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Summary 

Tumors are often compared to wounds that do not heal, where the crosstalk between 

tumor cells and their surrounding stroma is crucial at all stages of development, from the 

initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor 

stroma differentiate into myofibroblasts, also referred to as “cancer-associated 

fibroblasts” (CAFs), primarily, but not exclusively, in response to transforming growth 

factor-β (TGF-β). Myofibroblasts in turn enhance tumor progression by remodeling the 

stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases 

(MMPs), and MMP-9 in particular, play a prominent role. However, the mechanisms that 

regulate MMP-9 activation and function remain poorly understood. Recent evidence 

indicates that tumor cell surface association of MMP-9 is an important event in its 

activation, and more generally in tumor growth and invasion.  

In the present work we address the potential association of MMP-9 activity with cell-

surface recruitment to human fibroblasts. We show for the first time that recruitment of 

MMP-9 to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) 

domain, shared only by MMP-9 and MMP-2 among all the MMPs. Functional assays 

suggest that both the pro- and active form of MMP-9 trigger α-smooth muscle actin 

(αSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, 

possibly through TGF-β activation. Moreover, the FN domain of MMP-9 inhibits both 

MMP-9-induced TGF-β activation and αSMA expression by sequestering MMP-9. 

Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 

breast adenocarcinoma cells stably expressing the FN domain of MMP-9 revealed no 

changes in primary tumor growth. However, in the context of metastasis, expression of 

the FN domain by these same tumor cells dramatically increased their metastatic 

proclivity whereas expression of wt MMP-9 either promoted no change or actually 

reduced the number of metastases. We observed a decrease of an active form of MMP-9 

in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may 

inhibit MMP-9 activity in those cells and therefore prevent MMP-9-induced activation of 

TGF-β, which results in increased invasion. Curiously, xenografts of SW480 colorectal 

adenocarcinoma cells stably expressing the FN domain of MMP-9 displayed reduced 
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growth at both the primary (subcutaneous) injection site and the lungs of NOD/SCID 

mice, in experimental metastasis assays, whilst the same cells overexpressing wt MMP-9 

showed enhanced growth and dissemination. Gelatin zymography of conditioned 

medium revealed that these effects may be due to the FN domain, which displaces MMP-

9 from SW480 cell surface.  

These observations suggest a dual role of MMP-9 and its FN domain in primary tumor 

growth and metastasis, underscoring the notion that the effect of MMP-9 on tumor cells 

may depend on the cell type and highlighting possible protective effects of MMPs in 

tumor progression. 
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Résumé 

Une tumeur est souvent comparée à une plaie qui ne guérira jamais. En effet, les 

interactions entre les cellules tumorales et le tissu péritumoral ou stroma, jouent un rôle 

crucial durant toutes les étapes du développement, de la tumeur primaire à la formation 

de métastases. De manière similaire aux phénomènes observés lors de la guérison d’une 

plaie, les fibroblastes du stroma tumoral se différencient en myofibroblastes, ainsi 

appelés « fibroblastes associés au cancer » (CAF), et ce, principalement en réponse au 

signal du facteur de croissance transformant-β (TGF-β). Les myofibroblastes promeuvent 

alors la progression de la tumeur en remodelant le stroma. Parmi les molécules 

impliquées dans le remodelage du stroma, les métalloprotéinases de la matrice (MMPs), 

et plus particulièrement MMP-9, jouent un rôle prédominant. Cependant, les mécanismes 

régulant l’activation et la fonction de MMP-9 restent peu compris. Des études récentes 

indiquent que l’association de MMP-9 à la surface des cellules tumorales s’avère être un 

processus important dans son activation, et plus généralement dans la croissance et 

l’invasion tumorales.  

Dans cette étude, nous nous sommes intéressés à la potentielle association entre 

l’activité de MMP-9 et son recrutement à la surface des fibroblastes humains. Nous avons 

montré, pour la première fois, que le recrutement de MMP-9 à la surface cellulaire des 

fibroblastes MRC-5 survient via le domaine fibronectine type II (FN), présent uniquement 

chez MMP-9 et MMP-2 parmi toutes les MMPs. Des essais fonctionnels suggèrent que 

tant la pro-forme que la forme active de MMP-9 induisent l’expression de l’α-actine des 

muscles lisses (αSMA) dans les fibroblastes indifférenciés, reflétant ainsi leur 

différentiation en myofibroblastes, possiblement via l’activation de TGF-β. De plus, le 

domaine FN de MMP-9 la séquestre et inhibe ainsi son activité, ce qui engendre une 

diminution à la fois de l’expression de αSMA et de l’activation de TGF-β.  

Des expériences de xénogreffes dans des souris NOD/SCID, utilisant d’une part des 

cellules d’un fibrosarcome (HT1080) et, d’autre part, celles d’un adénocarcinome 

mammaire (MDA-MB231), tous deux exprimant le FN domaine de MMP-9, n’ont révélés 

aucun changement dans la croissance de la tumeur primaire. Néanmoins, dans le 
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contexte des métastases, l’expression du domaine FN par ces mêmes cellules augmente 

dramatiquement leur potentiel métastatique et ceci, bien que l’expression de MMP-9 

n’induise peu ou pas de changement ou alors réduit le nombre de métastases. Nous 

avons observé une diminution de l’une des formes actives de MMP-9 dans les cellules 

MDA-MB231 surexprimant le domaine FN. Ceci suggère que ce domaine pourrait inhiber 

l’activité de MMP-9 dans ces cellules et de ce fait empêcher l’activation de TGF-β, 

entraînant ainsi une augmentation de l’invasion. Curieusement, les xénogreffes de 

cellules d’un adénocarcinome colorectal (SW480) exprimant de manière stable le 

domaine FN de MMP-9 ont montré une diminution de la croissance de la tumeur primaire 

ainsi que de la formation de métastases dans les poumons des souris NOD/SCID. 

Cependant, ces mêmes cellules surexprimant MMP-9 manifestaient une augmentation, à 

la fois de la croissance de la tumeur primaire, et du nombre de métastases. Une 

zymographie en gel de gélatine, utilisant le milieu conditionné de ces cellules, a révélé 

que ces effets pourraient être dû au fait que le domaine FN déplace MMP-9 de la surface 

des cellules SW480. 

Ces observations suggèrent que MMP-9 et son domaine FN peuvent présenter des 

fonctions divergentes dans le développement de la tumeur primaire, ainsi que dans la 

formation de métastases en fonction du type cellulaire, soulevant ainsi l’idée d’un 

potentiel rôle protecteur de MMP-9 face à la progression tumorale. 
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Introduction 

Cancer is the second leading cause of disease related demise worldwide, accounting for 

7.6 million deaths in 2008 [World Health Organization]. Among cancer patients, metastasis 

is the principal cause of death [1]. Surgery is the first and major therapeutic strategy to 

cure cancer, most often in association with chemo- and radiation therapy. However, 

primary tumors and particularly metastasis are associated with acquisition of resistance 

to cytotoxic agents that renders the disease incurable with the existing therapeutic 

arsenal. It is therefore necessary to develop novel and more specific therapeutic 

strategies to selectively target metastatic cells. One such potentially important approach 

would be to exploit tumor-host crosstalk events to impair the ability of metastatic cells to 

survive, grow and invade without affecting the biology of normal cells [1, 2].  

Importance of the stroma in tumor development 

Tumor progression has been traditionally seen as a multistep process defined by the 

accumulation of genetic changes, each of which may confer growth and survival 

advantage required for subsequent dissemination [3]. This cell-centric point of view 

ignores that cancers are heterogeneous multicellular entities, resembling entire organs, 

whose growth depends upon reciprocal dynamic interactions between genetically altered 

transformed cells and the surrounding host tissue microenvironment [4]. Although 

Paget’s “seed and soil” hypothesis dates back to 1889, only in recent years has tumor 

progression been recognized as the product of an evolving crosstalk between different 

cell types within the tumor and its surrounding supporting tissue or tumor stroma [5, 6]. 

The tumor stroma encompasses the extracellular matrix (ECM), diffusible growth factors 

and cytokines and several non-epithelial cell types, including those that compose the 

vasculature (endothelial cells, pericytes and smooth muscle cells), the immune system 

(lymphocytes, macrophages and mast cells) and the supportive and connective tissue 

(fibroblasts) [7].  All these elements of tumor stroma have been shown to support tumor 

growth and invasion [4]. Indeed, during epithelial tumor invasion, the breakdown of the 

basement membrane allows the first and direct contact between tumor cells and stromal 

cells, which mutually influence each other’s behavior and gene expression pattern [8]. A 
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key feature of tumor-host dynamics is their striking similarity to wound healing; in fact in 

1986 Harold Dvorak compared tumors to “wounds that never heal” [9]. Wound healing 

consists of three overlapping steps: the inflammatory phase that removes bacteria and 

debris, the proliferative phase characterized by angiogenesis, granulation tissue 

formation and re-epithelialization, and the remodeling phase in which fibroblasts, and 

more particularly myofibroblasts, contract and collagen is deposited and cross-linked [10]. 

Figure 1. Importance of the crosstalk between tumor cells and stromal cells in tumor growth [6]. 
Tumor cells and stromal cells mutually influence each other’s behavior and gene expression pattern by secreting 
growth factors and proteases and creating an imbalance between proteases and their inhibitors. This leads to ECM 
remodeling and mobilization of diverse factors. Tumor- and stromal-derived factors can induce angiogenesis, recruit 
and activate inflammatory cells and fibroblasts and establish an activated stroma, supporting malignant tumor growth. 

Role of fibroblasts and cancer-associated fibroblasts (CAFs) in stroma 

remodeling 

Fibroblasts are the main cells implicated in tissue remodeling associated with injury as 

well as in the formation of tumor stroma and by regulating ECM turnover they act as 

prominent modulators of cancer progression. They synthesize constituents of fibrillar 

ECM (type I, III and V collagen and fibronectin), basement membranes (type IV collagen 
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and laminin) and growth factors for adjacent epithelial homeostasis [4, 11]. In addition, 

they are an important source of ECM-degrading proteases, including matrix 

metalloproteinases (MMPs) [11]. These cells are therefore largely responsible for the 

deposition of the ECM, regulation of epithelial differentiation and control of inflammation 

and tissue repair [11]. In the first days following injury, they proliferate, migrate into the 

wound bed and produce ECM molecules, including collagen and fibronectin and also 

chemokines and growth factors that attract and activate epithelial cells. Similar to wound 

healing, the host tissue stroma undergoes major morphological and functional alterations 

in response to tumor growth, leading to what is commonly referred to as activated 

stroma, in which fibroblasts differentiate into myofibroblasts also referred to as cancer-

associated fibroblasts (CAFs) [6]. 

Myofibroblasts typically express α-smooth muscle actin (αSMA), vimentin, desmin and 

fibroblast activation protein (FAP) [4, 6, 11]. In contrast to fibroblasts in wound healing 

which is a self-limited process, CAFs receive continuous proliferative stimuli from several 

growth factors including, among others, transforming growth factor-β (TGF-β), platelet-

derived growth factor (PDGF), epidermal growth factor (EGF) and basic fibroblast growth 

factor (bFGF), that are secreted by tumor cells and play a role in cancer initiation [6, 11]. In 

addition, experimental and clinical observations indicate that myofibroblasts, located 

mainly at the invasion front, can be pro-invasive [12-14]. Indeed, these cells have been 

shown to secrete various growth factors and cytokines and to induce the expression of 

serine proteases and MMPs, which promote tumor cell survival, migration, invasion, 

angiogenesis and lymphangiogenesis and immune and inflammatory cell recruitment [6, 

15]. Nevertheless, normal fibroblasts have also been shown to act in host defense against 

cancer. The crosstalk between cancer- and the surrounding fibroblast stromal-cells, which 

is mediated, in part, by soluble factors, is essential for the fine tuning of cancer cell 

invasiveness [16] and targeting cancer associated fibroblasts in combination with 

chemotherapy has provided promising results toward tumor growth and metastasis 

control [15].  

TGF-β and PDGF are the two key soluble molecules implicated in wound healing. Also 

secreted by a range of tumor cells, these two growth factors facilitate fibroblast 

proliferation, migration and production of ECM molecules and are responsible for 
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fibroblast differentiation into myofibroblast [13]. The role of TGF-β in tumor progression is 

complex [6, 13, 17]. Indeed, before cancer initiation and during the early stages of 

carcinogenesis, TGF-β functions as a tumor suppressor by its anti-proliferative and pro-

apoptotic effects on target cells. By contrast, during advanced stages of cancer, TGF-β 

signaling may facilitate epithelial-to-mesenchymal transition (EMT) and promote 

invasiveness and metastasis [11, 18]. These effects are due, at least in part, to loss of 

responsiveness by cancer cells to its growth inhibitory effects. TGF-β secreted by tumor 

cells attracts fibroblasts that differentiate into myofibroblasts [19] whereas PDGF 

indirectly recruits myofibroblasts by stimulating TGF-β release from macrophages and 

inducing their proliferation [12, 13, 20]. The dual effect of TGF-β in tumorigenesis and 

invasion remains to be fully explained and may be both tumor cell and environmental 

context-dependent. 

In response to various stimuli, CAFs induce proliferative signals for adjacent tumor cells 

by secreting increased amounts of several growth factors and MMPs [11].  

MMP-9 : structure, function & roles in cancer 

MMPs are zinc-dependent endopeptidases that degrade ECM components, but that are 

also implicated in the functional regulation of non-ECM molecules such as growth factors 

and their receptors, cytokines and chemokines, adhesion receptors and cell surface 

proteoglycans and a variety of enzymes [21, 22]. They thereby control cellular 

interactions, promote tissue turnover and are regulated by numerous and diverse 

inhibitors, chief among which are tissue inhibitors of matrix metalloproteinases (TIMPs) 

[2]. Not surprisingly, elevated expression of many MMPs is associated with tumor 

progression [23]. Nevertheless, altering their expression levels has shown contradictory 

effects [24, 25] due to the fact that proteases can be both agonistic and antagonistic for a 

range of events implicated in tumor progression. This could explain, in part, the failure of 

MMP inhibitors in clinical trials. 

MMP-9, a secreted MMP also known as gelatinase B, has been shown to be a key enzyme 

in the progression of numerous tumors by playing a pivotal role in tumor cell invasion and 

angiogenesis [26, 27]. Similar to other MMPs, MMP-9 is synthesized as an inactive 

zymogen referred to as “proMMP-9”. ProMMP9 is composed of a catalytic domain 

16



containing a fibronectin type-II like (FN) domain or collagen-binding domain, a linker 

region or hinge domain and a C-terminal domain known as the hemopexin-like (HEX) 

domain thought to be necessary for MMP inhibitor binding and substrate specificity [2].  

The FN domain is found only in MMP-9 and MMP-2 and is composed of three tandem 

fibronectin type II-like motifs, each of which is characterized by two short antiparallel β-

sheets forming a hydrophobic pocket composed of solvent-exposed aromatic residues in 

the vicinity of the catalytic site. These modules form a collagen-binding domain (CBD), 

critical for the positioning of substrates for subsequent cleavage [28]. The FN domain of 

MMP-9 has been shown to bind gelatin [29] but also elastin, native and denatured types I, 

II, III, IV and V collagens [28, 30]. Each fibronectin type II-like module displays binding 

specialization, which generated exosites specific for other ligands degraded by the 

protease [30]. Also, cooperative collagen binding sites between these three modules are 

certainly present to increase substrate specificity. Thus, they have the potential to 

localize the enzyme to collagen either in the extracellular matrix or on the cell surface 

linked to β1-integrins, but their function per se remains unclear [31]. The FN domain of 

MMP-2 has been studied more deeply and the knowledge gained may provide clues 

toward understanding of the structure-function relationship of the FN domain of MMP-9. 

The MMP-2 CBD is required for degradation of denatured type I collagen α-chains, but not 

for shorter collagen peptide substrates [32]. However, it does not bind native type IV 

collagen, even though CBD-deletion mutants show reduced native type IV collagen 

binding and degradation, underscoring the importance of juxtaposed segments or 

exosites of the catalytic domain in forming the native type IV collagen binding site [31]. 

Nevertheless, reduction of both gelatinolytic and elastinolytic activity of MMP-2 and 

MMP-9 occur following deletion of the CBD, confirming its functional importance in 

binding these substrates. Moreover, MMP-2 CBD can act as a dominant negative for 

MMP-2-mediated gelatinolysis [33], but also for MMP-2-mediated cleavage of native type I 

collagen, which inhibits cancer cell migration [34]. In the same way as for MMP-2, deletion 

of MMP-9 CBD abrogated hydrolysis of type I, V and XI collagens and elastin [35, 36]. On 

this basis, Xu and coworkers demonstrated that CBDs of MMP-9 and MMP-2 bind the 

same or closely positioned sites on type I collagen and that they display similar ligand-

binding properties to their respective parental enzymes [28]. In addition, the first type II 
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module of the FN domain of MMP-2 and MMP-9 has been shown to bind long-chain fatty 

acids, which inhibits both MMP-2- and MMP-9-mediated collagen and elastin degradation 

[37]. Interestingly, the FN type II-like motifs of MMP-2 compete with MMP-2 binding to 

native type I collagen-β1-integrin on the fibroblast cell surface and decrease protease 

activation [38]. 

The N-terminus of the proform of MMP-9 consists of a propeptide necessary to maintain 

latency. The cysteine residue at position 99 within the propeptide blocks access to the 

zinc ion in the active site of the catalytic domain. During a process known as the “cysteine 

switch”, the cysteine loses its coordination with the zinc ion, which triggers the release of 

the propeptide and results in a fully active enzyme. Activation of MMP-9 can be achieved 

by autocatalysis, and action of other MMPs (MMP-2 [39, 40]), -3, -7 and -13) or proteases 

(furin, urokinase, plasmin (but not directly) and trypsin). Interestingly, studies have 

demonstrated an alternative mechanism for proMMP-9 activation without proteolytic 

cleavage but via oxidative modification of the cysteine side-chain thiol, which could 

decrease its ability to serve as an effective ligand to the catalytic zinc ion [41] or via 

conformational changes induced by binding to substrate [42]. These processes would 

disengage the propeptide without removing it, leading to an active enzyme. The amino-

acid sequence of proMMP-9 contains 3 potential N-glycosylation sites (Asn38, Asn120 and 

Asn127) and several O-glycosylation sites present in the hinge domain, also named type V 

collagen-like domain. The role of these carbohydrates still needs to be elucidated and is 

probably intimately linked to modulation of MMP-9 conformation and function [41, 43, 

44]. 

MMP-9 degrades ECM proteins including decorin, elastin, entactin, fibrillin, fibronectin, 

laminin, gelatin and collagen types I, IV, V, XI and XVI, but also activates non-ECM 

molecules, including numerous cytokines exemplified by IGFBP, IL-8, latent TGF-β and 

TNF-α [31]. MMP-9 expression is low or absent in normal quiescent tissues, but is strongly 

induced under conditions requiring tissue remodeling such as development, wound 

healing and tumor invasion. MMP-9 is produced by tumor-associated stromal cells, 

including endothelial cells, inflammatory cells such as monocytes, macrophages, 

neutrophils and tumor cells themselves, and is thought to play a key role in both tumor 

growth and metastasis [2, 26, 45-47]. Indeed, the K14-HPV16 and RIP-Tag mouse models 
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deficient for MMP-9 display reduced skin and pancreatic carcinogenesis, respectively [26, 

27]. In K14-HPV16 mice, this phenotype is rescued by transplanting MMP-9-expressing 

bone marrow cells to the MMP-9-deficient transgenic mice, thus indicating the 

importance of inflammatory cell-derived MMP-9 in skin carcinogenesis [26]. Also, MMP-9 

appears to promote survival in some tumor types by proteolytic activation of latent TGF-

β, which might play a major role in the progression of tumors that are resistant to its 

growth-inhibitory effects [48]. Moreover, by releasing soluble kit ligand, MMP-9 allows 

bone marrow repopulating cells to home to a microenvironment that facilitates their 

differentiation and promotes the reconstitution of the progenitor/stem cell pool [49]. In 

addition, MMP-9 has been shown to display an immunosuppressive role in cancer by 

suppressing T cell proliferation through disruption of signaling mediated by IL-2Rα [50]. 

Importantly, MMP-9 is a functional component of the burst of tumor-associated 

angiogenesis, known as the angiogenic switch, probably by degrading collagen IV and 

other ECM components and thus increasing the bioavailability of vascular-endothelial 

growth factor (VEGF) [2, 27]. Nevertheless, evidence suggests that MMP-9 may also 

regulate angiogenesis by generating angiogenic inhibitors from substrate cleavage 

products, including angiostatin from plasminogen [51] and endostatin from basement 

membrane collagen type XVIII [52], which inhibit endothelial cell proliferation [53]. 

Moreover, degradation of collagen IVα3 by MMP-9 results in the generation of the 

monomeric NC1 domain, called tumstatin, which is a potent suppressor of angiogenesis 

[54].  

Secreted MMPs including proMMP-9 bind to the cell surface for both close association 

with pericellular substrate, regulation of their proteolytic function and protection from 

natural inhibitors, but the mechanisms enabling their association with the cell membrane 

remain to be fully elucidated [21, 41, 55]. Nevertheless, shedding of IntraCellular Adhesion 

Molecule-1 (ICAM-1) has recently been shown to be mediated by MMP-9 and to confer 

tumor cell resistance to Natural Killer-mediated cytotoxicity [56]. Furthermore, MMP-9 

has been shown to use, among others, cell surface hyaluronan receptor CD44 as a 

docking molecule in TA3 mouse mammary carcinoma and MC melanoma cells. This 

association stabilizes MMP-9 proteolytic activity at the cell surface in order to degrade 

collagen IV and to promote invasion [57]. In addition, MMP-9, as well as MMP-2, the other 
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gelatinase of the MMP family, can cleave and activate latent TGF-β1 and 2 through 

association with CD44 [58]. Thus, the coordination of CD44, MMP-9 and TGF-β function 

may provide a physiological mechanism of tissue remodeling that can be adopted by 

malignant cells to promote tumor growth and invasion. ProMMP-9, and less strongly 

proMMP-2, concentrates at the cell-ECM interface by binding to the cell surface of various 

cell lines by a mechanism involving surface-associated α2(IV) chain of collagen IV, a 

subunit of the basement membrane collagen IV [59]. Finally, low density lipoprotein 

receptor-related protein (LRP-1) has been shown to be a cell-signaling receptor for MMP-

9 that regulates Schwann cell migration in peripheral nervous system (PNS) injury [60]. By 

contrast, MMP-9 binds to and is negatively regulated by membrane-anchored 

glycoprotein RECK, which decreases tumor invasion [61, 62]. LRP has also been 

demonstrated to regulate MMP-9 activity by acting as a functional receptor in order to 

modulate ECM remodeling [63]. Thus, membrane localization appears to influence MMP-

9 activity in a major way even though MMP-9 is naturally secreted [64]. 
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Figure 2. Structure & functions of the different domains of MMP-9 [65]. Pre: signal peptide, Pro: 
propeptide, FN: FN type II-like motif, CBD: collagen-binding domain, OG: O-glycosylation, PEX-like: hemopexin-like 
domain. MMP-9 is synthesized as an inactive zymogen, which is activated by proteolytic cleavage (by autocatalysis or 
other MMPs), triggering the release of the propeptide. The catalytic region contains 3 fibronectin type II-like motifs 
forming a collagen binding domain necessary for substrate binding. The hinge domain of MMP-9 is highly N- and O-
glycosylated and the PEX-like domain is necessary for MMP-9 homodimerization, binding of MMP inhibitors (TIMP-1) 
and interaction with a variety of cell surface molecules. 

Protective roles of MMPs in cancer 

MMP regulation and both distinct and overlapping functions in cancer progression are 

complex and redundant. As mentioned above, certain MMPs, including MMP-9, have 

revealed discrepant roles in tumor growth, invasion and angiogenesis, exhibiting both 

pro-tumorigenic as well as beneficial and protective properties at multiple stages of 

cancer progression, including metastasis [24, 25, 47]. These pro- as well as anti-metastatic 

roles of MMPs may depend on multiple factors, including the properties of cells that 

produce them (tumor versus stroma), their pericellular or ECM location, the amounts in 

which they are secreted, the stage of tumor progression at which their activation or 

inhibition occurs and the experimental setting. For example, Coussens and coworkers 
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observed that even if carcinomas in MMP-9-deficient mice were less numerous, the ones 

that arose were of a more aggressive and higher grade [26]. This suggests that although 

MMP-9 can enhance tumorigenesis, it may also display inhibitory effects on the 

progression of these tumors to an invasive state. Indeed, it has been shown to contribute 

to the early survival and establishment of tumors in the lung and to have little or no effect 

on subsequent growth [66]. Despite the well described and important role of MMP-9 in 

promoting angiogenesis, it has also brought to light contrasting functions, particularly by 

the proteolytic generation of endogenous inhibitors with strong anti-angiogenic 

properties [47, 67]. Furthermore, a series of experiments performed in integrin α1-null 

mice, which have increased plasma levels of MMP-9, also highlighted an anti-angiogenic 

contribution of MMP-9 [68, 69]. Recently, Shchors and coworkers confirmed that in a 

MMP-9-deficient background, tumors were more invasive due to the homing of cathepsin 

B expressing CD11b;Gr1-positive cells to invasive fronts [70]. 

Aim of the thesis 

Regulation of MMP-9 activation and activity and its association with the cell surface that 

appears to be an important mechanism in tumor growth and invasion, remain 

incompletely understood. The goal of this thesis was therefore primarily to elucidate the 

potential association of MMP-9 activity with cell-surface recruitment on human 

fibroblasts, its function and role in these cells and finally its implications in tumor growth 

and metastasis. 

We show for the first time that recruitment of MMP-9 to the MRC5 fibroblast cell surface 

occurs through the fibronectin-like (FN) domain. Functional assays suggest that the active 

form of MMP-9 triggers α-smooth muscle actin (αSMA) expression in resting fibroblasts 

that reflects myofibroblast differentiation, possibly through TGF-β activation. Xenograft 

experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast 

adenocarcinoma cells stably expressing the FN domain of MMP-9 revealed no changes in 

primary tumor growth. However, in the context of metastasis, expression of the FN 

domain by these same tumor cells dramatically increases their metastatic proclivity 

whereas expression of wt MMP-9 either promotes no change or actually reduces the 

number of metastases. Curiously, xenografts of SW480 colorectal adenocarcinoma cells 
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stably expressing the FN domain of MMP-9 display reduced growth at both the primary 

(subcutaneous) injection site and the lungs of NOD/SCID mice in experimental metastasis 

assays. This apparent discrepancy is argued to be due to the FN domain that may 

modulate MMP-9 activity and TGF-β activation in different ways, depending on the tumor 

cell type. Our observations suggest a dual role of MMP-9 and its FN domain in primary 

tumor growth and metastasis, highlighting possible protective effects of MMPs in tumor 

progression and invasion. 
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Material & Methods

Cell lines 

The following cell lines were used: Human Embryonic Kidney (HEK293T), Chinese Hamster 

Ovary (CHO), osteosarcoma (U2OS), Transformed Mink Lung Epithelial (TMLC), 

glioblastoma (U251), human skin fibroblasts (HSF), human lung embryonic fibroblasts 

(MRC-5), fibrosarcoma (HT1080), breast adenocarcinoma (MDA-MB231), colorectal 

adenocarcinoma (SW480) and breast adenocarcinoma (BT-20) cell lines. 

Animals 

Female Non-obese diabetic-severe combined immunodeficient mice NOD/SCID mice were 

obtained from the house breeding of the UNIL mouse facility. Female mice were between 

8 and 10 weeks old at the beginning of experiments. Experimental procedures involving 

mice were approved by the Etat de Vaud, Service Vétérinaire, and authorization n ° 1942.1. 

Chemical compounds 

4-aminophenylmercuric acetate (APMA) (#164610, Calbiochem), Calcein-AM (#17783, 

Sigma-Aldrich), Complete Mini-EDTA-free protease inhibitors (#11836170001, Roche), 

EzBlue Gel Staining Reagent (#G1041, Sigma-Aldrich), FuGene 6 Transfection Reagent 

(#E2692, Promega), gelatin from porcine skin (#G1890, Sigma), Growth Factor Reduced 

Matrigel (#356231, BD Biosciences), Protein Deglycosylation Mix (#P603S, BioLabs), 

SuperSignal West Pico Chemiluminescent Substrate (#34080, Thermo Scientific Pierce), 

human TGF-β1 (#100-B-001, R&D systems).  

Antibodies & beads 

The antibodies used in this study were as follow: anti-MMP-9 (#AB19047, Chemicon), anti-

αSMA (#A2547, Sigma), anti-tubulin (#CP06, Calbiochem), anti-transferrin receptor (#13-

6800, Invitrogen), anti-TGFβ1,2,3 (#MAB1835, R&D Systems), anti-v5 (#R960-25, 

Invitrogen), donkey anti-mouse Alexa488 (#A21202, Invitrogen), Ni-NTA agarose beads 

(#30210, Qiagen), Streptavidin-agarose beads (#DAM1467561, Millipore), Anti-v5-agarose 
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beads (#A7345, Sigma), horseradish peroxidase-(HRP) conjugated sheep anti-mouse 

(#NA931V, GE healthcare) and goat anti-rabbit (#P0448, DAKO) 

Expression constructs 

Wild type (wt) proMMP-9 and the different MMP-9 constructs including the catalytic-

dead protein containing the E402Q mutation within the catalytic domain, the FN domain 

composed of the fibronectin type II-like motifs (FN223-389), the hemopexin-homology 

domain (HEX520-707), the ΔFN or MMP-9Δ223-389 mutant lacking the FN domain, the 

ΔHEX or MMP-9Δ520-707 mutant lacking the hemopexin-homology domain and CD5 were 

cloned in pCDM8c and pLIVC vectors, the latter derived from pLVTHM lentiviral vector by 

the removal of the shRNA cassette and GFP gene and insertion of a PGK-puromycin 

cassette. All constructs were C-terminally tagged with 6 histidines and v5.  

Virus production 

60% confluent HEK293T cells in 100 mm dish were transfected with 1.25 µg of pMD2G 

(envelope plasmid), 3.75 µg of pCMVs (packaging plasmid) and 5 µg of pLIVC (transfer 

vector) containing MMP-9 or the different mutants using FuGene 6 Transfection Reagent 

at a ratio 1:3 and incubated at 37°C. Lentiviruses were collected after 48h, passed through 

0.45 µm filters and concentrated by ultracentrifugation.  

Retroviral infection 

Target cells (CHO, U2OS, HT1080, MDA-MB231, SW480, BT-20 and MRC-5) at 40% 

confluence in 6 wells were washed with PBS and infected in 2 rounds of 8 h of interval 

with lentiviruses using Polybreene (1:1000) overnight at 37°C. Cells were then washed 

with PBS and transferred in a 100 mm dish with fresh medium. The day after, cells were 

selected with puromycin (1 µg/µl for CHO, U2OS, HT1080 and MDA-MB231, 6 µg/µl for 

SW480, 0.5 µg/µl for SW620, 0.5 µg/µl for BT-20 and 2 µg/µl for MRC-5). 

His-tag purification 

Stable transfectants of each his-tagged construct were established in U2OS and CHO 

cells. Purification was performed using the histidine tag and high affinity nickel-beads as 
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follow: the supernatant of CHO cells provided by the Evitria company (Zürich) was 

incubated with Ni-NTA agarose beads (2 mL of beads for 1 L of sample), which were then 

washed with PBS and in Washing solution (5 mM imidazole, 20 mM Tris-HCl pH 7.5 and 

200 mM NaCl). Purified proteins were eluted in 20 mM and 200 mM imidazole and 

fractions were concentrated with Amicon centrifugal filters (Millipore) depending on the 

molecular weights (50’000 Nominal Molecular Weight Limit (NMWL) for proMMP-9 and 

ΔFN, and 3’000 NMWL for FN). Protein concentration was determined according to BSA 

by densitometry using Image J.  

ProMMP-9 activation 

The activation of proMMP-9 was performed directly on Ni-beads using APMA. 35 mg of 

APMA was dissolved in 10 mL of 0.1 M NaOH and diluted in TTC reaction buffer (50 mM 

Tris-HCl pH 7.5, 1 mM CaCl2 and 0.05% Triton X-100) to obtain a 2.5 mM solution. ProMMP-9 

bound to Ni-NTA agarose beads was incubated with this solution at 37°C for 3h and eluted 

as described before.  

Recruitment assay 

Various tumor cell lines and fibroblasts were incubated overnight at 37°C with filtered 

conditioned medium from U2OS cells stably expressing recombinant MMP-9, its different 

mutants or CD5. The target cells that we tested were HEK293T, HT1080, TMLC, U251, 

U2OS, MDA-MB231, HSF or MRC-5. The day after, cells were lysed using lysis buffer (10 

mM Tris-HCl pH 7.5, 150 mM NaCl, 1% TritonX-100) containing Complete Mini-EDTA-free 

protease inhibitors. Immunoblotting of conditioned medium (inputs) and cell lysates was 

performed using anti-v5 antibody and Image J program was used for quantification of the 

recruitment percentage. 

Cell fractionation 

Cells grown in 2x150 mm dishes until 60 to 70% confluency were washed and scraped in 

cold PBS and centrifuge for 5 min at 300xg at 4°C. The membranes were sensitized by 

resuspending cell pellets with 1 mL of Homogenization Buffer (HB) (250 mM sucrose, 3 

mM imidazole, phosphatase and protease inhibitor cocktails, pH 7.4). Post nuclear 
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supernatant (PNS) was obtained by mechanical disruption of cells with a 22G needle and 

centrifugation for 10 min at 600xg at 4°C. PNS was subjected to ultracentrifugation for 45 

min at 100’000xg at 4°C in order to separate cytosol (supernatant) from membrane 

(pellet) fractions. Membranes were washed twice with HB and solubilized using lysis 

buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% TritonX-100) containing Complete Mini-

EDTA-free protease inhibitors. 

Western Blot 

Western Blotting was performed according to standard procedures. The following 

antibody concentrations were used: anti-v5 (1:5’000), anti-transferrin receptor (1:1’000), 

anti-SMA (1:5’000), anti-tubulin (1:4’000), anti-MMP-9 (1:5’000), horseradish peroxidase-

(HRP) conjugated sheep anti-mouse (1:20’000), goat anti-rabbit (1:20’000). ECL was 

reveled using SuperSignal West Pico Chemiluminescent Substrate. 

Immunofluorescence 

MRC-5 fibroblasts were grown on glass coverslips until confluency. Cells were treated 

with proMMP-9, FN, E402Q, ΔFN and CD5, and were incubated with anti-v5 antibody 

(1:1’500) for 1h at 4°C, washed with PBS, and further incubated with secondary anti-mouse 

Alexa488 antibody (1:1’500) for 1h at 4°C. Antibodies were diluted in blocking buffer (PBS-

FCS 10%). Cells were then fixed with 4% PFA for 20 min at room temperature, washed with 

PBS and mounted using Immuno-Mounting. DAPI (Roche) was used to visualize the 

nuclei. Images were acquired with a Leica SP5 AOBS confocal microscope.  

Immunoprecipitation 

Confluent MRC-5 cells in 25 cm dish were treated with 2 µg of both wt proMMP-9 and v5-

tagged FN or only proMMP-9 overnight at 37°C. MRC-5 were lysed with lysis buffer (10 

mM Tris-HCl pH 7.5, 150 mM NaCl, 1% TritonX-100) and 1 mL of supernatant and 2 mg of cell 

lysates were pre-cleared with streptavidin-agarose beads for 1h at 4°C and then 

immunoprecipitated with anti-v5-agarose beads overnight at 4°C. Beads were washed 5 

times with lysis buffer and proteins were eluted by boiling the beads for 5 min in sample 
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buffer. Purified complexes were analyzed by Western blotting using anti-MMP-9 

antibody. 

Luciferase assay 

The Luciferase assay system (#E1501, Promega) was used according to manufacturer’s 

instructions. Briefly, TMLC transfected with the plasminogen activator inhibitor-1 (PA-1) 

promoter responsive to TGF-β and linked to a luciferase reporter system were plated at 

3x105 cells/mL in 24 wells for 6h. MRC-5 conditioned medium collected after 3 days were 

incubated with TMLC at 37°C for 20h.  Cells were then washed with PBS and lysed with 1x 

Lysis Buffer for 20 min on ice. 20 uL of cell lysates was mixed with 90 uL luciferase 

substrate. Luminescence was read at 570 nm with Synergy MX luminometer during 2 

seconds with autosensitivity.  

NOD/SCID mice xenotransplantation 

To  look at primary tumor growth, MDA-MB231 (106 cells), HT1080 (2x105 cells) or SW480 

(3x105 cells) cells stably expressing proMMP-9 or its FN domain were subcutaneously 

injected in both flanks of female NOD/SCID mice (5 mice per condition) and primary 

tumor was weighted after 5 weeks (MDA-MB231), 18 days (HT1080) or 7 weeks (SW480). 

For experimental metastasis assays, MDA-MB231 (5x105 cells), HT1080 (1x106 cells) or 

SW480 (2x106 cells) cells stably expressing MMP-9 or its FN domain were injected in the 

tail vein of female NOD/SCID mice (5 mice per condition) and lung colonization was 

assessed after 18 days (HT1080), 21 days (SW480) or 35 days (MDA-MB231) by measuring 

the percentage of lung covered by metastases. 

Gelatin zymography 

8% polyacrylamide gels were prepared with 0.1% gelatin (1 mg/mL).  Cells were starved for 

24 to 48h. Supernatants were collected, concentrated with Amicon centrifugal filters 

50’000 NLWM and incubated in Zymogram sample buffer (1 g SDS, 0.4 g sucrose, 5 mL 1.5 

M Tris-HCl pH 8.8, 10 mg Bromophenol Blue in water to 10 mL) for 10 min at room 

temperature and loaded on gels. Gels were then incubated in Zymogram Renaturing 

Buffer (2.5% Triton X-100 in water) for 30 min and equilibrated with Zymogram Developing 
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Buffer (50 mM Tris-HCl pH 8, 5 mM CaCl2, 0.2% Azide) for 30 min at room temperature and 

at 37°C overnight. Gels were stained with EzBlue Gel Staining Reagent.  

Deglycosylation 

SW480 cells expressing MMP-9 or the FN domain were plated in 25 cm dishes and starved 

for 48h. Conditioned medium was collected, concentrated with Amicon NMWL. 

Deglycosylation was performed using Protein Deglycosylation Mix in non-denaturing 

reaction conditions following manufacturer’s instructions. Briefly, 40 µl of conditioned 

medium was incubated with 5 µl of 10x G7 Reaction Buffer and 5 µl of Deglycosylation 

Enzyme Cocktail at 37°C for 4h. Fetuin was used as deglycosylated control protein. 40 µl 

of the deglycosylated mix was incubated in zymogram sample buffer and gelatin 

zymography performed. 

Migration & invasion assays 

Test cells (MDA-MB231 expressing MMP-9, FN, ΔFN or control cells) were starved 

overnight in DMEM supplemented with 0.2% BSA. Cells were harvested, washed in PBS, 

resuspended in serum-free medium containing 0.2% BSA and seeded to 24-well format cell 

culture inserts with 0.8 µm pore sizes (previously coated with 300 µg/mL of Growth 

Factor Reduced Matrigel diluted in Coating solution (0.01M Tris-HCl pH 8.0, 0.7% NaCl) for 

invasion assays). 600 µL of culture medium with or without TGF-β1 (10 ng/µL) and 200 µL 

of cell suspension were added to each well and insert, respectively, and incubated at 37°C 

in a 5% CO2 incubator. After 24h, cell culture medium was replaced with 450 µL of serum 

free DMEM containing 2 µM of Calcein-AM in each bottom well and incubated for 45 min 

at 37°C. Fluorescence was measured at an absorbance of 494 nm and an emission of 517 

nm in order to determine migration or invasion percentage. 

Statistical analysis 

Graphs and statistical analysis were carried out using GraphPad Prism 5.0® software. 

Two-tailed, unpaired t-test was used for lung histomorphometry (lung percentage 

covered by metastasis), primary tumour weight, MTT assays, adhesion, migration and 

30



invasion assays, comparing two groups. Results represent mean values +/- SEM (standard 

error of mean) in all graphs. 

MTT assay 

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed 

using CellTiter 96® Non-Radioactive Cell Proliferation Assay (#G4000, Promega) following 

manufacturer’s instructions. Briefly, 7’000 MDA-MB231 and SW480 cells were plated in 

96-well with or without TGF-β1 [10 ng/µl]. After overnight incubation at 37°C, 15 µl of Dye 

Solution were added to each well and the plate was further incubated for 4h at 37°C. The 

reaction was stopped by adding 100 µl of Solubilization Solution and incubating for 1h at 

37°C. Absorbance was read at 570 nm and 650 nm (reference wavelength) with Synergy 

MX Monochromator-Based Multi-Mode Microplate Reader. 

Adhesion assays 

Test cells were resuspended to a final concentration of 5x106 cells/mL in serum-free 

medium and incubated with 2 µM of Calcein-AM for 30 min at 37°C. Cells were then 

washed with prewarmed 37°C serum-free medium and incubated on different ECMs 

containing MMP-9, the FN domain or control at 37°C in 5% CO2 incubator for 5 to 60 min. 

Non-adherent cells were washed several times with PBS and then incubated in serum-free 

medium. Measurement was performed at an absorbance of 494 nm and an emission of 

517 nm. Adhesion percentage was calculated by dividing the adjusted fluorescence of 

adherent cells by the adjusted fluorescence of total cells added to each well and 

multiplying by 100.  
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Results 

ProMMP-9 is recruited to the fibroblast cell surface 

ProMMP-9 recruitment to the tumor cell surface has been shown to be important in 

promoting invasion and metastasis of at least some tumor cell types. Maintenance, even 

transient, of MMP-9 on the surface of tumor cells is believed to protect its proteolytic 

activity from inhibition by natural inhibitors such as tissue inhibitors of 

metalloproteinases (TIMPs) and to provide cells with the ability to degrade the ECM in 

controlled fashion [41]. One mechanism of MMP-9 recruitment to the tumor cell surface is 

provided by CD44 [57]. However, it is unclear whether CD44 is the only such mechanism 

and whether normal stromal cells that play a key role in facilitating tumor invasion, may 

also possess mechanisms that immobilize MMP-9 on their surface. To address this issue, 

we compared proMMP-9 recruitment to a variety of tumor cell lines and fibroblasts. We 

incubated the U2OS osteosarcoma cell line and human fetal lung MRC-5 fibroblasts in 

conditioned medium from U2OS cells engineered to constitutively express and secrete 

recombinant v5-tagged proMMP-9 or CD5, used as an unrelated control protein. 

Following overnight incubation at 37°C, cells were lysed and v5-tagged protein 

recruitment was assessed by anti-v5 antibody blot analysis. We observed that the 

proMMP-9 protein but not CD5 was recruited to both cell types, supporting the notion 

that the observed recruitment is specific to proMMP-9 (Figure 1A). Moreover, proMMP-9 

was more abundantly recruited to MRC-5 than to U2OS cells. 

Next, we tested whether proMMP-9 is preferentially recruited to fibroblasts and in which 

cell compartment the recruitment occurs. We therefore incubated different tumor cell 

lines, including HEK293T (Human Embryonic Kidney), HT1080 (fibrosarcoma), TMLC 

(Transformed Mink Lung Epithelial), U251 (Glioblastoma), U2OS (Osteosarcoma), MDA-

MB231 (Breast Adenocarcinoma) and HSF (Human Skin Fibroblasts) as well as MRC-5 

(Human fetal Lungs fibroblasts) in U2OS-conditioned medium containing v5-tagged 

proMMP-9. Following overnight incubation, cell membranes were isolated by cell 

fractionation and protein recruitment assessed by anti-v5 antibody blot analysis. We 

observed that proMMP-9 is more strongly recruited to fibroblasts (HSF and MRC-5) 
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whereas the different tumor cell lines displayed weak or no proMMP-9 recruitment 

(Figure 1B). Moreover, cell fractionation analysis revealed that proMMP-9 recruitment 

occurs to fibroblast membranes. ProMMP-9 therefore appears to be more abundantly 

recruited to the fibroblast cell surface than to that of tumor cell lines, bearing in mind 

that we tested a limited panel of cells and that there may well be tumor cells that behave 

similarly to fibroblasts with respect to MMP-9 recruitment.  

Figure 1. ProMMP-9 is more strongly recruited to the fibroblast than to the tumor cell surface; A. 
ProMMP-9 is selectively recruited to MRC-5 fibroblasts and U2OS osteosarcoma cells. Conditioned medium from U2OS 
cells constitutively expressing recombinant v5-tagged proMMP-9 or CD5 (inputs) and equal amounts of U2OS and MRC-
5 cell lysates (cell lysates) were loaded. Representative anti-v5 immunoblot of MRC-5 and U2OS cell lysates from 3 
independent experiments is shown. B. ProMMP-9 is more strongly recruited to the MRC-5 cell surface than to the 
surface of tested tumor cell lines. U2OS-conditioned medium containing v5-tagged proMMP-9 (inputs) and equal 
amount of membrane fractions (membranes) were loaded. Representative anti-v5 immunoblot of membrane 
preparations from indicated tumor cell lines, HSF and MRC-5 fibroblasts from 3 independent experiments is shown. 
Transferrin receptor (TrfR) was used as a membrane equal loading control. 
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The FN domain of MMP-9 is necessary and sufficient for its recruitment to the 

fibroblast cell surface 

ProMMP-9 recruitment to tumor cell lines is thought to occur through the hemopexin 

(HEX) domain [46]. Accordingly, we wanted to determine which domain of MMP-9 

mediates the recruitment to the fibroblast cell surface. Thus, we used wild type 

recombinant proMMP-9 and engineered a series of deletion mutants corresponding to 

different MMP-9 domains. Each construct was tagged with sequences encoding 6 

histidines and the v5 peptide. The mutants included a catalytic-dead protein containing 

the E402Q mutation within the catalytic domain, ΔFN, lacking the FN domain, ΔHEX, 

lacking the hemopexin-homology domain, FN, composed of the fibronectin type II-like 

motifs (FN223-389) and HEX, composed of the hemopexin-homology domain (HEX520-

707). All mutants were inserted into the pLIVC retroviral vector and stably expressed in 

Chinese Hamster Ovary (CHO) cells (Figure 2). 

Figure 2. MMP-9 and its different mutants; Schematic vue of wild type proMMP-9, the catalytic-dead protein 
carrying E402Q mutation within the catalytic domain, ΔFN, lacking the FN domain, ΔHEX, lacking the hemopexin-
homology domain, FN, composed of the fibronectin II domain (FN223-389) and HEX, composed of the hemopexin-
homology domain (HEX520-707). All constructs were C-terminally tagged with 6 histidines and v5 peptide. All mutants 
were inserted into the pLIVC retroviral vector and stably expressed in CHO cells. 
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Each mutant was tested for its ability to be recruited to fibroblasts by incubating MRC-5 

cells in the corresponding CHO conditioned medium overnight at 37°C and performing 

subsequently immunofluorescence and Western blot analysis of intact cells and MRC-5 

lysates, respectively. Immunofluorescence analysis using anti-v5 antibody showed that 

both proMMP-9 and the inactive mutant E402Q were recruited to the MRC-5 cell surface. 

The FN domain alone was also recruited whereas constructs lacking the FN motifs, 

including ΔFN and CD5, were not (Figure 3A). Anti-v5 antibody blot analysis of cell lysates 

confirmed the observation that proteins encoded by constructs containing the FN 

domain (proMMP-9, E402Q, FN and ΔHEX) were recruited to MRC-5 fibroblasts whereas 

mutants lacking the FN domain (ΔFN and HEX) were not (Figure 3B). The observation that 

ΔFN is weakly detected on the fibroblast cell surface may be explained by the presence of 

the HEX domain, which is considered to be the “recruitment” domain [46], at least in 

tumor cells, or some component of its flanking sequences, given that the HEX domain 

alone showed no recruitment at all to MRC-5 fibroblasts. We also observed that the FN 

domain appears to display higher affinity for MRC-5 cells than wt proMMP-9. This 

observation convincingly indicates, for the first time, that the FN domain of MMP-9, 

which is known to bind gelatin [29], recognizes structures on the fibroblast cell surface. 
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Figure 3. The FN domain of MMP-9 is necessary and sufficient for its recruitment to the fibroblast 
cell surface; A. Conditioned medium from U2OS cells constitutively expressing recombinant v5-tagged proMMP-9 or 
the different mutants (proMMP-9, FN, E402Q and ΔFN) and CD5, used as negative control, were incubated with MRC-5 
cells and live anti-v5 antibody immunofluorescence was performed. Note that only the mutants containing the FN 
domain (proMMP-9, FN and E402Q) are recruited to the MRC-5 cell surface. DAPI (blue) was used to visualize nuclei. B. 
Conditioned medium from U2OS cells constitutively expressing recombinant v5-tagged proMMP-9 or the different 
mutants (proMMP-9, FN, ΔHEX, ΔFN, HEX and E402Q (inputs)) were incubated with MRC-5 cells and equal amount of 
MRC-5 cell lysates were loaded. Representative anti-v5 immunoblot of MRC-5 cell lysates from 3 independent 
experiments shows that the mutants containing the FN domain (proMMP-9, E402Q, FN and ΔHEX) are recruited to 
MRC-5 cell surface whereas those lacking the FN domain (ΔFN and HEX) are not. Recruitment percentage corresponds 
to the ratio of v5-tagged protein recruited (cell lysate) to the incubated v5-tagged protein (input). 
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MMP-9 activity promotes latent TGF-β activation and induces αSMA 

expression in resting fibroblasts 

To address the molecular mechanism that underlies MMP-9 recruitment to the fibroblast 

cell surface, we first determined whether the active form of MMP-9 was also recruited to 

the MRC-5 cell surface. Thus, recombinant proMMP-9 from conditioned culture medium 

of stably transfected CHO cells was activated using 4-aminophenylmercuric acetate 

(APMA) on Ni-beads during the His-tag purification step. Incubation of MRC-5 cells with 

proMMP-9, the active form of MMP-9 and ΔFN and subsequent anti-v5 antibody blot 

analysis of cell lysates revealed that both pro- and active MMP-9 are recruited to the 

fibroblast cell surface (Figure 5A). This observation suggests that the proteolytically active 

form of MMP-9 may be retained at the fibroblast cell surface as a result of the interaction 

between its FN domain and, as yet unidentified, cell surface ligands. 

MMP-9 has been shown to play a key role in tumor growth and invasion by activating 

latent TGF-β in a functional complex with CD44 at the keratinocyte cell surface [57]. 

Hence, we asked whether the presence of proMMP-9 and its active form might induce 

TGF-β activation in MRC-5 conditioned culture medium. Accordingly, we performed a TGF-

β functional assay using Transformed Mink Lung Epithelial Cells (TMLC) stably transfected 

with the plasminogen activator inhibitor-1 (PA-1) promoter which is responsive to active 

TGF-β and linked to the luciferase reporter gene. We treated MRC-5 fibroblasts for 3 days 

with purified proMMP-9, its different mutants or TGF-β1 (10 ng/mL) used as positive 

control. The mutants included: proMMP-9, the active form of MMP-9, the catalytically 

inactive mutant E402Q and ΔFN (Figure 4). The corresponding MRC-5 conditioned media 

were used for luciferase reporter assays in TMLC. We observed that both proMMP-9 and 

its active form induce TGF-β activation in resting MRC-5 fibroblasts, whereas the inactive 

mutants E401Q and ΔFN have no effect on TGF-β activity (Figure 5B). This observation 

confirms that TGF-β activation is specifically induced by MMP-9 activity. 
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Figure 4. Purification of MMP-9 mutants; A. His-tag purification protocol used for proMMP-9 and its different 
mutants. 1 L of CHO supernatant was incubated with Ni-beads for binding. Beads were washed with PBS and 5 mM 
imidazole and eluted with increased imidazole concentrations. Purified fractions were concentrated with Amicon filters. 
B. Example of FN-his-purification. The protein concentration was quantified by densitometry relative to BSA 
concentration with Image J.   

TGF-β is an essential factor for the differentiation of fibroblasts into myofibroblasts [19]. 

Therefore, we addressed the possibility that MMP-9 activity at the surface of MRC-5 cells 

might induce their differentiation into myofibroblasts. Differentiation was assessed by 

incubating resting MRC-5 cells for 3 days with purified proMMP-9, the mutants including 

proMMP-9, the active form of MMP-9, the catalytically inactive mutant E402Q and ΔFN, or 

TGF-β1 (10 ng/mL). The cells were then lysed and αSMA expression, a well-known 

myofibroblast marker that is weakly expressed in MRC-5 cells, was assessed. We 

observed that both pro- and the active forms of MMP-9 led to an increase in αSMA 

expression in resting MRC-5 fibroblasts (Figure 5C). By contrast, E402Q and ΔFN mutants 

did not induce αSMA expression. These observations support the notion that MMP-9 
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activity promotes differentiation of fibroblasts into myofibroblasts, as illustrated by the 

induction of αSMA expression in resting MRC-5 fibroblasts.  

Figure 5. MMP-9 activity promotes latent TGF-β activation and induces αSMA expression in 
resting fibroblasts; A. The active form of MMP-9 is recruited to fibroblast cell surface. Conditioned medium (SN) 
containing 5 ug of purified pro- or active MMP-9 or ΔFN and equal amount of corresponding cell lysates (CL) were 
loaded. Anti-v5 immunoblot was used to show recruitment to the MRC-5 cell surface. B. Both pro- and active MMP-9 
promote TGF-β activation in resting MRC-5 cells. Conditioned medium from MRC-5 treated for 3 days with 5 ug of 
proMMP-9, the active form of MMP-9, E402Q, ΔFN or TGF-β1 (10 ng/mL) were collected for luciferase assays using TGF-
β-responsive TMLC cells. Luminescence reflecting TGF-β activity was defined by relative light units (RLU). Note the 
specificity of MMP-9 activity for TGF-β activation. **** P < 0.0001 C. Pro- and active MMP-9 induce αSMA expression in 
resting MRC-5 cells. MRC-5 were treated for 3 days with proMMP-9, the active form of MMP-9, E402Q, ΔFN or TGF-β1 (10 
ng/mL). Representative anti-αSMA immunoblot of equal amount of MRC-5 cell lysates from 4 independent experiments 
(upper panel) is shown. Analysis of αSMA expression from 4 independent experiments (lower panel) is shown. *** P < 
0.001 

The FN domain behaves as competitive inhibitor of MMP-9 and decreases 

both TGF-β activation and αSMA expression in resting fibroblasts 

Given that the FN domain of MMP-9 is necessary and sufficient for MMP-9 recruitment to 

the fibroblast cell surface, we investigated whether the FN domain might act as a 

dominant negative and therefore inhibit MMP-9-induced TGF-β activation in the 
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supernatant of MRC-5 fibroblasts. We therefore treated MRC-5 cells for 3 days with MMP-

9 and the different mutants including, proMMP-9, the FN domain only (FN), ΔFN, 

proMMP-9 with an anti-TGF-β antibody (proMMP-9: αTGF-β), proMMP-9 with an excess of 

the FN domain (proMMP-9: FN 1:10) or TGF-β1 (10 ng/mL) as positive control. The 

corresponding supernatants were collected for luciferase reporter assays. We observed 

that the FN domain alone (FN) and ΔFN have no effect on TGF-β activation (Figure 6A). 

However, an excess of the FN domain in the presence of proMMP-9 (proMMP-9: FN 1:10) 

significantly abrogated TGF-β activation - almost as strongly as an anti-TGF-β antibody 

(proMMP-9: αTGF-β). This suggests that exogenously added FN domain of MMP-9 can 

inhibit MMP-9 activity, as measured by TGF-β activation at the fibroblast cell surface.  

We next asked whether inhibition of TGF-β activation by the FN domain could prevent 

αSMA expression in resting fibroblasts, which would reflect absence of their 

differentiation into myofibroblasts. As described above, we treated MRC-5 fibroblasts for 

3 days with proMMP-9, the FN domain only (FN), ΔFN, proMMP-9 in the presence of anti-

TGF-β neutralizing antibody (proMMP-9: αTGF-β), proMMP-9 in the presence of an excess 

of the FN domain (proMMP-9: FN 1:10) or positive control TGF-β1 (10 ng/mL). Cells 

remained viable after the 3 days of treatment and cell lysis was performed to assess 

αSMA expression. We demonstrated that αSMA expression in MRC-5 treated with the FN 

domain alone (FN) and ΔFN was not different than in untreated MRC-5 (Figure 6B). 

However, the FN domain added in excess in presence of proMMP-9 (proMMP-9: FN 1:10) 

significantly blocked αSMA expression, even more potently than the neutralizing anti-

TGF-β antibody (proMMP-9: αTGF-β). The fact that MMP-9-induced αSMA expression can 

be inhibited by neutralizing anti-TGF-β antibody indicates that MMP-9-mediated 

differentiation of MRC-5 into αSMA-expressing myofibroblasts occurs through the TGF-β 

pathway. Moreover, abrogation by the FN domain of the ability of proMMP-9 to induce 

αSMA expression in resting fibroblasts suggests that the FN domain can inhibit MMP-9 

activity at the fibroblast cell surface. Indeed, MMP-9 activity at the fibroblast membrane 

may be needed for TGF-β activation and its downstream signaling effects. These data 

clearly demonstrate the ability of the FN domain to inhibit MMP-9 activity at the 
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fibroblast cell surface, as measured by TGF-β activation and αSMA expression. 

Figure 6. The FN domain behaves as a competitive inhibitor of proMMP-9 blocking both TGF-β 
activation and αSMA expression in resting fibroblasts; A. Recombinant FN domain abrogates MMP-9-
induced TGF-β activation in MRC-5 cells. MRC-5 conditioned media incubated for 3 days with proMMP-9, FN, ΔFN, 
proMMP-9 with an anti-TGF-β antibody (proMMP-9: αTGF-β), proMMP-9 with an excess of the FN domain (proMMP-9: FN 
1:10) or TGF-β1 (10 ng/mL) were applied to luciferase assays using TGF-β-responsive TMLC cells. Luminescence reflecting 
TGF-β activity was defined by relative light units (RLU). * P < 0.05, ** P < 0.01, *** P < 0.001.  B. Recombinant FN domain 
blocks MMP-9-dependent αSMA expression in resting MRC-5. MRC-5 were incubated for 3 days with 1 ug of proMMP-9, 
the FN domain, ΔFN, proMMP-9 with an anti-TGF-β antibody (proMMP-9: αTGF-β), proMMP-9 with an excess of the FN 
domain (proMMP-9: FN 1:10) or TGF-β1 (10 ng/mL). Representative anti-αSMA immunoblot of equal amount of MRC-5 cell 
lysates from 4 independent experiments (upper panel) is shown. Analysis of αSMA expression from 3 independent 
experiments (lower panel) is indicated. * P < 0.05. 

The FN domain does not displace proMMP-9 from the fibroblast cell surface 

but sequesters it in MRC-5 conditioned culture medium  

Because the FN domain of MMP-9 inhibits both MMP-9-induced TGF-β activation and 

αSMA expression, we asked whether it might compete with MMP-9 activity at the 

fibroblast cell surface. In other words, we addressed the possibility that the molecular 

mechanism whereby the FN domain inhibits MMP-9 might involve displacement of MMP-
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9 activity from the MRC-5 cell surface. To this end, MRC-5 fibroblasts were incubated with 

purified proMMP-9 and increasing concentrations of the FN domain (1:1, 1:2, 1:5, 1:1 and 

1:20) following which the cells were lysed and recruitment assessed. We observed that 

the FN domain cannot displace proMMP-9 from the fibroblasts, even when it was added 

in excess (20 times more than proMMP-9). We then confirmed this observation by 

incubating MRC-5 fibroblasts with MMP-9 and FN at the same ratios and assessing their 

recruitment in membrane fraction (Figure 7A). Our observations suggest that the FN 

domain inhibits MMP-9-induced-TGF-β activation and αSMA expression by a mechanism 

other than displacement of proMMP-9 from the cell surface. 

Because the FN domain seems to block MMP-9 activity without competing for MRC-5 cell 

surface ligands, we asked whether it interacts directly with MMP-9 in MRC-5 conditioned 

medium. To assess interaction between MMP-9 and its FN domain, we incubated MRC-5 

fibroblasts with both wt proMMP-9 and v5-tagged FN domain and performed 

immunoprecipitation using anti-v5 antibody. Anti-MMP-9 antibody blot analysis showed 

that wt MMP-9 is co-immunoprecipitated with v5-tagged FN domain in MRC-5 

conditioned medium (Figure 7B). Unfortunately, we were not able to detect interaction at 

the cell surface due to the insufficient amount of material following cell fractionation. In 

any case, these observations suggest that the FN domain may inhibit MMP-9 activity by 

sequestering it in MRC-5 conditioned medium and leave open the possibility that the 

MMP-9-FN complex may inhibit MMP-9 activity at the cell surface too, as it does not 

prevent MMP-9 or FN to become anchored to the cell surface.  
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Figure 7. The FN domain does not displace proMMP-9 from the fibroblast cell surface, but 
sequesters it in MRC-5 conditioned medium; A. The FN domain does not displace proMMP-9 from the 
fibroblast cell surface. Conditioned medium (inputs) containing different ratios of MMP-9:FN (1:1, 1:5, 1:10, 1:20) and 
equal amount of MRC-5 membranes (membranes) were loaded. 1 corresponds to 2.3 ug of purified protein. 
Representative anti-v5 immunoblot (left panel) and analysis of recruitment percentage from 2 independent 
experiments (right panel) show the absence of displacement. Recruitment percentage corresponds to the quantity of 
v5-protein recruited (membrane) compared to the v5-protein incubated (input). B. The FN domain interacts with 
proMMP-9 in MRC-5 conditioned medium. MRC-5 conditioned medium incubated with wt proMMP-9 alone or both wt 
proMMP-9 and v5-tagged FN domain were used for anti-v5 immunoprecipitation. Representative anti-MMP-9 
immunoblot of 3 independent experiments is shown. SN = supernatant, SN IP = immunoprecipitation of the 
supernatant, SN pIP = post-immunoprecipitation of the supernatant. 

The FN domain of MMP-9 shows a dual role in tumor growth and invasion in 

different tumor cell lines 

MMP-9 is a key molecule in tumor growth and invasion in various cancers [26, 27]. It 

should therefore be interesting to determine whether the FN domain could act as specific 

MMP-9 inhibitor in in vivo situations of tumor growth and invasion. To address this 

question, we selected different tumor cell lines depending on gelatinase expression and 

assessed the effect of the FN domain on tumor growth and invasion. We selected the 

fibrosarcoma HT1080 that highly expresses both MMP-9 and MMP-2, the breast 

adenocarcinoma MDA-MB231 that displays weak expression of MMP-9 and MMP-2, the 

colorectal adenocarcinoma SW480 that expresses both MMP-9 and MMP-2 and the 

breast adenocarcinoma BT-20 that expresses neither MMP-9 nor MMP-2 [71], and stably 

expressed MMP-9, the FN domain and ΔFN in each cell line. To assess the role of the FN 

domain in primary tumor growth, xenograft experiments were conducted by 
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subcutaneously injecting the stable transfectants into NOD/SCID mice. Tumors appeared 

at different times, according to the baseline tumorigenicity of the different cell lines and 

mice were sacrificed accordingly - HT1080 fibrosarcoma (at 18 days), MDA-MB231 breast 

adenocarcinoma (at 5 weeks) and SW480 colorectal adenocarcinoma (at 7 weeks). 

Neither HT1080 nor MDA-MB231 cells stably expressing the FN domain of MMP-9 revealed 

any changes in primary tumor growth (Figure 8A & C). However, experimental metastasis 

assays performed by tail vein injection of the stable transfectants, revealed that the 

expression of the FN domain by these same tumor cells (HT1080 and MDA-MB231) 

dramatically increases their metastatic proclivity to mouse lungs (Figure 8B & D) whereas 

expression of wt MMP-9 either promotes no change or reduces the number of lung 

metastases. These observations suggest a potential protective role of MMP-9 in 

metastasis development, which could be inhibited by the FN domain.  

By contrast, xenografts of SW480 colorectal adenocarcinoma cells stably expressing the 

FN domain of MMP-9 displayed significantly reduced primary tumor growth at the 

subcutaneous injection site (Figure 8E). However, in these cells, overexpression of MMP-9 

increased the number of lung metastases in NOD/SCID mice (Figure 8F). Nevertheless, 

overexpression of the FN domain by SW480 cells significantly decreased lung metastasis 

compared to control cells. It is important to note that no difference in proliferation was 

observed between cells stably expressing MMP-9 or the different mutants (data not 

shown). The observations described above suggest that the FN domain of MMP-9 is able 

to inhibit endogenous MMP-9 activity. In this cell type, MMP-9 appears to display pro-

invasive properties whereas the FN domain acts as an inhibitor of both engrafted tumor 

growth and lung colonization by intravenously injected cells.  

In BT20 cells, which have no gelatinase expression, neither MMP-9 nor the FN domain 

affected metastasis (data not shown). The fact that the MMP-9 and its FN domain have no 

effect on a cell line devoid of constitutive gelatinase expression suggests that the effect 

of the FN domain observed in HT1080, MDA-MB231 and SW480 cells requires endogenous 

gelatinase activity to be detected. MMP-9 and its FN domain therefore appear to display 

dual role in tumor growth and invasion in a cell type-specific manner. 

45



Figure 8. The FN domain of MMP-9 shows a dual role in primary tumor growth and invasion in 
different tumor cell lines; A. The FN domain of MMP-9 has no effect on HT1080 primary tumor growth but B. 
increases lung metastasis in NOD/SCID mice. (A) Primary tumor growth was assessed by subcutaneous injection of 2x105 
cells in both flanks of NOD/SCID mice, which were sacrificed after 18 days. Tumor was weighted. n= 2 (B) Experimental 
metastasis was assessed by tail vein injection of 106 cells in NOD/SCID mice. Organs were collected after 18 days and 
percentage of lung covered metastasis analyzed by H&E staining. n= 2, *P < 0.05, **** P < 0.0001. C. The FN domain of 
MMP-9 has no effect on MDA-MB231 primary tumor but D. increases lung metastasis in NOD/SCID mice. (C) NOD/SCID 
mice were subcutaneously injected with 106 cells and sacrificed after 5 weeks for tumor weighting. n= 2,  **P < 0.01 (D) 
For experimental metastasis assay, 5x105 cells were injected in NOD/SCID mice by tail vein and lungs collected after 5 
weeks. n= 2, **** P < 0.0001. E. The FN domain of MMP-9 decreases both SW480 primary tumor and F. lung metastasis 
in NOD/SCID mice. (E) NOD/SCID mice subcutaneous injection of 3x105 cells was performed and mice sacrificed after 7 
weeks for tumor weight assessment. n= 1, *** P < 0.001. (F) Lung metastasis was assessed by injecting in tail vein of 
NOD/SCID mice 2x106 cells during 21 days. n= 2, **** P < 0.0001.  
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The FN domain influences MMP-9 activity differently depending on the cell 

types  

Given our previous results showing that the FN domain inhibits MMP-9-induced TGF-β 

activation in vitro (Figure 6), we investigated whether the dual, cell type-dependent, 

effect of MMP-9 and its FN domain on tumor growth and invasion was directly related to 

a difference in gelatinase expression and activity. We assessed gelatinase expression in 

conditioned media of the different tumor cell lines used for in vivo experiments (HT1080, 

MDA-MB231 and SW480 cells). Cells were starved in serum-free medium for 48 hours and 

conditioned media collected, concentrated and analyzed for gelatinase expression and 

activity by gelatin zymography.  No differences were observed in either MMP-9 or MMP-2 

activation between HT1080 tumor cell lines expressing the different mutants of MMP-9 

(Figure 9A). However, we noticed that conditioned medium of MDA-MB231 stably 

expressing the FN domain of MMP-9 revealed an absence of one of the active forms of 

MMP-9 compared to MDA-MB231 expressing MMP-9, ΔFN or control cells (Figure 9B 

orange arrow). This suggests that the FN domain of MMP-9 may inhibit MMP-9 activation 

or activity in MDA-MB231 conditioned medium.  

By contrast, the gelatin zymogram of SW480 stably expressing the FN domain of MMP-9 

displayed an increase of a 100 kDa band, which corresponds either to an active or a 

deglycosylated form of MMP-9 (Figure 9C green arrow). Moreover, no differences in 

MMP-2 activity were detected in SW480 conditioned medium. This observation indicates 

that the FN domain of MMP-9 secreted by SW480 cells affects only MMP-9 activity.  
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Figure 9. The FN domain influences MMP-9 activity differently depending on the cell types; A. 
Gelatinases expression and activation in HT1080 supernatants. Concentrated conditioned medium from HT1080 
overexpressing MMP-9, FN, ΔFN or control cells and starved for 48 hours were loaded on gelatin zymogram. 
Representative gelatin zymogram of 3 independent experiments is shown. B. Gelatinases expression and activation in 
MDA-MB231 supernatants. Concentrated conditioned medium from MDA-MB231 overexpressing MMP-9, FN, ΔFN or 
control cells and starved for 48 hours were loaded. Representative gelatin zymogram of 4 independent experiments 
showed the absence of an active form of MMP-9 (orange arrow). Note that we did not observed MMP-2 expression in 
those MDA-MB231 cells. C. Gelatinases expression and activation in SW480 supernatants. Concentrated conditioned 
medium from SW480 overexpressing MMP-9, FN, ΔFN or control cells and starved for 48 hours were loaded. 
Representative gelatin zymogram of 4 independent experiments displayed an increase of an active form of MMP-9 in 
SW480 expressing the FN domain (green arrow). 

ProMMP-9 is a highly glycosylated protein containing both N- and O-glycosylation, which 

play an important role in MMP-9 activation and activity. Accordingly, we asked whether 

the band observed on the zymogram (Figure 9C, green arrow) when analyzing FN-

expressing SW480 conditioned medium corresponds to an active or a deglycosylated 

form of MMP-9. To do so, we used a deglycosylation solution mix that removes both N- 

and O-linked carbohydrates and compared untreated to deglycosylation mix-treated 

SW480 conditioned medium. Deglycosylation of both MMP-9 and MMP-2 resulted in the 

accumulation of a single prominent band on the zymogram for each protease (Figure 10). 

We observed that the 100 kDa MMP-9 protein (Figure 10 green arrow) can be 

deglycosylated, as illustrated by its shift after subjection to the deglycosylation mix. This 

suggests that the band did not correspond to a deglycosylated form of MMP-9 but more 

likely to an active form of the gelatinase.  

In conclusion, the FN domain of MMP-9 might have opposite effects on MMP-9 activation 

and/or activity depending on the cell line by which it is produced. Indeed, we observed 

loss of an active form of MMP-9 in MDA-MB231 conditioned medium versus enhancement 
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of active gelatinase B in SW480 cell conditioned medium upon overexpression of the FN 

domain.  

Figure 10. FN-expressing SW480 cells do not secrete a deglycosylated form of MMP-9; Conditioned 
medium from SW480 cells overexpressing MMP-9 or FN compared to control cells was concentrated with Amicon 50 
NMWL filters, then treated at 37°C for 4 hours with Deglycosylation Enzyme Cocktail in non-denaturing conditions and 
finally analyzed by gelatin zymography. The MMP-9-corresponding band in the supernatant of SW480 cells expressing 
the FN domain (green arrow) shifted in presence of deglycosylation mix, suggesting that this form is an active form and 
not deglycosylated one. The orange arrow display the band which is absent in MDA-MB231 cells overexpressing the FN 
domain and which can also be deglycosylated by the treatment, suggesting also that it corresponds to an active form of the 
enzyme. 

The FN domain produced by SW480 prevents MMP-9 activity at the cell 

surface

Because the FN domain of MMP-9 expressed by different tumor cell lines induced either a 

decrease (MDA-MB231) or an increase of active MMP-9 (SW480) in cell conditioned 

medium and given that cell surface association is important for MMP-9 activity [41], we 

asked whether this effect could be due to the fact that the FN domain helps retain or 

release MMP-9 activity at/from the MDA-MB231 or SW480 cell surface, respectively. We 

therefore performed cell fractionation using HT1080, MDA-MB231 and SW480 cells stably 

expressing either MMP-9, the FN domain or control vector and assessed MMP-9 activity 

at their membrane. By gelatin zymography, we observed that proMMP-9 as well as 

proMMP-2 appeared both in the cytoplasm and at the membrane of HT1080 cells without 

any difference among the different conditions. However, active MMP-9 was present only 

in the cytoplasm and at the membrane of HT1080 cells overexpressing MMP-9 (Figure 11A 

orange arrow), whereas no MMP-9 activity was detected at the membrane of control or 
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FN domain-expressing cells. This suggests that FN domain expression may not directly 

affect MMP-9 and MMP-2 expression, secretion, localization and activity in HT1080 cells. 

By contrast, we noted MMP-9 activity on the surface of MDA-MB231 cells stably 

expressing MMP-9 (Figure 11B orange arrow), but no activity of the protease at the surface 

of control cells or FN domain-expressing cells (Figure 11B). This observation implies that 

the absence of an active form of MMP-9 in the conditioned medium of MDA-MB231 

expressing the FN domain is not due to the fact that the enzyme activity is retained to the 

cell membrane. Thus, the FN domain may affect MMP-9 activation or activity through 

another mechanism, possibly by impairing glycosylation or secretion. 

Similarly, SW480 cells overexpressing MMP-9 displayed an increase of MMP-9 activity at 

their membrane (Figure 11C green arrow), whereas SW480 cells expressing the FN domain 

showed no activity at the cell surface (Figure 11C). Therefore, the presence of an increased 

amount of an active form of MMP-9 in the SW480 cell conditioned medium expressing 

the FN domain (Figure 10C) may be explained by the fact that the FN domain may block or 

displace MMP-9 activity at SW480 cell membrane, by a mechanism that may be distinct 

from that observed in MRC-5 fibroblasts.  

Consequently, we need to identify other mechanisms whereby the FN domain of MMP-9 

expressed by both HT1080 and MDA-MB231 cells increases lung metastasis in 

immunocompromized mice. 
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Figure 11. The FN domain produced by both MDA-MB231 and SW480 cells prevents MMP-9 activity 
at the cell surface; A. The FN domain expressed by HT1080 cells does not sequester active MMP-9 at the cell 
membrane. Conditioned medium of HT1080 cells overexpressing MMP-9 or the FN domain compared to control cells 
and equal amount of cytosolic and membrane fractions were loaded for gelatin zymography. Representative gelatin 
zymogram of 2 independent experiments showed activity of MMP-9 expressed by HT1080 cells (orange arrow). B. The 
FN domain expressed by MDA-MB231 cells does not sequester active MMP-9 at the cell membrane. Conditioned 
medium of MDA-MB231 overexpressing MMP-9 or the FN domain compared to control cells and equal amount of 
cytosolic and membrane fractions were loaded for gelatin zymography. Representative gelatin zymogram of 2 
independent experiments showed activity of MMP-9 expressed by MDA-MB231 cells (orange arrow). C. The FN domain 
expressed by SW480 cells displaces MMP-9 activity from the cell surface. Conditioned medium of SW480 
overexpressing MMP-9 or the FN domain compared to control cells and equal amount of cytosolic and membrane 
fractions were loaded for gelatin zymography. Representative gelatin zymogram of 2 independent experiments 
showed activity of MMP-9 at SW480 cell surface (green arrow).  SN = supernatatant, cyto = cytoplasmic fraction, mb = 
membrane fraction. 
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MDA-MB231 cells expressing the FN domain of MMP-9 display increased 

invasion, which is abolished by the presence of TGF-β 

TGF-β is known to act as an inhibitor of proliferation and therefore behaves as a tumor 

suppressor early in tumor development [18]. Given that the FN domain inhibits MMP-9-

induced TGF-β activation in vitro (Figure 6), we asked whether the increase in lung 

metastasis number observed in NOD/SCID mice injected with MDA-MB231 cells expressing 

the FN domain of MMP-9 is related to TGF-β pathway. We started by assessing the 

proliferation of MDA-MB231 cells expressing MMP-9 or FN compared to control cells in 

the absence or presence of TGF-β using MTT assay. We observed that TGF-β reduces the 

proliferation of all cell types and that there were no difference among the different 

conditions, suggesting that these cells are responsive to TGF-β growth inhibition (Figure 

12). 

Figure 12. TGF-β decreases proliferation of MDA-MB231 cells; MDA-MB231 cells overexpressing MMP-9 or 
the FN domain compared to control cells were plated to assess proliferation rate in the absence or presence of TGF-β1 
(10 ng/mL) by MTT. Absorbance of formazan was measured at 490 nm after 18h, 36h, 72h and 96h.  
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Next, we assessed the invasion capacity of MDA-MB231 cells expressing the different 

mutants of MMP-9 (FN or ∆FN) compared to control cells in the presence of TGF-β. MDA-

MB231 expressing MMP-9, FN, ∆FN and control cells were labeled with Calcein-AM and 

incubated on growth factor reduced matrigel-coated inserts in the absence or presence 

of TGF-β1 (10 ng/mL) for 24 hours at 37°C. 5 % serum was used as chemoattractant. 

Invasion was assessed by measuring fluorescence of Calcein-AM. We observed that in the 

absence of TGF-β, MDA-MB231 ovexpressing the FN domain of MMP-9 display increased 

invasion compared to control cells (Figure 13 left). However, the presence of TGF-β 

significantly reduced invasion by MDA-MB231 cells expressing the FN domain, and 

abolished the increased invasiveness triggered by the FN domain (Figure 13 right). This 

finding suggests that the FN domain of MMP-9 may increase MDA-MB231 invasiveness 

possibly by inhibiting latent TGF-β activation because addition of active TGF-β1 abrogated 

invasion of MDA-MB231 cells that express the FN domain. This potential mechanism could 

occur either through MMP-9 inhibition or by direct TGF-β inhibition. 

Figure 13. MDA-MB231 cells expressing the FN domain of MMP-9 display increased invasion, which 
is abolished by the presence of TGF-β; MDA-MB231 expressing MMP-9, FN or ∆FN compared to control cells 
were labeled with Calcein-AM and incubated on growth factor reduced matrigel-coated inserts for 24 hours in the 
absence or presence of TGF-β1 (10 ng/µL). Invasion was assessed by measuring Calcein fluorescence at 517 nm. n = 3, *P 
< 0.05 **P < 0.01 ns= non-significant.  
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To gain further insight into the molecular mechanism that may explain the higher 

metastatic proclivity and increased invasiveness of MDA-MB231 cells, we tested adhesion, 

migration and invasion of MDA-MB231 cells stably expressing the different mutants of 

MMP-9 in different conditions. We observed that the presence of the FN domain of MMP-

9 in the ECM might increase MDA-MB231 adhesion (Figure 14A). Moreover, MDA-MB231 

cells expressing the FN domain of MMP-9 showed a tendency to migrate more (Figure 

14B), whereas the presence of the FN domain in the ECM tends to help MDA-MB231 cells 

to invade (Figure 14C). Consequently, the FN domain of MMP-9 may also play a role in the 

behavior of MDA-MB231 cells independently from MMP-9 activity.  

Figure 14. The presence of the FN domain of MMP-9 in the ECM tends to increase adhesion, 
migration and invasion of MDA-MB231 cells ; A. The presence of the FN domain in the ECM increases MDA-
MB231 adhesion. Wt MDA-MB231 cells were labeled with 2 µM Calcein-AM and incubated on different ECMs for 10 min. 
Adhesion percentage was assessed as the ratio of adherent cells to total labeled cells. n = 2, *P < 0.05.. B. MDA-MB231 
expressing the FN domain have a tendency to migrate more. MDA-MB231 expressing MMP-9, FN, ∆FN or control cells 
were labeled with Calcein-AM and incubated on growth factor reduced matrigel-coated inserts for 24 hours. Migration 
percentage was assessed as the ratio of migratory cells to total labeled cells. n = 2. C. The presence of the FN domain in 
the ECM helps MDA-MB231 to invade. Wt MDA- cells were labeled with Calcein-AM and incubated on growth factor 
reduced matrigel-coated inserts for 24 hours in the absence or presence of purified FN peptide. Invasion percentage 
was assessed as the ratio of invasive cells to total labeled cells. n = 3. 
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Discussion & perspectives 

In this work, we have shown that pro- and active MMP-9 are recruited to the fibroblast 

cell surface via their fibronectin type II-like motifs, and more abundantly so than to 

various tumor cell lines tested. Recruitment of proMMP-9 activates latent TGF-β, which 

induces αSMA expression reflecting myofibroblast differentiation (Model 1). We provide 

evidence that the activity and location of MMP-9 can be modulated by its recombinant FN 

domain. Thus, the FN domain of MMP-9 is shown to interact directly with proMMP-9 and 

to sequester it in the fibroblast conditioned culture medium, which abrogates both MMP-

9-induced TGF-β activation and αSMA expression in resting fibroblasts (Model 2).  

Model 1: ProMMP-9 recruitment to the fibroblast cell surface activates latent TGF-β and induces 
αSMA expression reflecting myofibroblast differentiation. 
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Model 2: The FN domain inhibits both MMP-9-induced TGF-β activation and αSMA expression in 
resting fibroblasts. 

Our second major observation was that MMP-9 and its FN domain display a dual and 

opposing role in tumor growth and invasion in a cell type-specific manner. Indeed, 

expression of the FN domain in HT1080 and MDA-MB231 cells increased their ability to 

form lung metastases in NOD/SCID mice, whereas overexpression of MMP-9 in these 

same cells decreased their dissemination to the lungs. Whereas MMP-9 activity in HT1080 

cells does not seem to be directly affected by the FN domain, as assessed by gelatin 

zymography, MDA-MB231 cells overexpressing the FN domain display a decrease of an 

active form of MMP-9, which suggests that the FN domain may inhibit MMP-9 activity in 

those cells. This may prevent MMP-9-induced activation of TGF-β and other cytokines, the 

result of which is increased MDA-MB231 invasion that could explain the increased number 

of lung metastases. An alternative view is that the FN domain of MMP-9 may under 

defined circumstances display intrinsic pro-tumorigenic properties independent of the 

proteolytic activity of MMP-9, including the possibility to provide a scaffold for tumor 

cells to adhere to and migrate on. By contrast, the FN domain of MMP-9 decreased both 

tumor growth and metastasis when it was expressed in SW480 cells, whereas wt MMP-9 

displayed both a pro-tumorigenic and a pro-invasive effect. In this case, the FN domain 

may displace MMP-9 from the cell surface where its activity may be required for growth 

and invasion of tumors derived from these cells. Our results demonstrate discrepant roles 
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of MMP-9 and its FN domain in primary tumor growth and invasion that deserve further 

attention. Importantly, MMP-9 and its recombinant FN domain appear to function in 

opposition to each other. 

Potential models of MMP-9 action and FN domain recruitment to the 

fibroblast cell surface 

At least two MMP-9 regions provide candidate structures for recruitment of the enzyme 

to cell surface: the FN type II-like motifs, also known as a collagen-binding domain located 

in the catalytic region of the protease in the vicinity of the active site and shared only by 

MMP-2; and the hemopexin-like domain. It is possible, however, that catalytic activity 

itself may play a role in modulating MMP-9 interaction with cell surface molecules. Thus, 

reduced recruitment of the catalytically inactive mutant E402Q to the surface of 

fibroblasts (Figure 3A) may suggest that recruitment of proMMP-9 to the fibroblast cell 

surface depends in part on the presence of the FN domain, but possibly also on MMP-9 

activity. Indeed, although a single amino acid mutation in the catalytic site could 

potentially affect recruitment to the fibroblast cell surface, an alternative explanation 

may be that the inability of E402Q mutant to become activated weakens interaction with 

fibroblast cell surface ligands. The putative requirement of MMP-9 activity for fibroblast 

cell surface recruitment is consistent with the observation that the active form of MMP-9 

is also recruited to the MRC-5 cell surface (Figure 5A). Nevertheless, the observation that 

the ΔHEX mutant is more strongly recruited than proMMP-9 (Figure 3B) may possibly be 

explained by a favorable conformation of the enzyme, which gives the FN domain better 

access to fibroblast cell surface ligands. In addition, even though the HEX domain is 

reported to be a driver for MMP-9 recruitment to tumor cell lines [46], it is not recruited 

at all to the surface of fibroblasts tested in our study (Figure 3B), suggesting the 

importance of exosites or secondary binding sites in MMP binding and activity [72]. 

Recruitment of proMMP-9 induces αSMA expression in resting fibroblasts reflecting 

myofibroblast differentiation (Figure 5C) which appears to occur through MMP-9-induced 

TGF-β activation (Figure 5B). We noted, in some experiments, that the active form of 

MMP-9 induces higher αSMA expression than active TGF-β alone, which suggests that 
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MMP-9 activity is sufficient for myofibroblast differentiation and that pathways other 

than that of TGF-β alone might be involved in the process. This is in line with the notion 

that TGF-β is not the only substrate of MMP-9 in this context. Thus, in a colorectal cancer 

model, MMP-9 inhibitors have been shown to block PDGF- and TGF-β-driven cellular 

invasion suggesting that both TGF-β and PDGF can induce MMP-9-mediated cellular 

invasion [73]. PDGF may therefore provide an alternative substrate of MMP-9 in the 

mechanism of myofibroblast differentiation, as may other candidate substrates. In 

addition, Kojima and coworkers nicely demonstrated that tumor-promoting CAFs can 

originate from preexisting stromal fibroblasts and maintain this status by establishing 

TGF-β and stromal-derived factor-1 (SDF-1) autocrine signaling [74]. SDF-1 may therefore 

be another important factor in myofibroblast differentiation that synergizes with TGF-β in 

our case. 

Model 3: Potential substrates and factors involved in MMP-9-induced αSMA expression in resting 
fibroblasts. 

Dissection of potential molecular mechanisms underlying MMP-9-induced TGF-β activation 

and αSMA expression in resting fibroblasts 

We do not have yet a complete explanation of the precise molecular mechanism whereby 

activation of TGF-β and myofibroblast differentiation occur. We still need to determine 

whether proMMP-9 bound to the fibroblast cell surface becomes activated on the cell 

surface and cleaves latent TGF-β in the pericellular matrix (as observed in certain tumor 

cells [57]) or whether it is recruited to their cell surface for proteolytic activation and then 

released into the ECM to free TGF-β from its latency complex. This would also address the 
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question as to whether recruitment to fibroblast membranes is a prerequisite for MMP-9 

activation. Because we noted that the FN domain does not displace proMMP-9 from the 

fibroblast cell surface (Figure 7A), the FN polypeptide cannot be used to abrogate 

recruitment and force MMP-9 to remain in the conditioned medium. Thus, whereas it may 

provide a reagent of choice to modulate MMP-9 activity, FN domain does not constitute a 

suitable tool to investigate how physiological activation of proMMP-9 on the cell surface 

might occur. Indeed, we have not proven that MMP-9 is proteolytically activated by its 

fibroblast recruitment and thus, we cannot exclude the possibility of enzymatic activity of 

MMP-9 without proteolytic activation, i.e. in the presence of intact propeptide [42]. 

Nevertheless, the fact that the proteolytically cleaved active form of MMP-9 is recruited 

to the MRC-5 membrane (Figure 5A) suggests that proteolytic activation at the fibroblast 

cell surface may well occur. Consequently, we need to investigate the precise mechanism 

of MMP-9 activation at the cell surface in order to develop ways to block it. To do so, 

fluorogenic DQ-gelatin, which emits fluorescence when degraded by gelatinases and is 

more quantitative than gelatin zymography, has been used in MMP-2 knock down MRC-5 

fibroblasts but did not give satisfying results yet. The protocol requires optimization to 

obtain detectable and reliable signals.  

A potentially relevant pathway to investigate MMP-9 activation and downstream TGF-β-

induced αSMA expression in resting fibroblasts would be uPA/uPAR system. Indeed, 

during tissue remodeling, urokinase-type plasminogen activator (uPA) binds urokinase-

type plasminogen activator receptor (uPAR) and cleaves the zymogen plasminogen into 

the active protease plasmin at the cell surface, which in turn cleaves and activates pro-

uPA and MMPs. uPAR is overexpressed in many human cancers and facilitates cell 

migration through the ECM by promoting pericellular proteolysis, in cooperation with 

MMPs  [75]. uPAR contains 3 extracellular domains, which are called D1D2D3, where D1 is 

the principal uPA binding domain [76]. Moreover, uPA negatively regulates the pathway 

by cleaving uPAR in a D1 soluble fragment and D2D3 membrane-associated fragments, 

thereby inactivating uPAR proteolysis function. The contribution of uPAR proteolysis in 

tumors has also been shown to occur through stromal cells, including fibroblasts [77]. The 

maintenance of full-length uPAR (D1D2D3) on the fibroblast cell surface, as opposed to 

cleaved uPAR (D2D3) has been shown to prevent the transition from migratory 
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fibroblasts to adherent myofibroblasts, demonstrating that uPAR cleavage and 

subsequent downregulation are necessary for myofibroblast differentiation [76]. 

Recently, Wang and coworkers showed that uPA bound to uPAR regulates integrin α5β5 

and that downregulation of uPA/uPAR results in increased α5β5 integrin cell-surface 

protein levels, which regulate β1 integrin binding to collagen/fibronectin and promote 

characteristics of persistent myofibroblast [78]. Moreover, uPA activity is decreased by 

TGF-β1. In glioblastoma, uPA has been shown to directly activate MMP-9, which in turn 

degrades fibronectin and promotes invasion [79]. In human breast cancer cells, 

colocalization of uPAR and MMP-9 in lipid rafts were found to play a critical role in 

promoting migration, invasion and angiogenesis [80]. Thus, it would be interesting to see 

whether treatment of MRC-5 fibroblasts with MMP-9 versus the FN domain might directly 

or indirectly modulate the uPA/uPAR balance and how, i.e. whether the presence of the 

FN domain and its inhibition of MMP-9 activity abrogates uPAR cleavage by uPA, 

therefore preventing α5β5 integrin cell surface activity and myofibroblast differentiation. 

In addition, uPAR-associated protein (uPARAP/Endo180), an internalization receptor 

containing one fibronectin type II-like motif, interacts with uPAR but also takes part in 

other events of matrix turnover and cooperates with other MMPs [81]. uPARAP 

expression is induced by TGF-β and increases tumor growth while diminishing tumor 

collagen content. If dimerization of the FN type II-like motifs is plausible, it may be 

worthwhile to investigate whether MMP-9 and its FN domain interact with uPARAP 

during myofibroblast differentiation and whether the uPA/uPAR pathway plays a relevant 

role in our model. 

Hence, a hypothetic model of action that we propose here is that proMMP-9 is recruited 

to fibroblast cell surface through its FN domain either by uPARAP (via the FN type II-like 

motifs) (Model 4A) or integrin α5β5 (Model 4B). uPA present in the complex of 

uPA/uPAR/uPARAP activates proMMP-9, releasing it (or not) into the ECM for further 

latent TGF-β activation, which may occur either by proteolytic activity (Model 4A) or by 

α5β5 integrin-mediated myofibroblast contraction that releases active TGF-β [82]. TGF-β 

activity then triggers myofibroblast differentiation and uPA negatively regulates uPAR by 

cleavage in the D2D3 fragments at the cell surface (Model 4C). Downregulation of uPAR 

would maintain myofibroblasts in an adhesive phenotype by increased expression of 
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α5β5 integrin and β1 integrins (Model 4D). One of the possibilities for MMP-9 activation 

could be via the plasmin, which is cleaved by uPA/uPAR from plasminogen (Model 4A). 

Plasmin activates proMMP-3, and the combination of plasmin and active MMP-3 may 

activate proMMP-9 [41, 83]. 

Model 4: uPA/uPAR and MMP-9-induced-TGF-β activation and αSMA expression in resting 
fibroblasts. 
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An important initial goal of this work was the identification of the docking receptor of 

MMP-9 and its FN domain at the fibroblast cell surface. Since MMP-9 is known to be 

anchored to some tumor cell surface in a complex with CD44 and TGF-β [57, 58] and that 

fibroblast migration has been shown to be mediated by CD44-dependant TGF-β activation 

via an MMP-dependant mechanism [84], we assessed whether CD44 could be a potential 

target of MMP-9 anchorage to the fibroblast cell surface. However, we observed that 

MMP-9 was recruited to the cell surface of primary CD44 knockout fibroblasts 

(unpublished data), suggesting that MMP-9 anchorage to the fibroblast membrane occurs 

through CD44-independent mechanism. Given that binding of proMMP-9 to the cell 

surface could also be mediated by surface-associated α2(IV) collagen [59] and that 

fibroblasts produce large amounts of collagen, we have to take into consideration that 

the docking mechanism responsible for the MMP-9 recruitment to the MRC-5 cell surface 

may well be provided by fibroblast-secreted collagen IV, or even other collagen types. To 

this end, we have performed mass spectrometry analysis of anti-v5 antibody pull-down of 

MMP-9, FN and ΔFN cross-linked at the MRC-5 cell in an effort to identify MMP-9 

fibroblast cell surface ligands. Preliminary results look promising and unveiled lysyl 

hydroxylase 3 (LH3) as a potential specific interactor of both MMP-9 and the FN domain. 

These data will be confirmed and will determine whether knocking down the docking 

receptor may provide a robust way to block MMP-9-induced TGF-β activation and αSMA 

expression in resting fibroblasts.  

The fibronectin type II-like motifs of MMP-9 in TGF-β-induced αSMA expression 

impairment: a “specific” MMP-9 competitive substrate? 

Fibronectin type-II like motifs are widespread among several classes of extracellular 

proteins and engage in interactions with collagens and gelatin [2, 81]. Interestingly in this 

work, we observed that the FN domain of MMP-9 decreases both MMP-9-induced TGF-β 

activation (Figure 6A) and αSMA expression in resting MRC-5 fibroblasts (Figure 6B). 

Blockade of MMP-9 activity by its FN domain does not appear by displacement of MMP-9 

from the cell surface (Figure 7A), but rather via sequestration of the protease by direct 

interaction of MMP-9 and its FN domain in the conditioned culture medium (Figure 7B) 

and probably at the cell surface as well (preliminary data). Chemical compounds targeting 

the hemopexin domain (HEX) of MMP-9 have already been identified as potent inhibitors 
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of MMP-9-mediated tumor cell migration and proliferation by abrogating MMP-9 

homodimerization [85, 86]. Preliminary immunoprecipitation experiments using MMP-9 

and the mutant lacking the FN domain (ΔFN) suggest that the FN domain may interact 

with MMP-9 in homotypic manner via the FN type II-like motifs in the catalytic region of 

the enzyme, because ΔFN displays no interaction with the FN domain alone (preliminary 

data). This observation is of interest because the FN domain is shared only by MMP-9 and 

MMP-2 among all MMPs and thus, its targeting could potentially provide a selective 

manner of inhibiting only this subset of MMPs or even better, in our case, targeting 

recruitment of MMP-9 to fibroblasts themselves, and thereby fibroblast differentiation. In 

addition, it would be the first report of potential homodimerization of MMP-9 by the FN 

type II-like motifs, given that it has thus far been ascribed to the HEX domain [87]. 

Consequently, it appears worthwhile to explore whether the FN domain interacts with 

other proteins containing FN type-II motifs, including MMP-2, blood coagulation factor 

XII, hepatocyte growth factor activator (HGFA) and uPARAP/Endo180 [88]. If so, it may 

also act as a potential inhibitor of the function of various molecules and therefore, 

depending on the context, it may be involved in the inhibition of unexpected pathways.  

In addition, we need to investigate whether the FN domain prevents potential proMMP-9 

activation or whether it directly inhibits MMP-9 enzymatic activity, for instance by 

mimicking MMP-9 or substrate in the catalytic domain (gelatin) or by preventing 

homodimerization of MMP-9. We have to keep in mind the possibility that the FN domain 

may inhibit, by sequestration of one MMP-9 molecule, MMP-9 homodimerization via the 

already known HEX domain, therefore preventing any other second molecule to form a 

complex [86]. Saad and coworkers observed that MMP-2 was bound to collagen 

associated with bone marrow fibroblasts (BMFs) via the FN type-II motifs and that it 

could be displaced by MDA-MB231 cell-associated fibronectin for further activation by 

MT1-MMP/TIMP2 complexes. This mechanism is believed to facilitate invasion [89]. 

Preliminary experiments showed that MMP-2 seems to be recruited to the fibroblast cell 

surface also via its FN domain, despite the small differences between FN type-II like 

motifs of MMP-9 and MMP-2 [90]. MMP-2 is constitutively secreted by fibroblasts, 

including the MRC-5 cells that we used, whereas MMP-9 is primarily provided to the 

tumor by inflammatory and/or tumor cells themselves [2]. We can thus emit the 
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hypothesis that MMP-9 has to be recruited by stromal fibroblasts for potential cell 

surface activation, subsequent promotion and sustainment of tumor growth and 

invasion. These observations are relevant to MMP-targeting anti-cancer therapies 

because if the FN domain of MMP-9 could specifically inhibit MMP-9 activity and decrease 

latent TGF-β activation and αSMA expression induction, it would provide a selective 

inhibition of a defined mechanism of MMP-9 cell surface docking, via the unique 

gelatinase domain. Nevertheless, we still need to test the specificity of the FN domain for 

inhibition of other MMPs, including MMP-2, MT1-MMP or MMP-3, but this would most 

likely be due to other mechanisms.  

Recently, enhanced selectivity of MMP inhibitors has been shown to be achieved by 

taking advantage of differences in secondary substrate binding sites or exosites within 

the MMP family [72]. Thus, a triple-helical peptide incorporating an FN type II-like motif-

binding sequence was found to selectively inhibit MMP-9 type V collagen-specific activity. 

Paradoxically, the FN domain of MMP-2 has been found to bind different sites on collagen 

IV and therefore modulate MMP-9 binding to collagen IV, which in turn either enhances 

MMP-9 collagenolytic activity at low concentrations or acts as a competitive inhibitor at 

higher concentrations [91]. This study was interesting for two reasons. First, it showed 

that the catalytically inactive FN domain of MMP-2 regulates proteolytic processing of 

MMP-9 by inducing a structural change on type IV collagen and secondly it suggests that 

these two gelatinases may cooperate in degrading substrates because inactive forms of 

MMP-2 also modulate collagen IV degradation by MMP-9. Nevertheless, due to the 

complexity of understanding MMP-9 activation and activity and even if we showed in our 

situation that the FN domain inhibits MMP-9-induced TGF-β activation and αSMA 

expression, we have to keep in mind that it might, under other conditions and depending 

on the doses used, act as a competitive substrate or ligand, which simply disengages the 

propeptide and leads to proMMP-9 activation [42]. Consequently, we need to investigate 

a potential cooperation between MMP-9 and MMP-2 in TGF-β activation and αSMA 

expression. Moreover, we cannot exclude the possibility that their FN domains may act 

together in the inhibition of TGF-β and that the effect observed may also depend on the 

doses of the peptide that are used. 
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Discrepant role of CAFs in tumor growth and invasion 

Our observation that MMP-9-induced TGF-β activation promotes αSMA expression in 

fibroblasts (Figure 5) does not demonstrate the direct role of these differentiated 

myofibroblasts in tumor growth and invasion. Indeed, the role of CAFs in tumor 

progression is multifaceted as they can inhibit, as well as promote, malignant growth 

depending on their activation state and secretion repertoire [92]. Relevant genes 

involved in fibroblast differentiation and that may help further characterization of our 

αSMA-expressing myofibroblasts include SDF-1, whose secretion is increased in CAFs, 

endosialin (CD248), which is a marker of CAFs and could be induced by TGF-β, Caveolin-1 

and CLIC4, whose expression decreases in CAFs, focal adhesion kinase (FAK) (Y397), 

which is induced by TGF-β and plays a key role in adhesion and in regulation of multiple 

signaling pathways, Rho/ROCK which is required for leader fibroblast remodeling of the 

ECM to form tracks for tumor cells and finally miRNA-21, which participates in TGF-β1-

induced myofibroblast differentiation in cancer stroma by targeting PDCP4. Preliminary 

qRT-PCR of MRC-5 fibroblasts treated with MMP-9, only the FN domain or with MMP-9 

and an excess of the FN domain showed an increase of HGF expression in non-αSMA 

expressing fibroblasts, whereas the cells treated with active TGF-β display no HGF 

expression at all (preliminary data). Bhowmick and coworkers observed that the loss of 

TGF-β responsiveness in fibroblasts (TGF-β type II receptor KO) results in prostatic 

intraepithelial neoplasia, as well as in invasive squamous cell carcinomas of the 

forestomach, via increased signaling of HGF, whilst TGF-β1 suppresses HGF expression in 

CAFs [17, 93, 94]. CAFs have been associated with increased secretion of HGF and the 

autocrine loop of HGF/c-Met in CAFs promotes invasion and metastasis [95]. Moreover, in 

breast cancer cells, HGF secreted by CAFs enhances activation of uPA/uPAR protease 

[92]. Our previous observation by qRT-PCR would be in line with the blockade of TGF-β 

activation and signaling by the FN domain of MMP-9, which increases HGF expression and 

probably secretion. This raises the possibility that the FN domain blocking αSMA-

expressing myofibroblast differentiation may positively affect tumor growth and 

invasion, while MMP-9 may be anti-tumorigenic. Indeed, CAFs are not invariably 

myofibroblasts and also include non-αSMA-expressing fibroblasts. Consequently, the 

effect of MMP-9 may depend on the cell type MMP-9 acts on. Bone marrow-derived cells 

65



are a significant cellular source of myofibroblasts found in the tumor stroma [96], whilst 

here, we demonstrated the action of MMP-9 on resting fibroblasts as source of 

myofibroblasts. This supports the notion, yet to be proven, that residual fibroblasts in 

tumor stroma differentiate into myofibroblasts in response to TGF-β. But the direct effect 

on tumor growth and invasion still has to be investigated and an anti-tumorigenic effect 

of this pool of cells should not be excluded. Consequently, we now need to functionally 

characterize the MMP-9-induced-αSMA-expressing fibroblasts and determine their 

behavior in vivo. To do so, transcriptome analysis of MRC-5 treated with MMP-9 or the FN 

domain would help to identify pathways that are triggered or silenced by MMP-9 or FN. 

Another important in vitro experiment would be to coculture MRC-5 fibroblasts with 

carcinoma cell lines (with or without direct contact) in order to mimic an in vivo situation, 

because CAFs, as their name indicates, need crosstalk with tumoral cells to acquire their 

identity. 

Tumor microenvironment via CAFs: combinational target for cancer therapy? 

It is only in the last decades that tumor microenvironment has been studied with 

sufficient depth in the context of tumor development and progression and therefore its 

potential therapeutic targeting has given new perspectives. The observation that MMP-9 

protein is more strongly recruited to the fibroblast cell surface than to the various tumor 

cell lines tested may have a significant impact on tumor-host crosstalk research. Here, we 

suggest that MMP-9 may have an effect on tumor growth and invasion not directly on 

tumor cells but via the stroma. Indeed, targeting the stroma in combination with tumor 

cells to counteract cancer progression appears to be an increasingly attractive and 

plausible strategy [97]. In the present study, we focused on targeting the stromal 

compartment not via nutrient-supplied vasculature blockade but by weakening 

supportive and connective tissue and more particularly, impairing myofibroblast 

differentiation. Targeting fibroblasts seems promising in cancer treatment, because these 

cells are genetically stable, which reduces the risk of drug resistance and are responsible 

for the structure of ECM that hampers diffusion of anticancer agents through solid 

tumors. Fibroblasts also favor survival, proliferation and invasive features of cancer cells 

[92]. Once the molecular mechanisms responsible for our observations are elucidated, we 

will use an osmotic pump that continuously releases the FN domain in spontaneous 
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mouse tumor models, where MMP-9 acts as a pro-tumoral and pro-invasive agent and has 

to be recruited to the fibroblast cell surface. This would be relevant because MMPs 

display compensatory and redundant as well as secondary effects, abrogating selectivity 

among MMP inhibitors [98, 99]. Hence, the FN domain could contribute to the blockade 

of a new potential mechanism of MMP-9 activation via the stromal compartment. 

Consequently, it could provide a framework to design selective MMP or gelatinase 

inhibitors. 

Dual role of MMP-9 and its FN domain in tumor growth and invasion of 

HT1080, MDA-MB231 and SW480 cells 

One of the most intriguing findings of this work was that MMP-9 and its FN domain 

display dual roles in tumor growth and invasion in a cell type-specific manner (Figure 8). In 

HT1080 fibrosarcoma and MDA-MB231 adenocarcinoma cells, expression of the FN 

domain increased lung metastasis in NOD/SCID mouse lungs, whereas expression of 

MMP-9 either caused no change or reduce the number of metastases (Figure 8B & D). 

Although we cannot yet explain the increased number of metastases in HT1080 cells 

expressing the FN domain of MMP-9, it does not seem to directly depend on gelatinase 

expression, secretion or activity as assessed by gelatin zymography (Figure 8A & 9A). In 

the case of MDA-MB231 cells, however, we noted that overexpression of the FN domain 

caused a decrease in an active form of MMP-9 in the conditioned medium (Figure 9B), 

that is not reflected by increased anchorage of active MMP-9 on their membranes (Figure 

11B). The decreased MMP-9 activity observed in the conditioned medium of MDA-MB231 

cells overexpressing the FN domain suggests that the FN domain may impair MMP-9 

activity by either preventing its cell surface activation or by directly inhibiting an active 

form of MMP-9 by sequestration or degradation. In addition, MDA-MB231 cells 

overexpressing the FN domain displayed increased invasion that could be rescued by the 

addition of active TGF-β (Figure 13). This observation suggests potential inhibition of TGF-β 

by the FN domain of MMP-9 that does not seem to occur by direct interaction with either 

latent or active TGF-β (preliminary data). By contrast, SW480 colorectal adenocarcinoma 

cells overexpressing the FN domain of MMP-9 displayed a decrease in both subcutaneous 

tumor growth and lung metastasis in NOD/SCID mice (Figure 8E & F). Curiously, we 
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observed increased MMP-9 activity in the conditioned medium of SW480 cells 

overexpressing the FN domain (Figure 9C), but no MMP-9 activity at their membrane 

(Figure 11C), suggesting that the FN domain produced by SW480 cells may displace MMP-

9 activity from their cell surface. This could explain the decrease in both subcutaneous 

tumor growth and lung metastasis. In SW480 cells, MMP-9 displayed both pro-

tumorigenic and pro-invasive properties, both of which may be inhibited by the FN 

domain by a mechanism of cell surface displacement. 

Dependence of tumor growth and invasion on MMP-9 activity 

The absence of differences in NOD/SCID lung colonization by the constitutively MMP-

negative BT-20 cell line overexpressing MMP-9 or the FN domain suggests that the dual 

effect (increase in figure 8B & D versus decrease in figure 8F) of the FN domain on lung 

metastasis in different cell types may be related to endogenous gelatinase activity. This 

notion is supported by the observations of the inhibition (Figure 9B) versus enhancement 

(Figure 9C) of an active form of MMP-9 in the conditioned medium of cell lines expressing 

the FN domain.  

Nevertheless, figures 9 and 11 have to be interpreted with caution. As different forms of 

pro- and active MMP-9 that can be detected on gelatin zymography, one cannot 

automatically assume that bands of lower molecular weight than proMMP-9 are truly 

active forms of the enzyme [41]. Indeed, proMMP-9 undergoes glycosylation and some 

deglycosylated precursor forms of the enzyme that may or may not be active are also 

detected on gelatin zymography. Moreover, proMMP-9 activation occurs through an 

intermediate form that maintains zinc coordination by the cysteine residue in the active 

site and that is in fact inactive [40]. Detection of MMP-9 activation and activity thus 

remains a complex issue that warrants care. It therefore appears worthwhile to use 

additional functional assays where MMP-9 activity may be quantified for instance by 

measuring its ability to degrade a fluorescent gelatin substrate (DQ-gelatin from 

Invitrogen). The problem with such an approach, however, is that gelatinolysis due to 

MMP-2 activity may confound interpretation. 

Elucidation of the mechanisms whereby MMP-9 can display both pro-invasive and 

protective functions and whereby the FN domain may act as an MMP-9 inhibitor requires 

68



further work. A key experiment will be the use of an shRNA against MMP-9 in these 

different tumor cell lines, which, based on our observations thus far, should mimic 

overexpression of the FN that blocks MMP-9 activity. This would support the specificity of 

the FN domain in MMP-9 inhibition and the fact that MMP-9 can display both pro-invasive 

and tumor protective properties depending on the tumor cell type. Similarly, 

immunocompromized MMP-9 KO mice could be used for experimental metastasis assays 

with our tumor cell lines.  

A study performed by Mira and coworkers suggests that in some cell types, membrane 

location may be important for MMP-9 activation but that MMP-9 that this biologically 

relevant for tumor development is the secreted form [64]. This study supports the notion 

that MMP-9 functions as a paracrine factor in tumor progression. Thus, we have to bear in 

mind the seemingly contradictory possibility that in all of our situations (HT1080, MDA-

MB231, SW480), MMP-9 may display protective functions and that the FN domain may, 

depending on the context, have a dual role on MMP-9 activity. This notion is supported by 

our observations (Figure 9B & C) that the FN domain may inhibit MMP-9 activity in MDA-

MB231 cell supernatants, which increases lung metastasis, but activate MMP-9 in SW480 

cell supernatants, which decreases lung metastasis. MMP-9 may also act as a paracrine 

factor for stromal cells when secreted by MDA-MB231 cells, thus inducing fibroblast 

differentiation and promoting invasion, whereas it may act in autocrine fashion when it is 

expressed by SW480 cells by directly promoting metastatic growth. 

Role of MMP-2: a compensatory effect? 

Compensatory effects are important in MMPs family and always have to be taken into 

consideration, more particularly when this involves the same subfamily [25]. Thus, the 

results that we present in this work do not exclude an indirect effect of MMP-2. As 

mentioned above, MMP-2 bound to collagen-associated bone marrow fibroblasts (BMFs) 

via its FN type II-like motifs has been shown to be released by MDA-MB231 cell-associated 

fibronectin or fragments of fibronectin containing FN type-II motifs and this mechanism 

allowed MMP-2 activation and enhanced cell invasion [89]. This mechanism may provide a 

partial explanation for our observations that the FN domain of MMP-9 increases lung 

metastasis of both HT1080 and MDA-MB231 cells (Figure 8B & D). Active MMP-2 released 
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from fibroblasts by the FN domain may increase invasiveness of HT1080 and MDA-MB231 

cells and therefore counteract the absence of MMP-9 activity, at least in the MDA-MB231 

cell context. Although we did not observe an increase of active MMP-2 in the conditioned 

medium of either HT1080 or MDA-MB231 cells expressing the FN domain of MMP-9 

(Figure 9A & B), this does not exclude such a mechanism because it may occur only when 

the cells grow in coculture with stromal cells. Thus, the absence of differences in MMP-2 

activity between our different cell lines does not exclude a potential implication of MMP-2 

in vivo. Nevertheless, even if the FN domain acts specifically on MMP-9 activity, its 

inhibitory role may affect MMP-2 in situations where the absence of MMP-9 has to be 

compensated for. Importantly, it should be borne in mind that the gelatinase expression, 

secretion and activation studied here by gelatin zymography used tumor cell lines alone in 

culture. Given the importance of the molecular and cellular environment in tumor growth 

and invasion, we cannot exclude different expression of MMP-9 and MMP-2 in cocultures 

or in in vivo situations compared to what we observed in vitro. In the same way, the fine 

balance between MMPs and TIMPs depending on their combinations, the spatial and 

temporal stage of tumor progression at which they are solicited are crucial for cellular 

homeostasis, protease regulation and activity [25, 47]. Hofmann and coworkers nicely 

demonstrated the importance of the cellular MMP source in relation to the mechanism of 

tumor dissemination (spontaneous versus experimental metastases), which may differ 

drastically in MMP expression [100]. Therefore, expression of gelatinases observed by 

zymography with single tumor cell lines may not reflect their expression and activity at 

the lung colonization step of metastasis. However, accurate assessment of MMP-9 

expression and activity in vivo is challenging because of lack of adequate reagents. It is 

noteworthy, however, to keep in mind that proteolytic imbalance by overexpression of 

MMP-9 or its FN domain in certain tumor cell types or in defined experimental settings 

may provoke an unpredicted effect in metastasis development. Consequently, the 

discrepancy in tumor growth and metastasis observed in this study may possibly be 

explained by the differential expression of MMP-9 and MMP-2. It is conceivable therefore, 

that the FN domain may display anti-metastatic effects only in the cells that display 

activity of both gelatinases, which was the case for SW480.  
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MMP-9 and TGF-β effects on MDA-MB231 cells 

TGF-β is a potent inhibitor of growth and proliferation of breast epithelial cells. Malignant 

transformation and tumorigenesis has often been associated with loss of sensitivity to 

TGF-β and resistance to TGF-β growth inhibitory effects has been attributed at least in 

part to loss of expression of TGF-β type II receptor [101]. We observed that the MDA-

MB231 cells that we used are responsive to TGF-β growth inhibition and that there are no 

differences in TGF-β-mediated reduction of proliferation between MDA-MB231 cells 

overexpressing the different mutants of MMP-9 (Figure 12). However, abolition of the 

increased invasiveness of MDA-MB231 cells expressing the FN domain of MMP-9 by 

addition of active TGF-β1 evokes a negative regulation of TGF-β by the FN domain during 

MDA-MB231 invasion (Figure 13). The absence of differences in MDA-MB231 primary tumor 

growth (Figure 8C) when the FN domain is expressed, on the other hand, suggests that 

the FN domain may have no effect on TGF-β pathway when these cells are responsive to 

TGF-β growth inhibition. The FN domain may therefore be implicated in adhesive, 

migratory and invasive features of MDA-MB231 cells (Figure 14), providing a potential 

scaffold for the cells to adhere to and migrate on. Thus, we hypothesize that the increase 

in lung metastasis observed by the FN domain overexpression may primarily affect MDA-

MB231 invasiveness rather than their proliferation and that this mechanism may occur 

through impairment of TGF-β activity. In this case, TGF-β may display an anti-invasive 

function. Our hypothesis would therefore be in contradiction with the observation of 

Farina and coworkers that TGF-β1 enhances MDA-MB231 invasion in an uPA/plasmin-

dependent fashion [102]. This unexpected and seemingly opposite effect of TGF-β may be 

explained by the observation that our MDA-MB231 are still responsive to TGF-β-growth 

inhibition in contrast to theirs. Consequently, responsiveness or not to TGF-β-growth 

inhibition may guide tumor cells at discrete stages of invasion and metastasis.  

The relationship between the FN domain and potential TGF-β inhibition remains unclear. 

Preliminary experiments revealed that the FN domain does not inhibit TGF-β directly. 

Thus, taking into consideration that MDA-MB231 cells expressing the FN domain display 

inhibition of an active form of MMP-9 in their conditioned medium (Figure 9B), we hint 

that the potential effect of the FN domain on TGF-β may occur through MMP-9 inhibition. 

The hypothetical model of action that we evoke here is that during invasion, MDA-MB231 
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cells that overexpress the FN domain can use it as a scaffold that increases their adhesion 

(to endothelial cells facilitating extravasation to the lungs, or to lung parenchyma to 

colonies). Following extravasation, the FN domain may inhibit MMP-9 activation or 

activity, potentially by sequestration as described above, which would prevent latent TGF-

β activation and consequently increase lung adherence, invasion and metastasis. This 

scenario would suggest protective roles of both MMP-9 and TGF-β in organ colonization, 

which can be interrelated if we can show that the inhibition of MMP-9 activity by the FN 

domain directly prevents TGF-β activation. To this end, we are now determining whether 

there is a difference in TGF-β activity in MDA-MB231 cells stably expressing MMP-9, the FN 

domain and control cells. 

It has been described that as a tumor progresses, the genome often accumulates 

mutations in the TGF-β receptor system that renders cancer cells unresponsive to TGF-β 

[22]. Moreover, Kessenbrok and coworkers evoked that given that tumor cells often 

acquire unresponsiveness to TGF-β, proteolytic activation of TGF-β by MMPs may have 

tumor promoting effects by selectively driving stroma-mediated invasion of the tumor. So 

despite the fact that we observed that our MDA-MB231 cells were responsive to TGF-β 

growth inhibition in vitro, we could conceive that the FN domain may specifically block 

TGF-β responsiveness in MDA-MB231 cells in vivo by a mechanism such as sequestration of 

the TGF-β type II receptor and that the observed increase of metastasis is due to TGF-β 

activity on stroma, promoting invasion. In relation with the first part of our results, TGF-β 

activity may induce the differentiation of fibroblasts into myofibroblasts in order to 

increase invasion by leading tumor cells to metastasize [14].  

The effect of the FN domain in MDA-MB231 cells 

MDA-MB231 cells expressing the FN domain do not display cell surface MMP-9 but lack an 

active form of the enzyme in their conditioned medium (Figure 11B). This suggests that 

the FN domain acts in a way that is distinct from providing cell surface anchorage of 

MMP-9 activity. Most studies using MDA-MB231 cell line have shown that increased MMP-

9 expression correlates with increased migration and invasion. However, if we assume 

that the FN domain inhibits MMP-9 activation or activity and increase metastasis in 

NOD/SCID mouse lungs, MMP-9 should provide tumor protective and anti-invasive 
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properties. Nevertheless, as evoked above, it is possible that the observed decreased 

MMP-9 activity in the conditioned medium of MDA-MB231 cells expressing the FN domain 

may not reflect the in vivo situation. Thus, in a 3D situation, there is maybe an 

overexpression of MMP-9 that is not induced by MDA-MB231 cells but by stromal cells, 

which could explain the increased invasion and metastasis observed.  However, this does 

not explain the lack of increased lung metastasis of MDA-MB231 overexpressing MMP-9. 

Consequently, transcriptome analysis and SILAC of MDA-MB231 cells expressing MMP-9 

or the FN domain could be performed in order to assess their secretion repertoire and see 

whether other factors may be involved in the mechanism. 

Recently, Maity and coworkers found that culture of MDA-MB231 cells on fibronectin 

induces proMMP-9 expression and activity via fibronectin-integrin α5β1 signaling 

pathways, which enhances MDA-MB231 migration [103]. This observation prompted us to 

ask whether the FN domain, which may be considered as a “fibronectin-like fragment”, 

may have the opposite effect of that of the entire molecule of fibronectin on MMP-9 

expression, secretion and activity (Figure 9B & 8B), while promoting adhesion and 

migration (Figure 13), possibly through a TGF-β pathway. Safina and coworkers showed 

that in MDA-MB231 cells, TGF-β1 activates MAP kinases, via ALK5 (TGF-β type I receptor) 

which upregulates MMP-9 expression via the MEK-ERK pathway and not p38 MAPK, JNK 

or Smad4 and thus promotes tumor angiogenesis and metastasis [104]. Ilunga and 

coworkers also observed that the effect of Tenascin-C (TNC) and TGF-β on MDA-MB231 

cells enhances MMP-9 expression and cancer invasion [105]. By contrast, our 

observations rather suggest a protective role of both MMP-9 and TGF-β in metastasis 

formation.  

Finally, it is important to bear in mind the possibility of a simple and non-enzymatic 

mechanism to explain pro-invasive properties of the FN domain independently from the 

catalytic activity of MMP-9. Because MMP-9 is shed from the cell surface and deposited in 

the ECM, its FN domain could help tumor cells to invade tissues by providing a scaffold to 

migrate on. 
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The role of MMP-9 in SW480 cells 

The hypothetical model that we propose concerning colorectal adenocarcinoma SW480 

cell metastasis is more founded and correlates with what we know about the role of 

MMP-9 in tumor progression. Indeed, it highlights pro-tumorigenic and pro-invasive 

properties of MMP-9 and the ability of the FN domain to specifically inhibit MMP-9 

activity at the SW480 cell surface by displacement (Figure 11C). We noticed that MMP-9 

activity may be required in autocrine fashion in SW480 cells without any direct 

implications of the stroma, because despite the increase of active MMP-9 in the 

conditioned medium of SW480 expressing the FN domain (Figure 9C), we observed loss 

of MMP-9 activity at the membrane compared to SW480 cells expressing MMP-9 (Figure 

11C). This observation does not support a protective role of active MMP-9 in the 

supernatant (evoked above) because SW480 cells overexpressing MMP-9 display an 

increase in both tumor growth and lung colonization (Figure 8E & F). 

However, and in relation with what we described above, we may take into consideration 

the fact that the FN domain might activate proMMP-9 and that it is this secreted active 

form that is biologically relevant for metastasis and not the membrane bound MMP-9 

[64]. In this case, overexpression of the FN domain would release active MMP-9 from the 

SW480 cell surface and promote its paracrine activity. By contrast, SW480 cells 

overexpressing MMP-9 may retain enzyme activity on their membrane, reducing its 

biological efficiency. In this situation, MMP-9 may also display a protective role against 

tumor growth and metastasis. Consequently, the FN domain would show a dual role in 

MMP-9 regulation depending on the cellular context.  

The metastatic potential of colon cancer cells correlates with their enhanced secretion of 

plasminogen activators and MMP-2 [106]. Moreover, numerous studies have 

demonstrated the localization of MMPs at the interface between CRC cells and the 

surrounding stroma, due to CRC-induced, host cell expression [107]. This supports the 

notion that MMPs are necessary for metastasis in SW480 cells and that the tumor-

produced FN domain may inhibit both tumor- and host-derived MMP-9 activity at the 

SW480 cell surface. 
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Furthermore, colon cancers often display mutations of TGF-βRII, that correlates with lack 

of TGF-β responsiveness but high secretion of TGF-β for paracrine recruitment of host 

cells [108]. Also, various colon cancers display the need for myofibroblasts for invasion, 

even though E-cadherin, known to prevent invasion, is retained. The importance of 

tumor-associated myofibroblasts has been illustrated by their secreted factors, 

specifically HGF in colon cancer, which induces the Wnt signaling pathway in tumor cells 

and thus, probably participates in restoring the cancer-stem cell phenotype [109]. In 

addition, De Wever and coworkers demonstrated that myofibroblasts from colon cancer 

stimulate tumor cell invasion through collagen I and matrigel via scatter 

factor/hepatocyte growth factor (SF/HGF) and the TGF-β-upregulated extracellular matrix 

glycoprotein TNC [110]. EGF-like repeats of TNC through EGF-receptor signaling confer a 

permissive signal for the proinvasive activity of SF/HGF, which activates Rac via c-Met. 

This myofibroblast-stimulated invasion is characterized by a migratory morphotype with 

low RhoA and high Rac activity. Thus, we may hypothesize that in SW480 cell metastasis 

development, overexpression of MMP-9 allows its recruitment to the fibroblast cell 

surface, according to the model that we proposed above, which differentiates them into 

myofibroblasts and leads to increased SW480 cell invasion. Consequently, it may be 

worthwhile to determine the relationship between SW480 cells and MMP-9-induced 

myofibroblasts in coculture condition in the absence or presence of the FN domain by 

assessing their MMP-9 secretion and their invasiveness. This would address the 

importance of the stroma, more particularly myofibroblasts, in this type of tumor cell and 

the ability of the FN domain to affect tumor cell growth and invasion by inhibiting their 

differentiation. This model would be in relation with the observations of Gaggioli and 

coworkers using squamous cell carcinoma cells that retain epithelial markers and are 

unable to remodel the surrounding ECM. These cells migrate in the value of fibroblasts 

that remodel the ECM by creating tracks via a MMP and Rho dependent mechanism [14]. 

TGF-β-induced Epithelial-to-Mesenchymal Transition (EMT) 

Epithelial-to-Mesenchymal Transition (EMT) involves loss of epithelial and acquisition of 

mesenchymal gene expression programs, which allows tumor cells to acquire motility and 

invasiveness [111]. TGF-β is an inducer of EMT and has been shown to cooperate with the 

mitogenic Ras pathway to induce an invasive and proliferative tumor phenotype [111, 112]. 
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Indeed, it promotes mesenchymal features only in Ras-transformed epithelial cells, while 

normal cells respond to TGF-β growth inhibition. In addition, the cells that have 

undergone EMT start to secrete TGF-β in an autocrine fashion in order to maintain the 

invasive phenotype. Thus, the discrepant results that we observed in NOD/SCID lung 

metastases with HT1080 and MDA-MB231 versus SW480 cells (Figure 8) may be related to 

the character of these cells. HT1080 fibrosarcoma are purely mesenchymal cells and have 

an activated N-ras oncogene [113]. MDA-MB231 adenocarcinoma cells have already 

undergone EMT and have been shown to have a hyperactive Ras pathway [114]. By 

contrast, SW480 colorectal adenocarcinoma cells are primarily epithelial, but also display 

mutated Ras proteins. Thus, MMP-9 and the FN domain may display opposite roles in lung 

colonization depending on the status of the cells. MMP-9 may act as a protective agent 

when the cells are mesenchymal, such as HT1080 and MDA-MB231, but may enhance EMT 

via TGF-β or other pathways when the cells display predominantly epithelial features. 

Discrepancy of tumor- versus stromal-derived MMP-9 

A potentially important point to consider is the relative role of MMP activity derived from 

host or tumor cells [47]. Indeed, there are examples where the effect of an MMP is 

dependent upon the cell in which it is expressed (MMP-12 [115]). Studies have 

demonstrated that host-derived MMP-9, supplied by resident stromal and inflammatory 

cells, penetrates the primary tumor site, but that tumor-derived MMP-9 is the initial 

trigger of the angiogenic switch [27] (seen by overexpression in tumor cells = increased 

tumorigenicity and invasiveness, whereas downregulation in tumor cells = decreased 

tumorigenesis and distant metastasis). The protective role of host-derived MMP-9 also 

appears to be mediated via angiogenic mechanisms through generation of angiogenic 

inhibitors [47]. In contrast to its apparent pro-metastatic role, tumor cell-derived MMP-9 

has also been shown to display protective and anti-metastatic properties. Indeed, the 

specific and only downregulation of tumor cell derived MMP-9 by siRNA in a highly 

invasive HT1080 fibrosarcoma cell variant triggers unexpected increase in intravasation 

and metastasis [116]. We could therefore extrapolate that the FN domain expressed by 

HT1080 and/or MDA-MB231 tumor cells in our experimental setting inhibits MMP-9 

activity specifically in these tumor cells, and not stromal MMP-9, which blocking 

generation of angiogenic inhibitors and increasing metastasis. If we assume that stromal 
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cell MMP-9 contributes to metastatic steps [24], overexpression of MMP-9 in tumor cells 

could conceivably provide protection against cancer progression, possibly by generating 

anti-angiogenic inhibitors or even by degrading pro-tumorigenic factors. This would 

explain our observation of increased lung metastasis in NOD/SCID mice injected with 

HT1080 or MDA-MB231 overexpressing the FN domain (Figure 8B & D). Nevertheless, this 

hypothesis has to be further proved using congenic mice, which have an intact immune 

system. Indeed, we cannot exclude the possibility of an inflammatory effect of the FN 

domain, for example by immune cell recruitment. 

Overview of the FN type II-like domain potential functions 

The FN domain is specific for gelatinases amongst MMPs and is composed of three 

fibronectin type II-like motifs, necessary for the binding of gelatin [29], elastin [29] and 

different collagen types [28]. MMP-9 and MMP-2 CBDs are very similar but differ by 

exosite substrate binding specificity. 

Role in fibronectin fragmentation? 

The role of fibronectin (FN) in metastasis has been attributed to its increased degradation 

and also decreased expression of its binding receptors [117]. Interestingly, a feedback 

loop exists between MMP-9 and FN, as MMP-9 degrades FN and binding of FN 

upregulates MMP-9 expression [118]. The mechanism underlying FN fragmentation is 

associated with tissue remodeling and FN fragments have been detected at high levels in 

wound exudates from chronic inflammatory conditions. It involves synergy between FN 

inherent autolytic and MMP activities by interaction of FN with the HEX domain of MMP-2 

[119]. FN fragments have biological activities that differ from those of intact FN and affect 

cell behavior and MMPs expression [30, 120]. Indeed, HT1080 cells cultured on FN 

fragments showed a decrease of MMP-2 and MMP-9 activation due to the competition of 

these fragments with gelatinases at their cell surface [120]. These observations indicate 

that exposure of pathologically-generated FN fragments may alter cell behavior and thus, 

understanding the molecular mechanisms of ligand interactions and cellular regulation in 

response to FN fragments is of considerable interest. FN also interacts with α5β1 integrin 

(via RGD sequence) to induce MMP-9 activity and modulate migration and invasion of 

77



B16F10 murine melanoma cells [121]. However, the FN type II-like motifs of MMP-2 have 

been shown to support cell attachment via a β1-integrin-dependent mechanism at the 

fibroblast cell surface, despite the absence of an RGD sequence in these motifs [38], 

suggesting a role of this domain in cell adhesion and inhibition of MMP-2 activation.  

By contrast to tumor cells, FN has been shown to modulate MMP-9 secretion by 

monocytes and thereby their migration in opposite directions according to whether it is in 

native or fragmented form [118]. Indeed, fragments of FN antagonize the inhibitory 

effects of intact FN in MMP-9 production and consequently enhance monocyte migration 

through ECM degradation. Thus, the differences between full-length and fragmented FN, 

more particularly FN type II-modules in our case, may provide a means to study MMP 

activation and regulation pathways. 

Role as scaffold in pre-metastatic niches? 

An interesting hypothesis that may explain the dramatic increase of lung metastasis due 

to the FN domain of MMP-9 in HT1080 and MDA-MB231-injected mice could be related to 

the role of the FN domain as a scaffold, allowing adhesion and pre-metastatic niche 

formation. Kaplan and coworkers observed that premetastatic niches are generated by 

circulating bone marrow-derived VEGFR1-positive hematopoietic progenitor cells that 

infiltrate secondary organs such as lungs to form a pre-metastatic cell cluster. These cells 

express α4β1 integrin and their extravasation is facilitated by high levels of FN, which is 

produced by stromal fibroblasts in response to tumor-specific growth factors. These 

clusters express MMP-9 that breaks down the basement membrane and releases VEGF 

and soluble kit-ligand [122]. We can therefore envisage that the FN domain secreted by 

HT1080 and/or MDA-MB231 cells may serve as a scaffold for pre-metastatic niches by 

recruiting VEGFR1-positive bone marrow cells and allowing their extravasation, which 

leads to increased lung adhesion of these tumor cells (Figure 14). 

Role in platelet aggregation? 

Extensive evidence shows that platelets are involved in key steps of tumor progression 

and that platelet aggregation correlates with metastasis [123, 124]. Tumor cells have been 

shown to induce platelet activation and aggregate formation in capillaries in order to 
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shield them from immune surveillance [123-126]. FN has been shown to inhibit platelet 

aggregation [127] and to thereby display anti-tumoral effects. FN fragmentation and thus 

potential presence of the FN domain of MMP-9 may enhance platelet aggregation, which 

in turn abolishes the anti-tumoral effect of intact FN and promotes HT1080 and MDA-

MB231 invasion and metastasis (Figure 8B & D). As we performed experimental metastasis 

assays in NOD/SCID mice, tumor cells were directly injected in the tail vein. Therefore, 

components of the blood circulation, including platelets play a key role in the tumor cell 

journey to lungs. The FN domain of MMP-9 secreted by HT1080 or MDA-MB231 cells may 

directly affect platelet aggregation and function by interacting with platelet receptors 

(glycoprotein VI (GPVI), glycoprotein Ibα (GPIbα) or platelet integrin αIIbβ3 (GPIIb/IIIa)), 

necessary for adhesion and aggregation, or other molecules involved in blood 

coagulation. This may increase tumor cell survival, protection from the immune system, 

but also adhesion, migration and extravasation of tumor cells from blood vessels, thereby 

promoting lung metastasis. In addition, it has been proposed that the FN type II-like 

motifs, present only in vertebrates, originate from structural modification of the more 

ancestral kringle domain [128]. Kringle domains are present in proteins implicated in 

blood coagulation, including but not only, prothrombin, plasminogen, urokinase, tissue-

plasminogen activator, hepatocyte growth factor and activator, coagulation factor XI 

[88] thus reinforcing the fact that the FN domain of MMP-9 may play a role in platelet 

aggregation by interaction with homologous domains.  

Interestingly, MMP-2 has been shown be released from platelets to be activated and to 

induce platelet activation and aggregation [129]. By contrast, MMP-9 could display anti-

aggregatory effects opposing the effects of MMP-2  [130]. Thus, the MMP-2/MMP-9 

system may play a key role in the regulation of platelet-platelet and platelet-vessel wall 

interactions. These observations underline once again, the importance of the right 

balance between MMP expression, location and timing of their activation. In this case, 

MMP-9 may display a tumor-protective role, which may be related to our observations in 

HT1080 and MDA-MB231 cells and the FN domain may counteract the anti-aggregatory 

effect by inhibiting MMP-9 activity in blood vessels.  
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Do the FN type II-like motifs exist in the nature? 

An interesting question in this study is the possible existence of the FN domain of MMP-9, 

i.e. the three FN type II modules in normal and natural conditions. Although we have no 

direct proofs that the FN domain exist naturally in 3 FN type II-like motifs, we may 

consider that they may result as fragments produced by either FN, as we described 

above, or degradation of ECM molecules exposing cryptic protein domains and 

generating specific new molecule fragments that can have pro-migratory as well as pro- 

and anti-angiogenic functions [6, 131]. 

Whereas intact FN appears to diminish metastasis, its fragments, generated 

proteolytically or by differential splicing, display pro-tumorigenic and pro-invasive 

properties. These notions could potentially provide a basis for an explanation of the 

observed effect of the FN domain of MMP-9 on tumor cell behavior in our study. In MDA-

MB231 and HT1080 cells, the FN domain may act in a non-enzymatic pro-invasive fashion, 

whereas it may inhibit MMP-9 activity directly on SW480 cells. 
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Epilogue 

In this work, we underscore a pivotal role of MMP-9 in tumor cell invasion and metastasis, 

showing that depending on the context, MMP-9 can be agonistic or antagonistic for 

tumor growth and more particularly, metastasis. We also unveil novel FN domain features 

and demonstrate that MMP-9 and its recombinant FN domain have opposing functions in 

supporting tumor progression. The overall study can be subdivided into two sets of 

observations: 

First, we report differential recruitment of MMP-9 to the surface of fibroblasts and tumor 

cells, showing far more robust recruitment to the fibroblast membrane. Cell surface 

activity of MMP-9 is shown to be important for growth factor activation (particularly TGF-

β), and probably also pericellular matrix remodeling, although we did not address this 

issue directly. TGF-β activation, whether on the fibroblast surface or in the immediate 

pericellular fibroblast microenvironment, may play a critical role in fibroblast 

differentiation into myofibroblasts and thereby provide a mechanism underlying the 

constitution of at least a subset of CAFs. In this context, the recombinant FN domain 

blocks MMP-9-dependent, TGF-β-mediated myofibroblast differentiation and thereby 

abrogates an important fuelling mechanism of tumor progression.  

In our second set of observations, we determined the importance of MMP-9 activity in 

different tumor cell lines and showed that despite the commonly accepted notion that 

MMP-9 expression promotes tumor invasion and metastasis, MMP-9 can fulfill an 

inhibitory role in tumor dissemination. These observations underscore the all too 

frequently overlooked notion that despite a voluminous literature on MMP function and 

implication in tumor growth and metastasis, full elucidation of role of MMPs in cancer 

remains a field in need of investment. Studies in which MMP-9 function in tumor 

progression is investigated in several diverse tumor cell lines, for instance, are rare. In the 

present work, we highlight discrepant roles of MMP-9 in tumor growth and invasion in a 

cell context-dependent fashion and disclose a hitherto unrecognized property of the FN 

peptide, recognized as a collagen-binding domain, in the modulation of pro- and anti-

tumorigenic features of MMP-9 activity. 

81



The complexity of MMP regulation illustrates well the discrepant effects of what are 

often considered to be potentially key molecules in cancer development and progression. 

It is also a clear reminder that successful therapeutic targeting of solid tumors will require 

in-depth understanding in a tumor type- and probably stage-specific manner of all of the 

key events in tumor host interactions, including tumor cell-dependent events, signals 

delivered by the soil in which the tumor cells are implanted and the role of both tumor 

and stromal-derived bi-functional molecules that can enhance or abet hijacking of the 

host tissue. 
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