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Abstract
In this paper, we compare the performance of two data-driven algorithms to deal with an automatic classification problem

in geomorphology: Direct Sampling (DS) and Random Forest (RF). The main goal is to provide a semi-automated

procedure for the geomorphological mapping of alpine environments, using a manually mapped zone as training dataset

and predictor variables to infer the classification of a target zone. The applicability of DS to geomorphological classifi-

cation was never investigated before. Instead, RF based classification has already been applied in few studies, but only with

a limited number of geomorphological classes. The outcomes of both approaches are validated by comparing the eight

detected classes with a geomorphological map elaborated on the field and considered as ground truth. Both DS and RF give

satisfactory results and provide similar performances in term of accuracy and Cohen’s Kappa values. The map obtained

with RF presents a noisier spatial distribution of classes than when using DS, because DS takes into account the spatial

dependence of the different classes. Results suggest that DS and RF are both suitable techniques for the semi-automated

geomorphological mapping in alpine environments at regional scale, opening the way for further improvements.
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1 Introduction

Classical geomorphological maps are usually obtained by

manual mapping and digitization of features from field

observations or from topographic data, orthoimagery and

remote sensing imagery (Dent and Young 1981; Pain 1985;

Mantovani et al. 1996; Batten 2001; Bocco et al. 2001;

Lambiel and Pieracci 2008; Lambiel et al. 2016, 2020;

Reddy 2018). These approaches are time-consuming, par-

ticularly for large areas with limited accessibility, and they

are therefore only used for restricted area (Adediran et al.

2004; Schneevoigt et al. 2008). In the last decades, dif-

ferent supervised and unsupervised numerical approaches

were proposed to automatically classify key landforms

(Smith et al. 2011). In the case of supervised methods,

training areas selected with geomorphological expertise are

employed (Brown et al. 1998). For unsupervised

approaches, algorithms identify the land surface parameters

through combinations of predictor variables (Pike 1988).

Generally, predictors are morphometric factors derived

from digital elevation models (DEMs), such as slope and

aspect, and non-morphometric variables that inform vege-

tation, land cover, lithology and soil (Irvin et al. 1997;

Adediran et al. 2004; Gharari et al. 2011). Usually these

techniques do not consider the spatial patterns and relations

among variables, and may generate misclassifications on

terrain discontinuities (Minár and Evans 2008; van Niekerk

2010).

In recent years, more advanced mapping techniques

based on machine learning and geostatistics have been

developed. These exhibit improved classification perfor-

mance, especially when based on the analysis of increas-

ingly available high-resolution terrestrial images. In

addition, they allow incorporating spatial dependence

between multiple locations (Evans 2012; Vannametee et al.

2014).

Developing automatic procedures for geomorphological

mapping is relevant in several domains of environmental

modelling. For instance, predictive ecological models are
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used to estimate small-scale species distributions, based on

factors influencing vegetation, especially under the effect

of global warming (Beniston et al. 2018). Indeed, plant

development and distribution depend on indirect variables

(e.g. lithology, topography, climate), on direct variables

(e.g. nutrients, soil, temperature controls and photosyn-

thetically active radiation), on biotic interactions and dis-

turbances, and on land use (Guisan and Zimmermann 2000;

Mod et al. 2016). Using a geomorphological dataset, pro-

viding detailed information about processes and landforms,

as well as physical disturbances, can improve the predic-

tions of species distribution in mountain environment.

Indeed it has been shown that landform morphodynamics is

an important factor for alpine plant distribution (Cannone

and Gerdol 2003; le Roux and Luoto 2014; Giaccone et al.

2019).

To test the potential of latest-generation supervised

classification techniques on geomorphological mapping,

we provide here a comparative study on two data-driven

algorithms: Direct Sampling and Random Forest. The main

goal of this comparative exercise is to perform a semi-

automated geomorphological mapping (SAGM) of an

alpine environment, and to assess it against an existing

geomorphological map elaborated on the field and con-

sidered as ground truth.

The first classification method considered is Direct

Sampling (DS). DS has recently been employed in different

studies, such as for generating stochastic sand channels in

aquifer modeling (Huang et al. 2013), gap-filling of daily

streamflow time series (Dembélé et al. 2019), simulating

rainfall time-series (Oriani et al. 2018), colorizing grays-

cale or multispectral images (Gravey et al. 2019), or min-

eral resource estimation (Dagasan et al. 2019). However,

despite its ability to account for the spatial dependence of

classes, its applicability to geomorphological classification

has never been investigated before.

The second approach tested is Random Forest (RF)

(Breiman, 2001). RF is widely used in different scientific

domains, such as ecology (Prasad et al. 2006; Cutler et al.

2007), permafrost modeling (Deluigi et al. 2017), suscep-

tibility mapping (Stumpf and Kerle 2011; Catani et al.

2013; Leuenberger et al. 2018; Tonini et al. 2020), remote

sensing (Chan and Paelinckx 2008; Belgiu and Drăguţ

2016), and also for geomorphological classification (Mar-

mion et al. 2008; Stumpf and Kerle 2011; Veronesi and

Hurni 2014). In previous geomorphological applications,

the classification was limited to specific landforms

belonging to the same morphogenic class (e.g. periglacial

landforms, landslides or shaded relief landforms), without

considering contiguous areas. Therefore, a general frame-

work including the use of RF for the SAGM, aimed at the

accurate depiction of complex landforms in alpine envi-

ronment, is still lacking.

The DS and RF approaches implemented in the present

study seek to provide solutions for a multi-class SAGM. To

reach this goal, we tested both algorithms in an alpine area

where a classical geomorphological existing map is used

for validation.

2 Material and methods

2.1 Direct sampling

DS is part of the multiple-point geostatistics (MPS) family

of techniques (Mariethoz et al. 2010; Mariethoz and Caers

2014), which simulate a random variable at unknown

locations by generating data patterns similar to the ones

observed in a given training image (TI) (Strebelle 2002;

Caers and Zhang 2004; de Vries et al. 2008; Vannametee

et al. 2014). A TI can be a real dataset or a conceptual

image of the expected spatial heterogeneity based on prior

information (Meerschman et al. 2013). In their pioneer

study, Vannametee et al. (2014) showed the applicability of

MPS to map 8 landform classes in the French Alps, using

the pioneer MPS algorithm SNESIM (Strebelle 2002).

With respect to early MPS algorithms, DS can consider

both continuous and categorical variables at the same time,

which allows using different types of predictor variables.

The DS algorithm generates a random variable on a

simulation grid (SG), representing the study zone, by

resampling the TI under pattern-matching constraints and

calculating the distance Dð d! Xð Þ; d! yð ÞÞ, i.e. the measure

of dissimilarity, between two data events (for more details

see Oriani et al. 2021).

D d~ Xð Þ; d~ yð Þ
� �

¼ N�1
XN
n¼1

Idn xð Þ6¼dn yð Þ ð1Þ

where di �ð Þ is the nth datum which composes the con-

ditioning pattern.

In the present case, a categorical variable denoting

geomorphological classes is the target variable, manually

defined for the TI by geomorphological expertise. A series

of morphometric, physical, and remotely sensed variables,

defined for both the TI and SG, are provided as predictors

for the geomorphological classes. The algorithm identifies

correspondences between patterns of these variables, then

it sequentially imports in the SG the target variable values

(i.e. the geomorphological classes) associated with the

most similar patterns found in the TI.

Since DS is a geostatistical simulation algorithm, it does

not produce a unique classification, but a (possibly infinite)

number of equiprobable scenarios of classes, called real-

izations. The most probable estimation of the classes can

be performed by computing the mode of the realizations
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(i.e. the most frequent class across all the realizations). In

addition, the variability between realizations can be ana-

lyzed to estimate the classification uncertainty.

The following DS parameters have to be defined: (1) the

maximum fraction of the TI to be scanned F [0, 1]; (2) a

neighborhood including the number of neighbor pixels to

each target; (3) the distance threshold position T [0, 1],

used to stop or continue the sampling processes if a data

event is found in the TI; (4) the number of realizations; (5)

the weight for the conditioning data W [0, 1]. In our case,

we decided to completely scan the TI (F = 1) to have

access to all the patterns in the training image, with a

neighborhood defined as the 9 closest pixels for each pre-

dictor, except for the geomorphology variables for which

we do not consider spatial neighbors. In the simulation,

patterns are compared with a rotation-invariant distance to

increase the matching possibilities (Mariethoz and Kelly

2011). The threshold position T was set to 0.01 in agree-

ment with Meerschman et al. (2013); 100 realizations were

generated and all the variables were given the same weight

(W = 1).

2.2 Random forest

RF is an ensemble-learning algorithm for classification and

regression based on decision trees (Breiman 2001). As a

common characteristic of machine learning based approa-

ches, RF is capable of learning from and makes predictions

on data, modeling the hidden relationships between a set of

input and output variables. Decision trees are supervised

classifiers providing decisions at multiple levels and are

constituted by root nodes and child nodes. At each node,

decisions are taken based on training predictor variables.

The number of generated trees (ntree) and the number of

variables randomly sampled as candidates at each split

(mtry) are the only parameters that need to be specified by

the user. The algorithm then generates ntree subsets of the

training dataset (counting about one-third of the observa-

tions) by bootstrapping (i.e. random sampling with

replacement). For each subset, a decision tree is generated

and, at each split, the algorithm selects randomly mtry

variables and computes the Gini index to select the best

variable. This step is iterated until each node contains only

one or less than a pre-fixed number of data points. The

prediction of a new data point is finally computed by taking

the average value of all decision trees for regression and

the maximum voting for classification, which is the case in

the present study. The parameters of the model have been

optimized by evaluating the prediction error on those

observations that were not used in the training subsets

(called ‘‘out-of-bag’’ – OOB). Values were set to 500 for

ntree and 4 for mtry, following a trial and error process.

Finally, the relative importance of each variable was

assessed by evaluating the mean decrease accuracy, com-

puted by measuring how much the tree nodes using that

variable enable reducing the mean square errors estimated

with the out-of-bag, across all the trees in the forest.

RF was run twice: firstly with the same input dataset

(extracted from the TI) as the one used for DS, and sec-

ondly with a balanced dataset. This strategy was adopted

because the geomorphological classes are not equally

represented in terms of number of pixels per class. We used

the SMOTE (Synthetic Minority Over-sampling Tech-

nique) function (Chawla et al. 2002), which allows bal-

ancing the dataset by artificially generating new examples

of the minority classes and by under-sampling the exam-

ples of the majority class. The level of over-sampling of the

minority classes (perc.over) and of under-sampling of the

majority classes (perc.under) need to be set up by the user,

as well as the number of nearest neighbors (k) used to

generate the new examples of the minority class. In our

case, based on trial and error process, we set them as:

perc.over = 900, perc.under = 900 and k = 5. In both the

runs, unbalanced and balanced, RF was trained on the TI

and results predicted on the SG. This selection of the

training and the testing dataset (i.e. corresponding to the TI

and SG respectively) allowed comparing RF and DS in

identical conditions.

Analyses were performed using R free software (R Core

Team 2019). Specifically, the packages randomForest was

employed for the classification procedure and the package

DMwR to balance the input dataset (with the function

SMOTE).

2.3 Study area and experimental design

The study area corresponds to a rectangular domain of 70

km2 in the Arolla valley, located in the southwest Swiss

Alps (46� 01’ N, 7� 28’ E) (Fig. 1). We selected this area

because a classical geomorphological map is already

available and can be used for validation (Lambiel et al.

2016). This map was elaborated using the geomorpholog-

ical legend established by the University of Lausanne

(Schoeneich 1993) and employed in several cases (e.g.

Ondicol 2009). It highlights the process categories, the

morphogenesis of the landforms and their activity rate. The

selected rectangular domain was divided in two equal

areas: one used for training (TI) and the second for simu-

lation/testing (SG) the two data-driven algorithms (DS and

RF).

Arolla valley is located in the upper part of the Hérens

valley, a south-north catchment on the orographic left side

of the Rhone River, ranging from 470 to 4357 m a.s.l.

Geologically, this valley consists of oceanic sediments and

orthogneisses, metagabbros and breccias (Steck et al.

2001). According to the Köppen-Geiger climate
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classification (Peel et al. 2007), the climate is considered

ET (tundra climate) with a mean annual precipitation of

736 mm recorded at the Evolène-Villa weather station

(1825 m a.s.l.) for the norm period 1981–2010. The 0 �C
isotherm is around 2600 m a.s.l.

Arolla valley is characterized by the presence of several

glaciers retreating since the end of the Little Ice Age

(nineteenth century), large moraines, widespread perigla-

cial landforms (e.g. active and relict rock glaciers,

solifluction lobes), talus slopes and associated debris flows

landforms (gullies, fans–Lambiel 2021).

The dataset is composed of 13 variables (Table 1): the

geomorphological classes, representing the target variable,

and 12 predictor variables, including topographical and

remote-sensing indicators. The geomorphological classes

are informed in the TI. Conversely, in the SG the target

variable is uninformed and simulated by the classification

algorithms (Fig. 2).

All the variables were processed under a GIS environ-

ment (ArcMap 10.7) and resized on a regular grid with a

spatial resolution of 20 m. Flow accumulation and rough-

ness were computed using the TopoToolbox implemented

in Matlab (Schwanghart and Kuhn 2010; Schwanghart and

Scherler 2014). The aspect was transformed from degrees

to sine (aspect_sin) and cosine (aspect_cos) to highlight all

cardinal points.

2.4 Geomorphological classification

The original geomorphological map was organized in 11

main classes, grouping more than 100 types of landforms.

In the study area, the classes karstic, lacustrine and organic

were highly underrepresented and too scarce to be detected

by a data-driven classification algorithm. Thus, pixels of

these three classes were aggregated with the neighboring

pixel of the eight main process-based classes. The

anthropic class was excluded from the analysis. The final

classification, based on the geomorphological interpreta-

tion of the original map performed by the authors, is shown

in Table 2.

2.5 Model validation

The predictions made on the SG and resulting from the

implemented models were compared with the original

geomorphological map (i.e. the observed class) through a

Fig. 1 Test area with the geomorphological map elaborated by

Lambiel et al. (2016) (left side). On the right side, the area selected

for calibrating and running the algorithms to produce the SAGM. The

area was divided in two part, the training image (upper part) and the

simulation grid (lower part). Legend of the selected area: (1) talus

slope; (2) active-inactive rock glacier, debris-covered glacier, Little

Ice Age moraine deposit; (3) rockslide, landslide, relict rock glacier;

(4) alluvial fan; (5) alluvial plain; (6) Lateglacial deposit; (7) glacier

and permanent snow; (8) rock outcrop, rock wall. White zones are

excluded from all the calculations. Datum: CH1903 / LV03
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Table 1 Variables in the

dataset. The orthomosaics and

the original DEM were provided

by from the Swiss Office of

Topography

Variable Name in dataset Source

Geomorphology Geomorphology Lambiel et al., 2016

R band Ortho1 aerial orthophoto mosaic (year 2013)

G band Ortho2 aerial orthophoto mosaic (year 2013)

B band Ortho3 aerial orthophoto mosaic (year 2013)

Slope Slope Alti3D DEM (year 2016)

Sine aspect Aspect_sin Alti3D DEM (year 2016)

Cosine aspect Aspect_cos Alti3D DEM (year 2016)

Normal curvature Curvature Alti3D DEM (year 2016)

Plan curvature Plan_curv Alti3D DEM (year 2016)

Profile curvature Prof_curv Alti3D DEM (year 2016)

Solar radiation Solradiation Alti3D DEM (year 2016)

Flow accumulation Flow_accumulation Alti3D DEM (year 2016)

Roughness Roughness Alti3D DEM (year 2016)

Fig. 2 Conceptual model of the

test design. The study area is

split in two parts, the training

image (TI) and the Simulation

Grid (SG). Both are composed

of the same number of variables

with equal resolution grid

Table 2 Geomorphological classification

Class Landform

1 Talus slope

2 Active-inactive rock glacier, debris-covered glacier, Little Ice Age moraine deposit (recent and/or active land forms)

3 Rockslide, landslide, relict rock glacier (chaotic deposits partially covered by vegetation)

4 Alluvial fan

5 Alluvial plain

6 Lateglacial deposit

7 Glacier, permanent snow

8 Rock outcrop, rock wall
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confusion matrix (Table 3). This allowed evaluating the

performance for each class and computing the overall

accuracy and Kappa value (Cohen 1960).

Accuracy is the first evaluation statistic, defined as the

ratio of the number of correct predictions over the total

predictions:

Accuracy ¼ TPþ TN

TPþ TN þ FN þ FP
ð2Þ

Cohen’s Kappa is a measure of agreement normalized at

the baseline of random chance on the dataset:

k ¼ po � pe
1� pe

ð3Þ

where po is the observed accuracy and pe is the proba-

bility of chance agreement under independence assump-

tion. Kappa values ranges between -1 and ? 1, with

negative values indicating a complete disagreement among

predictions and observations, and positive values an

agreement evaluated as slight (0.01–0.20), fair to moderate

(0.21–0.60), substantial to almost perfect agreement

(0.61–0.80) (Viera and Garrett 2005). The Cohen’s Kappa

is generally seen as more informative than the accuracy.

The following evaluation statistics for each class have

also been calculated:

Sensitivity ¼ TP

TPþ FN
ð4Þ

Precision ¼ TP

TPþ FP
ð5Þ

Sensitivity measures how often the model correctly

assigns a geomorphological class over all the positive

observations, and assesses the performance of the model to

predict the presence of a geomorphological class when that

class is present. Precision is the proportion of geomor-

phological classes correctly predicted over all the positive

predictions.

For a multiclass system, the confusion matrix allows

evaluating whether each single class is correctly predicted

and to assess the degree of misclassification. This is

accomplished by computing the fraction of pixels of class i

being labelled as class j. Therefore, the matrix diagonal

shows the fraction of pixels correctly predicted for each

class (corresponding to the sensitivity), while values out-

side the diagonal represent fractions of misclassified pixels.

In the result section, the DS data with one realization

and the mode of 100 realizations are displayed, to highlight

how computing the mode improves the results, also from a

visual point of view. Furthermore, the probability of each

class, computed based on the 100 realizations, is calculated

to quantify the precision. For RF, the unbalanced (i.e. the

original dataset) and balanced dataset are shown both as

categorical values (by taking the maximum vote), and as

probabilities (by normalizing the most voted class over the

total number of trees).

Experimental variograms (Cressie 2015) were computed

for the results of each method to evaluate the degree of

spatial dependence of the geomorphological classes. The

connectivity index (Hovadik and Larue 2007) was also

calculated to estimate the degree of connection of pixels

inside the same geomorphological class. Connectivity

values range from zero for totally fragmented units,

entirely composed by non-adjacent pixels, to one for totally

connected units.

3 Results

3.1 Direct sampling

The SAGMs obtained with one DS realization and with the

mode of the 100 DS realizations are compared with the

aerial orthophoto and the reference map (Fig. 3a and 3b)

and are represented in Fig. 4a and 4b. The one-realization

results show a low degree of spatial continuity compared to

the mode of 100 realizations, but still retains the location of

the main patterns. The measure of accuracy of the models

is represented in Fig. 4c and 4d as binary values (correctly

classified pixels in black, incorrect ones in white). One can

identify main landforms such as talus slopes (n� 1), active-
inactive rock glaciers, debris-covered glaciers and Little

Ice Age moraine deposits (n� 2), Lateglacial deposits (n�
6), glaciers (n� 7), and rock outcrops (n� 8), even if their

shapes are clearer in the mode of the 100 DS realizations

(Fig. 4b). The class n� 3 (rockslide, landslide, relict rock

glacier) presents a structure not coincident with the ground

truth. This is also the case for the classes n� 4 (alluvial

fans) and n� 5 (alluvial plains), which do not present a

coherent pattern with a single realization, but results

improved in the mode of 100 realizations.

The measure of precision (Fig. 4e) highlights the areas

that were better predicted, with light and dark blue colors

(mode-occurrence frequency above 0.7) These areas match

mainly with the classes n� 1, 2, 6, 7 and 8, corresponding to
Lateglacial deposits in the top-center part, glaciers in the

left-bottom part and debris-covered glaciers and their Little

Table 3 Confusion matrix

Predicted class

Yes No

Observed class Yes True Positive (TP) False Negative (FN)

No False Positive (FP) True Negative (TN)
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Ice Age moraines on the left side, and rock outcrops in the

bottom and right side. Instead, in light and dark red colors

(mode-occurrence frequency below 0.4), the alluvial fans

(n� 4) and the alluvial plains (n� 5) are not correctly sim-

ulated in the central part of the area, as well as the rock-

slides deposits (n� 3) presented mainly in the top-left side.

The confusion matrix (Table 4) confirms the visual

interpretation of the results and allows evaluating the pre-

dictive power for each class. Concerning the one-realiza-

tion case (Table. 4a), the best predicted classes are the

Lateglacial deposits (n� 6), the glaciers (n� 7) and the rock

outcrops (n� 8), attested by high sensitivity values (0.53 for

class n� 8 and around 0.6 for classes n�6 and n�7), backed
by high precision values ([ 0.52). For the other classes, the

sensitivity is lower than 0.42; however, the highest values

lie on the main diagonal, meaning that the highest fraction

of pixels was correctly predicted. The only exception is

alluvial fan (n�4) that is more frequently classified as

alluvial plain (n�5).
The 100 DS realizations model performs much better

than the one-realization case, with highest values of sen-

sitivity for almost all the classes and the class n� 6, 7 and 8

again the best predicted. The class n�4 is still often mis-

classified (Table 4b).

The overall accuracy for one-realization and for the 100

DS realizations is of 0.46 and 0.55, respectively, with a

confidence interval 95% for both, while Kappa is of 0.35

and 0.46, considered a fair (K [ [0.21–0.40]) and moderate

(K [ [0.41–0.60]) agreement (Table 5).

3.2 Random forest

The classification results from the RF unbalanced and

balanced models are shown on Fig. 5a and 5b, respectively.

From the visual inspection, the measure of precision

(Fig. 5c and 5d) presents high probability values (light–

dark blue,[ 0.7) only in few areas, such as some rock

outcrops in the right and in the left-bottom side of the

image, as well as for the glaciers. In the top-central side,

the high probability patch indicates a portion of Lateglacial

deposits. Even if the different classes are relatively scat-

tered, the class n� 2 (active-inactive rock glaciers, debris-

covered glaciers, Little Ice Age moraine deposits) is

accurately predicted: in the bottom-left area, for example,

two debris covered glaciers are identified with their Little

Ice Age moraines. They still present elongated portions of

debris-free ice that are efficiently detected. In the right part

as well, small glaciers located at the foot of rock walls

areas are well identified. Instead, alluvial fans and alluvial

plains (classes n� 4 and 5) present low values of precision

in the central part of the area where they should be local-

ized, as well the rockslides deposits (n� 3) not correctly

simulated especially in the top-left part. The accuracy of

the models is represented in Fig. 5e and 5f as binary values

(correctly classified pixels in black, incorrect ones in

white).

The RF algorithm shows a comparable overall perfor-

mance to DS. According to the mean decrease accuracy,

aspect, slope, solar radiation and roughness are key pre-

dictors for the unbalanced-data model (Fig. 6a). Flow

accumulation, aspect, profile curvature and slope are key

predictors in the balanced-data model (Fig. 6b). Other

variables offer moderate improvement, except in the case

of RGB bands, which have a negligible impact in both

cases. Looking at the out-of-bag (OOB) error, plotted as a

function of the number of trees, the final value is 35.77%

for the unbalanced case (Fig. 7a) and 8.59% for the bal-

anced case (Fig. 7b). It follows that the RF-balanced model

allows improving the results only on the same TI, but it

does not succeed in generalizing them to the SG. The

Fig. 3 a Aerial orthophoto SwissMapRaster � swisstopo (DV084371). b Reference geomorphological map for the selected study area. In white,

the areas not considered for classification. For the legend, see Fig. 1
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corresponding minimum values are shown in Table 6. It is

clear from these results that the balanced model performs

better than the unbalanced one for each class.

The confusion matrices calculated for both models (RF

with balanced and̄ unbalanced observations) are shown in

Tables 4c and 4d. As for DS, the classes with the best

predictions are the Lateglacial deposits (n� 6), the glaciers

(n� 7) and the rock outcrops (n�8). For these three classes,

sensitivity values are slightly higher that values obtained

for DS 100-realizations, with values above 0.61 for both

models. In addition, RF-balanced allowed improving the

predictability of the classes n�4 (Alluvial fan) and n�5
(Alluvial plain).

The overall accuracy for RF unbalanced and balanced is

of 0.55 and 0.54, respectively, with a confidence interval

95% for both, and Kappa values of 0.44 and 0.43, con-

sidered a moderate agreement (K [ [0.41–0.60]) (Table 5).

These statistics are similar to the ones obtained with the

DS-100 realization model.

Fig. 4 a Semi-automated geomorphological map obtained from one

DS realization. b Semi-automated geomorphological map obtained

from the mode of 100 DS realizations. c Measure of accuracy of the

one DS realization; on black, the pixels correctly simulated, in white,

the pixels not corresponding to the reference geomorphological map.

d Measure of accuracy of the 100 DS simulations. e Precision map of

the 100 DS realizations, showing the frequency of detection of the

class corresponding to the mode. The higher is the probability, the

more certain is the estimation. f Reference geomorphological map for

the selected study area. For the legend, see Fig. 1. In white, the areas

not considered for classification

Stochastic Environmental Research and Risk Assessment

123



Ta
bl
e
4

C
o
n
fu
si
o
n
m
at
ri
ce
s
fo
r:
a
d
ir
ec
t
sa
m
p
li
n
g
(D

S
)
o
n
e
re
al
iz
at
io
n
;
b
D
S
1
0
0
re
al
iz
at
io
n
s;
c
R
an
d
o
m

fo
re
st
(R
F
)
w
it
h
u
n
b
al
an
ce
d
d
at
a
an
d
d
R
F
w
it
h
b
al
an
ce
d
d
at
a.
V
al
u
es

ly
in
g
o
n
th
e

m
ai
n
d
ia
g
o
n
al

re
p
re
se
n
t
th
e
se
n
si
ti
v
it
y

(a
)

(b
)

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1
0.

42
0.

28
0.

06
0.

01
0.

01
0.

10
0.

01
0.

11
1

0.
54

0.
24

0.
02

0.
00

0.
00

0.
10

0.
00

0.
09

2
0.

33
0.

33
0.

06
0.

02
0.

01
0.

13
0.

07
0.

04
2

0.
32

0.
45

0.
03

0.
01

0.
00

0.
17

0.
01

0.
01

3
0.

27
0.

11
0.

21
0.

03
0.

02
0.

28
0.

01
0.

06
3

0.
21

0.
13

0.
13

0.
01

0.
01

0.
48

0.
00

0.
03

4
0.

21
0.

08
0.

11
0.

13
0.

04
0.

40
0.

02
0.

02
4

0.
22

0.
09

0.
02

0.
12

0.
01

0.
54

0.
00

0.
00

5
0.

16
0.

08
0.

06
0.

19
0.

10
0.

33
0.

02
0.

05
5

0.
11

0.
12

0.
01

0.
31

0.
05

0.
40

0.
00

0.
01

6
0.

11
0.

07
0.

12
0.

04
0.

01
0.

62
0.

01
0.

04
6

0.
10

0.
07

0.
02

0.
01

0.
00

0.
78

0.
00

0.
02

7
0.

14
0.

20
0.

00
0.

00
0.

01
0.

01
0.

59
0.

05
7

0.
14

0.
16

0.
00

0.
00

0.
00

0.
02

0.
62

0.
06

8
0.

17
0.

08
0.

06
0.

00
0.

00
0.

13
0.

02
0.

53
8

0.
14

0.
04

0.
01

0.
00

0.
00

0.
22

0.
01

0.
57

0.
23

0.
37

0.
15

0.
27

0.
09

0.
52

0.
71

0.
80

0.
29

0.
49

0.
29

0.
45

0.
21

0.
49

0.
92

0.
87

(c
)

(d
)

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

1
0.

29
0.

36
0.

03
0.

00
0.

00
0.

09
0.

03
0.

20
1

0.
27

0.
35

0.
03

0.
00

0.
03

0.
09

0.
02

0.
20

2
0.

17
0.

41
0.

03
0.

02
0.

00
0.

17
0.

10
0.

10
2

0.
17

0.
39

0.
04

0.
02

0.
05

0.
16

0.
08

0.
10

3
0.

11
0.

20
0.

13
0.

00
0.

00
0.

42
0.

00
0.

12
3

0.
10

0.
19

0.
13

0.
00

0.
04

0.
41

0.
01

0.
13

4
0.

08
0.

18
0.

01
0.

13
0.

01
0.

52
0.

02
0.

04
4

0.
07

0.
17

0.
02

0.
10

0.
11

0.
48

0.
02

0.
03

5
0.

02
0.

17
0.

03
0.

30
0.

11
0.

33
0.

00
0.

04
5

0.
03

0.
13

0.
02

0.
09

0.
41

0.
28

0.
00

0.
04

6
0.

05
0.

09
0.

07
0.

01
0.

00
0.

70
0.

01
0.

07
6

0.
05

0.
09

0.
07

0.
00

0.
02

0.
68

0.
01

0.
07

7
0.

05
0.

15
0.

00
0.

00
0.

00
0.

02
0.

65
0.

13
7

0.
05

0.
17

0.
00

0.
00

0.
01

0.
02

0.
61

0.
14

8
0.

04
0.

04
0.

01
0.

00
0.

00
0.

12
0.

01
0.

77
8

0.
04

0.
04

0.
02

0.
00

0.
00

0.
12

0.
01

0.
77

0.
33

0.
40

0.
21

0.
41

0.
37

0.
51

0.
70

0.
74

0.
33

0.
39

0.
20

0.
46

0.
14

0.
52

0.
72

0.
74

Pr
ec

is
io

n
Pr

ec
is

io
n

Pr
ec

is
io

n
Pr

ec
is

io
n

R
F 

un
ba

la
nc

ed

D
S 

on
e 

re
al

iz
at

io
n

D
S 

10
0-

re
al

iz
at

io
ns

Pr
ed

ic
te

d 
cl

as
se

s
Pr

ed
ic

te
d 

cl
as

se
s

Observed classes

Observed classes

Observed classes

Observed classes

R
F 

ba
la

nc
ed

 
Pr

ed
ic

te
d 

cl
as

se
s

Pr
ed

ic
te

d 
cl

as
se

s

Stochastic Environmental Research and Risk Assessment

123



4 Discussion

4.1 Geomorphological classification

The first challenge we met in this study was the selection of

the appropriate number of geomorphological classes.

Indeed, we reduced the classes of the original geomor-

phological map from 11 main classes, including more than

100 types of landforms, to 8. This was needed due to the

complexity of simulating the geomorphological diversity

of the landscape, despite recent progresses in machine

learning and geostatistical techniques. Many approaches

Table 5 Summary of the accuracy and Kappa values for all the tested

models (DS = Direct Sampling; RF = Random Forest)

Accuracy Kappa

DS 1 simulation 0.46 0.35

DS 100 simulations 0.55 0.46

RF unbalanced 0.55 0.44

RF balanced 0.54 0.43

Fig. 5 a Semi-automated geomorphological map obtained through RF

with unbalanced data. For the legend, see Fig. 1. b Semi-automated

geomorphological map obtained through RF with balanced data.

cMeasure of precision of the RF unbalanced data result. dMeasure of

precision of the RF balanced data result. e Measure of accuracy of the

RF unbalanced data; on black the pixels correctly classified, and in

white the misclassified pixels. f Measure of accuracy of the RF

balanced data
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were tested before adopting this combination of geomor-

phological classes. Whereas Marmion et al. (2008) focused

on periglacial landforms in Finland and Stumpf and Kerle

(2011) worked on landslides, we aimed at simulating the

diversity of alpine landforms trying to preserve, as much as

possible, the dominant processes, the shape and the age of

the landforms. In this sense, we were inspired by the

classification of Vannametee et al. (2014) and Veronesi and

Hurni (2014) classifying talus slopes, alluvial fans and rock

outcrops, periglacial-glacial active deposits (active-inactive

rock glaciers, debris-covered glaciers, Little Ice Age mor-

aine deposits), gravitative and/or inactive deposits (rock-

slides, landslides, relict rock glaciers), fluvial deposits,

Lateglacial deposits and glaciers. Moreover, increasing the

number of classes is not appropriate because it reduces the

number of pixel occurrences for each class and conse-

quently decreases the classification performance (Van-

nametee et al. 2014).

4.2 Algorithm accuracy and efficiency

As shown in the results section, the mode calculation on

100 realizations substantially improves the DS results

compared to a single realization, therefore we discuss

mainly the mode results here. Globally, DS and RF show

similar performances. Indeed, the overall accuracy has only

one point percentage of difference (* 0.55), and two/three

for the Kappa value, with values in the range of what is

considered as a moderate agreement (* 0.45).

The DS provides more visually appealing results

because, after the mode calculation, defined units repre-

senting geomorphological features are better delineated.

Furthermore, since it takes into account the spatial

dependence between neighborhood attributes, the DS

classification is less noisy (Vannametee et al. 2014). Pre-

serving the connectivity of the classes can have important

effects when the resulting geomorphological maps are used

to parametrize hydrological or other physical models.

Computationally RF is about 5–10 times faster than DS,

but produces more scattered simulations since the model

does not include the spatial dependence. Isolated pixels are

generally not desirable for geomorphological mapping, and

compact regions are rather sought. This said, RF provides

more information on the predictive power of the condi-

tioning variables, which is precious to guide the variable

choice.

Despite the encouraging results of RF with balanced

data on the TI (OOB mean error of 0.10 vs 0.46 for the RF-

unbalanced), the RF performance on the SG is similar to

DS. The reason could be the topographical complexity and

geomorphological heterogeneity of the area, which makes

the SG and TI less homogeneous and similar to each other,

and the prediction problem non trivial. Indeed, it is possible

that some landforms were underrepresented in the TI

compared to the SG or vice versa.

4.3 Performance over different
geomorphological units

Lateglacial deposits (n� 6), glaciers (n� 7) and rock out-

crops (n� 8) result to be the classes with the highest sen-

sitivity values and the highest precision. Since Lateglacial

deposits are generally vegetated, the RGB bands of aerial

orthophotos are key factors for the corresponding cate-

gories, even if RGB bands are less important variables

(Fig. 6). Instead, slope angle is decisive for rock outcrops /

rock walls because it allows isolating these landforms with

values[ 40�. RF is particularly performant in detecting the

Fig. 6 Variable importance

ranking as output of the RF

estimation. a Unbalanced data;

b Balanced data
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classes n� 7 and 8, with a sensitivity higher than for DS.

Conversely, the sensitivity value of class n� 6 is higher

with DS.

Moderate sensitivity values are calculated for talus

slopes (n� 1) and for active-inactive rock glaciers, debris-

covered glaciers and Little Ice Age moraine deposits (n� 2),
but in both cases the DS shows better performance than RF

(respectively 0.54 and 0.45 for DS, 0.29 and 0.41 and RF).

The reasons can be linked to the morphology of these

landforms. Indeed, talus slopes are constituted by debris

with a slope angle of 33–40� (Chandler 1973; Francou and

Manté 1990), with the size of debris increasing towards the

bottom of the slope. On the other hand, active-inactive rock

glaciers, debris-covered glaciers and Little Ice Age mor-

aine deposits present a large intra-variability in debris size,

slope and shape. Despite these differences, which are

clearly recognizable by geomorphologist, both algorithms

confuse the two classes, with zones of more difficult

interpretation, probably because the predictor variables are

not informative enough to make a clear distinction.

Fig. 7 Out-of-bag (OOB) error

evolution of RF models trained

on the TI. OOB indicates the

average error. Numbers from 1

to 8 correspond to

geomorphological classes listed

in Table 2. a Unbalanced data;

b Balanced data. Legend: 1)

talus slope; 2) active-inactive

rock glacier, debris-covered

glacier, Little Ice Age moraine

deposit; 3) rockslide, landslide,

relict rock glacier; 4) alluvial

fan; 5) alluvial plain; 6)

Lateglacial deposit; 7) glacier

and permanent snow; 8) rock

outcrop, rock wall

Table 6 Error for each simulated class, obtained from random forest

training on the TI

Class Unbalanced data Balanced data

1 0.52 0.14

2 0.33 0.08

3 0.68 0.18

4 0.63 0.19

5 0.75 0.02

6 0.22 0.06

7 0.24 0.07

8 0.31 0.08

Stochastic Environmental Research and Risk Assessment

123



The lowest sensitivity values are found for rockslides,

landslides and relict rock glaciers (n� 3), alluvial fans (n� 4)
and alluvial plains (n� 5). The challenging simulation of

alluvial fans was already noted by Veronesi and Hurni

(2014). Indeed, the slope angle of this type of landform can

vary naturally, but it is also subject to land use changes,

especially at the bottom part of the valleys that are under

anthropic influence for water management (Gabbud and

Lane 2016). This is valid also for alluvial plains, which are

subjected to changes in water flow, sediment contribution

and human activities (Gabbud et al. 2019). Consequently,

they present a highly variable morphology.

Regarding the class n� 2, its intrinsic heterogeneity

could be responsible for the low sensitivity. Indeed, rock-

slides and landslides are characterized by chaotic deposits,

with rock fragments, soil, and vegetated portions.

Conversely, relict rock glaciers have better defined outlines

and are often colonized by vegetation.

The variograms computed for the results of each method

to evaluate the degree of spatial dependence of the geo-

morphological classes (Fig. 8) allow better interpreting

these results and putting them in comparison with the

reference map (Fig. 8a) and the training image (Fig. 8b).

DS (Fig. 8c) overestimates the classes n� 1 and 6 and

underestimates classes n� 4, 5 and 8. RF (Fig. 8d) over-

estimates only the class n� 6 and underestimates classes n�
4 and 5. Variograms of simulated classes n� 2, 3 and 7 have
behaviors similar to those of the reference map. However,

the connectivity (Fig. 9) shows that DS is slightly more

accurate than RF because it maintains for the most part of

the classes a connectivity between pixels of the same

geomorphological class similar to that of the reference

map.

Fig. 8 Variograms calculated on the geomorphological reference map

(a), on the TI (b), on DS 100 simulations (c) and on RF with

unbalanced data (d). v: variogram; lag: lag distance between pixels.

Legend: 1) talus slope; 2) active-inactive rock glacier, debris-covered

glacier, Little Ice Age moraine deposit; 3) rockslide, landslide, relict

rock glacier; 4) alluvial fan; 5) alluvial plain; 6) Lateglacial deposit;

7) glacier and permanent snow; 8) rock outcrop, rock wall
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4.4 Predictor variables and training location
choice

Another issue we faced in this study was the selection of

the predictor variables. As shown by the mean decreasing

accuracy (Fig. 6), the simulation is highly sensitive to

aspect, slope, solar radiation and profile curvature.

Roughness provided also additional information because

some landforms have marked surface irregularities. This is

the case for rock walls, which present high roughness

values compared to other more homogeneous landforms,

such as glaciers. Instead, flow accumulation is the most

important variable for the model with balanced data, but

the less important for the model with unbalanced data. This

was not expected because, defining the number of upstream

cells based on a flow direction, this variable helps identi-

fying fluvial landforms such as alluvial fan and fluvial

deposits.

The choice of the training location is fundamental to

obtain valid results (Tuia et al. 2011). Even if there are no

strict guidelines regarding the recommended size of a TI,

this should contain a sufficient and possibly redundant

variety of spatial patterns and a representative distribution

of landform classes in order to avoid sampling biases

(Caers and Zhang 2004). The spatial resolution must be

high enough to correctly represent the spatial distribution

of the patches of all classes, without incurring overly long

computing times, which can easily increase for DS in case

of very large image arrays. It is worth repeating that, to

ensure a fair comparison between the two data-driven

algorithms, the same TI and SG defined and optimized for

DS were used also for RF. In light of the results obtained in

the present study, further investigation could consider to

implement a balanced-RF procedure using a sub-ensemble

of the observations randomly selected over the entire study

area to train the model, a second set for validation purpose

and finally to predict the results on new data. Also, surface

texture and texture indices such as top/bottom hat operators

could be used to create new predictor variables that inform

the spatial relation between landforms (Aptoula and

Lefèvre 2007; Trevisani et al. 2012; Trevisani and Rocca

2015).

Lastly, given their limitations, the semi-automated

mapping tools tested in this study are not intended as a

substitution of the expert role, but instead as an empow-

ering tool. In particular, the geomorphologist plays a cru-

cial role in the choice and survey of the training areas,

which can be multiple and representative of different sub-

environments. Moreover, the examination of the output

precision maps (Fig. 4e, 5c and 5d), together with the

orthophotos, can be used to identify high-uncertainty zones

that need in-situ analyses. High uncertainty zones can also

Fig. 9 Connectivity calculated for each class for geomorphological

reference map, TI, DS 100 simulations and RF with unbalanced data.

Legend: (1) talus slope; (2) active-inactive rock glacier, debris-

covered glacier, Little Ice Age moraine deposit; (3) rockslide,

landslide, relict rock glacier; (4) alluvial fan; (5) alluvial plain; (6)

Lateglacial deposit; (7) glacier and permanent snow; (8) rock outcrop,

rock wall
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indicate the need of expanding the survey of training areas

over underrepresented geomorphological units. In this way,

the reliability of the obtained mapping product can be

significantly improved by the expert knowledge, but with

the big advantage of a limited fieldwork with respect to the

covered area.

5 Conclusion

In this research, we compared two semi-automatic geo-

morphological mapping (SAGM) methods, the first based

on the Direct Sampling (DS) algorithm and the second on

Random Forest (RF). The aim was to explore the feasibility

of the SAGM at the regional scale, using a pre-classified

map to train the methods (training image, TI) and a target

study area to test them (simulation grid, SG). To the best of

our knowledge, this represents the first application of DS

and RF to morphogenetic classification. The classification

used twelve environmental predictor variables, including

topographical and remote-sensing indicators. A classical

geomorphological map was available for the study area and

used for training and validation.

Both methods show similar results in terms of accuracy

and are deemed appropriate for SAGM, albeit with dif-

ferent trade-offs in terms of spatial smoothness and com-

putational performance. The map elaborated using RF

presents a noisier spatial distribution of classes, but gives

more insights on the choice of the predictor variables to be

used and it is more efficient in terms of computation time

compared to DS. This can be attributed to the fact that DS

explicitly takes into account the spatial dependence of the

different classes. Some classes, such as the Lateglacial

deposits, glaciers and rock outcrop areas, resulted in high

detection scores, highlighting the suitability of the

employed methods for the generation of geomorphological

maps in alpine environment. However, other classes such

as alluvial fans and alluvial plains were weakly detected,

indicating that not all landforms can be appropriately

classified with the proposed strategies and algorithm setup,

especially if some classes are underrepresented in the TI.

The tested approaches are useful to provide geomor-

phological maps for vegetation models or other applica-

tions and can be employed by the geomorphologist as

starting point for additional surveys. Our study identified a

potential to use such methods at a regional scale, and also

possibly with different geomorphological characteristics

than the ones used here. Nevertheless, the geomorpholog-

ical classification employed in the current analysis can be

improved upon. Future researches can be devoted to the

optimal choice of the input geomorphological dataset and

predictor variables, such as the ones related with surface

texture, helping to preserve the spatial relationship between

the detected landforms.

Author contributions EG designed this research under the super-

vision of CL and GM, prepared figures and wrote the manuscript. FO

and MT contributed to develop the analysis and arguments. Con-

structive comments and corrections of all the co-authors increased

considerably the manuscript quality.

Funding Open Access funding provided by Université de Lausanne.
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allemand et Suisse – Principes de la légende IGUL. In:

Schoeneich P, Reynard E (eds) Cartographie géomorphologique,
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