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Abstract

Creatine is synthesized from arginine by L-arginine:glycine amidinotransferase (AGAT) and S-

adenosyl-L-methionine:N-guanidinoacetate methyltransferase (GAMT) and can be taken up

by cells by creatine transporters (CRT). While creatine is mainly synthesized by the liver and

the kidney, most of other tissues, including the brain, also express AGAT and GAMT. There

is evidence that the permeability of the blood-brain barrier (BBB) for creatine is limited,

suggesting that the brain is dependent on its own creatine synthesis. In order to better

understand creatine synthesis and transport in the central nervous system (CNS), we studied

the regional distribution of cells expressing AGAT, GAMT and the creatine transporter CRT1

in the adult rat brain by non-radioisotopic in situ hybridization. AGAT and GAMT presented

an ubiquitous neuronal and glial expression, whereas CRT1 was present in neurons and

oligodendrocytes throughout the brain, but not in astrocytes. This indicates that all cells in the

CNS can synthesize creatine from arginine. The absence of expression of CRT1 in astrocytes

and particularly in those contacting capillary endothelial cells (BBB) reinforces the idea that

under normal conditions the creatine used by the brain is synthesized mainly in the CNS.

Furthermore, the expression of CRT1 by neurons and oligodendrocytes indicates that creatine

trafficking is possible in those brain areas of main creatine consumption.

Keywords: brain, creatine, L-Arginine:glycine amidinotransferase, S-Adenosyl-L-

methionine:N-guanidinoacetate methyltransferase, creatine transporter, in situ hybridization.

Theme B: Cellular and Molecular Biology.

Topic: Gene structure and function: general.
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1. Introduction

The creatine (Cr)/phosphocreatine (PCr) system is essential for the buffering and transport of

high energy phosphates. In mammals, Cr is synthesized mostly in liver and kidney,

transported through the blood and taken up in tissues with high energy demand by specific Cr

transporters. However, the brain might primarily be dependent on its own Cr synthesis, as

evidence has been presented that the permeability of the blood-brain barrier (BBB) for Cr is

limited (see [41] for a review).

Cr is synthesized by a two-step mechanism involving L-arginine:glycine amidinotransferase

(AGAT; EC 2.1.4.1) and S-adenosyl-L-methionine:N-guanidinoacetate methyltransferase

(GAMT ; EC 2.1.1.2) (see details in Fig. 1). AGAT has been cloned in rat, pig and human

[8,13], and GAMT cDNAs were isolated from rat, mouse and human [14,16,22]. The brain as

well as primary astrocytes in culture are able to synthesize their own creatine [24,35].

Eventhough AGAT activity was detected in the brain [24,35,36], there has been no data on

the expression and localization of the AGAT mRNA or protein. The GAMT activity has

been shown in the brain [36] and characterized in a mouse neuroblastoma cell line [3]. Its

mRNA is expressed in the rat brain [18], but its distribution in the various cell types of the

CNS is not known.

Cr is taken up by cells by specific transporters belonging to the Na+-dependent

neurotransmitter transporter family (see [41] for a review), that have been characterized in rat

[19,26], rabbit [7] and human [15,21,28]. By in situ hybridization (ISH), it has been shown

that the rat Cr transporter CRT1 is highly expressed in the developing CNS of the embryo as
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well as in the adult CNS [9,25,26]. Specifically, the CRT1 mRNA is widely expressed in the

adult brain, in both neuronal and non-neuronal cells, with high levels in the myelinated tracts,

cerebellar granule cells, hippocampal pyramidal cells, several brainstem nuclei and the choroid

plexus. In brain derived cultured cells, the creatine uptake activity has been described in a

mouse neuroblastoma cell line and in both mouse and rat astroglial cultured cells, but not in

neuron enriched cultures, leading to the hypothesis that Cr transport might be an astroglial

rather than a neuronal function [20].

Substantial evidence supports the function of the Cr/PCr system in brain energetic

metabolism. Patients with GAMT deficiency, a recently described autosomal recessive inborn

error of Cr synthesis [6,27,31-34], manifest neurological symptoms in early infancy and show

a severe neurodevelopmental delay as well as extrapyramidal symptoms. Some of these

symptoms are partially reversed with high doses of oral Cr supplementation [6,31].

While these facts support the prominent physiological role of Cr synthesis in CNS, data on

the localization and expression of AGAT and GAMT are lacking. The aim of the present

study was to examine in detail the mRNA expression of the AGAT and GAMT genes in the

brain using non-radioisotopic in situ hybridization. In order to discriminate between transport

and synthesis of Cr, we also investigated the expression of the Cr transporter CRT1. Our

work uses a new combination of in situ hybridization with immunohistochemistry to precisely

identify the cells expressing AGAT, GAMT and CRT1.



5

2. Materials and Methods

Cloning of CRT1, AGAT and GAMT cDNAs and synthesis of the riboprobes:

Partial cDNAs of the rat sequence CRT1 corresponding to nucleotides 901-2544 (Gene Bank

accession number X66494), of AGAT (nucleotides 182-1314, Gene Bank U07971), and of

GAMT (nucleotides 131-734, Gene Bank J03588) were isolated by reverse transcription-

polymerase chain reaction (Titan One Tube RT-PCR, Roche Molecular Biochemicals, Basel,

Switzerland) using rat kidney mRNA as template. Sequences were verified by sequencing and

inserted into the EcoRI and HindIII multiple cloning sites of pBluescript II KS- (Stratagene)

using the di-/trinucleotide sticky end cloning method [4], yielding pBS-CRT1, pBS-AGAT

and pBS-GAMT. Digoxigenin labelled CRT1, AGAT and GAMT riboprobes were

transcribed in vitro as described previously [1,2]. The antisense probes were transcribed from

the plasmids linearized with XhoI (pBS-CRT1) or XbaI (pBS-AGAT and pBS-GAMT),

while the sense probes were synthesized from the same plasmids linearized with BamHI

(pBS-CRT1), SalI (pBS-AGAT), or XhoI (pBS-GAMT).

In situ hybridization (ISH) and immunohistochemistry

Four female adult Wistar rats (300 g, BRL, Basel, Switzerland) were deeply anesthetized (10

mg/rat Ketalar, Parke Davis, USA) and sacrificed by decapitation. Their brain was extracted

within 2 minutes, immediately embedded in tissue freezing medium (Jung, Nussloch,

Germany) and frozen in isopentane and dry ice. Brains were kept at -80 °C until used, then

cut and analyzed by ISH as described [1,2]. Briefly, cryosections (20 µm thick) were

postfixed 10 min in 4% paraformaldehyde-PBS, washed 2x15 min in PBS containing 0.1%
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fresh DEPC and equilibrated 15 min in 5xSSC. Sections were hybridized (58°C for 40 h in

5xSSC, 50% formamide and 40 µg/ml salmon sperm DNA) with the digoxigenin-labelled

antisense and sense riboprobes (400 ng/ml) for rat CRT1, AGAT and GAMT. The sections

were then washed (30 min in 2xSSC at room temperature, 1 h in 2xSSC at 65°C, 1 h in

0.1xSSC at 65°C) and stained with alkaline-phosphatase (15 h at room temperature). After

staining, the sections were dehydrated and mounted (Eukitt, O.Kindler Gmbh & Co., Freiburg,

Germany). The specificity of hybridization was ascertained by the use of sense probes for

CRT1, AGAT and GAMT genes that have the same length, GC content and activity of

digoxigenin labelling as the corresponding antisense probes. In each ISH experiment, a section

hybridized with a specific antisense probe was always preceded or followed by an adjacent

section hybridized with the corresponding sense control probe.

In each ISH experiment, 3 out of 4 of the antisense ISH stained sections were further

processed for immunohistochemistry. On these sections, neurons, astrocytes and

oligodendrocytes were labelled using monoclonal antibodies directed against Microtubule

Associated Protein 2 (MAP2), Glial Fibrillary Acidic Protein (GFAP) and Myelin Basic

Protein (MBP) (Roche Molecular Biochemicals, Basel, Switzerland) (Boehringer Ingelheim,

Germany), respectively. After rehydration, the ISH stained sections were fixed 1 h in 4%

paraformaldehyde-PBS at room temperature and washed 3x 5min in PBS. After membrane

permeabilization for 5 min in 0.1% sodium citrate and 0.1% Triton X-100, sections were

processed for immunohistochemistry using the Histostain-Plus kit (Zymed Laboratories). The

primary antibody was diluted 1:100 in blocking solution (non-immune serum), and applied for

one hour at room temperature on the sections. After washing away the primary antibody,
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sections were incubated with an anti-mouse IgG biotinylated secondary antibody followed by

a streptavidin-peroxidase conjugate. Peroxidase staining was performed for 10 min using

aminoethyl carbazole (AEC) and H2O2. The double stained sections (blue signal for ISH and

red signal for immunohistochemistry) were mounted in glycerol. The very low level of GAMT

transcript in some areas of the brain, especially the neocortex and the white matter structures

(see Fig. 2g,h and 3i), rendered the detection of GAMT mRNA in the presence of the

immunohistochemical signal difficult. In those cases, the cell identification for GAMT

expression was realized on adjacent sections labelled by immunohistochemistry.

Histological analysis

Sections were observed and photographed on an Olympus BX50 microscope equipped with a

DP-10 digital camera (Olympus Opticals, Japan). No discrepancies was observed between the

four female rats analyzed. Brain structures were identified according to Paxinos and Watson

[23].
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3. Results

A semi-quantitative description of AGAT, GAMT and CRT1 mRNA levels in the different

brain structures is given in Table 1. The specificity of hybridization was ascertained in each

case by the absence of signal obtained with the respective sense probes (Fig. 2e,j,o).

L-Arginine:glycine amidinotransferase (AGAT)

The AGAT mRNA was found in neurons, astrocytes and oligodendrocytes throughout the

brain, and its cellular localization was perinuclear. Importantly, the AGAT transcript was

found in the astrocytes contacting capillary and blood vessel endothelium (BBB), as shown by

a co-labelling with GFAP (Fig. 2a, arrow). In the telencephalon, AGAT was expressed

throughout the neocortex, in pyramidal and non-pyramidal neurons as well as in astrocytes,

but for the latter at a much lower level (Fig. 2b). In the corpus callosum, AGAT was located in

astrocytes (Fig. 2c, arrow) and oligodendrocytes (Fig. 2c, asterisk) as demonstrated by the co-

labelling with GFAP and MPB respectively (Fig. 2c and data not shown). AGAT mRNA was

also located in the putamen, globus pallidum, nucleus accumbens, pyriform cortex and its

transition towards the amygdala nuclei, and was abundantly expressed in the olfactory bulb. In

hippocampus, the AGAT transcript was localized at high levels in the CA1 layer and the

dentate gyrus (Fig.2d, DG). The CA3, polymorphic and molecular layers presented a lower

signal, including in the astrocytes (Fig.2d, arrow). Most structures of the diencephalon,

midbrain, pons and medulla showed the AGAT transcript, with higher levels in the reticular

nucleus of thalamus, the posterior lobe of pituitary, the superior colliculus, the red nucleus

and the trapezoid body nucleus, the subcoeruleus, the nucleus of the solitary tract and the
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hypoglossal nucleus. In cerebellar cortex, AGAT was abundantly expressed in neurons of the

granular layer (Fig 3a-c, G). Purkinje cells (Fig. 3b-c, arrowhead) and Bergmann glia (Fig. 3c,

open arrowhead) were positive for AGAT mRNA, but at a very low level of detection, as

shown by a co-labelling with MAP2 and GFAP respectively. AGAT was also found in

neurons of the molecular layer (Fig. 3c), as well as in the deep nuclei of the cerebellum. The

AGAT mRNA was expressed in white matter structures of cerebellum, in cells identified as

astrocytes (Fig.3d-e, arrows) and oligodendrocytes (Fig. 3d-e, asterisks) with a co-labelling by

GFAP and MPB (Fig. 3d and 3e respectively). The AGAT transcript was also revealed in the

choroid plexus and the ependymal epithelium (data not shown).

S-Adenosyl-L-methionine:N-guanidinoacetate methyltransferase (GAMT)

The GAMT mRNA was detected in neurons and glial cells throughout the brain, with

particularly low levels in astrocytes. Its main cellular localization was perinuclear. However, a

lower and diffuse mRNA expression in the cell processes was also observed for GAMT in the

whole brain, particularly in dense fiber regions like the cortex of telencephalon (Fig. 2g). As for

AGAT, the GAMT transcript was found in the astrocytes contacting capillary and blood

vessel endothelia (Fig. 2f, arrow). In the telencephalon, GAMT was expressed at low levels in

neurons and astrocytes of the neocortex (Fig. 2g) as well as in astrocytes (Fig. 2h, arrow) and

oligodendrocytes (Fig. 2h, asterisks) of the corpus callosum. Most other parts of the

telencephalon expressed GAMT, except for the anterior commissure. In the hippocampus, the

GAMT transcript was localized at low to medium levels in the CA1-3 layers, whereas the

dentate gyrus presented higher levels (Fig.2i). Low levels of the GAMT mRNA were found in

most nuclei of the diencephalon, midbrain, pons and medulla. Higher levels were detected in
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the nucleus of the solitary tract and the hypoglossal nucleus. In cerebellar cortex, GAMT was

expressed in neurons of the granular layer (Fig 3f-h). Purkinje cells (Fig. 3g-h, arrowheads) and

Bergmann glia (Fig. 3h, open arrowhead) were positive for GAMT at a very low level of

detection, as shown by a co-labelling with MAP2 and GFAP respectively. Low levels were

found in the molecular layer and in the deep nuclei of cerebellum. The GAMT mRNA was

expressed in astrocytes (Fig. 3i-j, arrow) and oligodendrocytes (Fig. 3i-j, asterisks, co-labelling

with MBP) of the white matter of the cerebellum. The GAMT transcript was detected at very

low levels in the choroid plexus and the ependymal epithelium (data not shown).

Creatine transporter (CRT1)

Throughout the brain, the CRT1 mRNA was localized in neurons and oligodendrocytes, with

a perinuclear cellular localization. However, as for GAMT, it was also observed as a diffuse

signal in the cell processes throughout the brain, in dense fiber regions like the neocortex. It

was never detected in astrocytes, including those contacting capillary and blood vessel

endothelial cells (BBB), as illustrated with a co-labelling with GFAP (Fig. 2k, arrows). In the

telencephalon, CRT1 was expressed in the neocortex, in pyramidal and non-pyramidal

neurons (Fig. 2l, co-labelling with MAP2). In the corpus callosum, it was located in

oligodendrocytes (Fig. 2m, asterisk) but not in astrocytes (Fig. 2m, arrows) as demonstrated

with a co-labelling by GFAP and MPB (Fig. 2m and data not shown, respectively). CRT1

mRNA was located in the putamen, globus pallidum, nucleus accumbens, pyriform cortex and

in the amygdala nuclei, and presented a higher level in the olfactory bulb. In the hippocampus,

the CRT1 transcript was most abundant in the CA1 layer and the dentate gyrus (Fig.2n).

Most structures of the diencephalon, midbrain, pons and medulla showed the CRT1
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transcript, with higher levels in the posterior lobe of the pituitary, the trapezoid body and

gigantocellular reticulate nuclei, the nucleus of the solitary tract and the hypoglossal nucleus.

In cerebellar cortex, CRT1 was abundantly expressed in neurons of the granular layer (Fig 3k-

m). Purkinje cells were positive for CRT1 mRNA with a very low level of detection (Fig. 3l-

m, arrowhead), but CRT1 could not be detected in the Bergmann glia (Fig. 3m, open

arrowheads). CRT1 was also found in neurons of the molecular layer and in the deep nuclei of

the cerebellum. In the white matter structures of the cerebellum, the CRT1 mRNA could not

be detected in astrocytes (Fig. 3n-o, arrows) but was expressed in oligodendrocytes (Fig. 3n-o,

asterisks), as shown by the co-labelling with GFAP (Fig. 3n) and MBP (Fig. 3o) respectively.

The CRT1 transcript was expressed in the choroid plexus and the ependymal epithelium (data

not shown).
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4. Discussion

4.1: Expression of AGAT, GAMT and CRT1

Although the enzymatic activity of AGAT has been detected in the brain [24,35], no data

were published concerning its cellular expression. In this study, we have shown the ubiquitous

expression of AGAT mRNA in the adult rat brain, namely in neurons, astrocytes and

oligodendrocytes (see summary in Table 2), as well as in the ependymal epithelium and the

choroid plexus. The enzymatic GAMT activity and mRNA were previously reported in the

brain [18,36], but no specific cell type localization has been described so far. Our study

indicates that GAMT is ubiquitously expressed in the adult rat brain, in the same cells as

AGAT but at a lower transcript level. Our work suggests that every cell in the CNS appears

to be able to convert L-arginine to Cr.

The CRT1 transcript has been localized in specific areas of the brain by several authors

[9,25,26]. Our work is in agreement with these studies, showing expression throughout the

brain in both neuronal and non-neuronal cells, with prominent hybridization signals in the

neocortex, white matter structures, granule neurons of dentate gyrus and cerebellum, several

brainstem nuclei and the choroid plexus. Interestingly, and due to our double-labelling

experiments that allowed the identification of the CRT1 expressing cells, we were unable to

localize CRT1 in astrocytes. This result is in contrast with previous data showing the CRT1

activity in astroglial cultures [20]. This could eather mean that astrocytes of the adult rat brain

do not express CRT1 mRNA, or that its expression is below the limit of ISH detection, that

has been estimated at 20-30 transcripts per cell with this probe length (1644 nucleotides, [2]).
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In contrast, CRT1 was well expressed in oligodendrocytes, confirming its expression in the

white matter described earlier [9,25]. The absence of CRT1 mRNA in astrocytes and

particularly in those participating to the BBB suggests that in normal conditions the

production of Cr within the brain is predominant as compared to its blood supply. In a model

of brain cell aggregate cultures issued from the rat embryo neocortex [12], we have also

observed that astrocytes do not express CRT1, contrary to neurons and oligodendrocytes

(manuscript in preparation), confirming the in vivo expression of CRT1 in the brain. The

discrepancy in CRT1 expression between in vivo (this study and [9,25,26]) and culture [20]

conditions suggests that the normal expression of CRT1 in vivo depends on intercellular

interactions.

We have shown that AGAT, GAMT and CRT1 mRNAs are localized or concentrated in the

perinuclear region of the brain cells. However, we have also observed the presence of GAMT

and CRT1 transcripts in the cell processes, as it was observed for CAT3 or nNOS mRNAs

[1]. Thus, GAMT and CRT1 mRNAs might be transported along the cell processes, in order

to allow the brain cells to translate these proteins at the site they are needed. This would allow

the cell to respond rapidly to immediate peripheral needs in Cr, a process of primary

importance during synaptogenesis or growth cone migration which has been shown to be

coupled directly to creatine kinase (CK) or arginine kinase [39]. The anterograde transport of

newly translated proteins towards cell processes is however not excluded for GAMT, CRT1

and AGAT particularly, since its transcript was shown here to be restricted to the perinuclear

region.



14

4.2 : Creatine synthesis and transport

The total level of Cr (Cr + PCr) in the CNS seems to correlate well with the brain CK activity

as well as with the expression of the Cr transporter (see [41] and references therein). In

chicken and rat brains, the different isoforms of CK (Brain-CK, Muscle-CK and

Mitochondrial-CK) have been attributed to specific cell types presenting high and fluctuating

energy demands, particularly Bergman glial cells, Purkinje neurons and the glomerular

structures of the cerebellum [10,17,37]. We have shown that AGAT, GAMT and CRT1 are

expressed in these cells, with the exception of CRT1 in the Bergman glia. Important levels of

PCr and total Cr have been described in the white matter structure of human and rat [38,40], in

good correlation with our data on the expression of AGAT, GAMT and CRT1 in

oligodendrocytes. Higher amounts of CK and PCr have been found in glial cells compared to

neurons [10,11] and primary astrocytes are able to synthesize their own Cr [5]. Our work

suggests thus that astrocytes may actually not only cover their own needs in Cr but also

supply some but not all of the Cr needed by other cells, e.g. neurons and oligodendrocytes.

The absence of CRT1 transporter in the astrocytes participating to BBB as well as the

ubiquitous expression of AGAT and GAMT suggest that under normal conditions, the brain

cells synthesizing Cr depend on the uptake of arginine from the blood and on its local

trafficking between the different cell types. Among the different cationic amino acid

transporters (CAT, system y+) responsible for the arginine transport, CAT1 has been shown

at the BBB as well as expressed ubiquitously in neuronal and glial cells of the adult rat brain,

whereas CAT3 was shown restricted to neurons [1,30]. Another form of CAT, CAT2(B),

could be responsible for the arginine trafficking in glial cells [29]. In summary, every brain cell

would be equipped with arginine transporters and would be able to ensure its local needs in
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arginine for Cr synthesis.

In patients with the recently described GAMT deficiency, a marked increase of

guanidinoacetate in the brain, CSF, serum and the urine has been shown with a concomittant

decrease of Cr and PCr in the brain as measured by magnetic resonance spectrometry [6,27,31-

34]. Oral supplementation with Cr (4-8 g_day-1 or 2 g_kg-1_day-1) normalized the brain Cr

concentration very slowly (50% of the normal level after 6 weeks, and the normal level was

reached only after 25 months of treatment; [6,27,31,32]). This observation is in accordance

with our data in the rat and supports the view that in vivo the permeability of the BBB for Cr

is very limited, probably due to the absence of CRT1 expression in the astrocytes

participating to the BBB.

Our data suggest that all cells in the CNS are able to synthesize their own Cr locally because

of their expression of AGAT and GAMT. Moreover, neurons and oligodendrocytes seem able

to take up Cr by expressing CRT1, whereas astrocytes, particularly those contacting the

capillary endothelial cells (BBB), do not express CRT1. This suggests that in normal

conditions Cr for the brain is mainly synthesized there. The brain could therefore be

considered as a near-independent compartment for the synthesis and the use of creatine.
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Figure legends:

Figure 1: Creatine synthesis and uptake. Adomet: S-Adenosyl-L-methionine, AdoHCys:

S-Adenosyl-L-homocysteine, ADP: adenosine diphosphate, AGAT: L-Arginine:glycine

amidinotransferase, Arg: arginine, ATP: adenosine triphosphate, CAT: cationic amino acid

transporter, CK: creatine kinase, CRT1: creatine transporter, GAMT: S-Adenosyl-L-

methionine:N-guanidinoacetate methyltransferase, Gly: glycine, Orn: ornithine.

Figure 2: Expression of AGAT, GAMT and CRT1 mRNA in the telencephalon. a-d: ISH

antisense staining for AGAT, co-labelled by immunohistochemistry for GFAP (a,c,d) and

MAP2 (b). e: ISH sense staining for AGAT. f-i: ISH antisense staining for GAMT, co-

labelled by immunohistochemistry for GFAP (f). j: ISH sense staining for GAMT. k-n: ISH

antisense staining for CRT1, co-labelled by immunohistochemistry for GFAP (k,m) and

MAP2 (l). o: ISH sense staining for CRT1. a,f,k: Blood-brain barrier with astrocytes

(arrows) extending their podocytes towards capillaries. b,g,l: Layer V of neocortex (pyramidal

neurons: arrowheads; diffuse expression of GAMT in cell processes: g, open arrowhead).

c,h,m: White matter of corpus callosum (astrocytes: arrows; oligodendrocytes: asterisks).

d,e,i,j,n,o: Dendate gyrus (DG) and hilus (H) of hippocampus. Bar: 50 µm.

Figure 3: Expression of AGAT, GAMT and CRT1 mRNA in the cerebellum. a-e: ISH

antisense staining for AGAT, co-labelled by immunohistochemistry for MAP2 (b), GFAP

(c,d) and MBP (e). f-j: ISH antisense staining for GAMT, co-labelled by

immunohistochemistry for MAP2 (g), GFAP (h) and MBP (j). k-o: ISH antisense staining
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for CRT1, co-labelled by immunohistochemistry for MAP2 (l), GFAP (m,n) and MBP (o).

a-c, f-h, k-m: Cerebellar cortex. b,c,g,h,l and m are higher magnifications of area 1 examplified

in panel a , showing the granule cell layer (G), the molecular layer (M), the Purkinje cells

(arrowheads) and the Bergmann glia cells (open arrowheads). d,e,i,j, n and o: White matter

of cerebellum with higher magnification of area 2 examplified in panel a  (astrocytes: arrows ;

oligodendrocytes: asterisks). Bar: 100 µm (a,f,k) and 50 µm (b-e, g-j, l-o).
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Table 1: Differential expression of GAT, GAMT and CRT1 in the adult rat brain.

GAT GAMT CRT1
Telencephalon
  Neocortex
    Pyramids of layers III and V + ± ++
    Other neurons ++ + ++
    Astrocytes ± ± -
  Corpus callosum
    Astrocytes + + -
    Oligodendrocytes ++ + ++
  Olfactory bulb +++ + ++
  Anterior olfactory nucleus + + +
  Anterior commissure + − +
  Caudate-Putamen + ± +
  Amygdala ++ ± +
  Island of Calleja +++ + +
  Nucleus accumbens ++ + +
  Pyriform cortex + + ++
  Hippocampus
    CA1 ++ + ++
    CA3 ± ± +
    Dentate gyrus +++ ++ +++
    Polymorph./Mol. layers
      Neurons + ± +
      Astrocytes + ± -
  Septal nuclei ++ ± ++
  Diagonal band ++ ± ++
  Globus Pallidum ++ + +

Diencephalon
  Thalamus
    Stria medullaris ++ + +
    Laterodorsal nucleus + ± +
    Lateroposterior nucleus + ± +
    Lateroventral nucleus + ± +
    Ventromedial nucleus + ± +
    Posterior group nuclei + ± +
    Anterior pretectal nucleus + ± +
    Reticular nucleus ++ + +
  Hypothalamus
    Lateral hypothalamic area + ± +
    Premammillary ventral nucleus + ± +
    Zona Incerta + ± +
  Preoptic area + ± +
  Pituitary (posterior lobe) ++ + ++
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Midbrain
  Superior colliculus ++ + +
  Inferior colliculus + + ±
  Red nucleus ++ + +
  Substantia nigra + ± +
  Retrorubral fields + ± +

Brainstem
  Pontine nucleus + + +
  Trapezoid body nucleus ++ + ++
  Vestibular nuclei + ± +
  Tegmental nuclei ++ + +
  Locus coeruleus + ± +
  Subcoeruleus nuclei ++ ± +
  Reticulate formation + + +
    Gigantocellular reticulate nuclei + + ++
  Inferior olive + + +
  Trigeminal nuclei + + +
  Solitary tract nucleus ++ ++ ++
  Hypoglossal nucleus ++ ++ ++

Cerebellum
  Molecular Layer + + +
  Purkinje cells ± ± ±
  Bergmann glia ± ± -
  Granular layer
    Granule cells ++++ ++ +++
    Astrocytes ± ± -
  Cerebellar white matter
    Astrocytes + ± -
    Oligodendrocytes + ± +
  Deep nuclei neurons ++ ± ++

Choroidal plexus + ± +
Ependymal and subependymal layers ± ± +

-: absent; ±: barely detectable; +: weak expression; ++: moderate expression; +++: strong
expression; ++++: very strong expression. The semi-quantitative description of AGAT,
GAMT and CRT1 mRNA levels is based on ISH only experiments. Levels of transcripts
observed by optical microscopy are indicated by - and + signs, which do not represent a strict
linear measure of mRNA levels.
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Table 2: Summary of GAT, GAMT and CRT1 expression in the rat brain.

GAT GAMT CRT1
Neurons + + +
Astrocytes + + -
Oligodendrocytes + + +
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