify pieces and store digested vector in -20°C. 

Optimal final concentrations are around 100ng/µL for the vector and 30ng/µL for the 

middle piece. Anneal primers (final concentration will be around 0.74ng/µL). Use 1uL of 

each 10uM primer stock, add 18uL of mQ and anneal with T7E1 touch-down program 

(95°C – 5min; 95à85°C - -2°C/sec; 85-25°C - -0.1°C/sec). Phosphorylate primers using 

0.2µLT4 kinase, 1µL 10mM ATP, 2µL 10x PNK buffer, 2µL annealed primers and 14.8µL 

mQ. Phosphorylate at 37°C for 30min, then stop at 65°C for 20min. Ligate primers into 

vector pDON by combining 100ng vector backbone pDON2-Bsa/BtgZI, 30ng middle piece 

of pDON2-Bsa/BtgZI(30ng), 3µL of annealed primer-BtgZI (note that this is 3 times higher 

than required, but it works better), 1µL T4 ligase buffer 10x, 1µL T4 ligase and mQ up to 
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10µL. Leave overnight at RT, then add: 1µL primer-BsaI, 0.5µL T4 ligase buffer 10x, 

0.5µL T4 ligase and 3µL of mQ. Leave the reaction at RT for at least 1h and transform 

into E.Coli. Select a good colony and digest a miniprep with BamHI and HindIII, then cut 

out 760bp fragment from gel. Transfer into BamHI/HindIII digested and dephosphorylated 

p5Cas, 15ng of insert with 100ng of vector. For adding additional crRNAs, have 2 

constructs ready in p5Cas and then digest recipient vector with SbfI (blunt) & HindIII, 

while donor vector with BamHI (blunt) & HindIII. 

7.3 Supplementary figures 

 

 

 

 

 

  

 

Suppl. figure 1: Schematic representation of the CRISPR-Cas system that was designed during this thesis. p5Cas contains the 
Cas9 protein under the control of a UBIQUITIN promoter. sgRNA can be subcloned in pDON2, flanked by a BdU6 or OsU6 
promoter and tracrRNA. From the shuttle vector the complete sgRNA cassette can be transferred into p5Cas with BamHI and 
HindIII. 
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7.4 Supplementary tables 

Suppl. table 1: Alignment of the active site of several CLE-peptides from Brachypodium and Arabidopsis. Red 
amino acids indicate differences with the consensus. 

Bradi1g05010 RRVPNGPDPIHN	
Bradi1g54656 RRVPNGPDPVHN	
AtCLE45 RRVRRGSDPIHN	
AtCLE26 RKVPRGPDPIHN	
AtCLE25 RKVPNGPDPIHN	

 
 
Suppl. table 2: Summary of different crRNAs tested during this thesis. Yellow crRNAs were designed with 
simplified criteria and tested with the old system. 

Target	name	 Sequence	crRNA	
BdAPLL1	 GTGCGTCGTTCAGGGCCAGC	
BdAPLL2	 GCTCGGCGGCCCAGACAGTA	
BdBAM3-1L	 GGGGTTGGCGCGGCAGCCGA	
BdBAM3-2L	 GGCCGCCCTCGACGACCCCA	
BdBAM3-3L	 GCGGCGCTCGCCGATCCATC	
BdBAM3-4L	 GCTGGCCTTGCTCTCCCTCA	
BdBRXL1	 GCTTGTTCGACCAAGGACGG	
BdBRXL2	 GTCGTCGCGCGTCCGTGAGA	
BdBRXL3	 GCGTGCTCCAAGCAACTCGA	
BdBRXL4	 GCGTGCACCTCAAAGGAAGG	
BdCLEL45	 GATTCTGATGTCCTTGGTCG	
BdOPSL1	 GCGGAGGTGGACTTGCGGCC	
BdOPSL2	 GCCGCCGCGGCCTCCGCGCC	
BdAux1a	 GTCACCAGCTTCCTCTGGCA	
BdAux1b	 GATCCGGTAGTTGTGGAAGG	
BdBRXL1,4*	 GACATGGTGCTCAAGTTCTC	
BdBRXL2,3,4*	 GCCGGGAGATGTTTAACAAG	
BdBRXL2a	 CTTGATGGCCAGCCGCGTGC	
BdBRXL2b	 GCGCGCACCGACTTCCCCAC	
BdBRXL2c	 GGATGGTAATATATACACCG	
BdBRXL3c	 GAGCATCAGTCTAAACACCT	
BdBRXL3e	 GATAGCCTCCCTCGTGCTGG	
BdBRXL2,5*	 TGGGTGGCGCAGGTGGAGCC	
BdBRXL5b	 GACATGGTGCTGAAGCTGTC	
BdOPSL1,2a*	 GCCGCCGCGGCCGCACGAGA	
BdOPSL1,2b*	 GCGCAAGCAGAAGCTCAAGA	
BdBRIL1a	 CCGAACCAGGCGTCGCTCTC	
BdBRIL2a	 CGCTTCCTCGGCGCTGGCAA	

*In case a crRNA has multiple numbers, it means that it can target multiple homologs of 
the same family (BdBRXL1,4 can target both BdBRXL1 and BdBRXL4). 
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Suppl. table 3: Efficiency analysis of our CRISPR-Cas system. 

crRNA	 #	tested	 #	unknown	 #	mutants	 #	non-mutant	 %	mutated	
BdBRXL1	and	4**	 7	 0	 5	 2	 71.4	
BdBRXL2c	 15	 3	 10	 2	 83.3	
BdBRXL3b	 19	 0	 13	 6	 68.4	
AUX1a	and	b*	 38	 5	 9	 24	 27.3	
OPSL1a	and	b*	 26	 0	 7	 19	 26.9	
OPSL2a	and	b*	 25	 4	 7	 14	 33.3	

*In the case that multiple crRNAs were used to target the same gene (a and b), either 
both targets were mutated or none, therefore no separate row was created. 
**In the case that the same crRNA was used to target two different genes, either both 
targets were mutated or none, therefore no separate row was created 
 
Suppl. table 4: Off-target analysis for AUX1b crRNA CRISPR-Cas lines 

	
crRNA	tested	 BreakingCas	score	 #	tested	 #	mutant	 %	mutated	

BdLAX3b	 AUX1b	 3.4	 35	 0	 0	
BRADI3g50990	 AUX1b	 1.3	 35	 0	 0	

 

7.5 Media used during this thesis 

Media for Brachypodium transformation protocol 

Media for Brachypodium calli culture (1L) 

* For selection on hygromycin, phytagel is required. For paromomycin selection, plant 
agar is required instead.  

 Basic media Selection media 
(H40, H30, P400) 

Regeneration 
media (H20, P50) 

MS powder (M0221 
Duchefa) 

4.3g 4.3g 4.3g 

Sucrose grade I 
(Sigma S5390) 

30g 30g 30g 

FeNaEDTA (4mg/mL) 825µL 825µL 825µL 
CuSO4.5H20 
(1mg/mL) 

600µL 600µL 600µL 

2.4-D (5mg/mL) 0.5mL 0.5mL x 
*Phytagel / 
Plant Agar 

2.1g 
x 

2.1g/ 
7g 

2.1g/ 
7g 

Fill to 990mL with water and adjust pH with few drops of 1M KOH to 5.8 . 
Autoclave and cool down before adding the following: 
M5 vitamins (100x 
stock) 

10mL 10mL 10mL 

Timentin (320mg/mL) x 700uL 700uL 
*Hygromycin / 
 
Paromomycin 

x H40: 800µL/ 
H30: 600µL**/ 
P400: 2mL 

H20: 400µL/ 
P50: 250µL 

Kinetin (0.1mg/mL 
stock) 

x x 2mL 
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** Hygromycin selection takes place on two different media, the first contains higher 
amounts of hygromycin (H40), whereas the second selection step requires lower amount 
of hygromycin in the media (H30). Paromomycin selection takes place at the same 
concentration for both selection steps (P400). 

 
M5 vitamins 100x stock  (1L) 
Nicotinic acid       0.04g 
Thiamine-HCl       0.05g 
Cysteine        4g 
Glycine        0.2g 
Pyridoxine-HCl       0.04g 
Filter-sterilize, aliquot in 50mL tubes, wrap in aluminium foil and keep at -20°C. 
 
1mg/mL CuSO4 stock solution 
Dissolve 50mg of CuSO4.5H20 in 50mL of distilled water. Wrap tube with aluminum foil 
and store at 4°C in the dark. Keep solution max. 3 months. 
 
4mg/mL FeNaEDTA stock solution 
Dissolve 4g of C10H12FeN2NaO8 in 1L of water and wrap with aluminium foil. Store at 4°C 
for max. 6months. 
 
5mg/mL 2,4-D 
Dissolve 500mg of 2,4-Dicholorophenoxyacetic acid in 1.5-2mL of 1M KOH in a 
fumehood. Heat the solution while gently shaking until dissolved, then immediately add 
water up to 100mL. Aliquot in 2mL eppendorf tubes and keep in -20°C. 
 
320mg/mL timentin stock 
Dissolve 3.2g of timentin (ticarcillin disodium mixture Duchefa T0190.0025) in 10mL of 
sterile deionized water and filter-sterilize. Aliquot in 2mL eppendorf tubes and store in  
-20°C away from the dark. 
 
0.1mg/mL kinetin stock solution 
Dissolve 5mg of kinetin in 5mL of acetic acid under a fume hood. Add 45mL of sterile 
deionized water, wrap in aluminium foil and store at 4°C. Replace solution every month. 
 
200mg/mL paromomycin stock solution 
Dissolve 10g paromomycin sulfate in 50mL sterile deionized water, filter-sterilize and 
aliquot in 2mL eppendorf tubes. Keep at -20°C. 
 
MGL media for Agrobacterium 
Tryptone        5g 
Yeast extract       2.5g 
Sodium Chloride       5.2g 
Mannitol        10g 
L-glutamic acid sodium salt     2.32g 
Monopotassium phosphate (KH2PO4)    0.5g 
Magnesium sulfate heptahydrate (MgSO4.7H20)   0.2g 
Adjust pH to 7.2 wih 10M KOH 
Bacteria agar       10g 
Autoclave 
After sterilization, let the medium cool down and add: 
Biotin (1mg/mL)       2mL 
*Rifampicin (10-25mg/mL)      1mL 
*More antibiotics may need to be added, depending on what resistance the vector 
contains 
Store wrapped in aluminium foil for max 1 month at 4°C. 
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1mg/mL biotin stock solution 
Dissolve 10mg of biotin in 200-300µL 1M KOH and add up to 10mL deionized water. 
Filer-sterilize, wrap in aluminium foil and store at 4°C for max. 1month. 
 
CIM media (1L) 
MS powder (Duchefa M0221)     2.15g 
FeNaEDTA (4mg/mL)      825µL 
Sucrose grade I (Sigma S5390)     10g 
Mannitol        10g 
 
30mg/mL acetosyringone stock solution 
Dissolve 600mg of 3’,5’-dimethoxyl-4’-hydroxyacetophenone in 20mL DMSO. Aliquot in 
1.5mL eppendorf tubes, wrap with aluminium foil and keep in -20°C. 
 
Rooting media (1L) 
MS powder incl. buffer and vitamins (Duchefa M0255)  2.45g 
sucrose        10g 
FeNaEDTA (4mg/mL)      825µL 
Adjust pH to 5.8 by adding a few drops of 1M KOH 
Plant agar        6g 
Phytagel        2g 
Charcoal        7g 
Autoclave, cool down and add 350µL timentin (320mg/mL). Poor into Magenta boxes. 
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Buffers for in situ hybridization 

Buffers to be made in advance 
 

2x Carbonate-buffer (200mM, pH=10.2 = 80mM NaHCO3 & 120mM Na2CO3) (100mL) 
0.672g NaHCO3 
1.277g Na2CO3 
Treat with 100µL DEPC à autoclave 
 
3M NaOAc (100mL) 
Dissolve 24.6g of sodium acetate in 70 mL of dH2O.  
Adjust the pH to 5.2 with glacial acetic acid.  
Adjust the volume to 100 mL with H2O.   
Treat with 100µL DEPC à Autoclave 
 
5M LiCl (100mL) à cleaner than other precipitation methods, but not good for small RNA 
(smaller than 300bp) 
Dissolve 21.2g of Lithium Chloride in 100mL d H20. 
Treat with 100µL DEPC à Autoclave  
 
1M Tris-HCl pH 9.5 (1L) 
121.1g Tris (RNA) 
800ml H2O 
pH9.5 with HCl (ca.9ml) 
up to 1L with H2O à autoclave 
 
2M Tris-HCl pH 7.5 (1L) 
242.2g Tris (RNA) 
800ml H2O 
pH7.5 with HCl (ca.194ml) 
up to 1L with H2O à autoclave 
 
1M Tris-HCl pH 6.8(100mL) 
12.11g Tris 
80mL H2O 
pH6.8 with HCl 
Up to 100mL with H2O à autoclave 
 
DEPC treated water (1L) x 10 
1mL DEPC in 1L dH2O in fumehood à shake overnight à autoclave 
 
10x PBS (1L) (1.5M NaCl, 0.07M Na2HPO4, 0.03M NaH2PO4, pH7) 
85 g NaCl (is only 76g in other protocols) 
9.94 g Na2HPO4  
4.14 g NaH2PO4.H20 
pH to 7.0 (with HCl) 
treat with 1mL DEPC overnight à autoclave. 
 
0.5M EDTA pH8.0 (1L) 
186g EDTA (Na2EDTA.2H20 or disodium-ethylenediaminetetraacetate) 
800ml DEPC Water 
NaOH-Chips (ca. 20g) 
pH8.0 
up to 1000 ml with H20, treat with DEPC à Autoclave 
 
8.5% NaCl (1L) x2 
85g NaCl to 1L à treat with DEPC à autoclave 
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5M NaCl (1L) 
292g NaCl to 1L à autoclave 
 
1x Pronase buffer (100mM Tris-HCl pH 7.5, 50mM EDTA, 250mL in DEPC) 
12.5 mL 2M Tris-HCl pH=7.5 
25 mL 0.5M EDTA pH8.0 
212.5 mL water  
NB: in some protocols Tris-HCl is only 50mM! 
Autoclave 
 
Pronase stock (50mg/mL) 
Dissolve 1g Pronase (Sigma, 10165921001) in 20 mL dH20 
Predigest by incubating 4h at 37°C 
Store at -20°C (1 year!) 
 
Glycine 10% (100mL) 
10g Glycine in 100ml dH2O à treat with DEPC à autoclave à store aliquots at -20°C or 
4°C, not in direct sunlight 
 
10x Salts pH6.8 (3M NaCl, 0.1M Tris-HCl pH 6.8, 0.1M NaPO4 buffer, 50mM EDTA) 
(50mL) 
8.77g NaCl 
345mg NaH2PO4*H2O  
355mg Na2HPO4.2H20  
Up to 40ml with dH2O à DEPC treat à autoclave 
Add 5ml 0.5M EDTA pH8  
5ml 1M Tris pH6.8  
 
tRNA (100mg/mL) 
Dissolve 100mg of tRNA (Sigma, 10109495001) in 1 mL DEPC-treated water 
 
Hybridization buffer (840µL = 10slides) à can be stored in aliquots at -20°C 
10x Salts   100µL 
Deinonized formamide 420µL 
tRNA (100mg/mL)  10µL 
50x Denhardts  20µL 
H20    90µL  
50% Dextran sulfate 200µL (warm to 55 before pipetting) 
NB: Rudiger protocol has 2µL and less formamide and 2µL less H2O per slide, results in 
different amount of probe per hyb mix! 
 
20 X SSC (3M NaCl, 0.3M Na3-citrate)  (1L) 
175.3g NaCl  
88.2g Na3Citrate.2H2O 
pH = 7.0 with HCl à  DEPC  
 
10X NTE buffer (5M NaCl, 100mM Tris.HCl pH7.5, 10mM EDTA) (1L non-DEPC) 
292.2g NaCl 
50ml 2M Tris-HCl pH7.5 
20ml 0.5M EDTA pH 8.0  
(Autoclave optional) 
 
RNase A (Sigma)  
10mg/ml in autoclaved dH2O, stored at -20°C  
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10 x DIG-buffer1 (1M Tris, 1.5M NaCl) (1L non-DEPC) 
500ml 2M Tris pH7.5  
300mL 5M NaCl (87.7g NaCl) 
check final pH is 7.5  
(Autoclave optional) 
 
Levimasole store at -20°C in aliquots 
24mg Levimasole (Sigma, L9756-5G) in 1ml dH2O 	

Buffers to be freshly prepared 
 
Fixative (200ml):  
heat 180ml DEPC-treated water in the microwave until boiling  
add 8g of PFA powder (fumehood), stir (with stirrer that has been washed with ethanol 
and DEPC-treated water)  
add 100µl 1M NaOH, wait until PFA is dissolved  
add 200µl triton x-100 and 200µl tween-20  
add 20ml 10X PBS  
check pH = 7, otherwise lower pH with HCl. 
 
4% PFA in PBS (250mL) 
heat 225ml DEPC-treated water in the microwave until boiling  
add 10g of PFA powder (fumehood), stir (with stirrer that has been washed with ethanol 
and DEPC-treated water)  
add 125µl 1M NaOH, wait until PFA is dissolved  
add 25ml 10X PBS  
check pH = 7, otherwise lower pH with HCl. 
 
Acetic anhydride in 0.1M triethanolamine pH8 (250mL for 10slides) à in fume hood! 
prepare freshly immediately before use, stir well  
3.25 mL Triethanolamine 
875uL HCl for pH to 8.0, measure with pH strips! 
243.88ml H2O 
 (Add 2ml Acetic anhydride while dunking your slides) 
 
Pronase (0.125mg/mL, 50mL) 
Add 625µL Pronase stock (50mg/mL) in 250mL pre-heated 1x Pronase buffer 
 
Wash buffer (2x SSC, 50% formamide) (1L per 10 slides) 
100mL 20x SSC 
500mL deionized formamide 
400mL DEPC water 
 
1x NTE buffer  (1.5L per 10 slides) 
150mL 10x NTE in 1350mL of DEPC-treated water 
 
DIG-buffer2 (make fresh every day, or store in the fridge oN) (250mL per 10 slides) 
0.5% (w/v) blocking reagent (Sigma, 11096176001) in DIG-buffer 1  
1.25g blocking reagent in 250mL DIG-buffer 1 
 
DIG-buffer 3 (make fresh every day, or store in the fridge oN) (1L per 10 slides) 
1% BSA    10g BSA(Sigma, A3912-50G) 
0.3% Triton-x-100    3mL Triton-x-100 
DIG-buffer 1    to 1L 
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DIG-buffer 4 (make fresh every day)  
1:1250 dilution of anti-digoxigenin-AP FAB fragments (Sigma, 11093274910) 
For 10 slides: 0.8µL per 1mL DIG-buffer 3 
 
DIG-buffer 5 (100mM Tris pH9.5, 100mM NaCl, 50mM MgCl2) (make fresh every day) 
(250mL for 10slides)  
25ml 1M Tris-HCl pH9.5 
5ml 5M NaCl 
1.19g MgCl2 
220ml H2O 
 
DIG-buffer 6  (2mL per 10slides) 
20µl Levamisole 
40µl BCIP/NBT  
to 2mL in DIG-buffer 5  

7.6 Sequences used during this thesis 

Maize Ubiquitin promoter incl intron (ZmUBI): 

CTGCAGCCCCTCCAGCTTGCATGCCTGCAGTGCAGCGTGACCCGGTCGTGCCCCTCTCTAGAGATAATGAGC
ATTGCATGTCTAAGTTATAAAAAATTACCACATATTTTTTTTGTCACACTTGTTTGAAGTGCAGTTTATCTA
TCTTTATACATATATTTAAACTTTACTCTACGAATAATATAATCTATAGTACTACAATAATATCAGTGTTTT
AGAGAATCATATAAATGAACAGTTAGACATGGTCTAAAGGACAATTGAGTATTTTGACAACAGGACTCTACA
GTTTTATCTTTTTAGTGTGCATGTGTTCTCCTTTTTTTTTGCAAATAGCTTCACCTATATAATACTTCATCC
ATTTTATTAGTACATCCATTTAGGGTTTAGGGTTAATGGTTTTTATAGACTAATTTTTTTAGTACATCTATT
TTATTCTATTTTAGCCTCTAAATTAAGAAAACTAAAACTCTATTTTAGTTTTTTTATTTAATAATTTAGATA
TAAAATAGAATAAAATAAAGTGACTAAAAATTAAACAAATACCCTTTAAGAAATTAAAAAAACTAAGGAAAC
ATTTTTCTTGTTTCGAGTAGATAATGCCAGCCTGTTAAACGCCGTCGACGAGTCTAACGGACACCAACCAGC
GAACCAGCAGCGTCGCGTCGGGCCAAGCGAAGCAGACGGCACGGCATCTCTGTCGCTGCCTCTGGACCCCTC
TCGAGAGTTCCGCTCCACCGTTGGACTTGCTCCGCTGTCGGCATCCAGAAATTGCGTGGCGGAGCGGCAGAC
GTGAGCCGGCACGGCAGGCGGCCTCCTCCTCCTCTCACGGCACCGGCAGCTACGGGGGATTCCTTTCCCACC
GCTCCTTCGCTTTCCCTTCCTCGCCCGCCGTAATAAATAGACACCCCCTCCACACCCTCTTTCCCCAACCTC
GTGTTGTTCGGAGCGCACACACACACAACCAGATCTCCCCCAAATCCACCCGTCGGCACCTCCGCTTCAAGG
TACTACCTTCTCTAGATCGGCGTTCCGGTCCATGGTTAGGGCCCGGTAGTTCTACTTCTGTTCATGTTTGTG
TTAGATCCGTGTTTGTGTTAGATCCGTGCTGCTAGCGTTCGTACACGGATGCGACCTGTACGTCAGACACGT
TCTGATTGCTAACTTGCCAGTGTTTCTCTTTGGGGAATCCTGGGATGGCTCTAGCCGTTCCGCAGACGGGAT
CGATTTCATGATTTTTTTTGTTTCGTTGCATAGGGTTTGGTTTGCCCTTTTCCTTTATTTCAATATATGCCG
TGCACTTGTTTGTCGGGTCATCTTTTCATGCTTTTTTTTGTCTTGGTTGTGATGATGTGGTCTGGTTGGGCG
GTCGTTCTAGATCGGAGTAGAATTAATTCTGTTTCAAACTACCTGGTGGATTTATTAATTTTGGATCTGTAT
GTGTGTGCCATACATATTCATAGTTACGAATTGAAGATGATGGATGGAAATATCGATCTAGGATAGGTATAC
ATGTTGATGCGGGTTTTACTGATGCATATACAGGATGCTTTTTGTTCGCTTGGTTGTGATGATGTGGTGTGG
TTGGGCGGTCGTTCATTCGTTCTAGATCGGAGTAGAATACTGTTTCAAACTACCTGGTGTATTTATTAATTT
TGGAACTGTATGTGTGTGTCATACATCTTCATAGTTACGAGTTTAAGATGGATGGAAATATCGATCTAGGAT
AGGTATACATGTTGATGTGGGTTTTACTGATGCATATACATGATGGCATATGCAGCATCTATTCATATGCTC
TAACCTTGAGTACCTATCTATTATAATAAACAAGTATGTTTTATAATTATTTTGATCTTGATATACTTGGAT
GATGGCATATGCAGCAGCTATATGTGGATTTTTTTAGCCCTGCCTTCATACGCTATTTATTTGCTTGGTACT
GTTTCTTTTGTCGATGCTCACCCTGTTGTTTGGTGTTACTTCTGCAGGTCGACTCTAGA  
 
Brachypodium-optimized Cas9 

KpnI restriction site, Multiple cloning site 

GGTACCATGATGATCGACTACAAGGACGACGACGACAAGATGGCCCCGAAGAAGAAGCGCAAGGTGGGCATG
GACAAGAAGTACTCCATCGGCCTCGACATCGGCACGAACTCCGTGGGCTGGGCCGTGATCACGGACGAGTAC
AAGGTGCCGTCCAAGAAGTTCAAGGTGCTCGGCAACACGGACCGCCACTCCATCAAGAAGAACCTCATCGGC
GCCCTCCTCTTCGACTCCGGCGAGACGGCCGAGGCCACGCGCCTCAAGCGCACGGCCCGCCGCCGCTACACG
CGCCGCAAGAACCGCATCTGCTACCTCCAGGAGATCTTCTCCAACGAGATGGCCAAGGTGGACGACTCCTTC
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TTCCACCGCCTCGAGGAGTCCTTCCTCGTGGAGGAGGACAAGAAGCACGAGCGCCACCCGATCTTCGGC
AACATCGTGGACGAGGTGGCCTACCACGAGAAGTACCCGACGATCTACCACCTCCGCAAGAAGCTCGTGGAC
TCCACGGACAAGGCCGACCTCCGCCTCATCTACCTCGCCCTCGCCCACATGATCAAGTTCCGCGGCCACTTC
CTCATCGAGGGCGACCTCAACCCGGACAACTCCGACGTGGACAAGCTCTTCATCCAGCTCGTGCAGACGTAC
AACCAGCTCTTCGAGGAGAACCCGATCAACGCCTCCGGCGTGGACGCCAAGGCCATCCTCTCCGCCCGCCTC
TCCAAGTCCCGCCGCCTCGAGAACCTCATCGCCCAGCTCCCGGGCGAGAAGAAGAACGGCCTCTTCGGCAAC
CTCATCGCCCTCTCCCTCGGCCTCACGCCGAACTTCAAGTCCAACTTCGACCTCGCCGAGGACGCCAAGCTC
CAGCTCTCCAAGGACACGTACGACGACGACCTCGACAACCTCCTCGCCCAGATCGGCGACCAGTACGCCGAC
CTCTTCCTCGCCGCCAAGAACCTCTCCGACGCCATCCTCCTCTCCGACATCCTCCGCGTGAACACGGAGATC
ACGAAGGCCCCGCTCTCCGCCTCCATGATCAAGCGCTACGACGAGCACCACCAGGACCTCACGCTCCTCAAG
GCCCTCGTGCGCCAGCAGCTCCCGGAGAAGTACAAGGAGATCTTCTTCGACCAGTCCAAGAACGGCTACGCC
GGCTACATCGACGGCGGCGCCTCCCAGGAGGAGTTCTACAAGTTCATCAAGCCGATCCTCGAGAAGATGGAC
GGCACGGAGGAGCTCCTCGTGAAGCTCAACCGCGAGGACCTCCTCCGCAAGCAGCGCACGTTCGACAACGGC
TCCATCCCGCACCAGATCCACCTCGGCGAGCTCCACGCCATCCTCCGCCGCCAGGAGGACTTCTACCCGTTC
CTCAAGGACAACCGCGAGAAGATCGAGAAGATCCTCACGTTCCGCATCCCGTACTACGTGGGCCCGCTCGCC
CGCGGCAACTCCCGCTTCGCCTGGATGACGCGCAAGTCCGAGGAGACGATCACGCCGTGGAACTTCGAGGAG
GTGGTGGACAAGGGCGCCTCCGCCCAGTCCTTCATCGAGCGCATGACGAACTTCGACAAGAACCTCCCGAAC
GAGAAGGTGCTCCCGAAGCACTCCCTCCTCTACGAGTACTTCACGGTGTACAACGAGCTCACGAAGGTGAAG
TACGTGACGGAGGGCATGCGCAAGCCGGCCTTCCTCTCCGGCGAGCAGAAGAAGGCCATCGTGGACCTCCTC
TTCAAGACGAACCGCAAGGTGACGGTGAAGCAGCTCAAGGAGGACTACTTCAAGAAGATCGAGTGCTTCGAC
TCCGTGGAGATCTCCGGCGTGGAGGACCGCTTCAACGCCTCCCTCGGCACGTACCACGACCTCCTCAAGATC
ATCAAGGACAAGGACTTCCTCGACAACGAGGAGAACGAGGACATCCTCGAGGACATCGTGCTCACGCTCACG
CTCTTCGAGGACCGCGAGATGATCGAGGAGCGCCTCAAGACGTACGCCCACCTCTTCGACGACAAGGTGATG
AAGCAGCTCAAGCGCCGCCGCTACACGGGCTGGGGCCGCCTCTCCCGCAAGCTCATCAACGGCATCCGCGAC
AAGCAGTCCGGCAAGACGATCCTCGACTTCCTCAAGTCCGACGGCTTCGCCAACCGCAACTTCATGCAGCTC
ATCCACGACGACTCCCTCACGTTCAAGGAGGACATCCAGAAGGCCCAGGTGTCCGGCCAGGGCGACTCCCTC
CACGAGCACATCGCCAACCTCGCCGGCTCCCCGGCCATCAAGAAGGGCATCCTCCAGACGGTGAAGGTGGTG
GACGAGCTCGTGAAGGTGATGGGCCGCCACAAGCCGGAGAACATCGTGATCGAGATGGCCCGCGAGAACCAG
ACGACGCAGAAGGGCCAGAAGAACTCCCGCGAGCGCATGAAGCGCATCGAGGAGGGCATCAAGGAGCTCGGC
TCCCAGATCCTCAAGGAGCACCCGGTGGAGAACACGCAGCTCCAGAACGAGAAGCTCTACCTCTACTACCTC
CAGAACGGCCGCGACATGTACGTGGACCAGGAGCTCGACATCAACCGCCTCTCCGACTACGACGTGGACCAC
ATCGTGCCGCAGTCCTTCCTCAAGGACGACTCCATCGACAACAAGGTGCTCACGCGCTCCGACAAGAACCGC
GGCAAGTCCGACAACGTGCCGTCCGAGGAGGTGGTGAAGAAGATGAAGAACTACTGGCGCCAGCTCCTCAAC
GCCAAGCTCATCACGCAGCGCAAGTTCGACAACCTCACGAAGGCCGAGCGCGGCGGCCTCTCCGAGCTCGAC
AAGGCCGGCTTCATCAAGCGCCAGCTCGTGGAGACGCGCCAGATCACGAAGCACGTGGCCCAGATCCTCGAC
TCCCGCATGAACACGAAGTACGACGAGAACGACAAGCTCATCCGCGAGGTGAAGGTGATCACGCTCAAGTCC
AAGCTCGTGTCCGACTTCCGCAAGGACTTCCAGTTCTACAAGGTGCGCGAGATCAACAACTACCACCACGCC
CACGACGCCTACCTCAACGCCGTGGTGGGCACGGCCCTCATCAAGAAGTACCCGAAGCTCGAGTCCGAGTTC
GTGTACGGCGACTACAAGGTGTACGACGTGCGCAAGATGATCGCCAAGTCCGAGCAGGAGATCGGCAAGGCC
ACGGCCAAGTACTTCTTCTACTCCAACATCATGAACTTCTTCAAGACGGAGATCACGCTCGCCAACGGCGAG
ATCCGCAAGCGCCCGCTCATCGAGACGAACGGCGAGACGGGCGAGATCGTGTGGGACAAGGGCCGCGACTTC
GCCACGGTGCGCAAGGTGCTCTCCATGCCGCAGGTGAACATCGTGAAGAAGACGGAGGTGCAGACGGGCGGC
TTCTCCAAGGAGTCCATCCTCCCGAAGCGCAACTCCGACAAGCTCATCGCCCGCAAGAAGGACTGGGACCCG
AAGAAGTACGGCGGCTTCGACTCCCCGACGGTGGCCTACTCCGTGCTCGTGGTGGCCAAGGTGGAGAAGGGC
AAGTCCAAGAAGCTCAAGTCCGTGAAGGAGCTCCTCGGCATCACGATCATGGAGCGCTCCTCCTTCGAGAAG
AACCCGATCGACTTCCTCGAGGCCAAGGGCTACAAGGAGGTGAAGAAGGACCTCATCATCAAGCTCCCGAAG
TACTCCCTCTTCGAGCTCGAGAACGGCCGCAAGCGCATGCTCGCCTCCGCCGGCGAGCTCCAGAAGGGCAAC
GAGCTCGCCCTCCCGTCCAAGTACGTGAACTTCCTCTACCTCGCCTCCCACTACGAGAAGCTCAAGGGCTCC
CCGGAGGACAACGAGCAGAAGCAGCTCTTCGTGGAGCAGCACAAGCACTACCTCGACGAGATCATCGAGCAG
ATCTCCGAGTTCTCCAAGCGCGTGATCCTCGCCGACGCCAACCTCGACAAGGTGCTCTCCGCCTACAACAAG
CACCGCGACAAGCCGATCCGCGAGCAGGCCGAGAACATCATCCACCTCTTCACGCTCACGAACCTCGGCGCC
CCGGCCGCCTTCAAGTACTTCGACACGACGATCGACCGCAAGCGCTACACGTCCACGAAGGAGGTGCTCGAC
GCCACGCTCATCCACCAGTCCATCACGGGCCTCTACGAGACGCGCATCGACCTCTCCCAGCTCGGCGGCGAC
TAGCTGCTTTAATGAGATATGCGAGACGCCTATGATCGCATGATATTTGCTTTCAATTCTGTTGTGCACGTT
GTAAAAACCTGAGCATGTGTAGCTCAGATCCTTACCGCCGGTTTCGGTTCATTCTAATGAATATATCACCCG
TTACTATCGTATTTTTATGAATAATATTCTCCGTTCAATTTACTGATTGTACCCTACTACTTATATGTACAA
TATTAAAATGAAAACAATATATTGTGCTGAATAGGTTTATAGCGACATCTATGATAGAGCGCCACAATAACA
AACAATTGCGTTTTATTATTACAAATCCAATTTTCGGGGATCCTCTAGAGTCGACCTGCAGGCATGCAAGCT
TGGCACGGTGACC 
 



 

118 

118 
Brachypodium-optimized AsCpfI 

GGTACCATGACCCAGTTCGAGGGCTTCACCAACCTCTACCAGGTGTCCAAGACCCTCAGGTTCGAG
CTGATCCCACAGGGCAAGACCCTGAAGCACATTCAGGAGCAGGGCTTCATCGAGGAGGACAAGGCT
AGGAACGACCACTACAAGGAGCTGAAGCCGATCATCGACAGGATCTACAAGACCTACGCCGACCAG
TGCCTCCAGCTCGTTCAGCTCGATTGGGAGAACCTCTCCGCCGCCATTGACTCCTACCGCAAGGAG
AAGACCGAGGAGACGAGGAACGCCCTGATTGAGGAGCAGGCTACCTACCGGAACGCCATCCACGAC
TACTTCATCGGCAGGACCGACAACCTCACCGACGCCATCAACAAGAGGCACGCCGAGATCTACAAG
GGCCTCTTCAAGGCCGAGCTGTTCAACGGCAAGGTGCTCAAGCAGCTCGGCACCGTGACCACCACC
GAGCATGAGAACGCCCTTCTCCGCTCCTTCGACAAGTTCACCACCTACTTCTCCGGCTTCTACGAG
AACCGCAAGAACGTGTTCTCCGCCGAGGATATCTCCACCGCCATCCCACATAGGATCGTGCAGGAC
AACTTCCCGAAGTTCAAGGAGAACTGCCACATCTTCACCAGGCTCATCACCGCCGTTCCATCCCTC
CGCGAGCATTTCGAGAACGTGAAGAAGGCCATCGGCATCTTCGTGTCCACCTCTATTGAGGAGGTG
TTCTCCTTCCCGTTCTACAACCAGCTCCTCACCCAGACCCAGATCGACCTGTACAACCAGCTTCTC
GGCGGCATTTCCCGCGAGGCCGGCACCGAGAAGATTAAGGGCCTTAACGAGGTCCTCAACCTCGCC
ATCCAGAAGAACGACGAGACCGCCCACATCATTGCCTCACTCCCACACCGCTTCATCCCGCTGTTC
AAGCAGATCCTCTCCGACCGCAACACCCTCAGCTTCATTCTCGAGGAGTTCAAGTCCGACGAGGAG
GTGATCCAGTCCTTCTGCAAGTACAAGACGCTCCTGAGGAACGAGAACGTGCTCGAGACCGCTGAG
GCCCTCTTCAACGAGCTTAACTCCATCGACCTCACCCATATCTTCATCTCCCACAAGAAGCTCGAG
ACGATCTCCTCCGCCCTCTGCGACCATTGGGACACCCTCCGCAACGCCCTCTACGAGAGGCGCATC
TCCGAGCTTACCGGCAAGATTACCAAGAGCGCGAAGGAGAAGGTCCAGCGCTCTCTCAAGCACGAG
GACATCAACCTCCAGGAGATCATCTCCGCTGCCGGCAAGGAGCTTTCCGAGGCCTTCAAGCAGAAG
ACCTCCGAGATCCTCTCTCACGCCCATGCCGCTCTCGATCAGCCACTTCCAACCACCCTCAAGAAG
CAGGAGGAGAAGGAGATCCTCAAGTCCCAGCTCGATAGCCTCCTCGGCCTCTACCATCTCCTCGAT
TGGTTCGCCGTGGACGAGTCCAACGAGGTGGACCCAGAGTTCTCTGCTAGGCTCACCGGCATCAAG
CTCGAGATGGAGCCAAGCCTCAGCTTCTACAACAAGGCCCGCAACTACGCCACCAAGAAGCCGTAC
TCCGTCGAGAAGTTCAAGCTCAACTTCCAGATGCCGACCCTCGCCTCTGGCTGGGATGTGAACAAG
GAGAAGAACAACGGCGCCATCCTCTTCGTCAAGAACGGCCTGTACTACCTCGGCATCATGCCAAAG
CAGAAGGGCAGGTACAAGGCCCTGTCCTTCGAGCCAACCGAGAAGACCTCTGAGGGCTTCGACAAG
ATGTACTACGATTACTTCCCGGACGCCGCCAAGATGATCCCGAAGTGCTCTACCCAGCTCAAGGCC
GTGACCGCCCATTTCCAGACCCATACCACCCCAATCCTGCTCTCCAACAACTTCATTGAGCCGCTC
GAGATCACCAAGGAGATCTACGACCTCAACAACCCCGAGAAGGAGCCGAAGAAGTTCCAGACCGCC
TACGCCAAGAAGACCGGCGATCAGAAGGGCTACCGCGAGGCTCTCTGCAAGTGGATCGATTTCACC
AGGGACTTCCTCAGCAAGTACACCAAGACGACCAGCATCGATCTCTCCAGCCTCAGGCCATCCTCC
CAGTACAAGGACCTCGGCGAGTACTACGCTGAGCTGAACCCTCTCCTCTACCACATCTCCTTCCAG
CGCATTGCCGAGAAGGAGATTATGGACGCCGTCGAGACCGGCAAGCTCTACCTCTTCCAGATCTAC
AACAAGGACTTCGCCAAGGGCCACCACGGCAAGCCAAACCTCCATACCCTCTACTGGACCGGCCTG
TTCTCCCCAGAGAACCTCGCTAAGACCTCCATCAAGCTGAACGGCCAGGCGGAGCTTTTCTACAGG
CCGAAGTCCCGCATGAAGCGCATGGCTCACAGGCTCGGCGAGAAGATGCTCAACAAGAAGCTGAAG
GACCAGAAGACCCCGATCCCGGACACCCTGTACCAGGAGCTTTACGACTACGTCAACCACAGGCTC
TCCCACGACCTCTCAGATGAGGCTAGGGCTCTCCTCCCGAACGTCATCACGAAGGAGGTGTCCCAC
GAGATCATTAAGGACAGGCGCTTCACCTCCGATAAGTTCTTCTTCCACGTGCCGATCACCCTCAAC
TACCAGGCCGCCAACTCCCCGTCCAAGTTCAACCAGAGGGTGAACGCCTACCTGAAGGAGCACCCA
GAGACCCCCATCATCGGCATTGACAGGGGCGAGAGGAACCTCATCTACATCACCGTGATCGACTCC
ACGGGCAAGATCCTTGAGCAGCGCAGCCTCAACACCATCCAGCAGTTCGACTACCAGAAGAAGCTG
GATAACCGCGAGAAGGAGCGCGTTGCCGCCAGGCAGGCCTGGTCCGTGGTGGGCACCATTAAGGAT
CTCAAGCAGGGCTACCTCTCCCAGGTCATCCATGAGATCGTGGACCTCATGATCCATTACCAGGCG
GTCGTGGTCCTTGAGAACCTCAACTTCGGCTTCAAGTCCAAGCGCACCGGGATCGCTGAGAAGGCC
GTTTACCAGCAGTTCGAGAAGATGCTGATCGACAAGCTCAACTGCCTCGTCCTCAAGGACTACCCG
GCTGAGAAGGTGGGCGGCGTTCTGAACCCATACCAGCTGACCGATCAGTTCACCAGCTTCGCTAAG
ATGGGGACCCAGTCCGGCTTCCTGTTCTACGTGCCAGCTCCGTACACCTCCAAGATCGACCCACTC
ACCGGCTTCGTGGACCCGTTCGTGTGGAAGACCATCAAGAACCACGAGTCCCGCAAGCACTTCCTC
GAGGGGTTCGACTTCCTCCACTACGACGTTAAGACGGGCGACTTCATCCTCCACTTCAAGATGAAC
CGCAACCTGAGCTTCCAGAGGGGCCTCCCAGGCTTCATGCCAGCTTGGGATATCGTTTTCGAGAAG
AACGAGACGCAGTTCGACGCCAAGGGCACCCCATTCATTGCGGGCAAGAGGATCGTCCCGGTGATC
GAGAACCATAGGTTCACCGGCCGCTACAGGGACCTGTACCCAGCCAACGAGCTGATTGCTCTGCTC
GAGGAGAAGGGGATCGTTTTCAGGGACGGCTCCAACATCCTCCCCAAGCTGCTCGAGAACGATGAC
TCCCATGCCATCGACACCATGGTCGCCCTCATTCGCTCTGTGCTCCAGATGAGGAACTCCAACGCC
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GCTACCGGCGAGGACTACATCAACTCCCCAGTGAGGGATCTCAACGGCGTGTGCTTCGACTCC
AGGTTCCAGAACCCAGAGTGGCCGATGGACGCTGATGCTAACGGCGCCTACCATATCGCTCTCAAG
GGCCAGCTCCTGCTCAACCATCTCAAGGAGTCCAAGGACCTTAAGCTCCAGAACGGCATCTCCAAC
CAGGACTGGCTCGCCTACATCCAGGAGCTGAGGAACAAGCGCCCAGCCGCTACCAAGAAGGCTGGC
CAGGCTAAGAAGAAGAAGGGCTCCTACCCGTACGACGTGCCGGATTACGCCTACCCATACGATGTC
CCCGACTACGCGTACCCCTACGACGTTCCAGACTACGCTTGACTGCTTTAATGAGATATGCGAGAC
GCCTATGATCGCATGATATTTGCTTTCAATTCTGTTGTGCACGTTGTAAAAACCTGAGCATGTGTA
GCTCAGATCCTTACCGCCGGTTTCGGTTCATTCTAATGAATATATCACCCGTTACTATCGTATTTT
TATGAATAATATTCTCCGTTCAATTTACTGATTGTACCCTACTACTTATATGTACAATATTAAAAT
GAAAACAATATATTGTGCTGAATAGGTTTATAGCGACATCTATGATAGAGCGCCACAATAACAAAC
AATTGCGTTTTATTATTACAAATCCAATTTTCGGGGATCCTCTAGAGTCGACCTGCAGGCATGCAA
GCTTGGCACGGTTACC 
 
Brachypodium-optimized LbCpfI 

GGTACCATGTCCAAGCTCGAGAAGTTCACCAACTGCTACTCCCTCAGCAAGACCCTCAGGTTCAAG
GCCATCCCAGTGGGCAAGACCCAGGAGAACATCGACAACAAGAGGCTCCTCGTCGAGGACGAGAAG
AGGGCCGAGGATTACAAGGGCGTGAAGAAGCTCCTCGACAGGTACTACCTCTCCTTCATCAACGAC
GTGCTCCACTCCATCAAGCTCAAGAACCTCAACAACTACATCAGCCTCTTCCGCAAGAAGACCAGG
ACCGAGAAGGAGAACAAGGAGCTTGAGAACCTCGAGATCAACCTCCGCAAGGAGATCGCCAAGGCC
TTCAAGGGCAACGAGGGCTACAAGAGCCTCTTCAAGAAGGACATCATCGAGACCATCCTCCCCGAG
TTCCTCGATGACAAGGACGAGATCGCCCTCGTGAACTCCTTCAACGGCTTCACCACCGCGTTCACC
GGCTTCTTCGATAACCGCGAGAACATGTTCAGCGAGGAGGCCAAGTCCACCTCGATTGCCTTCCGC
TGCATCAACGAGAACCTCACCCGCTACATCTCCAACATGGATATCTTCGAGAAGGTGGACGCCATC
TTCGACAAGCACGAGGTGCAGGAGATTAAGGAGAAGATCCTCAACTCCGACTACGACGTCGAGGAT
TTCTTCGAGGGCGAGTTCTTCAACTTCGTGCTCACCCAGGAGGGGATCGACGTCTACAACGCCATC
ATTGGCGGCTTCGTTACCGAGTCCGGCGAGAAGATTAAGGGCCTCAACGAGTACATCAACCTGTAC
AACCAGAAGACCAAGCAGAAGCTCCCGAAGTTCAAGCCGCTCTACAAGCAGGTTCTCTCCGACCGC
GAGTCCCTCTCATTCTACGGCGAGGGGTACACCTCCGATGAGGAGGTGCTCGAGGTTTTCCGCAAC
ACCCTCAACAAGAACTCCGAGATCTTCAGCAGCATCAAGAAGCTCGAGAAGCTGTTCAAGAACTTC
GACGAGTACTCCTCCGCCGGCATCTTCGTGAAGAACGGCCCAGCCATCTCCACCATCAGCAAGGAC
ATTTTCGGCGAGTGGAACGTGATCAGGGACAAGTGGAACGCCGAGTACGACGACATCCACCTCAAG
AAGAAGGCCGTCGTCACCGAGAAGTACGAGGACGATAGGCGCAAGTCGTTCAAGAAGATCGGCTCC
TTCAGCCTCGAGCAGCTGCAGGAGTACGCTGACGCTGATCTCTCCGTGGTTGAGAAGCTCAAGGAG
ATTATCATCCAGAAGGTCGACGAGATCTACAAGGTGTACGGCTCCTCGGAGAAGCTGTTCGACGCC
GATTTCGTGCTCGAGAAGTCCCTGAAGAAGAACGACGCCGTCGTCGCGATCATGAAGGACCTGCTC
GATTCCGTGAAGTCCTTCGAGAACTACATTAAGGCTTTCTTCGGGGAGGGCAAGGAGACCAACAGG
GACGAGTCTTTCTACGGGGACTTCGTCCTCGCCTACGACATCCTGCTCAAGGTGGACCATATCTAC
GACGCGATCCGCAACTACGTGACCCAGAAGCCGTACTCCAAGGACAAGTTCAAGCTCTACTTCCAG
AACCCGCAGTTCATGGGCGGCTGGGACAAGGATAAGGAGACCGATTACAGGGCCACCATCCTCAGG
TACGGCAGCAAGTACTACCTGGCCATCATGGACAAGAAGTACGCCAAGTGCCTGCAGAAGATCGAT
AAGGACGACGTGAACGGCAACTACGAGAAGATCAACTACAAGCTCCTCCCAGGCCCGAACAAGATG
CTCCCCAAGGTGTTCTTCTCAAAGAAGTGGATGGCCTACTACAACCCGTCCGAGGATATCCAGAAG
ATCTACAAGAACGGCACCTTCAAGAAGGGCGACATGTTCAACCTCAACGACTGCCACAAGCTCATC
GATTTCTTCAAGGACTCCATCTCCCGCTACCCGAAGTGGTCCAACGCGTACGATTTCAACTTCAGC
GAGACCGAGAAGTACAAGGATATCGCCGGCTTCTACCGCGAGGTTGAGGAGCAGGGGTACAAGGTG
AGCTTCGAGTCCGCCTCCAAGAAGGAGGTCGACAAGCTGGTTGAGGAGGGCAAGCTCTACATGTTC
CAGATCTACAACAAGGACTTCTCCGACAAGTCCCACGGCACCCCAAACCTCCACACCATGTACTTC
AAGCTGCTTTTCGACGAGAACAACCACGGCCAGATTAGGCTTTCTGGCGGCGCTGAGCTTTTCATG
AGGCGCGCGAGCCTTAAGAAGGAGGAGCTGGTTGTTCACCCGGCCAACTCCCCAATCGCGAACAAG
AACCCGGACAACCCGAAGAAGACGACCACCCTCTCCTACGACGTGTACAAGGACAAGCGCTTCTCG
GAGGACCAGTACGAGCTGCACATCCCGATCGCCATCAACAAGTGCCCGAAGAACATCTTCAAGATC
AACACCGAGGTGAGGGTGCTGCTCAAGCACGACGACAACCCATACGTGATCGGCATCGATAGGGGC
GAGAGGAACCTCCTCTACATCGTGGTGGTTGACGGGAAGGGCAACATCGTCGAGCAGTACTCCCTG
AACGAGATCATCAACAACTTCAACGGGATCAGGATCAAGACCGACTACCACTCCCTGCTCGACAAG
AAGGAGAAGGAGCGCTTCGAGGCCAGGCAGAACTGGACCTCCATCGAGAACATCAAGGAGCTGAAG
GCCGGCTACATTTCCCAGGTGGTGCACAAGATCTGCGAGCTTGTTGAGAAGTACGACGCGGTGATC
GCGCTCGAGGATCTGAACTCCGGCTTCAAGAACAGCAGGGTGAAGGTCGAGAAGCAGGTCTACCAG



 

120 

120 
AAGTTCGAGAAGATGCTCATCGACAAGCTCAACTACATGGTGGATAAGAAGTCCAACCCCTGC
GCTACCGGCGGCGCCCTCAAGGGCTACCAGATTACCAACAAGTTCGAGTCCTTCAAGTCCATGTCC
ACCCAGAACGGCTTCATCTTCTACATCCCGGCCTGGCTCACCTCCAAGATCGACCCATCTACCGGC
TTCGTGAACCTTCTCAAGACGAAGTACACCTCTATCGCCGACAGCAAGAAGTTCATCTCCAGCTTC
GACAGGATCATGTACGTGCCCGAGGAGGACCTCTTCGAGTTCGCCCTTGACTACAAGAACTTCTCC
AGGACCGACGCCGACTACATCAAGAAGTGGAAGCTCTACTCCTACGGCAACCGCATCAGGATCTTC
CGGAACCCCAAGAAGAACAACGTTTTCGATTGGGAGGAGGTGTGCCTCACCTCCGCCTACAAGGAG
CTGTTCAACAAGTACGGCATCAACTACCAGCAGGGCGATATCAGGGCTCTCCTGTGCGAGCAGTCC
GACAAGGCGTTCTACAGCAGCTTCATGGCCCTCATGAGCCTCATGCTCCAGATGAGGAACTCCATC
ACCGGCAGGACCGATGTCGACTTCCTCATCAGCCCGGTGAAGAACAGCGACGGGATCTTCTACGAC
AGCCGGAACTACGAGGCTCAGGAGAACGCCATCCTGCCGAAGAACGCTGATGCCAACGGCGCCTAC
AACATTGCCCGCAAGGTGCTCTGGGCCATCGGCCAGTTCAAGAAGGCTGAGGACGAGAAGCTCGAC
AAGGTGAAGATCGCCATCTCGAACAAGGAGTGGCTCGAGTACGCCCAGACCTCCGTGAAGCACAAG
AGGCCAGCTGCTACCAAGAAGGCGGGCCAGGCTAAGAAGAAGAAGGGCTCCTACCCGTACGACGTG
CCGGATTACGCCTACCCATACGATGTCCCCGACTACGCGTACCCCTACGACGTTCCAGACTACGCT
TGACTGCTTTAATGAGATATGCGAGACGCCTATGATCGCATGATATTTGCTTTCAATTCTGTTGTG
CACGTTGTAAAAACCTGAGCATGTGTAGCTCAGATCCTTACCGCCGGTTTCGGTTCATTCTAATGA
ATATATCACCCGTTACTATCGTATTTTTATGAATAATATTCTCCGTTCAATTTACTGATTGTACCC
TACTACTTATATGTACAATATTAAAATGAAAACAAAATATTGTGCTGAATAGGTTTATAGCGACAT
CTATGATAGAGCGCCACAATAACAAACAATTGCGTTTTATTATTACAAATCCAATTTTCGGGGATC
CTCTAGAGTCGACCTGCAGGCATGCAAGCTTGGCACGGTTACC 
 
Cassette with BdU6 promoter, OsU6 promoter, 2 tracrRNA and space for 2 sgRNAs  

BdU6 promoter 
tracrRNA 
OsU6 promoter 
BsaI restriction site 
BtgZI restriction site 
 
TACTTGGGCTGTTGCTCTCTACTGGGTTGGGCCGCATGGACTGACACAGGCCCACGCGCGGTCCTTCACGAG
CCTGGGGCTGGCCTGATCCGATGGTTGCTGATCAAGGCAACAGGCTAGAAAGTTTAGTCCCACCTCGCGAGA
TGAAGGATAGTTTGACTAGATTATAAACATTCTGCTACCACCCTTCTCagagaccgagctcggtctcaGTTT
TAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGC
TTTTTTTTGAGATTTCCAACCAGGTCCCTGGAGCCCATAGTCTAGTAACGGCCGCCAGTGTGCTGGAATTGC
CCTTGGATCATGAACCAACGGCCTGGCTGTATTTGGTGGTTGTGTAGGGAGATGGGGAGAAGAAAAGCCCGA
TTCTCTTCGCTGTGATGGGCTGGATGCATGCGGGGGAGCGGGAGGCCCAAGTACGTGCACGGTGAGCGGCCC
ACAGGGCGAGTGTGAGCGCGAGAGGCGGGAGGAACAGTTTAGTACCACATTGCCCAGCTAACTCGAACGCGA
CCAACTTATAAACCCGCGCGCTGTCGCTTGTGTGGCTAGGATCCATCGCAGTCAGCGATGAGTACAGCAAGT
TTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGT
GCTTTTTTT 
 
Sequences for Clustal Omega alignments for AUX1 

> AtAUX1 
MSEGVEAIVANDNGTDQVNGNRTGKDNEEHDGSTGSNLSNFLWHGGSVWDAWFSCASNQVAQVLLT
LPYSFSQLGMLSGIVLQIFYGLLGSWTAYLISVLYVEYRARKEKEGKSFKNHVIQWFEVLDGLLGS
YWKALGLAFNCTFLLFGSVIQLIACASNIYYINDHLDKRTWTYIFGACCATTVFIPSFHNYRIWSF
LGLGMTTYTAWYLAIASIIHGQAEGVKHSGPTKLVLYFTGATNILYTFGGHAVTVEIMHAMWKPQK
FKYIYLMATLYVFTLTIPSAAAVYWAFGDALLDHSNAFSLMPKNAWRDAAVILMLIHQFITFGFAC
TPLYFVWEKVIGMHDTKSICLRALARLPVVIPIWFLAIIFPFFGPINSAVGALLVSFTVYIIPSLA
HMLTYRSASARQNAAEKPPFFMPSWTAMYVLNAFVVVWVLIVGFGFGGWASVTNFVRQVDTFGLFA
KCYQCKPAAAAAHAPVSALHHRL* 
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> AtLAX1  
MSGEKQAEESIVVSGEDEVAGRKVEDSAAEEDIDGNGGNGFSMKSFLWHGGSAWDAWFSCASNQVA
QVLLTLPYSFSQLGMLSGILLQIFYGLMGSWTAYLISVLYVEYRARMEKQEAKSFKNHVIQWFEVL
DGLLGPYWKAAGLAFNCTFLLFGSVIQLIACASNIYYINDRLDKRTWTYIFGACCATTVFIPSFHN
YRIWSFLGLGMTTYTAWYLTIASFLHGQAEGVTHSGPTKLVLYFTGATNILYTFGGHAVTVEIMHA
MWKPRKFKSIYLMATLYVFTLTLPSASAVYWAFGDQLLNHSNAFSLLPKTRFRDTAVILMLIHQFI
TFGFACTPLYFVWEKAIGMHHTKSLCLRALVRLPVVVPIWFLAIIFPFFGPINSAVGALLVTFTVY
IIPALAHMLTYRTASARRNAAEKPPFFIPSWAGVYVINAFIVVWVLVLGFGFGGWASMTNFIRQID
TFGLFAKCYQCKPPPAPIAAGAHHRR* 

> AtLAX2 
MENGEKAAETVVVGNYVEMEKDGKALDIKSKLSDMFWHGGSAYDAWFSCASNQVAQVLLTLPYSFS
QLGMLSGILFQLFYGILGSWTAYLISILYVEYRTRKEREKVNFRNHVIQWFEVLDGLLGKHWRNVG
LAFNCTFLLFGSVIQLIACASNIYYINDNLDKRTWTYIFGACCATTVFIPSFHNYRIWSFLGLLMT
TYTAWYLTIASILHGQVEGVKHSGPSKLVLYFTGATNILYTFGGHAVTVEIMHAMWKPQKFKSIYL
FATLYVLTLTLPSASAVYWAFGDLLLNHSNAFALLPKNLYRDFAVVLMLIHQFITFGFACTPLYFV
WEKLIGMHECRSMCKRAAARLPVVIPIWFLAIIFPFFGPINSTVGSLLVSFTVYIIPALAHIFTFR
SSAARENAVEQPPRFLGRWTGAFTINAFIVVWVFIVGFGFGGWASMINFVHQIDTFGLFTKCYQCP
PPVMVSPPPISHPHFNHTHGL* 

> AtLAX3 
MAAEKIETVVAGNYLEMEREEENISGNKKSSTKTKLSNFFWHGGSVYDAWFSCASNQVAQVLLTLP
YSFSQLGMMSGILFQLFYGLMGSWTAYLISVLYVEYRTRKEREKFDFRNHVIQWFEVLDGLLGKHW
RNLGLIFNCTFLLFGSVIQLIACASNIYYINDKLDKRTWTYIFGACCATTVFIPSFHNYRIWSFLG
LAMTTYTSWYLTIASLLHGQAEDVKHSGPTTMVLYFTGATNILYTFGGHAVTVEIMHAMWKPQKFK
AIYLLATIYVLTLTLPSASAVYWAFGDKLLTHSNALSLLPKTGFRDTAVILMLIHQFITFGFASTP
LYFVWEKLIGVHETKSMFKRAMARLPVVVPIWFLAIIFPFFGPINSAVGSLLVSFTVYIIPALAHM
LTFAPAPSRENAVERPPRVVGGWMGTYCINIFVVVWVFVVGFGFGGWASMVNFVRQIDTFGLFTKC
YQCPPHKP* 

> BdAUX1 
MVPREHGDEAIVADGNGKEEEVGVMGVGAADGDEEQHGAGGKFSVTSFLWHGGSVWDAWFSCASNQ
VAQVLLTLPYSFSQLGMLSGVLLQLFYGFLGSWTAYLISVLYVEYRSRKEKEGVSFKNHVIQWFEV
LDGLLGPYWKAAGLAFNCTFLLFGTVIQLIACASNIYYINDRLDKRTWTYIFGACCATTVFIPSFH
NYRIWSFLGLGMTTYTAWYLAIAALINGQVEGVTHTGPNKLVLYFTGATNILYTFGGHAVTVEIMH
AMWKPAKFKYIYLLATLYVFTLTLPSASAMYWAYGDELLSHANAFSLLPKTAWRDAAVVLMLIHQF
ITFGFACTPLYFVWEKVIGMHDCKSICLRALARLPIVVPIWFLAIIFPFFGPINSAVGALLVSFTV
YIIPALAHILTYRTASARANAAEKPPFFLPSWTGMFVLNAFIVVWVFVVGFGLGGWASMVNFIRQI
DTFGLFAKCYQCPKPPVMAAAPSSSHH* 

> BdLAX3a  
MAAAANGSLADEKAPETIGVGRYVEMEQDGNSGSTAKSRLSGLLWHGGSAYDAWFSCASNQVAQVL
LTLPYSFSQLGMLSGILFQLFYGLMGSWTAYLISILYVEYRTRKEREKADFRNHVIQWFEVLDGLL
GRHWRNVGLAFNCTFLLFGSVIQLIACASNIYYINDRLDKRTWTYIFGACCATTVFIPSFHNYRIW
SFLGLVMTTYTAWYLAIASILHGQVDGVKHSGPTKMVLYFTGATNILYTFGGHAVTVEVMHAMWRP
QKFKAIYLMATLYVLTLTLPSAASVYWAFGDDLLTHSNALSLLPRTAFRDAAVVLMLVHQFITFGF
ACTPLYFVWEKLIGLHDCRSLCKRAAARLPVVVPIWFLAIVFPFFGPINSAVGSLLVSFTVYIIPA
LAHMITYRSAPARENAVEPPPRFVGRWTGTYMINAFVVAWVLVVGFGFGGWASMTNFIRQIDTFGL
FTKCYQCPTTAQPGLAPPLPSAAPDASWPFPGVLSNFTMPAPAPSPAHFFRHPRHHSHGPALK* 

> BdLAX3b  
MASETAAGSALADEKAEAMEQQEAGGKSRLSGLLWHGGSAYDAWFSCASNQVAQVLLTLPYSFAQL
GMLSGILFQLFYGLLGSWTAYLISILYLEYRTRKEKDKVDFRNHVIQWFEVLDGLLGRHWRNVGLA
FNCTFLLFGSVIQLIGCASNIYYVNDHLDKRTWTYIFGACCATTVFIPSFHNYRVWSFLGLLMTTY
TAWYIAVASLVHGQVEGVRHSGPTTIMLYFTGATNILYTFGGHAVTVEIMHAMWRPQKFKAIYLLA
TLYVLTLTLPSASAAYWAFGDQLLTHSNALSLLPRDAWRDAAVVLMLIHQFITFGFACTPLYFVWE
KLIGLHDCKSLCKRAAARLPVVVPIWFLAIIFPFFGPINSAVGSLLVSFTVYIIPAMAHMVTFRSP
QSRENAVERPPRFAGGWTGAYVINSFVVAWVLVVGFGFGGWASITNFVQQVSTFGLFAKCYQCPPR
PAASPFLSPPVAFSPSMPPTPFSFNFTGIFAPMSSTPSPAPAPMPFGLGHHHHRHHRHGL* 
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> OsAUX1 
MVPREQAEEAIVADSNGKEEEVGVMGVSAGEHGADDHHGGGGKFSMKNLLWHGGSVWDAWFSCASN
QVAQVLLTLPYSFSQLGMLSGVLLQLFYGFMGSWTAYLISVLYVEYRSRKEKEGVSFKNHVIQWFE
VLDGLLGPYWKAAGLAFNCTFLLFGSVIQLIACASNIYYINDRLDKRTWTYIFGACCATTVFIPSF
HNYRIWSFLGLGMTTYTAWYLAIAALLNGQAEGITHTGPTKLVLYFTGATNILYTFGGHAVTVEIM
HAMWKPAKFKYIYLLATLYVFTLTLPSASAMYWAFGDELLTHSNAFSLLPKTGWRDAAVILMLIHQ
FITFGFACTPLYFVWEKVIGMHDTKSICLRALARLPIVVPIWFLAIIFPFFGPINSAVGALLVSFT
VYIIPALAHILTYRTASARMNAAEKPPFFLPSWTGMFVLNMFIVVWVLVVGFGLGGWASMVNFIRQ
IDTFGLFAKCYQCPKPAPALAQSPVPLPHH* 

> OsAUX2 
MVPAGDQAEEAIVADAGKEEAEVRAAMGVEQDGKFSMTSLLWHGGSVWDAWFSCASNQVRPTTNDL
VMPLAHISFGILQVAQVLLTLPYSFSQLGMLSGLLLQVFYGLMGSWTAYLISVLYVEYRARKEKEG
VSFKNHVIQWFEVLDGLLGPYWKAAGLAFNCTFLLFGSVIQLIACASNIYYINDRLDKRTWTYIFG
ACCSTTVFIPSFHNYRIWSFLGLGMTTYTAWYLAIAAAVHGQVDGVTHSGPSKMVLYFTGATNILY
TFGGHAVTVEIMHAMWKPQKFKYIYLVATLYVFTLTLPSASAMYWAFGDALLTHSNAFSLLPRSGW
RDAAVILMLIHQFITFGFACTPLYFVWEKAIGMHGTRSVLTRALARLPIVVPIWFLAIIFPFFGPI
NSAVGALLVSFTVYIIPSLSHILTYRSASARLNAAEKPPPFLPSWSGMFVVNVFVVAWVLVVGFGL
GGWASVTNFIKQIDTFGLFAKCYQCPPRAHAGAPLPAPPRH* 

> OsAUX3  
MGSAADGSLANEKAPAETVGVGRYVEMEQDGGGPSTAKSRLSGLLWHGGSAYDAWFSCASNQVAQV
LLTLPYSFSQLGMLSGILFQLFYGLLGSWTAYLISILYVEYRTRKEREKVDFRNHVIQWFEVLDGL
LGRHWRNVGLAFNCTFLLFGSVIQLIACASNIYYINDKLDKRTWTYIFGACCATTVFIPSFHNYRI
WSFLGLVMTTYTAWYLAVASLIHGQVDGVKHSGPTKMVLYFTGATNILYTFGGHAVTVEIMHAMWR
PQKFKAIYLMATLYVLTLTLPSAASVYWAFGDELLTHSNALALLPRTAFRDAAVVLMLIHQFITFG
FACTPLYFVWEKLIGLHDCRSLFKRAAARLPVVVPIWFLAIIFPFFGPINSAVGSLLVSFTVYIIP
ALAHMITFRSAHARENAVEPPPRFVGRWTGTFIINAFVVAWVLVVGFGFGGWASMTNFVRQIDTFG
LFTKCYQCPPPPLPPAGAAPNATWPPFPATPFNATTAGLAPAPAPSPAHFFGRHHRHHSHGL* 

> OsAUX4  
MASGSSGGGYADEKGPGAATMQALGLQQQHGGGGEVEEESSEMGEKTAARTRLSGLLWHGGSAYDA
WFSCASNQVAQVLLTLPYSFAQLGMASGLLFQLFYGLLGSWTAYLISILYLEYRTRKERDKVDFRN
HVIQWFEVLDGLLGRHWRNVGLAFNCTFLLFGSVIQLIGCASNIYYINDHLDKRTWTYIFGACCAT
TVFIPSFHNYRIWSFLGLLMTTYTAWYIAVASLIHGQVEGVAHSGPTSIVLYFTGATNILYTFGGH
AVTVEIMHAMWRPQKFKAIYLLATVYVLTLTLPSASAAYWAFGDALLTHSNALALLPRTPWRDAAV
VLMLIHQFITFGFACTPLYFVWEKLVGLHGCPSLCKRAAARLPVVLPIWFLAIIFPFFGPINSAVG
SLLVSFTVYIIPSLAYMVTFRSPQSRQNAVERPPRFAGGWTGAYVINSFVVAWVLVVGFGFGGWAS
ITNFVHQVDTFGLFAKCYQCPPHPAAAALSPPGAIAPAPASMLPPFNSTAAGIFAAPVPSPAPAPA
PMHFVLGHHHHHRHHRHGL* 

> OsAUX5 
MASEKVETIVAGNYVEMEREGAATAGEGVGGAAAASGRRRGKLAVSSLFWHGGSVYDAWFSCASNQ
VAQVLLTLPYSFSQLGMASGVAFQVFYGLMGSWTAYLISVLYVEYRTRRERDKVDFRNHVIQWFEV
LDGLLGRHWRNAGLLFNCTFLLFGSVIQLIACASNIYYINDRLDKRTWTYIFGACCATTVFVPSFH
NYRVWSFLGLLMTSYTAWYLTVAAVVHGKVDGAAPRAGPSKTMVLYFTGATNILYTFGGHAVTVEI
MHAMWRPRRFKMIYLAATAYVLTLTLPSAAAMYWAFGDALLDHSNAFALLPRTPWRDAAVVLMLIH
QFITFGFACTPLYFVWEKAIGVHGGAGVLRRAAARLPVVLPIWFLAVIFPFFGPINSTVGSFLVSF
TVYIIPAMAHMATFAPAAARENAVEPPPRALGGWPGTFAANCFVVAWVLVVGFGFGGWASTVNFVR
QVDTFGLFTKCYQCPPRH* 

> GRMZM2G149481 
MSSEASSVVVADENGAAETVGVGRYVEMEKDQESSAAKSRLSGLLWHGGSAYDAWFSCASNQVAQV
LLTLPYSFSQLGMLSGILFQLLYGLMGSWTAYLISVLYVEYRARKEREKADFRNHVIQWFEVLDGL
LGRHWRNVGLAFNCTFLLFGSVIQLIACASNIYYINDKLDKRTWTYIFGACCATTVFIPSFHNYRI
WSFLGLVMTTYTAWYLAVASLIHGQVDGVKHSGPTKMVLYFTGATNILYTFGGHAVTVEIMHAMWR
PQKFKAIYLMATLYVLTLTLPSAASVYWAFGDQLLTRSNALALLPRTAFRDAAVVLMLAHQFITFG
FACTPLYFVWEKLVGLHDCRSLCRRAAARLPVVVPIWFLAIIFPFFGPINSAVGSLLVSFTVYIIP
ALAHMITFRSATARENAMEPPPRLLGRWTGAYMINAFVVAWVLVVGFGFGGWASMTNFVRQIDTFG
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LFTKCYQCPPPPPLPFPGGGLGNITMPFNGDGLPPTPAPSPAHYFFRHHRHHSHHRGL* 

> GRMZM2G127949 
MAREQLEESIVADGNGKEEEVGVMGIGAADGADDQHGGGKLSMKSLLWHGGSVWDAWFSCASNQVA
QVLLTLPYSFSQLGMLSGVLLQIFYGFLGSWTAYLISVLYVEYRSRKEKEGVSFKNHVIQWFEVLD
GLLGPYWKAAGLAFNCTFLLFGSVIQLIACASNIYYINDRLDKRTWTYIFGACCATTVFIPSFHNY
RIWSFLGLGMTTYTAWYLAIAALLNGQAEGVAHSGPTKLVLYFTGATNILYTFGGHAVTVEIMHAM
WKPAKFKYIYLLATLYVFTLTLPSSAAMYWAFGDELLTHSNAFSLLPKTRWRDAAVILMLIHQFIT
FGFACTPLYFVWEKVIGMHDAKSIFKRALARLPIVVPIWFLAIIFPFFGPINSAVGALLVSFTVYI
IPALAHVLTYRTASARMNAAEKPPFFLPSWTGMFVLNMFIVVWVLVVGFGLGGWASMVNFVRQIDT
FGLFAKCYQCPKPPVPAAAQSPAPLPHH* 

> GRMZM2G129413 
MHTTPVSKHRQHAQAGKALDHRSEGLMAAGGGGGGIADEKAPAAEAFGGHLEAAEMTEAEEEHSGV
KSRLSGLLWHGGSAYDAWFSCASNQVAQVLLTLPYSFAQLGMLSGVLFQLFYGLLGSWTAYLISIL
YLEYRTRREREKAADFRNHVIQWFEVLDGLLGRHWRNAGLAFNCTFLLFGSVIQLIGCASNIYYVN
DRLDKRTWTYVFGACCATTVFIPSFHNYRVWSFLGLVMTTYTAWYMAVASLVHGQVEGVQHSGPTR
IVLYFTGATNILYTFGGHAVTVEIMHAMWRPQKFKAIYLLATLYVLTLTLPSAAASYWAFGDELLT
HSNALALLPRTPFRDAAVVLMLIHQFITFGFACTPLYFVWEKLIGLHDCRSLCKRAAARLPVVVPI
WFLAIIFPFFGPINSAVGSLLVSFTVYIIPALAHMVTFRSPQSRENAVERPPRFAGGWTGAYVINS
FVVAWVLVVGFGFGGWASITNFVQQVNTFGLFAKCYQCPPHLTAAPPAAFMPPPPPMAAAPSMPPA
ATAFNATGLFFPPLPAPAPAPSPMINFFLRHHHRGHHGRHGL* 

> GRMZM2G045057 
MASEKVETIVAGNYMEMEHEPGGGGDHDQQPSGGAASSTSSSSRGGGKKKALSSLFWHGGSVYDAW
FSCASNQVAQVLLTLPYSFSQLGMASGVVFQLFYGLMGSWTAYLISILYVEYRTRKEREKVDFRNH
VIQWFEVLDGLLGKHWRNVGLFFNCTFLLFGSVIQLIACASNIYYINDKYDKRTWTYIFGACCATT
VFIPSFHNYRIWSFLGLLMTTYTAWYLTIAAIAHGQVEGVTHSGPSKMVLYFTGATNILYTFGGHA
VTVEIMHAMWKPHKFKLIYLVATLYVLTLTLPSASAVYWAFGDMLLDHSNAFALLPRSGFRDAAVI
FMLIHQFITFGFACTPLYFVWEKLIGVHETGSVALRAAARLPIVAPIWFLAVVFPFFGPINSTVGS
LLVSFTVYIIPALAHMATFLPPAARENAVERPPRGLGGWAGMYAANFFVVAWVLVVGFGFGGWAST
VNFVRQVNTFGLFTRCYQCPPRH* 

> GRMZM2G067022 
MNRAGGHRRRVSILHRYKKKVSCASLSHLNSLRHDSGRGRSGRAVRLPAEILQTARRSYSGLCASS
AVPALLFFPAPPACLPARKRRGRAVFSPPPRFSISSSQQRSKFRRRVGQQQQQLAANVPLPRPLLL
PQLRDKLGARRPCAPLQQNELPALRVQLRLARMATGEQAEDAIVADVVGNGKGEEVRAMGDDAEQQ
RDGGKVSMKSLLWHGGSVWDAWFSCASNQVAQVLLTLPYSFSQLGMLSGVLLQVWYGLMGSWTAYL
ISVLYVEYRTRKEKEGVSFRNHVIQWFEVLDGLLGPYWKAAGLAFNCTFLLFGTVIQLIACASNIY
YINDRLDKRTWTYIFGACCATTVFIPSYHNYRVWSFLGLGMTTYTAWYLTIAAAVHGQVPGVTHSG
PSKLVPYFTGATNILYTFGGHAITVEIMHAMWKPRKFKYIYLLATLYVFTLTLPSAAAMYWAFGDQ
LLTHSNAFSLLPRTPWRDAAVVLMLVHQFITFGFACTPLYFVWEKAVGMHVTRSVFLRALVRLPIV
VPVWFLAIIFPFFGPINSAVGALLVSFTVYVIPALAHMLTYRSASARLNAAEKPPSFLPSWSGMFV
LNAFVVAWMLVVGFGLGGWASVTNFIKQIDTFGLFAKCYQCPTKPHPGSPLPAPPHH* 

> Sobic.003G361300 
MAREQLEESIVADGNGKEEEVGVMGIGAADGADDQHGRGGGGKLSMTSLLWHGGSVWDAWFSCASN
QVAQVLLTLPYSFSQLGMLSGILLQIFYGFLGSWTAYLISVLYVEYRSRKEKEGVSFKNHVIQWFE
VLDGLLGPYWKAAGLAFNCTFLLFGSVIQLIACASNIYYINDRLDKRTWTYIFGACCATTVFIPSF
HNYRIWSFLGLGMTTYTAWYLAIAALINGQVEGVEHTGPTKLVLYFTGATNILYTFGGHAVTVEIM
HAMWKPAKFKYIYLLATLYVFTLTLPSAAAMYWAFGDELLTHSNAFSLLPKTGWRDAAVILMLIHQ
FITFGFACTPLYFVWEKVIGMHDTKSIFKRALARLPIVVPIWFLAIIFPFFGPINSAVGALLVSFT
VYIIPALAHILTYRTASARMNAAEKPPFFLPSWTGMFVLNMFIVVWVLVVGFGLGGWASMVNFIRQ
IDTFGLFAKCYQCPKPPVPAAAQSPAPLPHH* 
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> Sobic.009G156600 
MVPGEQAEDAIVAADVGNGKDAGEVRAAMGVVGGDDAEQLQQQHGGGGKFSMKSLLWHGGSVWDAW
FSCASNQVAQVLLTLPYSFSQLGMVSGVLLQVFYGLMGSWTAYLISVLYVEYRARKEKEGVSFKNH
VIQWFEVLDGLLGPYWKAAGLAFNCTFLLFGTVIQLIACASNIYYINDRLDKRTWTYIFGACCATT
VFIPSFHNYRVWSFLGLGMTTYTAWYLTIAAAVHGQVDGVTHSGPNKLVPYFTGATNILYTFGGHA
ITVEIMHAMWKPRRFKYIYLLATVYVFTLTLPSAAAMYWAFGDQLLTHSNAFSLLPRTPWRDAAVV
LMLIHQFITFGFACTPLFFVWEKAVGMHETPSVFLRALVRLPIVVPVWFLAIIFPFFGPINSAVGA
LLVSFTVYIIPALAHMLTYRSASARLNAAEKPPSFLPSWSGMFVLNAFVVAWVLVVGFGLGGWASV
TNFVKQIDTFGLFAKCYQCPTKTHAGSPLPAPPHH* 

> Sobic.001G439000 
MASEANGGVVANEKGAETVGVGRYVEMEQDQESNTVKSRLSGLLWHGGSAYDAWFSCASNQVAQVL
LTLPYSFSQLGMLSGILFQLFYGLMGSWTAYLISILYVEYRTRKEREKADFRNHVIQWFEVLDGLL
GRHWRNVGLAFNCTFLLFGSVIQLIACASNIYYINDKLDKRTWTYIFGACCATTVFIPSFHNYRIW
SFLGLVMTTYTAWYLAVASLIHGQVDGVKHSGPTKMVLYFTGATNILYTFGGHAVTVEIMHAMWRP
QKFKAIYLMATLYVLTLTLPSAASVYWAFGDQLLTHSNALALLPRTPFRDAAVVLMLVHQFITFGF
ACTPLYFVWEKLIGLHDCRSLCKRAAARLPVVVPIWFLAIIFPFFGPINSAVGSLLVSFTVYIIPA
LAHMITFRSATARENAVEPPPRLVGRWTGTYMINAFVVAWVLVVGFGFGGWASMTNFVRQIDTFGL
FTKCYQCPPPPLPPGAALLPFPGGLANITMPFNGTAELPPAPAPSPAHFFRHHHRHHSHRL* 

> Sobic.001G267100 
MAAGGGIADEKQQAPADSAEMMTMEPEEEEEYNSSNNTTTKGGGGGVKSRLSGLLWHGGSAYDAWF
SCASNQVAQVLLTLPYSFAQLGMVSGILFQLFYGILGSWTAYLISILYLEYRTRRERDKVDFRNHV
IQWFEVLDGLLGRHWRNAGLAFNCTFLLFGSVIQLIGCASNIYYVNDRLDKRTWTYVFGACCATTV
FIPSFHNYRVWSFLGLVMTTYTAWYIAVASLVHGQVQGVQHSGPTRIVLYFTGATNILYTFGGHAV
TVEIMHAMWRPQKFKAIYLLATLYVLTLTLPSAAAAYWAFGDELLTHSNALALLPRTRFRDAAVVL
MLIHQFITFGFACTPLYFVWEKLIGLHDCRSLCKRAAARLPVVVPIWFLAIIFPFFGPINSAVGSL
LVSFTVYIIPALAHMVTFRSPQSRENAVERPPRFAGGWTGAYVINSFVVAWVLVVGFGFGGWASIT
NFVQQVNTFGLFAKCYQCPPHLTAPPAAPAFTPPPPMATAPSAMTPATAFNATAGGLLFPPVPAPA
PAPSPMINFFLRHHHRRHHGGRHGL* 

> Sobic.005G052500 
MASEKVETIVAGNYMEMERDVVVGGGHGDDQPGGGDAASSGARAAGGKKKLGLSSRLFWHGGSVYD
AWFSCASNQVAQVLLTLPYSFSQLGMASGVVFQLFYGLMGSWTAYLISVLYVEYRTRKERDKVDFR
NHVIQWFEVLDGLLGKHWRNVGLFFNCTFLLFGSVIQLIACASNIYYINDKYDKRTWTYIFGACCA
TTVFIPSFHNYRIWSFLGLLMTTYTAWYLTIAAIAHGQVEGVTHSGPSKMVLYFTGATNILYTFGG
HAVTVEIMHAMWKPQKFKLIYLVATLYVLTLTLPSASAVYWAFGDMLLDHSNAFSLLPRSGFRDAA
VILMLIHQFITFGFACTPLYFVWEKLIGVHETGSVALRAAARLPVVVPIWFLAIIFPFFGPINSTV
GSLLVSFTVYIIPALAHMATFAPPAARENAVERPPRGVGGWAGMYAANCFVVAWVLVVGFGFGGWA
STVNFVRQVDTFGLFTRCYQCPPKH* 

> Sevir.5G392400.1 
MAREQLEESIVADGNGKEEEVGVMGIGTAGDGDEHHGGGGFNMKRFLWHGGSVWDAWFSCASNQVA
QVLLTLPYSFSQLGMLSGVLLQIFYGFLGSWTAYLISVLYVEYRSRKEKEGVSFKNHVIQWFEVLD
GLLGPYWKAAGLAFNCTFLLFGSVIQLIACASNIYYINDRLDKRTWTYIFGACCATTVFIPSFHNY
RIWSFLGLGMTTYTAWYLAIAALLNGQVEGVAHTGPTKLVLYFTGATNILYTFGGHAVTVEIMHAM
WKPAKFKYIYLLATLYVFTLTLPSAAAMYWAFGDELLNHSNAFSLLPKTAWRDAAVILMLIHQFIT
FGFACTPLYFVWEKVIGMHDTKSIFKRALARLPIVVPIWFLAIIFPFFGPINSAVGALLVSFTVYI
IPSLAHILTYRTASARMNAAEKPPFFLPSWTGMFVLNMFIVVWVLVVGFGLGGWASMVNFIRQIDT
FGLFAKCYQCPKPPVPAAAQSPAPLPHH* 

> Sevir.3G228500 
MVPGELAEDAIVADAGNSKDGEVRAMGIGDDAEQQQQRDGGFGLKSLLWHGGSVWDAWFSCASNQV
AQVLLTLPYSFSQLGMVSGVLLQVFYGLMGSWTAYLISVLYVEYRARKEKEGVSFKNHVIQWFEVL
DGLLGPYWKAAGLAFNCTFLLFGSVIQLIACASNIYYINDRLDKRTWTYIFGACCATSVFIPSFHN
YRVWSFLGLGMTTYTAWYLTIAAAIDGVTHSGPNKLVLYFTGATNILYTFGGHAVTVEIMHAMWKP
RKFKYIYLLATLYVFTLTLPCAAAMYWAFGDQLLTHSNAFSLLPRTGWRDAAVILMLIHQFITFGF
ACTPLYFVWEKVVGMHETRSVCLRALVRLPIVVPIWFLAIIFPFFGPINSAVGALLVSFTVYVIPA
LAHMLTYRSASARLNAAEKPPSFLPSWSGMFVVNAFVVAWVLVVGFGLGGWASVTNFVKQIDTFGL
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FARCYQCPPKPHAGSPLPAPPHH* 

> Sevir.9G295700 
MAAGGGVGGVADKKAPEAFGLSRHVAEAEMEEEHGGSGESSVKSKLSGFLWHGGSAYDAWFSCASN
QVAQVLLTLPYSFAQLGMLSGILFQLFYGLLGSWTAYLISILYLEYRTRRERDKVDFRNHVIQWFE
VLDGLLGRHWRNAGLAFNCTFLLFGSVIQLIGCASNIYYVNDRLDKRTWTYIFGACCATTVFIPSF
HNYRVWSFLGLVMTTYTAWYIAVASLVNGQVEGVTHSGPTRIVLYFTGATNILYTFGGHAVTVEIM
HAMWRPQKFKSIYLLATVYVLTLTLPSAAAAYWAFGDALLTHSNALALLPRTAFRDAAVVLMLIHQ
FITFGFACTPLYFVWEKLIGLHDCRSLCKRAAARLPVVVPIWFLAIIFPFFGPINSAVGSLLVSFT
VYIIPALAHMVTFRSPQSRENAVERPPRFAGGWTGAYVINSFVVAWVLVVGFGFGGWASITNFVQQ
VNTFGLFAKCYQCPPHLTAPPAAPFAPPPMAPAPAMLPATVFNATGFFPPVPSPAPAPSPMMNFFL
RHHHHRHHGRHGL* 

> Sevir.9G475300 
MDSEANGSLANEKAPETVGVGRYVEMEQDGDSNTVKSRLSGLLWHGGSAYDAWFSCASNQVAQVLL
TLPYSFSQLGMLSGILFQLFYGLMGSWTAYLISILYVEYRTRKEREKKADFRNHVIQWFEVLDGLL
GRHWRNVGLAFNCTFLLFGSVIQLIACASNIYYINDKLDKRTWTYIFGACCATTVFIPSFHNYRIW
SFLGLVMTTYTAWYLAIASIIHGQVDGVKHSGPTMMVLYFTGATNILYTFGGHAVTVEIMHAMWRP
QKFKAIYLLATLYVLTLTLPSAASVYWAFGDQLLTHSNAFALLPRTAFRDAAVVLMLVHQFITFGF
ACTPLYFVWEKLIGLHDCRSLCKRAAARLPVVVPIWFLAIVFPFFGPINSAVGSLLVSFTVYIIPA
LAHMITFRSASARENAVEPPPRLVGRWTGTYMINAFVVAWVLVVGFGFGGWASMTNFVHQIDTFGL
FTKCYQCPPPPLPPAAPLPFPGGLGNITMPFAGGLPPAAAPSPAHFLHHHRHHSHGL* 

> Sevir.8G047900 
MASEKVETIVAGNYMEMERAGGVVGGDAGGGGEEAASAATSRRGGNKALSSLFWHGGSVYDAWFSC
ASNQVAQVLLTLPYSFSQLGMASGIVFQLFYGLMGSWTAYLISVLYVEYRTRKEREKVDFRNHVIQ
WFEVLDGLLGKHWRNMGLFFNCTFLLFGSVIQLIACASNIYYINDKYDKRTWTYIFGACCATTVFI
PSFHNYRIWSFLGLLMTTYTAWYLTIAAITHGQVEGVTHSGPTKMVLYFTGATNILYTFGGHAVTV
EIMHAMWKPQKFKLIYLAATLYVLTLTIPSASAVYWAFGDTLLDHSNAISLLPRSGFRDAAVVLML
VHQFITFGFACTPLYFVWEKLVGVHESRSLALRAAARLPIVLPIWFLAIIFPFFGPINSTVGSLLV
SFTVYIIPALAHMAVFAPAAARENAVERPPRGVGGWAGMYAANCFVVAWVLVVGFGFGGWASTVNF
VRQIDTFGLFTKCYQCPPKH* 

Sequences for Clustal Omega alignments for BRX 

> AtBRX 
MFSCIACTKADGGEEVEHGARGGTTPNTKEAVKSLTIQIKDMALKFSGAYKQCKPCTGSSSSPLKK
GHRSFPDYDNASEGVPYPFMGGSAGSTPAWDFTNSSHHPAGRLESKFTSIYGNDRESISAQSCDVV
LDDDGPKEWMAQVEPGVHITFASLPTGGNDLKRIRFSREMFDKWQAQRWWGENYDKIVELYNVQRF
NRQALQTPARSDDQSQRDSTYSKMDSARESKDWTPRHNFRPPGSVPHHFYGGSSNYGPGSYHGGPP
MDAARTTTSSRDDPPSMSNASEMQAEWIEEDEPGVYITIRQLSDGTRELRRVRFSRERFGEVHAKT
WWEQNRERIQTQYL* 
 
> AtBRXL1 
MFTCINCTKMADRGEEDEEDEARGSTTPNTKEAVKSLTTQIKDMASKFSGSHKQSKPTPGSSSSNL
RKFPDFDTASESVPYPYPGGSTSSTPAWDLPRSSYHQSGRPDSRFTSMYGGERESISAQSCDVVLE
DDEPKEWMAQVEPGVHITFVSLPSGGNDLKRIRFSREVFDKWQAQRWWGENYDRIVELYNVQRFNR
QALQTPGRSEDQSQRDSTYTRIDSARESRDWTQRDNNFRPPGGSVPHHFYGPPMDAARITTSSRDE
PPSMSNASEMQGEWVEEDEPGVYITIRQLPDGTRELRRVRFSRERFGEVHAKTWWEQNRDRIQTQY
L* 
 
> AtBRXL2 
MLTCIACTKQLNTNNGGSKKQEEDEEEEDRVIETPRSKQIKSLTSQIKDMAVKASGAYKSCKPCSG
SSNQNKNRSYADSDVASNSGRFRYAYKRAGSGSSTPKILGKEMESRLKGFLSGEGTPESMSGRTES
TVFMEEEDELKEWVAQVEPGVLITFVSLPEGGNDMKRIRFSREMFDKWQAQKWWAENFDKVMELYN
VQQFNQQSVPLPTPPRSEDGSSRIQSTKNGPATPPLNKECSRGKGYASSGSLAHQPTTQTQSRHHD
SSGLATTPKLSSISGTKTETSSVDESARSSFSREEEEADHSGEELSVSNASDIETEWVEQDEAGVY
ITIRALPDGTRELRRVRFSREKFGETNARLWWEQNRARIQQQYL* 
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> AtBRXL3  
MLTCIACTKQLNTNNGGSTREEDEEHGVIGTPRTKQAIKSLTSQLKDMAVKASGAYKNCKPCSGTT
NRNQNRNYADSDAASDSGRFHYSYQRAGTATSTPKIWGNEMESRLKGISSEEGTPTSMSGRTESIV
FMEDDEVKEWVAQVEPGVLITFVSLPQGGNDLKRIRFRSTRFPYYRDQLLLWCRQGWVFWPQNCRE
MFNKWQAQKWWVENFEKVMELYNVQFNQQSVPLQTPPVSEDGGSQIQSVKDSPVTPPLERERPHRN
IPGSSGFASTPKLSSISGTKTETSSIDGSARSSSVDRSEEVSVSNASDMESEWVEQDEPGIYITIR
ALPDGNRELRRVRFSRDKFGETHARLWWEQNRARIQQQYL* 
 
> AtBRXL4 
MLTCIARSKRAGDESSGQPDDPDSKNAKSLTSQLKDMALKASGAYRHCTPCTAAQGQGQGQGPIKN
NPSSSSVKSDFESDQRFKMLYGRSNSSITATAAVAATQQQQPRVWGKEMEARLKGISSGEATPKSA
SGRNRVDPIVFVEEKEPKEWVAQVEPGVLITFVSLPGGGNDLKRIRFSRDMFNKLQAQRWWADNYD
KVMELYNVQKLSRQAFPLPTPPRSEDENAKVEYHPEDTPATPPLNKERLPRTIHRPPGLAAYSSSD
SLDHNSMQSQQFYDSGLLNSTPKVSSISVAKTETSSIDASIRSSSSRDADRSEEMSVSNASDVDNE
WVEQDEPGVYITIKVLPGGKRELRRVRFSRERFGEMHARLWWEENRARIHEQYL* 
 
> BdBRXL1 
MLACIACSTKDGGEDGGTRAVATPNGRDAGKSLTSQLKDMVLKFSGSGKQYKASGSPSFRSNRFHR
SSRLAAYPGIIDESGFTSDGAGEAYSYMRTTTSAAPSSAWDRDKVNRGFRPPHVRSPSTSWIPSII
GEEEEEDDDDDADEEAVVLEEDRVPREWTAQVEPGVHITFVSIPGGAGNDLKRIRFSREMFNKCEA
QRWWGENYDRVVELYNVQTFRQQGLSTPSSSVDDAMQSFYSRGSSTRESPAPIPPPAAASSRERPP
ISRTASCKASRAACYPSSAAVPDPSDHVWAHHLSLLNSAAGASGAAAGPYDPSPRVTTSSRGDEAS
SVVSVSNASELEGAEQWVEQDEPGVHITIRELADGTRELRRVRFSRERFGEERAKVWWEQNRDRIH
AQYL* 
 
> BdBRXL2 
MLTCIACSRQPGGGGPRLHEPPEDEDAVDGGGVSDAATPSTRLAIKALTAQIKDMALKASGAYRHC
KPCAGSSAGASGRHHPYHHRGGNGFQDSETASGSDRFHYAYRRAAGGGALSSGDATPSMSARTDFP
TGDEEEEEDDEMSSGGGKEDDAKEWVAQVEPGVLITFVSLPLGGNDLKRIRFSREMFNKWQAQRWW
AENYDKVMELYNVQRFNHQSVPLPTTPKSEDESSKEDSPVTPPLDKERVPRSLNRATSGGGAMGYS
SSDSLEHHSNHYCNGLHQHQHHGHQCYDSVGLASTPKLSSISGAKTETSSMDASMRTSSSPEEVDR
SDELSVSISNASDQEREWVEEDHPGVYITIRALPGGIRELRRVRFSREKFSEMHARLWWEENRARI
HEQYL* 
 
> BdBRXL3 
MLTCIACSKQLDGGGPPLHEPPEDDDGVVVGGARGPATPSTREAIKALTAQIKDMALKASGAYRHC
KPCGGSPAAASRRHHPYSHRGAYADSEVGSGSERFHHSYRRASSSAASTPRPLSGGAVFSSDATPS
VSARTDFFAGDEEGMEGCTEVDEAKEWVAQVEPGVLITFLSLPRGGNDLKRIRFSREMFNKWQAQR
WWAENYDKVMELYNIQRFKQQTVPVPGTPRSEDESSKEDSPETPPLNNERQPRIFQRSLKSSRALG
SSSSDSLEHQSKHLGNIQHGHHEHQCYDSVGLASTPKLSSISGAKTDTSSIDASMRTSSSPEEVDR
SGELSVSVSNASDQEREWVEEDEPGVYLTIRALTGGIKELRRVRFRCKMFYNSRPTADLVSAKKLL
SAAEKDLVRRMQGYGGKRTGQGFTSSISEGRHIKLHSIAFFTAPPPPPPPPQRPMYIAIHQEYSLV
SQPWS* 
 
> BdBRXL4 
MLACIACTSKEGGDQDGSRGGAATPHSKDAVKSLTSQLKDMVLKFSGSSNKQYKPTTAGSPSFRAG
RSYRRPYPGSGFIDDATFTPTTNRPTSARAAAANSSSSATWDMTGRSNRGWPGIDEDQDRGAAREW
MAQVEPGVQITFATLPGGGNDLKRIRFSREMFNKWEAQRWWGENYDRIVELYNVQTFSGRQQGGST
PTSSVDDSHLRDSSYSRGGSARDSPVMMPPPPPSASTRDSMPRSASCKAPSYHAPQPPSSARAAYY
PSAAVPDPSDHVWAHHFNMLNSAAAGPSSSSSVMMGGSGVGAPSSYDPSRATSSSRDDASVSVSNA
SDLEATEWIEQDEPGVCLTIRELGDGTRELRRIRFSREKFGEDRAKVWWEHNKDRIQSQYL* 
 
> BdBRXL5 
MLACIACVKQEEGGGGGHGARADNGDTPTTCRPVKSLTSQLKDMVLKLSGTHRQPGGGPRRRGGSP
PPTRTTSLYRSGYYRPGVVQDDMAVPPATYLGHGHGGGASSTASSTPAWERPPGNGDAAARGEWVA
QVEPGVQITFVSLSGTGGGAGGGNDLKRIRFSREMYDKWQAQRWWAENNERIMELYNVRRFSPRHD
HVLPPSSDAGDPERESFYSQMGSTRASSPAATPSPAPETSATWAAAFARAAPPPPPSAARQHSFRG
PLSPPPPSSSNPSERAWQQQKQSQQNDGGVEPARTTTSSCRDDDASVSNASELEVTEWVIQDQPGV
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YITVRELPDGARELRRVRFSREKFAELNAKLWWEENKERIHAQYL* 

 
Sequences for Clustal Omega alignments for OPS 

> AtOPS 
MNPATDPVSAAAAALAPPPQPPQPHRLSTSCNRHPEERFTGFCPSCLCERLSVLDQTNNGGSSSSS
KKPPTISAAALKALFKPSGNNGVGGVNTNGNGRVKPGFFPELRRTKSFSASKNNEGFSGVFEPQRR
SCDVRLRSSLWNLFSQDEQRNLPSNVTGGEIDVEPRKSSVAEPVLEVNDEGEAESDDEELEEEEEE
DYVEAGDFEILNDSGELMREKSDEIVEVREEIEEAVKPTKGLSEEELKPIKDYIDLDSQTKKPSVR
RSFWSAASVFSKKLQKWRQNQKMKKRRNGGDHRPGSARLPVEKPIGRQLRDTQSEIADYGYGRRSC
DTDPRFSLDAGRFSLDAGRFSVDIGRISLDDPRYSFDEPRASWDGSLIGRTMFPPAARAPPPPSML
SVVEDAPPPVHRHVTRADMQFPVEEPAPPPPVVNQTNGVSDPVIIPGGSIQTRDYYTDSSSRRRKS
LDRSSSSMRKTAAAVVADMDEPKLSVSSAISIDAYSGSLRDNNNYAVETADNGSFREPAMMIGDRK
VNSNDNNKKSRRWGKWSILGLIYRKSVNKYEEEEEEEEDRYRRLNGGMVERSLSESWPELRNGGGG
GGGPRMVRSNSNVSWRSSGGGSARKVNGLDRRNKSSRYSPKNGENGMLKFYLPHMKASRRMSGTGG
AGGGGGGGWANSHGHSIARSVMRLY* 

> AtOPL1 
MNLSADQAPVTAVDELAPPSQPHRLSTSCDLHPEERFSGFCPSCLCDRLSVLDHNAAPPPSSSSRK
PPSISAVSLKALFKPSSSGTNNSNGNGRVRPGFFPELRRTKSFSAKNNEGFSGGFEPQRRSCDVRL
RDDERNLPINEAASVDKIEEEARESSVSEIVLEVTEEAEIEEDEENGEKDPGEIVEEKSSEIGEEE
EELKPMKDYMDLYSQTKKPSVKDFAGSFFSAASVFSKKLQKWKQKQKVKKPRNGVGGGRPQSEIGV
GRRSSDTDPRFSLDAGRFSVDIGRISMDDSRYSLDEPRASWDGHLIGRTTAARVPLPPSMLSVVEN
APLNRSDMQIPSSPSIKPISGDSDPIIIIPGGSNQTRDYYTGPPSSRRRKSLDRSNSIRKIVTELE
DVKSVSNSTTTIDSNSMETAENKGNQNGDKKSRRWGKWSILGFIYRKGKDDEEEDRYSRSNSAGMV
ERSLSESWPEMRNGEGGGPKMRRSNSNVSWRSSGGGSARNKSSRYSSKDGENGMLRFYLTPMRRSW
KTSGGSGGGGGGGGGGGWEKTAAKANSHGHSIARRVMRLY* 

> AtOPL2 
MVMNNPANNNPVAASSASAVALAPPPHPPQPHRPSTSCDRHPDERFTGFCPSCLFDRLSVLDITGK
NNNAVASSSKKPPSSSAALKAIFKPSSSSGSFFPELRRTKSFSASKAEAFSLGAFEPQRRSCDVRV
RNTLWSLFHEDAEHNSQTKEGLSVNCSEIDLERINSIVKSPVFEEETEIESEQDNEKDIKFETFKE
PRSVIDEIVEEEEEEETKKVEDFTMEFNPQTTAKKTNRDFKEIAGSFWSAASVFSKKLQKWRQKQK
LKKHRTGNLGAGSSALPVEKAIGRQLRDTQSEIAEYGYGRRSCDTDPRFSIDAGRFSLDAGRVSVD
DPRYSFEEPRASWDGYLIGRAAAPMRMPSMLSVVEDSPVRNHVHRSDTHIPVEKSPQVSEAVIDEI
VPGGSAQTREYYLDSSSSRRRKSLDRSSSTRKLSASVMAEIDELKLTQDREAKDLVSHSNSLRDDC
CSVENNYEMGVRENVGTIECNKKRTKKSRWSWNIFGLLHRKNGNKYEEEERRSGVDRTFSGSWNVE
PRNGFDPKMIRSNSSVSWRSSGTTGGGLQRNSVDGYISGKKKVSKAENGMLKFYLTPGKGRRRGSG
NSTAPTSRPVPASQPFGSRNVMNFY* 

> AtOPL3 
MANVKQTNRRRSSSSCHRHPSAKPTSGFCASCLRERLVTIEAQSSSLAAVQTPELRRIRSYSVRNA
SVSVSDQPRRRSCDVRSSASSLLDLFVDDDEERVDSSIRKPLVPDLKEEEEEEEEEEDYYDGEDIK
GFDEGKPRKIVEENKTMKEFIDLDWRNQIKKNNGKDLKEIASVLSRRLKNFTLNKRNDEKSDSRFA
GIVNGRHSSDVDPRLSFDGGRISFEKPRSSWDGCLIEKSYHKLTTLSTVTEDAKAKCGVEEEEVEE
KEKSPGGTVQTKNYYSDSRRRRSFDRSVSIKRQGLLEVDELRGISNAKVSPETVGLFHGAKLLVTE
KELRDSNWYSIKNVKPESKELVSKGKICIAAGGEGKKQDSVELKKPRKKWPKGWNIWGLIQRKNEA
KNEIKTEQILKLEGNAVEGSLAESLLKLRRVGKGETNVGVSEKLLKSYSVSARKSCDGVRSGANIV
SGFEGGRSSCDGLFHGSINSVEAGRNSCDGLVNGIEGKQNHHLLQRNANVGTCSQENLEKSMFRFY
LSPVKSHKTSKSGKSRLKN* 

> AtOPL4 
MTHQTHQRRRRRHSAVCHRHPSSKPTTGFCATCLRERLSTIEALSSSVSASTELRRVRSYSVRDAS
ASVLDQPRRRSCDVRSNHDDDDDDELLKSSIRFPIVPDLIEDEEEEDDEGKKLVEEEIEDGEQKTM
KELIDLESRNQQLKNNGKDSVFSRTLRKFSLKHHRKIPDSGNSLGRRSCDVDPRLSLDAGRVSFDE
PRASWDGCLIGKTYPKLIPLSSVTEDVKASPEKITGEKVEEDEKNNPGGTAQTRDYYLDSRRRRSF
DRSSRHGLLEVDELKAISNAKVSPETVGLFHGAKLLVTERELRDSNWYSIKNYKPESLELGSKGVG
CVAAGEVKKQDGFGLKKSGKNWSKGWNFWGLIQRKTDVAKNEMKTEQSLKLGGNTMEGSLAESLLK
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LRRVAKGETNGDVSEKLIRSYSVSARKSCDGMLRGASIVNGFEGGRSSCDGLFHGSITGVETG
RRSLCEDGMFHGVEGKRNHLLQSDDKLGTYSPDNLRNGMVRFYLTPLNSHMTSKSGKSRLMN* 

> BdOPSL1 
MTLQMEPPAPPPRRSVSTSCDLHPDENFTGFCTACLRERLAGLEATAAAAAAPGRKSTSAIRSLFS
RPFAAAPSGSGSGAAPPDLRRCKSFSCGRGGAGAAVDEPQRRSCDVRGRSTTTTLWSLFHQDDRER
VRDGTAFGAFPASSSAAAAALPAEFQQQPCVPEVFLEEEIVAAECPDEITPVVEEPISAEMEAEAN
SAAREVRAMKDHIDLESRKPPPKDLKEIAGSFWLAASVFSKKWQKWRRKQKLKKEEAATGSKAAAA
AMPPSEKPSRPSFLRRSRLRGEEFAGGRRSCDTDPRFSLDAARMSVDDVGLSWDGPRASWDGYLFG
AGSGIGLGRAPLPMSRLPPILSALEDSPAGIVERSDGQIPVEDDSQPEPDGDVPGGSAQTRDYYMD
SSSSRRRRSLDRSSSSARRRSFEVPDPKPAPAAAAAITNTKDKESPLNGSSEFYHFHHAQDLLDHR
FSSNSLIEDFPASLDAAFPGPAAKKPRRLRKAWSLWGFIHRRATGRARNGGASDRAFSEPWPELRA
RGYNARMQRCSSNASARSSFSSNNCGLGSSRRSFVDGKCGGNVKRQREECVLERNRSARYSPPVHA
ADNGMLRFYLTPMGSASGRRTPGPGLPANGGRHLGSHSFTRNMLRLY* 

> BdOPSL2 
MSLAMDPPAPPARRSSATSCDLHPDEAFTGFCAACLRERLAGLEASAAAASAPGRKSTSAIRPFAA
AGGSGSSAPGAAEPPDLRRCKSFSCGRGGDVLSAAAAAAAARAGDEPQRRSCDVRGRSTLWALFHQ
DDRDRVRDGTAFGSFPVSSSVAAALTADVALPLPQPPPLQRPCVMEDFSEEDIPVVMECDEIMPVV
ELEPVHGVDTSGEIKEVEANVARDVKAIKDHIDLESSEPKTKPTPKDLKEIAGSFWEAASVFSKKW
QKWRRKQKLKKEAAVSKAAAAAMPPPEKPSKPSFLRRRRLRGEAGSEHALGRRSCDTDPRFSLDAG
RMSIDDAGFSWDEPRASWDGYLFGAGGGIGLGRAPPPLSRLPPILSVMEDAPAAVVERSDGQIPVE
DDADLEPPGGTFQTRDYYLDSSSRRRRSLERSSSVRRPSFEVPEPKPIPAAAAAIGNESPIAIGGS
EFYHFHHAEDLLDRGFSSNSLVEDISASLEAALSGPSSSKKPPRWRKAWSLWGFIHRRAAGRRTGG
GGGGPSDIADRSFSEPWPDLRVRGGNPKMQRCNSNLSARSSFSSNSGGLGSSRRSYVDMNGNVKLR
RGEEHAQAHALERNRSARHSPPGRVDNGMLRFYLTPMRSGGGGGGVVRRVGGGGLPGKAGRQLTSQ 
SFARSVLRLY* 

> BdOPSL3 
MDQPPPVPSICGLHPGIAVTGFCSACLRERLAGLHPADPAELRRCKSFSYARSAAAYFEPQRRSCD
ARGAAIFHHQDLPPGHGEDELEDVPPTSTVRPMKDHISQDSSKKTTFGGGLGKKWQEWRRKSKLKK
QGPAAPAVATAAASRAAIDAHRSFRDTHSEVAIGRRSVDVDSSRLWMDAGRISVDEPPRASWQRLP
PTVEDAPIPRSDGQIPVEEEDDDAEPGGCAQTRDYYLDSSSSSRRRRSVDRSSFSSRKSFSDTNDL
PRVIAAANANARVSPAIGAEFYHYHHHAQGQSVLDHNQHWELHGPNSYSLRDDDMSGSFNSAAFQE
GVPVPLPAKKSNKWIKNIWGLIHKKSSTKESQAASIANRSFSETWPELRARGYNGQMLRCNSSVSA
RSSFSNSGAAVGAVNGRRRSNAEMHVNGLGRARKDEVLLERNFSARYSTCPVDNGVFLNPVGGSRR
HQNGMSGKGRPARSSNSLPRSALGMY* 

> Bradi1g75160 (BdOPSL4)  
MEVGLPGVAGRCGRHPAQLVTGVCSSCLVERLSSVRSPSHPEIVEVAATAAAQTEIVEVGTTGDSG
EGGGSVSGAGEGKLRKTLMLLFQMDDSGGDAATASPPPEAAKDPGVFEVEPGGGGGGGARGNKWKR
GSWLRSILPKRGMMRRGKKEEEEEPSRPRGEVSVDPDGGGDAQVERKASFRRSFEWMVCREPPSRG
GSLEPPRHSWDGSMVGRAFACSFACLEEPPDGVTRVRQSNAEEAAGETRAAVAESRNGGHSADMSS
GEVRRFGERSCGDTGPAMTVSGVGRRRSNRWSRVWDRSITSPLKEFVRKGEHVLDRSFSESRKETR
RCNNGETADIDGEIQPGRNGLVSGRASQVASRSSQASANGDAQNFRTDWLKNKDCKIGRSRSVHYT
SPGNMDNGMLRFYLTPMRSNRTTNRGRRRSSRLFARGLFGFV* 

 
Sequences for Clustal Omega alignments for BRI1 

> BdBRI1 
MDSLRVAIAAALFVAAVAVAVAASLSGWKAADGACRFPGAACRAGRLTSLSLAGVPLNADFRAVAA
TLLQLSGVEALSLRGANVSGALAAAGGARCGGKLEALDLSGNAALRGSVADVAALADSCAGLKKLN
LSGGAVGAAKAGGGGGAGFAALDVLDLSNNKITGDAELRWMVGAGVGSVRWLDLAWNRISGELPDF
TNCSGLQYLDLSGNLIDGDVAREALSGCRSLRALNLSSNHLAGAFPPNIAGLASLTALNLSNNNFS
GEVPADAFTGLQQLKSLSLSFNHFTGSIPDSLAALPELEVLDLSSNTFTGTIPSSICQDPNSSLRV
LYLQNNFLDGGIPEAISNCSNLVSLDLSLNYINGSIPESLGELAHLQDLIMWQNSLEGEIPASLSR
IRGLEHLILDYNGLSGSIPPDLAKCTQLNWISLASNRLSGPIPSWLGKLSNLAILKLSNNSFSGRV
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PPELGDCKSLVWLDLNNNQLNGSIPPELAEQSGKMSVGLIIGRPYVYLRNDELSSQCRGKGSL
LEFSSIRSEDLSRMPSKKLCNFTRVYMGSTEYTFNKNGSMIFLDLSFNQLDSEIPKELGNMFYLMI
MNLGHNLLSGPIPLELAGAKKLAVLDLSYNRLEGPIPSSFSTLSLSEINLSSNQLNGTIPELGSLA
TFPKSQYENNSGLCGFPLPPCQAHAGQSASDGHQSHRRQASLAGSVAMGLLFSLFCIFGLVIIAIE
SKKRRQKNEEASTSHDIYIDSRSHSGTMNSNWRLSGTNALSINLAAFEKPLQKLTLGDLVEATNGF
HNDSLIGSGGFGDVYKAQLKDGRIVAIKKLIHVSGQGDREFTAEMETIGKIKHRNLVPLLGYCKIG
EERLLMYDYMQFGSLEDVLHDRKKIGVKLNWPARRKIAIGAARGLAFLHHNCIPHIIHRDMKSSNV
LVDENLEARVSDFGMARMMSVVDTHLSVSTLAGTPGYVPPEYYQSFRCTTKGDVYSYGVVLLELLT
GKPPTDSADFGEDNNLVGWVKLHAKLKIIDVFDPELLKDDPSLELELLEHLKIACACLEDRPTRRP
TMLKVMTMFKEIQAGSTVDSKTSSVATGLSDDVGFGVVDMTLKEAKEEKD* 
 
> Bradi1g72572 
MTRRRRLSCGRWRTTVSSALCLAVLLLLLSPVAADGDDDDDEQLLERFKAAVPVRNRGQLEGWTRG
DGACRFPGAVCVSVSGVRTRLASLSLAGVPLDVDFRAVAGTLLRLGGVEGISLRGANVSGSLAPGG
GRCGQNLAELDLSGNPALRGSVADAGALAASCRGLRELNLSGDGDLSWMGGVRRLNLAWNRISGSL
FPAFPNCSRMESLDLFGNLISGELLPGVLSGCTALTSLNLSSNHLSGPFPPEISGLALLSYLDLSN
NNFSGELPRDAFARLPRLSLLSLSFNSFSGSLPESMDALAELRTLDLSSNLLTGAIPASLCPSTGS
KLQVLYLQNNYLTGGIPPAISNCASLESLDLSLNYINGSIPISIGSLSRLRNLIMWENELEGEIPA
SLAGARGLQNLILDYNGLTGSIPPELVNCKDLNWISLGSNQLSGSVPAWLGRLDKLAILKLSNNSF
SGPIPPELGDCKRLVWLDLNDNQLNGSIPPELAKQSGKMPVGITTGRPYVYLRNDELSSECRGKGI
LLEISGIRRGDLTRMASKKLCNFTMVYMGSTDYTSSDNGSIIFLDLSFNKLDSEIPKELGNMYYLM
IMNLAHNLLSGAIPAELGGARKLAVLDLSHNQLEGPIPGPFTSLSLSEVNLSYNRLNGSIPELGSL 
ATFPESQYENNSGLCGFPLAPCGSALVPFLQRQDKSRSGNNYYVLKILLPAVAVGFGAIAICLSYL
FVRKKGEVTASVDLADPVNHQLVSHLELVRATDNFSEDNILGSGSFGKVFKGQLSNGSVVAIKVLD
MVSKRAIRSFDAECRVLRMARHRNLIRIINTCSNMDFRALMLQYMPNGNLETLLHCSQAGERQFGF
QERLEVMLGVSMAMEYLHHDYHQVVLHCDLKPSNVLFDENMIAHVADFGIARLLLQGDDSSMISAR
LHGTIGYMSPEYGSDGKASRKSDVFSYGIMLLEVFTGRRPTDAMFIGELSLRKWVHRLFPAELVNV
VDGRLLQGSSSSCCLDGGFLVPILEIGLLCSSDSPNERMRMSDVVVRLKKIKTEYTTWTTSTFGKA
GSCHMSM* 
 
> Bradi4g27440 
MAAAPTFTAAFFFLLVLLQVPAPAIASAEEAAALLAFRRVSVTADPRGALASWAPASTGANSTAPC
SWAGVSCAPSTDGRVVAVNLSGMDLAGELRLGALLALPALQRLDLRGNAFYGNLSHSASSSCALVE
VDISSNAFNATVPPAFLASCGSLQTLNLSRNSLTGGGFPFAPSLASLDLSRNRLADAGLLNYSFAG
CHGLRYLNLSANLFTGRLPEQLASCSAVTTLDVSWNLMSGALPAVLMATAPANLTYLSIAGNNFTG
DVSGYDFGRCANLTVLDWSYNGLSSTRLPPGLANCSRLEALDMSGNKLLSGSIPTFFTGFTSLRRL
ALAGNEFAGPIPGELSQLCGRIVELDLSNNGLVGALPASFAKCNSLEVLDLGGNQLSGDFVATVIS
TISSLRMLRLSFNNITGANPLPVLAAGCPLLEVIDLGSNEFNGEIMPDLCSSLPSLRKLFLPNNYL
NGTVPTLLGNCANLESIDLSFNFLVGQIPPEIITLPKLVDLVVWANGLSGKIPDILCSNGTTLETL
VISYNNFTGIIPPSITRCVNLIWVSLSGNRLTGSVPPGFAKLQKLAILQLNKNLLSGRVPAELGSC
NNLIWLDLNSNSFTGTIPSELAGQAELVPGGIASGKQFAFLRNEAGNICPGAGVLFEFFGIRPERL 
AEFPAVHLCPSTRIYTGTMDYTFSKNGSMIFLDLSYNGLTGAIPGSLGNLMYLQVLNLGHNELSGT
IPEAFSSLKSIGALDLSNNQLSGGIPSGLGGLNFLADFDVSNNNLTGSIPSSGQLTTFPASRYDNN
TALCGIPLPPCGHDPGRGNGGRASPDGRRKVIGASILVGVALSVLILLLLLVTLCKLRKNQKTEEM
RTEYIESLPTSGTTSWKLSGVPEPLSINVATFEKPLRKLTFAHLLEATNGFSAETLVGSGGFGEVY
KAKLKDGSVVAIKKLIHYTGQGDREFTAEMETIGKIKHRNLVPLLGYCKIGDERLLVYEYMKHGSL
DVVLHDNDKAIVKLDWAARKKIAIGSARGLAFLHHSCIPHIIHRDMKSSNVLLDNNLDARVSDFGM
ARLMNALDTHLSVSTLAGTPGYVPPEYYQSFRCTTKGDVYSYGVVLLELLSGKKPIDPNEFGDNNL
VGWVKQMVKENRSSDIFDPTLTDTKSGEAELYQYLKIASECLDDRPIRRPTMIQVMAMFKELQLDS
DSDFLDGFSINSSTIDESAEKSS* 
 
> Bradi3g21400 
MAMDKLFLLLPIVLLLLSSVSSETDDAGALLRFKASVHKDPRNLLSSWQQAASGSGGNGNGTYYCS
WYGVSCDGDGRVSRLDLSGSGLAGRASFAALSFLEALRQLNLSGNTALTANATGDLPKLPRALETL
DLSDGGLAGALPDGDMQHRFPNLTDLRLARNNITGELSPSFASGSTTLVTLDLSGNRLTGAIPPSL
LLSGACKTLNLSYNALSGAMPEPMVSSGALEVLDVTSNRLTGAIPRSIGNLTSLRVLRASSNNISG
SIPESMSSCGALRVLELANNNVSGAIPAAVLGNLTSLESLLLSNNFISGSLPATIASCKSLRFVDL
SSNKISGSLPDELCAPGAAAALEELRMPDNLLTGAIPPGLANCTRLKVIDFSINYLSGPIPKELGR
LGDLEQLVAWFNGLDGRIPAELGQCRSLRTLILNNNFIGGDIPVELFNCTGLEWVSLTSNRISGGI
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RPEFGRLSRLAVLQLANNTLSGTVPKELGNCSSLMWLDLNSNRLTGEIPLRLGRQLGSTPLSG
ILAGNTLAFVRNAGNACKGVGGLVEFAGIRPERLLEVPTLKSCDFTRLYSGAAVSGWTRYQMTLEY
LDLSYNSLNGTIPVELGDMVVLQVLDLARNKLTGEIPASLGRLHDLGVFDVSHNRLQGGIPESFSN
LSFLVQIDVSDNDLTGEIPQRGQLSTLPASQYADNPGLCGMPLLPCSDLPPRATMSGLGPAPDSRS
SNKKRSLRANVLILAALVTAGLACAAAIWAVAVRARRRDVREARMLSSLQDGTRTATTWKLGKAEK
EALSINVATFQRQLRKLTFTQLIEATNGFSAASLIGSGGFGEVFKATLKDGSCVAIKKLIPLSHQG
DREFMAEMETLGKIKHKNLVPLLGYCKIGEERLLVYEYMTHGSLEDTLHLRRHDGDGGSGAPSSLS
WEQRKKVARGAAKGLCFLHHNCIPHIIHRDMKSSNVLLDAAMEAHVADFGMARLISALDTHLSVST
LAGTPGYVPPEYYQSFRCTAKGDVYSLGVVLLELLTGRRPTDKEDFGDTNLVGWVKMKVREGTGKE
VVDPELLKAAAAVNETEKEMMMFMEIALQCVDDFPSKRPNMLQVVAVLRELDAPPQERLPAVA* 
 
> AtBRI1 
MKTFSSFFLSVTTLFFFSFFSLSFQASPSQSLYREIHQLISFKDVLPDKNLLPDWSSNKNPCTFDG
VTCRDDKVTSIDLSSKPLNVGFSAVSSSLLSLTGLESLFLSNSHINGSVSGFKCSASLTSLDLSRN
SLSGPVTTLTSLGSCSGLKFLNVSSNTLDFPGKVSGGLKLNSLEVLDLSANSISGANVVGWVLSDG
CGELKHLAISGNKISGDVDVSRCVNLEFLDVSSNNFSTGIPFLGDCSALQHLDISGNKLSGDFSRA
ISTCTELKLLNISSNQFVGPIPPLPLKSLQYLSLAENKFTGEIPDFLSGACDTLTGLDLSGNHFYG
AVPPFFGSCSLLESLALSSNNFSGELPMDTLLKMRGLKVLDLSFNEFSGELPESLTNLSASLLTLD
LSSNNFSGPILPNLCQNPKNTLQELYLQNNGFTGKIPPTLSNCSELVSLHLSFNYLSGTIPSSLGS
LSKLRDLKLWLNMLEGEIPQELMYVKTLETLILDFNDLTGEIPSGLSNCTNLNWISLSNNRLTGEI
PKWIGRLENLAILKLSNNSFSGNIPAELGDCRSLIWLDLNTNLFNGTIPAAMFKQSGKIAANFIAG
KRYVYIKNDGMKKECHGAGNLLEFQGIRSEQLNRLSTRNPCNITSRVYGGHTSPTFDNNGSMMFLD
MSYNMLSGYIPKEIGSMPYLFILNLGHNDISGSIPDEVGDLRGLNILDLSSNKLDGRIPQAMSALT
MLTEIDLSNNNLSGPIPEMGQFETFPPAKFLNNPGLCGYPLPRCDPSNADGYAHHQRSHGRRPASL
AGSVAMGLLFSFVCIFGLILVGREMRKRRRKKEAELEMYAEGHGNSGDRTANNTNWKLTGVKEALS
INLAAFEKPLRKLTFADLLQATNGFHNDSLIGSGGFGDVYKAILKDGSAVAIKKLIHVSGQGDREF
MAEMETIGKIKHRNLVPLLGYCKVGDERLLVYEFMKYGSLEDVLHDPKKAGVKLNWSTRRKIAIGS
ARGLAFLHHNCSPHIIHRDMKSSNVLLDENLEARVSDFGMARLMSAMDTHLSVSTLAGTPGYVPPE
YYQSFRCSTKGDVYSYGVVLLELLTGKRPTDSPDFGDNNLVGWVKQHAKLRISDVFDPELMKEDPA
LEIELLQHLKVAVACLDDRAWRRPTMVQVMAMFKEIQAGSGIDSQSTIRSIEDGGFSTIEMVDMSI
KEVPEGKL* 

 
> AtBRL1 
MKQRWLLVLILCFFTTSLVMGIHGKHLINDDFNETALLLAFKQNSVKSDPNNVLGNWKYESGRGSC
SWRGVSCSDDGRIVGLDLRNSGLTGTLNLVNLTALPNLQNLYLQGNYFSSGGDSSGSDCYLQVLDL
SSNSISDYSMVDYVFSKCSNLVSVNISNNKLVGKLGFAPSSLQSLTTVDLSYNILSDKIPESFISD
FPASLKYLDLTHNNLSGDFSDLSFGICGNLTFFSLSQNNLSGDKFPITLPNCKFLETLNISRNNLA
GKIPNGEYWGSFQNLKQLSLAHNRLSGEIPPELSLLCKTLVILDLSGNTFSGELPSQFTACVWLQN
LNLGNNYLSGDFLNTVVSKITGITYLYVAYNNISGSVPISLTNCSNLRVLDLSSNGFTGNVPSGFC
SLQSSPVLEKILIANNYLSGTVPMELGKCKSLKTIDLSFNELTGPIPKEIWMLPNLSDLVMWANNL
TGTIPEGVCVKGGNLETLILNNNLLTGSIPESISRCTNMIWISLSSNRLTGKIPSGIGNLSKLAIL
QLGNNSLSGNVPRQLGNCKSLIWLDLNSNNLTGDLPGELASQAGLVMPGSVSGKQFAFVRNEGGTD
CRGAGGLVEFEGIRAERLERLPMVHSCPATRIYSGMTMYTFSANGSMIYFDISYNAVSGFIPPGYG
NMGYLQVLNLGHNRITGTIPDSFGGLKAIGVLDLSHNNLQGYLPGSLGSLSFLSDLDVSNNNLTGP
IPFGGQLTTFPVSRYANNSGLCGVPLRPCGSAPRRPITSRIHAKKQTVATAVIAGIAFSFMCFVML
VMALYRVRKVQKKEQKREKYIESLPTSGSCSWKLSSVPEPLSINVATFEKPLRKLTFAHLLEATNG
FSAETMVGSGGFGEVYKAQLRDGSVVAIKKLIRITGQGDREFMAEMETIGKIKHRNLVPLLGYCKV
GEERLLVYEYMKWGSLETVLHEKSSKKGGIYLNWAARKKIAIGAARGLAFLHHSCIPHIIHRDMKS
SNVLLDEDFEARVSDFGMARLVSALDTHLSVSTLAGTPGYVPPEYYQSFRCTAKGDVYSYGVILLE
LLSGKKPIDPGEFGEDNNLVGWAKQLYREKRGAEILDPELVTDKSGDVELFHYLKIASQCLDDRPF
KRPTMIQLMAMFKEMKADTEEDESLDEFSLKETPLVEESRDKEP* 
 
> AtBRL2 
MTTSPIRVRIRTRIQISFIFLLTHLSQSSSSDQSSLKTDSLSLLSFKTMIQDDPNNILSNWSPRKS
PCQFSGVTCLGGRVTEINLSGSGLSGIVSFNAFTSLDSLSVLKLSENFFVLNSTSLLLLPLTLTHL
ELSSSGLIGTLPENFFSKYSNLISITLSYNNFTGKLPNDLFLSSKKLQTLDLSYNNITGPISGLTI
PLSSCVSMTYLDFSGNSISGYISDSLINCTNLKSLNLSYNNFDGQIPKSFGELKLLQSLDLSHNRL
TGWIPPEIGDTCRSLQNLRLSYNNFTGVIPESLSSCSWLQSLDLSNNNISGPFPNTILRSFGSLQI
LLLSNNLISGDFPTSISACKSLRIADFSSNRFSGVIPPDLCPGAASLEELRLPDNLVTGEIPPAIS
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QCSELRTIDLSLNYLNGTIPPEIGNLQKLEQFIAWYNNIAGEIPPEIGKLQNLKDLILNNNQL
TGEIPPEFFNCSNIEWVSFTSNRLTGEVPKDFGILSRLAVLQLGNNNFTGEIPPELGKCTTLVWLD
LNTNHLTGEIPPRLGRQPGSKALSGLLSGNTMAFVRNVGNSCKGVGGLVEFSGIRPERLLQIPSLK
SCDFTRMYSGPILSLFTRYQTIEYLDLSYNQLRGKIPDEIGEMIALQVLELSHNQLSGEIPFTIGQ
LKNLGVFDASDNRLQGQIPESFSNLSFLVQIDLSNNELTGPIPQRGQLSTLPATQYANNPGLCGVP
LPECKNGNNQLPAGTEEGKRAKHGTRAASWANSIVLGVLISAASVCILIVWAIAVRARRRDADDAK
MLHSLQAVNSATTWKIEKEKEPLSINVATFQRQLRKLKFSQLIEATNGFSAASMIGHGGFGEVFKA
TLKDGSSVAIKKLIRLSCQGDREFMAEMETLGKIKHRNLVPLLGYCKIGEERLLVYEFMQYGSLEE
VLHGPRTGEKRRILGWEERKKIAKGAAKGLCFLHHNCIPHIIHRDMKSSNVLLDQDMEARVSDFGM
ARLISALDTHLSVSTLAGTPGYVPPEYYQSFRCTAKGDVYSIGVVMLEILSGKRPTDKEEFGDTNL
VGWSKMKAREGKHMEVIDEDLLKEGSSESLNEKEGFEGGVIVKEMLRYLEIALRCVDDFPSKRPNM
LQVVASLRELRGSENNSHSHSNSL* 

 
> AtBRL3 
MKQQWQFLILCLLVLFLTVDSRGRRLLSDDVNDTALLTAFKQTSIKSDPTNFLGNWRYGSGRDPCT
WRGVSCSSDGRVIGLDLRNGGLTGTLNLNNLTALSNLRSLYLQGNNFSSGDSSSSSGCSLEVLDLS
SNSLTDSSIVDYVFSTCLNLVSVNFSHNKLAGKLKSSPSASNKRITTVDLSNNRFSDEIPETFIAD
FPNSLKHLDLSGNNVTGDFSRLSFGLCENLTVFSLSQNSISGDRFPVSLSNCKLLETLNLSRNSLI
GKIPGDDYWGNFQNLRQLSLAHNLYSGEIPPELSLLCRTLEVLDLSGNSLTGQLPQSFTSCGSLQS
LNLGNNKLSGDFLSTVVSKLSRITNLYLPFNNISGSVPISLTNCSNLRVLDLSSNEFTGEVPSGFC
SLQSSSVLEKLLIANNYLSGTVPVELGKCKSLKTIDLSFNALTGLIPKEIWTLPKLSDLVMWANNL
TGGIPESICVDGGNLETLILNNNLLTGSLPESISKCTNMLWISLSSNLLTGEIPVGIGKLEKLAIL
QLGNNSLTGNIPSELGNCKNLIWLDLNSNNLTGNLPGELASQAGLVMPGSVSGKQFAFVRNEGGTD
CRGAGGLVEFEGIRAERLEHFPMVHSCPKTRIYSGMTMYMFSSNGSMIYLDLSYNAVSGSIPLGYG
AMGYLQVLNLGHNLLTGTIPDSFGGLKAIGVLDLSHNDLQGFLPGSLGGLSFLSDLDVSNNNLTGP
IPFGGQLTTFPLTRYANNSGLCGVPLPPCSSGSRPTRSHAHPKKQSIATGMSAGIVFSFMCIVMLI
MALYRARKVQKKEKQREKYIESLPTSGSSSWKLSSVHEPLSINVATFEKPLRKLTFAHLLEATNGF
SADSMIGSGGFGDVYKAKLADGSVVAIKKLIQVTGQGDREFMAEMETIGKIKHRNLVPLLGYCKIG
EERLLVYEYMKYGSLETVLHEKTKKGGIFLDWSARKKIAIGAARGLAFLHHSCIPHIIHRDMKSSN
VLLDQDFVARVSDFGMARLVSALDTHLSVSTLAGTPGYVPPEYYQSFRCTAKGDVYSYGVILLELL
SGKKPIDPEEFGEDNNLVGWAKQLYREKRGAEILDPELVTDKSGDVELLHYLKIASQCLDDRPFKR
PTMIQVMTMFKELVQVDTENDSLDEFLLKETPLVEESRDKEP* 


