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Abstract

Effective assessment of the fate of water-soluble contaminants leaked to aquifers is crucial for
the management and preservation of groundwater resources. The arrival time of a contami-
nant plume to a given location depends on its mean velocity and spreading rate, whereas the
associated sanitary risk is strongly correlated to the plume’s degree of mixing upon its arrival.
Mixing in heterogeneous media results from the competition between local-scale diffusion
and the spreading of the solute, the latter in turn governed by flow velocity heterogeneity
spanning a wide range of spatial scales. As a result, contaminant solute transport unfolds
over multiple spatial and temporal scales and is, thus, very challenging to characterize us-
ing conventional sparsely-sampled and local hydrological measurement techniques alone.
Complementarily, the time-lapse direct-current (DC) geophysical method provides spatially-
and temporally-distributed information on equivalent DC electrical conductivity, which is
sensitive to the transport of electrically-conductive solutes and carries information on solute
heterogeneity below the measurement support scale. Combined with conventional fluid
sampling, the DC methodology holds promise as a means to quantitatively characterize the
state and evolution of solute spreading and mixing. However, this requires establishing quan-
titative links between spreading and mixing measures and average DC electrical conductivity
under general transport conditions. This calls first for quantification of the uncertainty of
electrically-inferred solute transport measures and second for the development of an upscal-
ing framework for predictive purposes. Since both tasks remain largely unresolved, there is a
risk for systematic errors in the interpretations. Here, we present numerical, experimental
and theoretical investigations aiming at advancing in both directions. Relying on a Bayesian
inference framework, we quantify to what extent time-series of the equivalent electrical
conductivity tensor observed during tracer tests can constrain geostatistical parameters
of hydraulic conductivity fields. We find that the most and least informative data are the
flow-aligned component of the tensor and the solute mass breakthrough, respectively. The
variance of the field, controlling the spreading rate, is the best constrained parameter for all
test cases and data types, followed by the integral scale in the direction perpendicular to the
mean flow field. As an experimental contribution, we report on an optically- and electrically
monitored milli-fluidic saline tracer test aimed at understanding electrical signatures of
the diffusion-limited mixing of an initially layered tracer distribution. We show that the
different diffusion rates of the optical and electrical tracers must be taken into account to
reach quantitative agreement between the optically-inferred and measured time-series of
equivalent DC electrical conductivity. We find that the electrical data can constrain the initial
layers’ widths and associated diffusion transport time-scales as well as the degree of mixing
of the tracer upon its arrival to the electrode positions. As a theoretical contribution, we
introduce a new petrophysical parameter, the mixing factor M, to account for the impact of
fluid conductivity heterogeneity below the measurement support scale. When considering
anisotropic media, the diagonal components of the M-tensor depends on the variance and
anisotropy ratio of heterogeneous conductivity fields, while the nature of the mapping is
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affected by the connectivity of the conductivity field. We derive an expression for M, and
thus for the equivalent conductivity, in terms of the expected value of the conductivity field
fluctuations and the secondary electric field. Then, we study numerically the mapping linking
the statistical properties of either field.

Key words: Hydrogeophysics, spreading and mixing, equivalent electrical conductivity, up-
scaling, time-lapse DC method



Résumé

Une évaluation quantitative du devenir des contaminants hydrosolubles déversés dans les
aquiferes est cruciale pour la gestion et la préservation des ressources en eau souterraine.
Le temps d’arrivée d'un panache de contaminants a un endroit donné dépend de sa vitesse
moyenne et de sa taux de étalement, alors que le risque sanitaire associé est fortement corrélé
au degré de mélange du panache a son arrivée. Le mélange dans les milieux hétérogenes
résulte de la compétition entre la diffusion a I’échelle locale et ]’étalement du soluté, cette
derniere étant a son tour régie par '’hétérogénéité de la vitesse d’écoulement sur une large
gamme d’échelles spatiales. Par conséquent, le transport de solutés contaminants se déroule
sur de multiples échelles spatiales et temporelles et il est donc tres difficile de le caractériser
en s’appuyant uniquement sur des techniques de mesure hydrologiques locales et a faible
échantillonnage. En complément, la méthode géophysique a courant continu fournit des
informations réparties dans I’espace et dans le temps sur la conductivité électrique équi-
valente, qui est sensible au transport des solutés conducteurs d’électricité et fournit des
informations sur ’hétérogénéité des solutés sous I'échelle du support de mesure. Combinée a
I’échantillonnage conventionnel des fluides, la méthodologie est prometteuse comme moyen
de caractériser quantitativement |’état et 'évolution de la propagation et du mélange des
solutés. Cependant, cela nécessite d’établir des liens quantitatifs entre les mesures d’étale-
ment et de mélange et la conductivité électrique moyenne dans des conditions générales
de transport. Cela nécessite d’abord de quantifier I'incertitude des mesures de transport de
solutés déduites électriquement et ensuite de développer un cadre de mise a I’échelle a des
fins de prédiction. Comme ces deux taches restent largement non résolues, il existe un risque
d’erreurs systématiques dans les interprétations. Nous présentons ici des études numeériques,
expérimentales et théoriques visant a faire progresser ces objectifs de recherche. En nous
appuyant sur un cadre d'inférence bayésienne, nous quantifions dans quelle mesure les séries
temporelles du tenseur de conductivité électrique équivalent observés pendant les essais
de tracage peuvent contraindre les parametres géostatistiques des champs de conductivité
hydraulique. Nous constatons que les données les plus et les moins informatives sont respec-
tivement la composante du tenseur alignée sur le flux et la percée de la masse de soluté. La
variance du champ, qui controle le taux d’étalement, est le parametre le mieux contraint pour
tous les cas d’essai et tous les types de données, suivi par I’échelle intégrale dans la direction
perpendiculaire au champ d’écoulement moyen. En guise de contribution expérimentale,
nous présentons un essai de traceur salin milli-fluidique controlé optiquement et électri-
quement, visant a comprendre les signatures électriques du mélange limité par la diffusion
d’une distribution de traceur initialement stratifiée. Nous montrons que les différents taux
de diffusion des traceurs optiques et électriques doivent étre pris en compte pour obtenir
une correspondance quantitative entre les séries temporelles de conductivité électrique équi-
valente déduites par voie optique et mesurées. Nous constatons que les données électriques
peuvent contraindre les largeurs des couches initiales et les échelles de temps de transport et
de diffusion associées, ainsi que le degré de mélange du traceur a son arrivée aux électrodes.
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Comme contribution théorique, nous introduisons un nouveau parametre pétrophysique, le
facteur de mélange M, pour tenir compte de I'impact de 'hétérogénéité de la conductivité
du fluide sous I’échelle du support de mesure. En considérant les milieux anisotropes, les
composantes diagonales du tenseur M dépendent de la variance et du rapport d’anisotropie
des champs de conductivité hétérogenes, tandis que la nature de la cartographie est affectée
par la connectivité du champ de conductivité. Nous dérivons une expression pour M, et donc
pour la conductivité équivalente, en termes de valeur attendue des fluctuations du champ de
conductivité et du champ électrique secondaire. Ensuite, nous étudions numériquement la
cartographie reliant les propriétés statistiques de 'un ou I'autre champ.

Mots clefs : Hydrogéophysique, étalement et mélange, conductivité électrique équivalente,
mise a I’échelle, méthode courant continu répétée dans le temps.
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Chapter 1

Introduction

1.1 Motivation

A key component in the management and preservation of groundwater resources is to moni-
tor the fate of aquifer contaminants (e.g., Houlihan and Botek, 2016). When a water-soluble
contaminant is leaked into groundwater from a localized source, it is transported down-
stream in the form of a plume, with a center of mass that travels at the mean groundwater
flow velocity and, an evolving shape and internal topology that is determined by the sampled
velocity field fluctuations with respect to the mean velocity along its path. By deploying fluid
sampling instruments along boreholes (e.g., Maliva, 2016), breakthrough curve analysis (e.g.,
Rubin et al., 1997) can provide detailed localized flux-averaged information on the passing
plume. This information is nevertheless restricted to the measurement points and is, thus,
often insufficient to effectively describe the entire plume; a limitation that is well-established
in the literature (e.g., Western et al., 2002; Butler, 2005). If the contaminant solute-plume
exhibits a significant contrast of electrical conductivity with respect to the in situ groundwa-
ter electrical conductivity, then the direct-current (DC) geophysical method can provide a
minimally invasive and cost-effective means to constrain the transport of the contaminant.

The usage of the DC geophysical method to complement classical hydrogeological char-
acterization techniques emerged during the 1990’s (e.g., Rubin and Hubbard, 2005; Binley
et al., 2015) within the so-called hydrogeophysical discipline. One of the first attempts to
monitor an in-situ contaminant remediation process using the DC method is reported in
the field study from Daily and Ramirez (1995), where they imaged the temporal evolution of
preferential flow paths at the Savannah River Site near Aiken, South Carolina. Another early
example is the study from Slater et al. (2000), where they used the DC method to monitor a
sinking saline body during a controlled tank experiment and introduced the idea of inter-
preting time-lapse electrical images as a collection of electrical breakthrough curves, in a
manner similar to hydrogeological tracer data. This enabled them to perform a qualitative
assessment of the spatial distribution of advective-dispersive transport parameters using the
DC data. Along this line, more quantitative studies were performed by Kemna et al. (2002)
and Binley et al. (2002). Kemna et al. (2002), for instance, provided a field demonstration
aiming at retrieving equivalent 1-D stream-tube advective-dispersive transport parameters
in the context of 3-D conservative saline transport. Their results were later corroborated



numerically by Vanderborght et al. (2005). Koestel et al. (2008) inferred the 3-D distribution of
solute velocities and dispersivities in a soil column using time-lapse ERT data. A large body of
literature dealing with the usage of the DC method to constrain the transport of contaminants
has developed over the last three decades (e.g., Binley et al., 2015; Binley and Slater, 2020).
Over time, the research has moved towards more quantitative goals (Singha et al., 2015), most
notably by accounting for spatially and temporal resolution variations of inverted time-lapse
DC images (e.g., Day-Lewis et al., 2005; Singha and Gorelick, 2006; Moysey et al., 2005a).

The sanitary risk associated with the arrival of a contaminant plume is highly correlated
with its maximum contaminant levels (e.g., Ahuja et al., 2014) or, in other words, on the
plume’s degree of dilution. Plume dilution is achieved through the action of mixing, which is
ultimately driven by molecular diffusion, the latter resulting in a net solute flux whenever a
solute body presents spatial concentration gradients. Before the plume becomes fully mixed
in the direction perpendicular to the flow (i.e, during preasymptotic transport), the plume
spreading creates and enhances concentration contrasts. Consequently, mixing in porous
media has been defined as flow- or stretched-enhanced molecular diffusion (e.g., Villermaux,
2019), implying that there exists a coupling between the flow properties and the dilution rate
of contaminants.

Heterogeneity in geologic media appears at a broad range of scales (e.g., Fetter, 2018) and
solute transport is impacted differently across all the spectrum (e.g., Berkowitz et al., 2006),
with the smaller scales notably having a large impact on the mixing of solutes (e.g., Rolle
and Le Borgne, 2019). Capturing such complex behaviour under field conditions becomes
particularly challenging since aquifer characterization is typically feasible only at a single
spatial scale associated with the borehole length and spacing (e.g., Hyndman, 2016). Devel-
oping effective descriptions of solute transport is both a longstanding (e.g., Matheron and
De Marsily, 1980; Gelhar and Axness, 1983; Haggerty and Gorelick, 1995; Berkowitz et al., 2006)
and active topic of research (e.g., Dentz et al., 2011; Le Borgne et al., 2015; Comolli et al., 2019).
One notable development is the multi-rate mass transfer conceptual model (Haggerty and
Gorelick, 1995), where geologic media is represented as an overlapping continua that store
and exchange solute mass with each other at different rates. Among these, the simpler dual
domain model (Coats and Smith, 1964; Van Genuchten and Wierenga, 1976) is probably the
most popular one, where media is split into a mobile and an immobile domain; solutes are
advected by the flow within the mobile domain while they are exchanged by diffusion with
the immobile domain.

A major obstacle is the current lack of practical hydrological methods enabling testing and
calibration of such transport models. For instance, conventional hydrogeological sampling
do not collect fluid from the immobile portion of the domain directly, but from the mobile
pore fluid (e.g., Singha et al., 2007). At the same time, bulk electrical conductivity can
sense electrolytic solutes simultaneously from both domains. Solute transport appears
particularly well-suited to be characterized using geoelectrical methods that provide spatially-
and temporally-distributed information about electrical conductivity and, hence, salinity
variations. The DC method has shown potential to constrain the mixing state of solutes.
Singha et al. (2007) provided field and numerical evidence of the sensitivity of time-lapse
DC measurements to dual-domain mass transfer parameters. Day-Lewis and Singha (2008)
combined the moment-generating equation technique from Harvey and Gorelick (1995)



with a modified (two-phase) version of Archie’s law (Archie, 1942). Then they proposed a
framework that successfully enabled extraction of dual-domain mass transfer parameters of
laboratory core-samples, by combining the temporal moments of two types of time-series:
the concentration breakthrough curve and time-lapse geoelectrical data, mainly sensitive
to the mobile and both portions of the domain, respectively. Briggs et al. (2013) calibrates a
spatial distribution of dual-domain mass transfer parameters at the Naturita Site, Colorado,
by combining fluid and time-lapse DC data.

Still, using the DC method to produce quantitative constraints on solute transport remains a
persistent challenge (e.g., Singha et al., 2015). One of the main obstacles lies at the conversion
of the observed or inferred DC electrical conductivity distribution at some spatial scale
into some measure of the contaminant concentration field, typically in terms of a mean
concentration value, by means of a petrophysical relationship. The conversion usually takes
place at the (spatially-variable) resolution scale of electrical images that is implicitly assumed
to correspond to a Representative Elementary Volume (REV) scale (Hill, 1963) at which the
petrophysical relationship is derived. Indeed, the scale at which electrical conductivity is
resolved by inversion tends to be large compared to the expected scale of heterogeneity of the
salinity field. This leads to spatial fluctuations within the conductivity averaging volume that
are not statistically homogeneous (Torquato and Haslach Jr, 2002), for instance, a single solute
finger traversing the conductivity averaging volume. These type of sub-resolution features
represent non-ergodic fields for which no petrophysical relationship exists, yet they exert
a major impact on the observed electrical conductivity (e.g., Jougnot et al., 2018; Visentini
etal., 2020, 2021). Archie’s relationships remain as the standard petrophysical relationship
used to convert average DC electrical conductivity into mean saline concentration (Revil et al.
(2018)). This choice implies that saline heterogeneity is ignored below the scale of resolution
of the electrical conductivity field. Poor recovery of spatial and temporal moments of tracer
plumes from electrical monitoring have been systematically reported (e.g., Binley et al., 2002;
Singha and Gorelick, 2005; Miiller et al., 2010; Doetsch et al., 2012a; Laloy et al., 2012), and is
often a consequence of unaccounted saline heterogeneity.

In essence, the DC geophysical method holds much promise to constrain the spreading and
mixing state and evolution of solutes below the scale of observed average electrical conductiv-
ity in saturated porous media. Yet, the electrical signature of these solute transport processes
below the scale of resolution is not accounted for and there is presently no framework to
treat them quantitatively. The development of an upscaling framework enabling quantitative
prediction of the DC electrical signatures corresponding to sub-scale saline heterogeneity
remains a challenging and important research topic. In order to move towards this goal,
it is necessary to consider controlled settings where the different heterogeneous features
and their DC signature can be assessed. This enables not only to develop conceptual under-
standing and produce quantitative links for restricted cases of heterogeneity (e.g., statistically
homogeneous fields), but also to quantify uncertainties in interpretations where the electrical
signature is very challenging or even impossible to upscale (e.g., non-ergodic heterogenity).



1.2 Basic theory and modelling tools

1.2.1 Groundwater flow and solute transport

In this thesis, we model groundwater flow at the Darcy scale x (e.g., Bear, 1972; Whitaker,
2013) and solute transport within an Eulerian framework (e.g., Rubin, 2003). Note that we use
interchangeably the symbol x to denote a point and the support scale at which the point is
defined (e.g., Cortis et al., 2004).

Water mass conservation at the Darcy point x is expressed by the continuity equation for the
specific discharge q(x). For steady-state flow and in the absence of flow sources or sinks, it
reads:

0=V-qx), (1.1)

with "-" denoting the dot product. Darcy’s law relates q(x) with the hydraulic conductivity
K(x) and the hydraulic head h(x) via

qx) = -Kx)Vh(x). (1.2)
Adopting Darcy’s law, the groundwater flow equation reads:
VK (x)Vh(x) + KX V>h(x) = 0. (1.3)

Equation 1.3 is solved numerically using the open-source finite-difference solver MODFLOW-
2005 (Harbaugh, 2005).

Solute mass conservation at the point x is expressed by the continuity equation for the solute
concentration c(x,t) as:

oc(x,t)
ot

+V.J.=0, (1.4)

where the solute flux ] is given by advective, q(x)c(x, t), and dispersive, D(x) - Vc(x, t) com-
ponents, with D(x) = A;(x) + ¢ DI the hydrodynamic dispersion tensor, accounting for the
anisotropic dispersivity 1;;(x), caused by velocity fluctuations at smaller scales than x, and
molecular diffusion at the rate ¢D,,,. That is:

Je=qX)cx, 1) -DX).Ve(x, 1). (1.5)
Inserting Eq. 1.5 into Eq. 1.4 we obtain the Advection-Dispersion Equation (ADE):

oc(x,t)
ot

¢ +qX)-Vex, 1) - V[DX) - Ve, 1] =0. (1.6)

Equation 1.6 is solved numerically using the groundwater solute transport simulator package
MT3D-USGS (Bedekar et al., 2016), assuming constant dispersivity over X.



1.2.2 Solute plume description: spreading and mixing

The location «a(t) of the center of mass of a solute plume observed over some volume V is
given by the first spatial moment of c(x, 1):

a(l) = f c(x, t)xdx. 1.7)
v

This expression assumes that c(x, ¢) is normalized (i.e., it satisfies [, c(x,f)dx = 1). The
standard measure of the spread of a solute plume is given by the second spatial moment of
c(x, t) centered at a(1) :

A;j(1) =fVC(x, Nx—a;()x-a;(1))dx. (1.8)

The rate of spreading of a solute plume is quantified by the apparent dispersion coefficient
D2.(¢)
1]

Dj; (0=~

(1.9

A common measure of concentration variability is the second statistical moment of c(x, 1),
that is, the concentration variance (). Decomposing c(x, t) into the sum of its mean ¢(t)
and fluctuating part ¢’(x, 1), 02(t) can be expressed as (e.g., Kapoor and Kitanidis, 1998)

a2(1) :f c'(x, 1)*dx. (1.10)
v

A measure of the mixing rate of c(x, ) is given by the scalar dissipation rate (e.g., Pope, 2001):
x(0) :va’(x, 1) -DVc' (x, 1) dx, (1.11)

which represents the net solute mass transfer resulting from the presence of concentration
gradients and their dissipation by local-scale diffusion (e.g., Le Borgne et al., 2010).

1.2.3 Introduction to the DC geophysical method

The DC geophysical method aims at retrieving information about the spatial distribution
of average electrical resistivity in the subsurface. A DC measurement requires two pairs of
electrodes: one pair for establishing a known electrical current between two points (can also
be lines or surfaces), and the other for measuring the resultant electrical voltage between
two other points (e.g., Keller and Frischknecht, 1966). The measured resistance (voltage
over current) is multiplied by a geometrical factor that accounts for the electrode positions
and the probed domain’s geometry. The obtained data is termed apparent resistivity (or



conductivity, the inverse of resistivity) and corresponds to the true resistivity if the medium is
homogeneous.

The number of electrodes in use depends on the type of application. It is sometimes few, for
example, when considering the apparent conductivity of small-scale laboratory core samples
(e.g., Kozlov et al., 2012; Maineult et al., 2016; Ghosh et al., 2018), and sometimes hundreds
during field experiments (e.g., Binley et al., 2002; Cassiani et al., 2006; Doetsch et al., 2012b).
For this latter case, data are collected from electrodes that are typically deployed on either the
soil surface or along boreholes. Since the apparent conductivities are sensitive to different
parts of the probed volume, they are processed by an inversion procedure yielding a 2- or 3-D
image of average electrical conductivity at a given scale of resolution. This process is often
referred to as Electrical Resistivity Tomography (ERT).

DC measurements provide average values of electrical conductivity at the scale of the point
y, which for most applications in hydrogeology is greater or equal than to the Darcy scale x
(e.g., Bear, 1972) and certainly much greater than the pore scale x’ (see Fig. 1.1). Typically, it
is y > x during DC field and tank experiments (e.g., Vanderborght et al., 2005; Koestel et al.,
2009), and possibly y ~ x for laboratory core-sample measurements or laboratory-based
electrically-monitored tracer tests (e.g., Jougnot et al., 2018; Visentini et al., 2021).



Figure 1.1 — Contaminant plume of size L monitored with the DC geophysical method. Some
known current I is injected into the ground from the electrode pair on the left and eight
voltages are measured at different distances from both the current source and the target
(plume). In this schematic drawing y represents a point at the scale at which the average
electrical conductivity is observed, while x represents a point at the Darcy scale and x’
represents a point at the pore scale. Adapted from Wood (2009).

A DC experiment can be repeated over time to monitor a time-varying system and the
measurement protocol will then output time-series of apparent conductivity. Accordingly, if
time-lapse ERT is performed, then a collection of time-lapse 2-D or 3-D images of average
electrical conductivity is obtained after inversion. See the recent book by Binley and Slater
(2020) for a comprehensive overview.



1.2.4 DC electrical conduction

Analogously to groundwater flow, the departure point to describe DC electrical conduction is
the principle of electric charge conservation, which is expressed by the continuity equation
for the macroscopic current density field J(x’). For steady-state conduction and in the absence
of current sources or sinks, the continuity equation reads:

V- Jx)=0. (1.12)

Ohm’s law relates J(x') with the electrical conductivity o (x') and the electric field E(x’) via the
linear relationship J(x') = 0 (X)E(x'). Adopting the quasistatic approximation, V x E(x’) =0,
allows to express E(x') = —VU (x), where U(x') is the electrical potential. Writing J(x) in terms
of UX) as J(x') = —o(x')VU (') and replacing this expression into Eq. 1.12 results in the
governing Laplace equation for the electrical potentials:

Vox)VUKX) +0x)V2UX) = 0. (1.13)

Once the electrical conductivity field o (x') and boundary conditions for U(x') are given over
the contour of some domain, Eq. 1.13 can be solved for the latter. Since an exact analytical
solution of Eq. 1.13 does not exist in general, one often has to rely on numerical methods
(e.g., Riicker et al., 2017).

1.2.5 Average electrical conductivity

The average or equivalent electrical conductivity ¢q considered over some support volume
V is defined through a volume-averaged Ohm’s law as (e.g., Whitaker, 2013; Sanchez-Vila
et al., 2006)

Oeq ==, (1.14)

Erd || =1

where

Jx)av, (1.15)
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and

E:lf Ex)dV. (1.16)
Vv

An alternative, equivalent definition of ¢q derives from considering energy conservation over
V. For simplicity, but without loss of generality, let us assume that V is a cube of side length
L. An electrical potential difference AU is applied between two opposite faces of the cube,
driving an electrical current i. The power dissipated by the sample in the form of Joule’s heat
is given as iAU which, applying Ohm’s law, we can express as SAU’ 2 with S the conductance
of the sample, given as S = g¢qL. By grouping factors we can express the power in terms of the
modulus of the impressed electric field Eg = ~AU/L and 0¢q as — VEgaeq. Analogously, the
power dissipated locally at the point X’ is given by the dissipation functional E(x’)-J(x'). Again,
using Ohm’s law we can express E(x') - J(x') = —E(X/) - 0 (X')E(X). This quantity, integrated over
V, must be identical to —VESO'eq due to energy conservation. That is:

~VEiOeq = —f EX)-c®EX)AV, (1.17)
\4

Ofr,

Oeq = Zif ExX)-c(x)EX)dV, (1.18)
EgV Jv

which gives the energy representation formula of the equivalent conductivity (e.g., Johnson
et al., 1986; Bernabé and Revil, 1995). Note that in the context of hydrogeology, such a formu-
lation is also employed for the equivalent hydraulic conductivity (e.g., Dagan, 1989), where
E(x)) is replaced by the pressure head gradient field and o (x') by the hydraulic conductivity
field.

1.2.6 Overview of upscaled electrical conductivity

The volume-averaging operations expressed by Egs. 1.14 or 1.18 make it possible to always
obtain o¢q given knowledge of o (x') and some method to solve Eq. 1.13. However, complete
knowledge of o (x) is not always required to estimate the macroscopic response 0¢q, and not
possible to attain anyway. What is sought in general, and in hydrogeophysical modelling
in particular, is to summarize o (x') using a few descriptors that, combined under some law
or framework, enable prediction of g¢q. In other words, an upscaling procedure for oeq is
sought (e.g., Wen and Gémez-Herndndez, 1996; Renard and De Marsily, 1997; Sanchez-Vila



et al., 2006; Hunt and Sahimi, 2017). A detailed discussion on the conceptual differences
between averaging and upscaling are discussed for instance in Wood (2009).

The upscaling operation is tied to the notion of Representative Elementary Volume (REV) (Hill,
1963). The averaging volume V is a REV for o if 0.4 becomes stationary at V' (i.e., 0.4 does
not change significantly when computed using volumes in the vicinity of V). This implies
(i) the existence of structural features of o(x’) that mainly controls the average electrical
response and (ii) that these features are sufficiently well-captured at the scale of V (e.g.,
Wood, 2009). More formally, if o (x') is conceptualized as one realization of a spatial stochastic
process then (i) means that the process is statistically homogeneous, that is, its statistical
properties (typically mean and covariance) are invariant under translations and (ii) means
that o (x) at the scale of V is ergodic, that is, the statistical properties of the process are
sufficiently sampled by that specific single realization (e.g., Torquato and Haslach Jr, 2002;
Christakos, 2012).

There exist only three exact results for electrical (or hydraulic) conductivity upscaling that we
are aware of. The first two are given when o (X') is organized into layers (or laminated) (e.g.,
Milton and Sawicki, 2003) that are parallel or perpendicular to the electrical conductivity
measurement direction. For these two cases, oq results from averaging o (x') arithmetically
and harmonically, respectively, and the average response can be obtained from knowledge of
the conductivity of each layer and the volume fractions occupied by each conductive phase,
without knowing, for instance, the ordering of the layers nor the thickness of each of them.
The third available exact result for conductivity upscaling is given for 2-D isotropic fields
when Ino (x) follows an even histogram. In this case, 0¢q equates the geometric mean of o (x')
(Dykhne, 1971). These examples highlight that conductivity averaging process is non-linear,
meaning that it is not constant but depends on ¢ (x'). This introduces a dependence of the
(unknown) averaging operator on the observation scale V as well, as different observational
volumes capture different heterogeneous features of o (x').

Since o¢q depends in general on both low- and high-order spatial statistics, as well as the
topology (i.e., connectivity) of o (x'), V becomes an REV for o.q once these 'structural’ prop-
erties become stationary at V. Capturing sufficiently well such structural features usually
requires larger observational volumes compared to, for instance, one-point statistical mea-
sures of o (x'), such as its mean y. and variance o2 (e.g., Demirel et al., 2019; Koestel et al.,
2020). Consequently, it usually takes longer to reach a REV (assuming that it exists) for oeq
compared to those measures. In Fig. 1.2 we compare the convergence of ¢, i and 0% as
a function of the observational volume, using two heterogeneous fields o (x’) as example,
organized into layers (Fig. 1.2a) and lenses (Fig. 1.2b).

10



Figure 1.2 — Two-dimensional 1 m x 1 m heterogeneous multivariate-lognormal electrical
conductivity fields organized into (a) layers and (b) lenses. Plots of 0¢q.y, o and 02, com-
puted using subdomains of the electrical conductivity fields that have a length of 1 m and
varying height y,ps starting at y = 0m for (c) the layered and (d) lensed fields. The data are
normalized by their corresponding values when observed using the full domain’s height.

Note that when the conductivity field is perfectly layered, the value of g¢q is strongly con-
trolled by the smaller conductances. Accordingly, the convergence of g¢q becomes highly
dependent on how well-sampled such layers are. This can be seen in Fig. 1.2¢c, where g4y
shows an abrupt decrease at y,ps ~ 0.55m, that is, after the sampling rectangle incorporates
the relatively thick and low conductive layer appearing at that height (Fig. 1.2a).

Fig. 1.2 shows that g.q converges slower than both p, and o2 and, in fact, note Oeq is likely
to keep fluctuating if larger domains would be considered. Thus, the considered domains
cannot be regarded as REVs for 0¢q. In general, there will exist a range of observation scales
for which the REV is reached for y, (or o2 or other statistical measures of the field) but not for
Oeq- This observation becomes relevant in the context of electrically-monitored saline tracer
tests, as 0eq, observed at the scale of V, is typically used to infer the mean fluid electrical
conductivity at the same scale.

The literature dealing with upscaling methodologies of electrical (or hydraulic) conductiv-
ity is vast. Perhaps the most common type of upscaling approaches encountered in the
stochastic subsurface hydrology and electrical literature are based on: a perturbative treat-
ment of the constitutive relationship (i.e., Darcy’s or Ohm’s law) (e.g., Gelhar and Axness,
1983), the Effective Medium Approximation (EMA) (e.g., Dagan, 1979; Sen et al., 1981), and
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percolation theory (e.g., Katz and Thompson, 1986, 1987). The workflow for each of these
families of methodologies is different. In the perturbative approach, most commonly seen for
hydraulic conductivity upscaling, the logarithm of the hydraulic conductivity field is decom-
posed into a mean (constant) and fluctuating part, and the fluctuating part is expanded into
power series of the variance of the log-transformed field. By assuming that the fluctuating
field has a small amplitude, and using the so-called closure approximations (e.g. Zhang,
2001), the average hydraulic conductivity is typically expressed in terms of the geometric
mean of the hydraulic conductivity field and a polynomial of the variance of variance of
the logarithmically-transformed conductivity (e.g., Dagan, 1989; Zhang, 2001; Sanchez-Vila
etal., 2006). In the EMA-based approaches, the conductivity field is replaced by a fictitious
(simplified) medium, for instance an ensemble of spherical or ellipsoidal inclusions of some
conductivity that are submerged in a matrix of contrasting conductivity. By making extra
assumptions (e.g., the electric field perturbations due to each inclusion do not interact with
each other), the average conductivity is expressed in terms of the conductivities, volume
fractions and some shape measure of the inclusions (e.g., anisotropy of the ellipsoids) (e.g.,
Chelidze and Gueguen, 1999; Torquato and Haslach Jr, 2002; Choy, 2015). Among percolation-
based approaches, perhaps the most well-suited to deal with continuous fields is the critical
path analysis, which assumes that the average electrical response is controlled by the path of
least resistance connecting the two sides of the domain sustaining the electrical potential (or
pressure head) difference. In its simplest version, the conductance of the sample is obtained
as the conductance of the critical path (e.g., Hunt, 2001; Daigle, 2016; Hunt and Sahimi,
2017).

Equivalent conductivity for homogeneous fluid electrical conductivity

For a water-saturated porous medium, o¢q depends on the structural properties of both the
pore volume and the fluid electrical conductivity field residing within the pores (e.g., Revil
et al., 2018). The starting point of electrical conductivity upscaling in water-saturated porous
media is the case when the sample has an insignificantly conductive matrix and no surface
conductivity (e.g., Waxman and Smits, 1968; Revil and Glover, 1998). It is useful at this point
to describe the pore space with an indicator function ®(x’), which takes values of 0 and 1
in the matrix and pore spaces, respectively, and to define the electrical conductivity field as
o) =0, X)DX). If we further assume that the fluid electrical conductivity field o, (x")
is constant and equal to some value o ¢ then oeq can be obtained from dividing o 5 by the
formation factor F, a geometrical constant that encodes the electrical effect of the pore space
(e.g., Avellaneda and Torquato, 1991). Indeed, from Eq. 1.18 we have:

Goq = ﬂf Ex)-EX)dV), (1.19)
VE; Jv,
or
o
Oeq = ?f (1.20)
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with

1

—=—— | EX)-Ex)dV,, 1.21
Fovizly, x)-Ex)dV), (1.21)

where V), denotes the pore volume. The right-hand side of Eq. 4.15 expresses a weighted
average of the pore space, where the weights E(x) - E(x) correspond to the local dissipated
power, divided by the conductivity. The quantity, 1/F is a measure of the effective (electrical)
porosity participating to electrical conduction (e.g., Revil and Cathles III, 1999). Defining F
through Eq. 1.21 is meaningful provided that V is a REV for the quantity at its right-hand side
(RHS).

Archie’s empirical law is given by

F=¢ ™, (1.22)

where ¢ and m are, respectively, the average porosity and cementation exponent, the latter
being inversely related to the connectivity of the pore space (e.g., Glover, 2009). Archie’s law
has been reproduced by Sen et al. (1981) using the Differential Effective Medium (DEM) mix-
ing procedure (e.g., Bruggeman, 1935), which is one type of EMA-based upscaling approach.
Bussian (1983) used the DEM to extend the model of Sen et al. (1981), allowing the matrix to
be conductive. By decomposing E(x') into its primary and secondary parts, in Chapter 4 we
provide an expression for F in terms of the mean value and variance of the secondary part of
the electric field. By allowing the matrix to be conductive, we also provide an expression for
0 ¢q that has the same form as the model proposed empirically by Glover et al. (2000), thereby
substantiating it theoretically.

Equivalent conductivity for heterogeneous fluid electrical conductivity

If we relax the assumption of homogeneity of ¢, (x') within the pore space, then the total
electric field E(x’) within the sample can be decomposed into three parts: the part of the
electric field resulting from the pore space structure given by ®(x'), the part of the electric
field resulting from the structure of o, (x') and the part of the electric field resulting from the
interactions between the electric fields arising due to either structure. At present, there is no
upscaling framework under such general conditions that enables to predict o.q. However,
research efforts have been made in this direction (e.g. Singha et al., 2007; Day-Lewis and
Singha, 2008; Day-Lewis et al., 2017). For instance, Day-Lewis et al. (2017) produces a model to
compute oeq for samples that exhibit dual porosity and each domain is saturated with fluids
of different conductivity o,,; and o, (i.e., 0, (X') exhibits a binary distribution). In their
approach, they assign a different formation factor F; and F» to each domain, they calculate
an upscaled value of conductivity for each of them as o4 = 01/ Fy and 0¢q2 = 02/ F> and
subsequently they input these two average conductivities into the DEM mixing procedure. By
applying Archie’s law to relate F; and F to the average porosity of each domain, the resulting
model allows to compute oeq from knowledge of F;, F> and the volume fractions of each
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conductive phase (see Day-Lewis et al. (2017) for details). Note that underlying this model is
the assumption of scale separation (e.g., Adrian et al., 2000; Wood, 2009). Namely, the scale
at which the formation factors are defined is much smaller than the scale at which o, (x)
fluctuates. This assumption allows neglecting interactions between the electric fields arising
due to the structures present in ®(x’) and o, (X).

In most real settings o, (x’) is not binary but fluctuates continuously. There is currently
no general petrophysical transformation that accounts for the electrical signatures of such
variations on o.4. Suitable candidates for dealing with this problem might be the pertur-
bative upscaling approaches, mentioned before. In Chapter 4 we present an interpretation
framework based on extending Archie’s law to consider continuous heterogeneity ino , (x').

1.3 Translation of 0.4 into mean salinity

Typically, the objective of DC-monitored saline tracer tests is to use o4, observed at the scale
of 'y, to constrain the temporal evolution of the mean saline concentration at the same scale.
In this context, the heterogeneous pore water electrical conductivity field o, (x) originates
from the heterogeneous salinity field c(x’), whereby the former and the latter are related by a
monotonically increasing relationship (e.g., Sen and Goode, 1992).

As was mentioned in Sec. 1.1, the lack of a general petrophysical transformation linking
o (') with o4 remains a major obstacle to exploit time-lapse DC data quantitatively and in
a reliable manner. In order to illustrate this issue, we describe now the two main types
of workflows used to exploit DC data in hydrogeological studies (Fig. 1.3). Note that a
more exhaustive categorization can be found in Singha et al. (2015), however, the presented
categorization serves well to our purposes.
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Figure 1.3 — a. Uncoupled hydrogeophysical inversion. b. Coupled hydrogeophysical inver-
sion. The petrophysical transformation takes place (a) after inversion of o(y) and (b) during
data forward modelling, respectively.

In the first approach (Fig. 1.3a), called "'uncoupled inversion’ (Hinnell et al., 2010) or direct
mapping (Linde et al., 2006), the snapshots of bulk electrical conductivity (electrical images),
obtained after inversion, are transformed into snapshots of c(y) by means of a petrophysical
relationship, the latter applied at the DC modelling discretization scale. The inferred c(y)
is either directly used as a final result or to further constrain a hydrological inversion. Due
to its simplicity, this is the most commonly applied approach during hydrogeophysical
studies (e.g., Singha and Gorelick, 2005; Cassiani et al., 2006; Miiller et al., 2010; Doetsch
et al., 2012a). In the second approach (Fig. 1.3b), known as coupled hydrogeophysical
inversion (Yeh and S imunek, 2002; Hinnell et al., 2010), apart from the DC data, the full
hydrogeological system (i.e., flow and transport) is modelled, and an inversion procedure
is applied to obtain snapshots of c(y) directly while inferring the underlying parameters
of the hydrogeological system. During this procedure, the petrophysical transformation
used to translate o (y) into c(y) occurs during the forward simulation of the data. Since flow
and transport forward modelling is necessarily involved, this second approach entails a
much higher computational burden, however, it carries a significant advantage. Namely,
there is no underlying assumption that the resolution of the electrical images equates the
DC model discretization scale, as is often implicitly assumed when transforming electrical
images in the uncoupled or direct mapping approaches. Another major advantage is that,
the coupled approach ensures mass conservation of the tracer or contaminant being imaged.
ERT experiments are typically underdetermined, meaning that the number of pixels in the
electrical images to be inverted cannot be constrained uniquely from the collected DC
measurements. Consequently, there is almost invariably a need of introducing correlations
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between the pixels of the electrical images to stabilize the inversion process (e.g., Constable
etal., 1987; LaBrecque et al., 1996), which then result in spatially-varying weighted averages
over a much larger volume (e.g., Friedel, 2003) than the DC modelling grid elements. Direct
naive conversion of electrical images should be avoided whenever possible (e.g., Singha et al.,
2015; Nussbaumer et al., 2019).

Regardless of whether uncoupled or coupled hydrogeophysical inversion approaches are
applied, a petrophysical relationship is invariably introduced at some observation scale y that
is either related to the resolution of electrical images (uncoupled) or the DC modelling dis-
cretization scale (coupled). This relationship is typically given by Egs. 1.20 and 1.22 (Archie’s
relationships), as has been mentioned previously. In order to use Archie’s relationships in a
meaningful way, that is, allowing to extract an accurate value of mean salinity u. by observing
0eq and assuming knowledge of F, it is necessary that 0w (x') is homogeneous (i.e., the solute
is completely mixed) below the scale of y. In such a special case, o, (x') trivially behaves as
an additive property and then the observable apparent fluid conductivity a;pp (obtained
2}pp
simple transformation of y, (e.g., Sen and Goode (1992)). However, as o, (x") departs from
homogeneity (or a layered field), U;pp becomes in general smaller than p; and then p. is no
app

;o

as 0.4 F) equates ;. This establishes a bridge between ¢, and the definition of u., via a

longer directly accessible through o

1.4 Milli-fluidic technologies to assess the impact of sub-scale
heterogeneity on DC conductivity

During electrically-monitored saline tracer tests within soil-, rock- and sand-columns (e.g.,
Koestel et al., 2008; Jougnot et al., 2010; Swanson et al., 2012; Briggs et al., 2013; Swanson
et al., 2015; Maineult et al., 2016) there are typically two types of collected data: averaged
DC electrical conductivity, obtained by placing electrodes on the surface of the sample,
and flux-averaged fluid conductivity (or solute concentration) obtained at the outlet of
the sample. Depending on the number of DC measurements, time-lapse ERT images (e.g.
Koestel et al., 2008) or equivalent conductivity conductivity measurements (e.g., Swanson
et al., 2015; Maineult et al., 2016) can be considered for interpretation. The latter alternative
allows to assess directly the relationship between the temporal evolution of the average DC
conductivity and the flux-averaged solute transport behaviour, without having to deal with
artefacts from the electrical images. However, given the impact that sub-resolution saline
heterogeneity has on averaged DC electrical conductivity, it becomes important to consider
experimental settings that give direct access to the conductivity field below the resolution
scale of the DC measurements. Along this line, optically-monitored tracer experiments using
quasi 2-D micro- or milli-fluidic Hele-Shaw cells allow to monitor the depth-averaged solute
concentration field at very high resolutions (e.g., Kozlov et al., 2012; de Anna et al., 2014;
Jiménez-Martinez et al., 2015, 2017). Consequently, the possibility of combining optically-
monitored milli-fludic settings with geoelectrical monitoring capabilities becomes very
appealing. Note that these types of combined experimental settings require tracers that
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create both electrical and optical signals. For this, typically table salt (electrical component)
and fluorescein sodium salt (optical component) are dissolved in denatured water.

In Fig. 1.4a we represent a schematic outline of the typical workflow followed during electrically-
and optically-monitored tracer tests. After installation and calibration, the electrical monitor-
ing system (a resistivity meter) outputs time-series of apparent electrical conductivity 0233.
The optical monitoring system provides time-series of light intensity images I(x’). These data
are then transformed into corresponding time-series of depth-averaged 2-D solute concen-
tration fields c(x'), that are in turn converted into time-series of fluid electrical conductivity

o (x). The latter are then used as input to Eq. 1.13 to calculate agl‘;{f.

Figure 1.4 — (a) Summary of typical workflow for electrically- and optically-monitored milli-
fluidic tracer tests. The left-sided sequence represents the electrical monitoring workflow

and Uggg the observed average electrical conductivity. The right-sided sequence represents

the optical monitoring workflow, with I(x), c(x’), o(x’) and Uggltf denoting, respectively, the
observed light intensity, inferred concentration and fluid conductivity fields at the pore scale,
and calculated average electrical conductivity. (b) (top) Image-inferred o (x') and (bottom)
modulus of the associated (calculated) current density field J(x'), respectively. Adapted from

Jougnot et al. (2018).

Fig. 1.4b highlights the impact of the connectivity of the conductivity field o (x') on the
current distribution J(x). For instance, note that o (x’) presents large conductivity values on
a considerable area of the upper part of the domain. However, J(x') has a large amplitude
predominantly along two channels that run approximately parallel to the horizontal direction
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and are located in the top and middle part of the cell. The region of large o (x’) between
the channels is essentially neglected by the current because it is not well connected in the
direction of the imposed potential gradient.

It is worth pointing out three aspects of such milli-fludic experiments. First, the relationship
between fluorescein concentration and light intensity is not monotonically increasing. In fact,
there exists a threshold concentration value, which depends on the cell thickness, after which
the emitted light decreases with fluorescein concentration (e.g., Imamura and Koizumi, 1955;
de Anna et al., 2014). Consequently, the fluorescein concentration for the tracer must be
chosen such that the optical signal is strong enough while remaining at the monotonically-
increasing part of the relationship. Second, special care is needed to process the images
I(x'), in order to avoid that spurious patterns of light intensity (e.g., some background light)
remain and impact the inferred c(x’). Third, since the relationship between light intensity and
solute concentration depends on the cell thickness, calibration must account for this. The
non-linearity of electrical conductivity averaging makes Ug;;f very susceptible to errors in
the image processing and the I(x')-c(x') relationship calibration. These aspects are discussed
in Jougnot et al. (2018) and Visentini et al. (2021). In Chapter 3 we present a study consisting
of such an experiment in saturated conditions, where we use a milli-fluidic cell that has a
layered distribution of permeability.

1.5 Thesis objectives

The main objective of this thesis is to advance our understanding of how the state and evolu-
tion of the spreading and mixing of solutes in saturated porous media impacts equivalent DC
electrical conductivity and associated time-series. With this understanding, the ultimate goal
is to establish a framework that allows to infer quantitative information on spreading and
mixing processes from geoelectrical data.

The overarching research question may be formulated as follows: What statistical informa-
tion on aquifer and state variables below the scale of equivalent DC electrical conductivity
estimates or measurements can be extracted when monitoring the transport of tracers and
contaminants? A non exhaustive list of specific questions is:

* What is the value of using static equivalent DC electrical conductivity measurements
or estimates?

- i. To what extent can the equivalent electrical conductivity tensor constrain low-
and high-order statistics as well as topological (i.e., connectivity) measures of
the conductivity field below the averaging volume? If the field is non-ergodic,
how is the uncertainty in those measures propagated to the measured equivalent
electrical conductivity ?

- ii. Since the mixing and spreading state of solutes are one- and two-point statisti-
cal measures of the electrical conductivity field (i.e., concentration field variance
and spatial variance of the concentration field) then, under which connectivity
and regularity conditions of the field is the DC conductivity sensitive to those
statistical measures?
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e What is the added value of using equivalent time-lapse DC equivalent electrical con-
ductivity compared to static data?

- iii. To what extent can the time-series of equivalent DC electrical conductivity
tensor constrain the first and second-order statistics and topological (i.e., connec-
tivity) measures of underlying hydraulic conductivity fields dictating the transport
of the solutes? If the hydraulic conductivity field is non-ergodic, how strong is
the dependence of the time-series on the specific realization of the hydraulic
conductivity field?

- iv. Is it possible to exploit time-lapse DC data to gain knowledge on the initial
state and temporal evolution of the tracer spreading and its degree of mixing?

* v. How can electrically-monitored milli-fluidic setups be used to gain insight on the
electrical signature of small-scale solute mixing processes?

1.6 Thesis outline

We present work that has been published in peer-reviewed journals (Chapters 2 and 3) or will
soon be submitted (Chapter 4).

In Chapter 2, we investigate to what extent the time-series of the DC equivalent electrical
conductivity tensor and the solute mass breakthrough, observed during a saline tracer test,
can constrain the geostatistical parameters of 2-D hydraulic conductivity fields. For doing this,
we combine a Bayesian inference framework and the Kullback-Leibler divergence measure,
the latter allowing us to make a quantitative assessment of the information content of the
data. We select three test cases of hydraulic heterogeneity and compare the performance
of the different data types in terms of the test cases and also in terms of the geostatistical
parameters. This chapter addresses question iii.

Chapter 3 presents results from a novel experimental setup, combining optical- and electrical-
monitoring of a milli-fluidic tracer tests performed using a quasi 2-D artificial porous medium.
By measuring electrical conductivity in two perpendicular directions, we investigate electrical
signatures associated with the mixing dynamics of a saline tracer initially segregated into
layers. We also discuss technical challenges associated with the processing and modelling of
the optically-inferred electrical conductivity time-series. This work addresses questions ii, iv
and v.

In Chapter 4, we expand Archie’s relationships by introducing a new petrophysical parameter,
the mixing factor, which accounts for the impact of small-scale heterogeneity of electrical
conductivity fields on the equivalent response. Working in 2-D, we investigate to what extent
observing the mixing factor in two perpendicular directions permit to constrain the variance
and anisotropy of saline conductivity fields. We also derive an analytical expression for the
mixing factor that enables us to formulate the problem of electrical conductivity upscaling in
terms of the mapping between the statistical properties of heterogeneous conductivity fields
and the electric field. As an additional contribution, we derive expressions for the formation
factor, cementation exponent and tortuosity in terms of the secondary electric field. This
work addresses questions i, ii and iv.
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Chapter 5 concludes the thesis and the main findings are summarized. An outlook for future
research is also presented.
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Chapter 2

Inferring geostatistical properties of hydraulic
conductivity fields from saline tracer tests
and equivalent electrical conductivity time-
series

Alejandro Fernandez Visentini, Niklas Linde, Tanguy Le Borgne and Marco Dentz.

Published! in Advances in Water Resources and herein slightly adapted to fit the theme of this
thesis.
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hydraulic conductivity fields from saline tracer tests and equivalent electrical conductivity time-series. Advances
in Water Resources, 146,103758, https://doi.org/10.1016/j.advwatres.2020.103758
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Abstract

We use Approximate Bayesian Computation and the Kullback-Leibler divergence measure
to quantify to what extent horizontal and vertical equivalent electrical conductivity time-
series observed during tracer tests constrain the 2-D geostatistical parameters of multivariate
Gaussian log-hydraulic conductivity fields. Considering a perfect and known relationship
between salinity and electrical conductivity at the point scale, we find that the horizontal
equivalent electrical conductivity time-series best constrain the geostatistical properties. The
variance, controlling the spreading rate of the solute, is the best constrained geostatistical
parameter, followed by the integral scales in the vertical direction. We find that horizontally
layered models with moderate to high variance have the best resolved parameters. Since
the salinity field at the averaging scale (e.g., the model resolution in tomograms) is typically
non-ergodic, our results serve as a starting point for quantifying uncertainty due to small-
scale heterogeneity in laboratory-experiments, tomographic results and hydrogeophysical
inversions involving DC data.

2.1 Introduction

Time-lapse electrical geophysical methods are popular in hydrogeology (e.g., Binley et al.,
2015; Singha et al., 2015)) as they provide non-intrusive means for remote and dense spatio-
temporal sampling related to flow and transport processes. Among these, the direct-current
(DC) method is cost-effective, easy to employ and probably the most commonly used (Binley
et al., 2015). It has been thoroughly assessed through numerical investigations (e.g., Van-
derborght et al., 2005; Singha and Gorelick, 2005; Fowler and Moysey, 2011), laboratory and
controlled tank experiments (e.g., Slater et al., 2000; Koestel et al., 2008; Jougnot et al., 2018),
and field investigations (e.g., Daily et al., 1992; Binley et al., 2002; Singha and Gorelick, 2005).

DC measurements are generally based on two pairs of electrodes: one pair for establishing
a known electrical current between two points, and the other for measuring the resultant
electrical voltage between two other points (e.g., Keller and Frischknecht, 1966). In the context
of time-lapse DC tomographic experiments, the measurement process is repeated using mul-
tiple current and voltage electrode pairs at different positions, and the measurement protocol
isrepeated over time. Such a measurement process is often referred to as time-lapse Electrical
Resistivity Tomography (ERT), and it outputs time-series of electrical resistances (voltage
over injected current) that in saturated media carry information about the time-evolution
of the salinity distribution (e.g., Lesmes and Friedman, 2005). The time-lapse ERT method
has been applied during conservative saline tracer tests to extract both flow and transport
information. Retrieval of hydraulic conductivity from such data is discussed, for example,
in Kemna et al. (2002) and Vanderborght et al. (2005) and the range of applications span
from the calibration of mean hydraulic conductivity values (Binley et al., 2002) to retrieval
of the full distribution of hydraulic conductivity (Pollock and Cirpka, 2012). Extraction of
solute transport parameters has been studied in detail and Kemna et al. (2002), for instance,
provided a field demonstration of retrieving equivalent 1-D stream-tube advective-dispersive
transport parameters in the context of 3-D conservative saline transport, results later corrob-
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orated numerically by Vanderborght et al. (2005). Also Koestel et al. (2008) inferred the 3-D
distribution of solute velocities and dispersivities in a soil column using time-lapse ERT data.

Over time, the use of geoelectrical-monitored tracer tests has evolved from qualitative anal-
yses such as saline plume motion detection and geometry delineation (e.g., Slater et al.,
2000) to obtain quantitative and spatially-resolved hydrological constraints. Nevertheless,
using time-lapse DC data for quantitative hydrogeological purposes remains a persistent
challenge (Singha et al., 2015). This challenge is intimately related to the use of time-lapse
inversion methodologies that provide resolution-limited time-evolving images of electrical
resistivity or conductivity through time (Singha et al., 2015). The most common approach to
translate resulting geophysical time-lapse tomograms into salinity distributions rests on two
strong assumptions. The first is that there exists a petrophysical relationship, (e.g., Archie,
1942), with known spatially-invariant parameters defined at the discretization scale of the
tomogram, implying that it corresponds to the Representative Elementary Volume (REV)
scale (Hill, 1963) of bulk electrical conductivity and, consequently, that the impact of salinity
heterogeneity is negligible below this scale. The second assumption is that the resolution of
the geophysical tomogram is the same as the model discretization, which is hardly true for
any electrical survey. In reality, the tomogram represents spatially-varying weighted averages
over a much larger volume (e.g., Friedel, 2003). With these two assumptions, temporal differ-
ences in time-lapse tomograms can readily be translated into estimates of salinity differences.
Unfortunately, this approach typically leads to an underestimation of actual tracer mass with
errors often approaching one order of magnitude (e.g., Binley et al., 2002; Singha and Gore-
lick, 2005; Laloy et al., 2012). Research has addressed the second assumption by upscaling
the petrophysical relationship to the tomographic resolution using either linearized inverse
theory Day-Lewis et al. (2005); Nussbaumer et al. (2019) or Monte Carlo-based simulation
approaches (e.g., Moysey et al., 2005b).

In this work, we are primarily concerned with the first assumption, namely that the impact
of salinity variations is negligible below a given scale. To avoid complications inherent to
tomographic imaging, we focus here on the case of a time-evolving equivalent electrical
conductivity tensor of a 2-D square sample of unit length that is invaded by a saline (i.e.,
electrically conductive) tracer. In a tomographic setting, this scale can be thought of as
the model resolution at a given location of interest. For this case, the equivalent electrical
conductivity in a given direction is readily obtained, basically by dividing the electric current
with the imposed voltage. The total current is the macroscopic flux of the internal current
density field (i.e., the distribution of small-scale currents within the sample) that, for a given
internal distribution of local conductivities, is established such that its associated energy loss
due to Joule’s dissipation, integrated over the domain, is minimized (e.g., Feynman et al., 2011;
Bernabé and Revil, 1995). This governing principle leads to patterns of current channelling
and deflection through and from high and low electrical conductivity zones, respectively, and
it governs the time variations of the current density field as the saline tracer invades the sam-
ple (e.g., Li and Oldenburg, 1991). Accurate prediction of the time-evolution of the equivalent
electrical conductivity of the medium, thus, requires accounting for interactions occurring
throughout the domain and, given an arbitrarily-shaped time-evolving electrical conductivity
field, this remains an open upscaling problem belonging to the family of conductivity upscal-
ing in spatially non-stationary fields (e.g., Sanchez-Vila et al., 2006) and references therein).
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The current lack of physically accurate upscaling procedures impedes reliable quantitative
analyses of a saline plume’s fate from geoelectrical monitoring. For instance, in the most
common case where Archie’s petrophysical law (Archie, 1942) is used to infer the mean saline
concentration within the sample from its equivalent electrical conductivity, the underlying
assumption is that the internal electrical conductivity field behaves as an additive prop-
erty that can be upscaled by taking its arithmetic average. This is only true if the electrical
conductivity field is constant or if its distribution is layered and the equivalent electrical
conductivity is measured parallel to this layering, corresponding to the upper Wiener bound
(e.g., Milton and Sawicki, 2003). In general, since portions of the concentration field are
by-passed by the established current patterns, the upper Wienner bound does not apply
and this leads to the above-mentioned apparent mass loss as demonstrated, for example, in
a recent laboratory study (Jougnot et al., 2018). These issues also impact the performance
of many fully-coupled hydrogeophysical inversion approaches and modeling studies that
interpret equivalent electrical conductivity time-series using equivalent transport parameters
within an advective-dispersive description (e.g., Kemna et al., 2002; Vanderborght et al., 2005;
Koestel et al., 2008). On a more positive note, the discussion above also suggests that electrical
conductivity time-series at a given scale carry statistical information on the concentration
field and its temporal evolution.

Here we investigate to what extent tracer tests associated with time-series of equivalent
electrical properties a pre-defined scale can be used to infer geostatistical properties of
hydraulic conductivity fields below this scale. This is achieved by considering inference
within a Bayesian inference framework (e.g., Gelman et al., 2013; Tarantola, (2005), more
specifically through an Approximate Bayesian Computational approach (e.g., Beaumont et al.,
2002; Sisson et al., 2018). For comparison purposes, the mass breakthrough curve is also
evaluated and its information content is compared to its electrical peers. Using a Bayesian
approach allows assessing the information gained on the properties of interest with respect
to their assumed prior statistics. We perform our study using a database consisting of 10°
synthetically-generated equivalent electrical conductivity tensor and mass breakthrough
time-series collected during saline tracer tests within a 2-D domain with hydraulic hetero-
geneity prescribed by multivariate Gaussian fields. We consider advectively-dominated solute
transport (i.e., high Péclet numbers), where the concentration field evolution is predomi-
nantly determined by the underlying flow field, which in turn depends on the underlying
hydraulic conductivity field under the constant applied pressure gradient. In this study, we
consider idealized scenarios as it is assumed that there is no spatial variations in petrophysical
properties and that the petrophysical relationship is known.

In Section 2 we review the basic governing equations describing groundwater flow, solute
transport and electrical conduction together with their numerical implementations. In
Section 3 we introduce the inference problem of interest along with the Bayesian inference
tools. The main results are presented and discussed in Sections 4 and 5, respectively. Section
6 concludes the paper.
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2.2 Governing equations and problem setup

2.2.1 Groundwater flow

For steady-state flow and in the absence of sources or sinks, mass conservation of an incom-
pressible fluid is expressed by the continuity equation for the specific discharge q(x):

V.qx) =0, 2.1)

where x = (x, y) T denotes the 2-D position vector and x and y the horizontal and vertical
coordinates, respectively. Darcy’s law relates q(x) with the hydraulic conductivity field K (x)
and the hydraulic head h(x) via

qx) =-KxVhx). (2.2)

Adopting Darcy’s law, the groundwater flow equation reads:

VKx)Vh(X) + Kx)V2h(x) =0. (2.3)

It is customary to treat the log-hydraulic conductivity field Y (x) (= [n(K(x)) within a geosta-
tistical framework with Y (x) modelled as a second-order spatially-stationary ergodic random
function. In this study, we consider multivariate-Gaussian random fields with an exponential
covariance structure (e.g., Rubin, 2003) with a mean py and a variance 0%,. The integral scales
of the field are expressed by the integral scale I, in the vertical direction and an anisotropy
factor A (= I,/1,). After specifying K (x), the flow field q(x) is obtained by solving Eq. 4.13 with
prescribed boundary conditions (subsection 2.4.2).
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2.2.2 Solute transport

The evolution of the concentration field c(x, #) of a passive tracer being transported within
the steady-state flow-field q(x) can be described within an Eulerian framework using the
advection-dispersion equation

eac(x, 1)

+V.[(qX)c(x, 1) —0DVc(x, 1)] =0, (2.4)

where 0 is the porosity and D is the dispersion tensor. In this study we assume a spatially-
constant porosity and dispersion tensor, and furthermore we assume zero dispersivity. In
this case and considering Eq. 2.1, Eq. 2.4 simplifies to the advection-diffusion equation with
constant coefficients:

dc

0
ot

+qx).Vc-0D,,V?c =0, (2.5)

where D,, denotes the molecular diffusion coefficient. After solving for c(x, t), the flux-
weighted tracer mass-breakthrough time-series M(#) are defined by

S, dx® e, dx
frout qxx)dx

M(t) = (2.6)

with g, (x) being the flow-component in the x-direction and I',,,; the outflow boundary of the
model domain.

2.2.3 DC conduction

Electric charge conservation is in the DC problem expressed by the continuity equation of the
current density field J(x,t) at time-lapse acquisition time ¢. In the absence of current sources
and net accumulation of electric charge, it takes the following form:

V.Jx, 1) =0. (2.7)
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Ohm’s law relates J(x, ) with the electrical conductivity o (x, ¢) and the electric field E(x, ?)
via the linear relationship J(x, t) = o(x, H)E(x, t). Adopting the quasistatic approximation,
V x E(x, t) = 0, allows to express E(x, t) = —V¢(x, t), where ¢ (X, ) is the electrical potential.
Writing J(x, #) in terms of ¢(x, 1) as J(x, 1) = —o (X, £) V¢ (X, t) and replacing this expression into
Eq. 2.7 results in the governing Laplace equation for the electrical potentials:

Vo x, HVPX, 1) + o (x, 1) V2P(x, 1) = 0. (2.8)

We consider the horizontal and vertical components of the equivalent electrical conductivity
tensor time-series of a 2-D square sample of unit length. This implies solving Eq. 2.8 with
alternative mixed Dirichlet-Neumann boundary conditions or "excitation modes". For o (1)
(0" (1)), a constant electrical potential difference A¢y (A¢y) along the horizontal (vertical)
direction is imposed, with zero electrical potential gradient along the top and bottom (left
and right) boundaries. The resulting electrical potential fields are, respectively, ¢ (x, £) and
c/)V(x, 1). The corresponding equivalent electrical conductivity time-series are computed as

at(t) = L f —o(x, DV (x, D dx, (2.9)
Apy Jr,
and
|4 _ _ \%4
o (t)——A(PV fx o(x, )V~ (x, 1) dx, (2.10)

where the integration paths I'y, and Iy, are any two given contours separating the left and
right boundaries and the top and bottom boundaries, respectively, and the integrands in
each equation is the horizontal or vertical component of the current density field resulting
from each excitation mode.

2.2.4 Numerical implementations and problem setup

We create a database of 10° time-series of 0¥ (¢), 0V (¢) and M(¢) that are collected during
tracer tests simulated within multivariate Gaussian log-hydraulic conductivity realizations in
a square-shaped domain of side length L = 1 m discretized into 250 x 250 elements.
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Generation of hydraulic conductivity fields

The log-hydraulic conductivity field realizations Y (x) are generated using the fast circulant
embedding technique (see Dietrich and Newsam (1997) for details). A given realization
depends on the specified geostatistical model parameters and R; a 250 x 250 a random draw
from a standard normal distribution. The geostatistical model parameters determine the
spatial regularity (smoothness class), while R determines the locations of high and low log-
hydraulic conductivity values relative to the mean value uy of the geostatistical model. Here
Wy is fixed at -6 while remaining parameters are treated as random variables m = (U%,, L, A)
described by a joint probability density function (PDF) 7 (m). The variance a%, is randomly
drawn from a uniform PDF with support [0,5.5], the integral scale I, is drawn from a log-
uniform PDF with support [L/25, L/2] m, and the anisotropy factor A (= I,/ 1) is drawn from
a uniform PDF with support 1, L/ ] (i.e., conditionally on I,). The discretization implies that
heterogeneities obtained with the smallest integral scales are resolved with at least 10 cells in
each direction. The log-uniform distribution of I is here chosen to favor realizations with
finely structured fields. The generated sample of the geostatistical model parameters of size
P =10° is represented in Figure 2.1. Note that each draw is associated with a unique R, which
together form a log-hydraulic conductivity field realization.

Figure 2.1 — Generated sample of size P = 10° of geostatistical parameters m = (U%,, L, A)
drawn from a joint pdf n(m). Each realization is used together with an associated R-
realization to create a log-hydraulic conductivity field on which flow and transport sim-
ulations are performed.
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Flow simulations

The groundwater flow equation (Eq. 4.13) is solved numerically using the open-source finite-
difference solver MODFLOW-2005 (Harbaugh, 2005). The prescribed boundary conditions
are a horizontal head gradient of 0.05 inducing flow from left to right and no-flow conditions
for the top and bottom boundaries. The head gradient value was chosen such that for a
homogeneous field equal to exp(uy) the tracer arrival time occurs approximately at half of
the simulated time-duration of the tracer experiment. In the simulations, the hydraulic con-
ductivity between two adjacent cells is taken as their harmonic mean. The chosen numerical
scheme used to solve the system of linear equations is the preconditioned conjugate gradient
method (Hill, 1990).

Transport simulations

The advection-diffusion equation (Eq. 2.5) is solved using the groundwater solute transport
simulator package MT3D-USGS (Bedekar et al., 2016). The initial condition is a homogeneous
concentration field of 0.01 gl_1 and the boundary conditions are: (i) constant concentration
of 1gl™! along the left boundary (ii) no-flux along the top and bottom boundaries and (iii)
free-flux along the right boundary. The porosity is assumed constant and equal to 0.3. For
the advection term in Eq. 2.5, the third-order Total Variation Diminishing (TVD) approach
(Cox and Nishikawa, 1991) is used. The TVD solver was found to be very robust and showed
minimal numerical dispersion when benchmarked against planar fronts. Nevertheless, in
order to mask the small numerical dispersion, the diffusion coefficient was slightly increased
from D,, = 1.6 x 1079m?s~! (the standard value for the diffusion coefficient of salt in water)
to D, =2 x 1078 m?s™! . The latter (larger) value is obtained by fitting the analytical solution
for a concentration profile for a step injection in 1-D (e.g., Ogata and Banks, 1961)) to a
TVD-calculated concentration profile obtained for a homogeneous hydraulic conductivity
field equal to uy when the diffusion coefficient is imposed to be the one of salt in water. Each
simulated tracer experiment lasts for 4 x 103 s and during this time period, 400 equidistant
samples ¢;(x) (i = 1,..,400) of the simulated concentration fields are recorded at times ¢ =
(i—1)At, with At =4 x 10%s/400 = 10s. The injected tracer typically does not fully replace the
initial background tracer at the end of the simulation period. This is a consequence of the
short simulation time imposed by computational constraints and large low-velocity regions.
The mean Péclet number is ~ 6 x 103, defined as Pe = D—L_‘, where i is the tracer velocity for
the constant hydraulic conductivity field. "

Electrical simulations

For each sampled concentration field c;(x), the 2-D square domain is alternatively excited by
imposing an electrical potential difference of 1V with a pair of line electrodes along either the
vertical or horizontal boundaries of the sample. The remaining boundaries are prescribed
zero electrical potential gradient normal to the boundaries. The resulting electrical potential
fields </)l.H (x) and </))./(x) associated to the horizontal and vertical modes, respectively, are
computed by numerically solving the Laplace equation (Eq. 2.8) with the finite-element
solver module of the Python library pyGIMLI (Riicker et al., 2017). For simplicity, the input
electrical conductivity distribution o;(x), used for solving the boundary-value problems at
each time step is assumed to be perfectly and linearly related to the transport simulation
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output ¢; (x). The resulting normalized dimensionless time-series denoted as o, ¢V and M
vary within [0.01, 1]. The data generation is summarized by the pseudo-code in Algorithm 1.

Algorithm 1: Data generation procedure

for j=1t010°do

Draw geostatistical model realizationm:(aé,ly,/l) and R

Generate hydraulic conductivity field K(x)
Simulate steady-state Eulerian flow fieldq(x)

for i =1to 400 do
Specify sampling time ¢ as t=(i—1)A¢
Simulate concentration field c;(x)
Compute M;, UiH and O'Y

end

Save K(x)
Save concentration field time-series C=|[c;(X),..., C400X)]

Save time-series of mass breakthrough M = [Mjy,..., Mypo] and

. - H_ . H H V _ .V 1%
electrical conductivity 0" =[0(,..., 045 ando’ =[0y,...,044]

end

2.3 Inference problem

We are interested in assessing to what extent the time-series 0/, ¢V and M may constrain
the geostatistical parameters m = (U%,, I, ). We consider the following five combinations of

time-series:

dy =",
dy:={0"},
dy:= (M3},

dyy:=1ct,0"},

dyvai=1{0,0", M),

The data vectors dy, dy and d,; are used to assess the individual performance of each type
of time-series; d v is used to evaluate the performance of electrical data alone and dgyyy is
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used to evaluate the value of using all the data at the same time. We cast the problem as a
Bayesian inference framework as outlined below.

2.3.1 Bayesian inference framework

In a finite-dimensional Bayesian inference framework, a model is described in terms of M
random variables with realizations m = (my, ..., my,) that can be used as input to a physi-
cal forward simulator producing N simulated data d* im_ (m) (e.g., Gelman et al., 2013;
Tarantola, (2005)). The prior probability density function 7 (m) is updated using Bayes’ the-
orem to a posterior probability density function 7 (m|d°”*) after considering the observed
data d°% = (d,,...,dy) using a likelihood function 7(d°”*|m). This function evaluates the
likelihood of any model realization given and the residual error vector e = d°”* — d*" and an
assumed underlying observational noise model (e.g., Tarantola, (2005)). Bayes’ theorem in
its unnormalized form reads:

7(m|d°?)  7(d°?*|\m)7(m). 2.11)

In our context, the prior is given by the PDF described in subsection 2.4.1 and d°”* is the
noise-contaminated output of the forward simulator, & (m;), when evaluated using one of
the test cases m; described in subsection 2.4.2. For the electrical time-series, & (m) is formed
by the sequential application of the following forward mappings: (i) the realization of the
hydraulic conductivity field K(x), (ii) solving the groundwater flow equation (Eq. 4.13), (iii) the
advection-diffusion equation (Eq. 2.5), (iv) the Laplace equation (Eq. 2.8) and (v) evaluating
the equations defining o (Eq. 2.9) and ¢V (Eq. 2.10).

2.3.2 Posterior density approximation

In Bayesian inference, Monte Carlo (MC) sampling can be used to approximate 7 (m|d°”*) by a
MC integration over a finite sample of the sought distribution (e.g., Mosegaard and Tarantola,
1995; Gelman et al., 2013)). The simplest approach is Acceptance-Rejection Sampling (ARS),
which consists of drawing samples m proportionally to the prior density and accepting them
as samples of the posterior density proportionally to their likelihood 7(d°?*|m). This is an
exact sampling method (e.g., Mosegaard and Tarantola, 1995)) and it can be used off-line
using a large ensemble of prior model realizations given that, unlike in a Markov Chain MC
(MCMC) sampling method, there is no dependence between the model proposals. Its main
disadvantage is that, since the parameter search is unguided (unlike MCMC), the probability
of acceptance decreases exponentially with the dimensionality M of the model parameter
space. As more dimensions are added to the problem, the ratio of the (hyper)volume of
high likelihood values (regions of large acceptance probability), to the total volume of the
model space, decreases exponentially to zero (e.g., Scales, 1996; Curtis and Lomax, 2001).
This so-called curse of dimensionality may result in unrealistically-large prior model samples,

31



even when addressing only a handful of parameters. In the context of this study, we are
interested in only three geostatistical parameters (Subsection 2.1) possibly suggesting that
ARS could be a good choice.

However, when the scale of the modelling domain is insufficiently large compared to the
integral scales of the field Y(x) under consideration, ergodic conditions are not fulfilled
implying a potentially high dependence on R (Subsection 2.4.1). This high-dimensional
variable is different for each realization of Y(x) and it ultimately controls the locations of
high- and low hydraulic conductivity regions. Even if we are uninterested in R as such, it
forms part of our data generation process and, thus, it enters the inference problem as a
nuisance variable (e.g., Gelman et al., 2013) that needs to be accounted for. Consequently, our
definition of the forward simulator given above has to be expanded to & (m,R). Assuming
independence of m and R, the actual inference problem to solve reads

7(m, R|d°%) o« 7(d°?*|m, R)(m)7(R). (2.12)

To obtain the sought density, we need to marginalize 7 (m, R|d) with respect to R:

7(m|d) :fn(m,Rld)dR. (2.13)

Due to its higher dimensionality (more than 62,500 variables in our examples), the problem
expressed by Eq. 2.12 is practically impossible to handle with the formal Bayesian ARS
algorithm. For this reason, we resort to an approximate version of the ARS that is outlined in
the following subsection.

ABC Acceptance-Rejection Sampling algorithm

The ARS algorithm implemented within an Approximate Bayesian Computational (ABC)
framework, labelled Approximate Acceptance-Rejection Sampling (AARS) algorithm from
now on, is an approximate sampling method that produces a smooth approximation of
n(m|d). The reader is referred to Sisson et al. (2018) for an overview on ABC methods. The
AARS algorithm requires two additional inputs: (i) a distance metric p(d*""*,d°?®) for com-
paring the calculated data with the observed data and (ii) a kernel density function Ky, (p) for
weighting the distance metric and defining an acceptance probability. Together, they replace
the likelihood function.

In our work, the distance metric p(d* im qobs) is taken as the L;-norm:

. N .
p(dsnn,dobs) _ %Z |dsim _ dobsl (2.14)
1
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and the Kernel density is chosen to be a uniform function:

1 0<sp/h<1

K = 2.15
n(p) {0 1< plh, (2.15)

where the acceptance bandwidth £ is chosen such that the 0.5 percentile of the distribution
of p ordered from the lowest to the highest distance are accepted. In our case, this means that
K, (p) accepts the models producing the S =500 lowest distances out of the K= 10° sampled
prior samples.

The AARS algorithm, described in pseudo-code in Algorithm 2, proceeds similarly to the
formal ARS algorithm.

Algorithm 2: Approximate Acceptance-Rejection Sampling (AARS) algorithm.
fork=1,..,Pdo

Draw m() from zn(m) andRy) from n(R)

Generate a data instance d=d*™ from the underlying unobserved
likelihood 7(d°?*|d, m, R()

Accept m(;) with an acceptance probability AP =K(p)

end

Considering Algorithm 2, it can be noticed that the AARS algorithm draws samples from the
joint distribution

w48 (m, R, d|d°”) = Kj, (p)71(d°"|d, m, R (m) 7 (R), (2.16)

which, when integrated over all generated data instances gives the AARS approximation of
the (R-marginalized) posterior density:

mAARS (m|dobs) = f nA4RS (m, R, d|d°?)dd; (2.17)
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or,

74488 (m|d°P%) = 7 (m) f Ky, (p)7(d°?*|d, m, R)dd. (2.18)

As pointed out by (Sisson et al., 2018), from Eq. 2.18 the AARS can be interpreted as a formal
Bayesian ARS algorithm using an approximated likelihood function that is a Kernel Density
Estimation (KDE) of the true likelihood:

7448 (@°P5|m, R) = f Ky, (p)7(d°?*|d, m, R)dd. (2.19)

For building the empirical posterior probability densities, we perform KDE over the samples
obtained from 4% (m|d°?*). For consistency, the prior PDF (Subsection 2.4.1) is computed
by performing KDE over the generated sample of size P = 10°. The KDE approach is described
in the following subsection.

Multivariate Kernel Density Estimation (KDE)

Given a sample X = {xy, ...,Xg} of size S of M-variate random vectors belonging to a common
distribution described by the density g, the KDE estimator g of g is given by (e.g., Wand and
Jones, 1994))

1 S
gnx) = EZKH(X_Xi)r (2.20)
i=1
with the estimator function Ky defined as:
Ku(®) = [H| 2 K(H 2x), (2.21)

where the kernel function Kis a symmetric multivariate density. Furthermore, |H| is the
determinant of the M x M bandwidth matrix H, which is symmetric and positive definite in
general and, if the M variables are assumed independent, it is diagonal with entries H; given
as vH; = ho;, where h is the bandwidth parameter and o ; the standard deviation of the i-th
component of the random variable.

The estimator of Eq. 2.20 is an average of kernel densities that are centered at the sample
points and whose decay is controlled by H. The particular choice of Kdoes not substantially
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influence the performance of the KDE approach, but the choice of the bandwidth £, defining
H (i.e., the tails of K), is a most crucial aspect, given that under- or over-smoothed estimators
will be produced if it is taken too small or large, respectively (e.g., Wand and Jones, 1994)). In
the present work, Kis chosen as the standard multivariate normal function

N 1 | -
Kux)=@2m) 2z |H| zexp —5 H 'x;. (2.22)

For h, a common choice when dealing with unimodal distributions, as the ones expected in
this study, is based on Silverman’s rule of thumb (e.g., Silverman, 1986)):

hg = d~ M+, (2.23)

The reliability of the used information measure (Subsection 2.3.3) largely depends on the
quality of the input density estimations provided by the KDE approach (e.g., Budka et al.,
2011)). Considering the trade-offs pertaining to the choice of &, a manual tuning process was
necessary, which resulted in the choice of & = 0.75h; for the results presented herein.

2.3.3 Information measure: Kullback-Leibler divergence

The degree of knowledge brought by the observed data d°”* pertaining to the geostatistical

model parameters is evaluated by comparing our approximation of 7 (m|d°?*) with 7z (m). The
Kullback-Leibler divergence (KLD) (Kullback and Leibler, 1951), also termed Relative Infor-
mation Content (Tarantola, (2005), is probably the most widely used quantitative measure
for comparing PDFs:

obs

KLD(@r(m|d°?%); 7 (m)) :fzt(mld"bs)ln(
7 (m)

where the base of the logarithm is taken as e, giving the information in units of nats (e.g.,
Cover and Thomas, 2012)). The integration of Eq. 2.10 is performed over the support of the
densities and the KLD is finite as the support of n(mld"b %) is contained in the support of 7 (m)
(e.g., Cover and Thomas, 2012)). The KLD is zero when n(mld(’bs) = (m) (i.e., the data carry
no information about the model parameters) and it increases as the posterior becomes more
compact with respect to the prior as a consequence of conditioning to the data. Note that
when the prior and posterior densities are Gaussian with the same mean, but the standard
deviation of the posterior is half the standard deviation of the prior, then the KLD is 0.27 nats.
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Since our samples are drawn from approximate posterior densities 74485 (m|d°?) that are
KDE (i.e., smoothed) versions of the target densities 7(m|d°”*) (Eq. 2.18), the chosen AARS
approach provides a conservative framework for assessing the information content in terms
of the KLD measure, since it is always true that

KLDES m|d°?%); 7(m)) < KLD (7 (m|d°?); 7(m)), (2.25)

which implies that the information content in the considered time-series is at least as large
as the estimates obtained by our analysis.

2.4 Results

We first show two examples of generated data for end-member cases of weak and strong
hydraulic heterogeneity. Then, we describe the results obtained for different geostatistical
parameter value combinations in terms of the KLD and bias measures. In doing so, we
discuss results obtained for one R-realization, as well as ensemble statistics deduced from 50
R-realizations.

2.4.1 Two examples of generated data

Figure 2.2 shows an example of data obtained for a weakly heterogeneous hydraulic conduc-
tivity field with (a%,, I, A) = (0.005,0.130m,3.179) (Fig. 2.2a), resulting in an approximately
constant flow field (Fig. 2.2b). The corresponding concentration field, shown at the sampling
time 10%s, when the tracer occupies approximately 50% of the model domain, displays an
overall planar front (Fig. 2.2c).

The time-series of ¢ and ¥ (Fig. 2.2d) evolve according to the lower and upper Wiener
bounds. These upscaling formulas for laminated materials (e.g., Milton and Sawicki, 2003)
correspond to the harmonic and arithmetic means of the local electrical conductivities,
respectively. The arithmetic averaging governing oV is manifested by linear scaling with time.
In this case, o forms an almost perfect predictor of the mean salinity (u.) within the sample.
o', on the contrary, strongly underestimates .. For this case, the mean velocity of the tracer
front is obtained from the time-derivative of ¢" (Fig. 2.2e), information that is available

before the mass-flux (M) time-series shows any response.
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Figure 2.2 — (a) Weakly heterogeneous hydraulic conductivity field with geostatistical param-
eters (0%,, I,,A) = (0.005,0.130m,3.179). (b) Corresponding steady-state flow field and (c)
normalized concentration field at time 103s. (d) Time-series of the horizontal and vertical
equivalent electrical conductivity, mass-flux, and mean tracer concentration, denoted ol
oV, M and p, respectively. The light-blue vertical line, also present in (e), marks the time
103 s of the concentration field shown in (c). (e) Time-derivatives of o, ¢, M and p,.

These easily interpretable results are now contrasted with those obtained for a strongly het-
erogeneous hydraulic conductivity field, defined with (0%, I,,A) = (5.111,0.085m,1.028). The
resulting field has small-scale structures and is close to isotropic (Fig. 2.3a). Yet its associated
flow field exhibits pronounced channeling (Fig. 2.3b) resulting in a highly heterogeneous
concentration field (Fig. 2.3c). Neither o/ nor 0" follow any known upscaling law. They
both start to vary much earlier than M (Fig. 2.2d), which only reacts when the tracer arrives
at the outlet. These early variations are clearly seen in the time-derivatives of the electrical
responses (Fig. 2.2e), which are non-zero from the moment the tracer injection starts and
exhibit small peaks that are related to internal connection events of the solute that are in-
visible to M. Both ¢/ and M show a steep increase around 10%s, and a large peak in their
time-derivatives, corresponding to early breakthrough arrival. For this case, y. is at early
times much larger than all data and is asymptotically approximated by M, followed in order
of magnitude by o/ and "
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Figure 2.3 — (a) Strongly heterogeneous hydraulic conductivity field, defined with geosta-
tistical parameters (a%,, I,,A) = (5.111,0.085m,1.028). (b) Corresponding steady-state flow
field and (c) normalized concentration field at time 103s. (d) Time-series of the horizontal
and vertical equivalent electrical conductivity, mass-flux, and mean tracer concentration,
denoted o7, ¢V, M and p, respectively. The light-blue vertical line, also present in (e), marks
the time 103s, of the concentration field in (c). (e) Time-derivatives of o, ¢V, M and p..
The large peaks exhibited by % and ‘%’ approximately coincide with the first arrival of the
tracer at the outlet.

2.4.2 Test cases

We now apply the Bayesian inference approach using three different combinations of the
geostatistical model parameter values:

(i) m; := (4.70,0.06 m, 1.50). This leads to a strongly heterogeneous hydraulic conductivity
field that is approximately isotropic and exhibits small structures (Fig. 2.4a).

(ii) my := (0.80,0.06m, 10.00). This leads to a mildly-to-moderately heterogeneous field that
exhibits a high degree of layering (Fig. 2.4d).
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(iii) m3 := (4.70,0.38m, 1.50). This leads to a highly heterogeneous field exhibiting large-scale
structures (Fig. 2.4g).

In Figure 2.4, example realizations of generated log-hydraulic conductivity fields for the three
test cases are shown together with their corresponding flow and concentration fields.

Figure 2.4 — (a, d, f) Realizations of log-hydraulic conductivity fields and (b, e, h) associated
flow and (c, f, i) concentration fields at time 103 s for the three evaluated test cases (a-c) m; ,
(d-f) my and (g-i) ms. Note that the locations of high- and low hydraulic conductivity regions
are governed by random R-realizations

2.4.3 Information assessment of data types

For each test case of the model vector m, 50 datasets d?s (Section 2.3) are simulated using
hydraulic conductivity fields created with different R-realizations. The forward responses
are contaminated with noise having zero mean and a mean deviation of 0.005 representing
50% of the baseline electrical conductivity. The evaluation of the different data types and
geostatistical parameter values is considered both in terms of the ensemble of realizations
(ensemble performance) and in terms of randomly-picked single realizations (i.e., the fields
shown in Fig. 2.4). In addition to the estimated joint posterior PDE we also consider the
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corresponding marginal distributions to evaluate the ability of the data to constrain individual
geostatistical parameters. For the marginal analysis, we also consider a relative bias measure,
computed as the ratio of the mean bias of the marginal posteriors, with respect to the true
values of m, to the mean bias of the marginal priors with respect to the true values. From now
on, we drop the superscript "obs" when referring to the observed conditioning data.

Test case m;

Table 2.1 summarizes the results obtained for test case m;.

Table 2.1 — KLDs and mean relative biases of m; for the different conditioning data types.
Columns 1 and 2 show the mean ux;p and standard deviation o g p of the KLDs using the
ensemble of hydraulic conductivity realizations. Column 3 shows the KLD values for the joint
posterior PDFs using one realization of the conditioning data obtained from Figures 2.4a-c
and highlighted in Figures 2.5a-c. The subsequent pairs of columns show the marginal KLD
values and relative mean biases for the marginal posteriors of each component of m; using
this specific realization.

Ensemble m a% I,(m) A
pkrp Okrp |KLD |KLD  Bias |KLD Bias |KLD Bias

dy 0.8171 0.1445|0.7351|0.3754 0.5018|0.1418 0.7560 | 0.0904 0.8525
dy 0.8016 0.1131]0.6418|0.2617 0.6703|0.1021 0.6760 |0.0675 1.2163
dy 0.6625 0.15800.6973|0.2153 0.8223|0.1771 0.5325|0.0980 1.1271
dyy  0.8830 0.1352|0.6937|0.2501 0.6716|0.1536 0.7058 |0.0899 0.7971
dyvy 0.8712 0.1318]0.6985(0.2386 0.7232(0.1537 0.7189|0.1050 0.7672

When considering the joint KLDs obtained for the ensemble of realizations, we find that d gy
has the largest mean KLD, closely followed by d 7y ys. The least informative data type ds has
amean KLD that is ~ 75% of the one for dgy, while dg and dy have values in-between. The
KLD standard deviations have similar values among all the data types and represent ~ 20% of
the mean values.

We now turn to the results obtained for the fields in Figures 2.4a-c and the corresponding time-
series highlighted in Figures 2.5a-c. For this specific realization, the KLDs span a small range
of only ~ 13%. Also, the ordering is different and the most and least informative data sets for
this case are d and dy, respectively. This illustrates (together with the standard deviations
of the KLDs discussed above) the stochastic variations that are inherent under non-ergodic
conditions. The variability in the generated data due to variations in the R-realizations, for a
given geostatistical model, is indicated by the insets in Figures 2.5a-c.

The posterior model samples obtained by the AARS algorithm and used for building
the empirical posterior PDFs for each type of data are shown in Figure 2.5. The density
distribution of these 3-D clouds of points convey a qualitative view of the ability of the
different data types to constrain the geostatistical parameters. No eye-catching differences
distinguish the different point clouds, reflecting the rather similar values of the associated
KLDs.
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Figure 2.5 — Posterior model parameter vector samples of size S = 500 obtained by the AARS
algorithm for test case m; = (4.7,0.06m, 1.5) using different datasets as conditioning data.
The colored clouds of points represent the samples for datasets (a) dg; (b) dy; (c) dps; (d)
dyv; (e) dyas (f) dgva. The colormap encodes the L; distance p between simulated and
observed data, normalized by the minimum and maximum values of p of the test case. The
inset plots of (a), (b) and (c) show, respectively, the 50 realizations of time-series o oV and
M generated for m; using different R-realizations. The data considered here for inference are
shown by thick-colored curves. The resulting KLD values are given for each dataset.

The KLDs computed for the marginal posterior PDFs, labelled marginal KLDs from now on,
are the largest for a"i,, followed by I;, and A, that on average, represent ~ 50% and ~ 25% of
the KLDs of 0%, respectively. We find that 0% is best constrained by dy, producing the largest
marginal KLD and the smallest bias. For this parameter, the poorest performance is achieved
by dj; that has both the smallest marginal KLD and the largest bias. This can be seen in the
estimated marginal posterior probability density (Fig. 2.6a) displaying a mass distribution
which is the furthest away from the true value 05, = 4.70. For I, on the contrary, d) features
the highest marginal KLD and the smallest bias (Fig. 2.6b). The ability of the data to constrain
A is low (Fig. 2.6¢) with d gy ), featuring the highest marginal KLD. The relative mean biases
are negatively correlated with the associated KLD measure, showing consistency between the
two measures.
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Figure 2.6 — Marginal posterior PDFs associated to each type of conditioning data dg, dy, dyy,
dyv, dvy and dgy )y, for test case my = (4.7,0.06 m, 1.5). Marginal prior and posterior PDFs
corresponding to (a) 0% (b) I, and (c) A.

Test case my

Table 2.2 summarizes the results obtained for test case m,.

Table 2.2 — KLDs and mean relative biases of m¢ for the different conditioning data types.
Columns 1 and 2 show the mean ux;p and standard deviation ok p of the KLDs using the
ensemble of hydraulic conductivity realizations. Column 3 shows the KLD values for the joint
posterior PDFs using one realization of the conditioning data obtained from Figures 2.4d-f
and highlighted in Figures 2.7a-c. The subsequent pairs of columns show the marginal KLD
values and relative mean biases for the marginal posteriors of each component of m, using
this specific realization.

Ensemble m o% I(m) A

pkep okrp |KLD |KLD  Bias |KLD Bias |KLD Bias

dy 2.1341 0.5027|2.3829|1.3179 0.3687|0.8065 0.0573|0.5979 0.0971
dy 1.4448 0.4425|1.1625|0.7427 0.4359|0.1115 0.6425|0.1003 0.7639
dy, 1.3897 0.4768|1.0892 |0.4866 0.4889|0.0875 0.6883|0.0952 0.8219
dyy  2.1114 0.4465|2.0030|0.9984 0.3019|0.6399 0.1306|0.5412 0.1657
dyvy 2.2256 0.4648|2.0741 |1.0955 0.2452(0.6158 0.1417|0.4410 0.2640

When considering the joint posterior KLDs for the ensemble, we find that d 7y )/ is the most
informative dataset followed by dy and dyy. Far behind, featuring mean KLDs that are
~60% of dyv ), are dy and djy. Of the individual data sets, we find that dg is much more
informative than dy and dj;. The standard deviations have similar magnitudes and represent
~ 20 —35% of the mean values.

We now consider the results obtained using the time-series (Figures 2.7a-c) obtained from
the fields in Figures 2.4d-f. The ranking for the joint KLDs are similar to the ensemble mean

42



KLDs, except that d performs the best. The point clouds of the posterior samples (Fig. 2.7)
clearly shows that dj; (Fig. 2.7a) constrain the geostatistical model parameters much better
than dy (Fig. 2.7b) and d,; (Fig. 2.7¢).

Figure 2.7 — Posterior model parameter vector samples of size S = 500 obtained by the AARS
algorithm for test case m, = (0.80,0.06 m, 10.00) using different datasets as conditioning data.
The colored clouds of points represent the samples for datasets (a) dg; (b) dy; (c) das; (d)
dyv; (e) dyas (f) dgva. The colormap encodes the L; distance p between simulated and
observed data, normalized by the minimum and maximum values of p of the test case. The
inset plots of (a), (b) and (c) show, respectively, the 50 realizations of time-series o oV and
M generated for m; using different R-realizations. The data considered here for inference are

shown by thick-colored curves. The resulting KLD values are given for each dataset.

The marginal KLDs are again the largest for 0%, followed by those of I, and A. We find that %,
is the most constrained by dy; and the least constrained by dj, as reflected by their marginal
KLDs and the compactness of their posterior PDFs (Fig. 2.8a). All the marginal PDFs for 0%,
exhibit a small bias towards larger variances, with the smallest and largest biases exhibited
for dyv v and dy, respectively. For I, the marginal KLD associated with d is well-above the
others (Fig. 2.8b). The secondmost and thirdmost best performing data set for this parameter
are dyv and dyvy, while djs performs the poorest. The marginal KLDs and biases for A (Fig.
2.8b) follow the ranking of I,. For this test case my, the data better constrain the geostatistical
parameters than for test case m; as reflected by generally much larger KLD values.
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Figure 2.8 — Marginal posterior PDFs associated to each type of conditioning data dy, dv,
dys, dyv, dyay and d gy, for test case my = (0.80,0.06 m, 10.00). Marginal prior and posterior
PDFs corresponding to (a) 0%, (b) I, and (c) A.

Test case mg

Table 2.3 summarizes the performance of the different datasets for test case ms.

Table 2.3 — KLDs and mean relative biases of m; for the different conditioning data types.
Columns 1 and 2 show the mean ux;p and standard deviation ok p of the KLDs using the
ensemble of hydraulic conductivity realizations. Column 3 shows the KLD values for the joint
posterior PDFs using one realization of the conditioning data obtained from Figures 2.4g-i
and highlighted in Figures 2.9a-c. The subsequent pairs of columns show the marginal KLD
values and relative mean biases for the marginal posteriors of each component of m3 using
this specific realization.

Ensemble m 0%, I,(m) A
pxkip Okcp |KLD |KLD Bias |KLD Bias |KLD Bias

dy 1.1845 0.3195|1.0166|0.4818 0.3098|0.2681 0.6388|0.2031 0.3962
dy 1.0565 0.3313|0.7459|0.3046 0.6171|0.0488 0.9635|0.0356 1.0166
dy 0.8413 0.27980.6205|0.2019 0.7347|0.1949 0.6983 |0.1296 0.5169
dyy  1.3462 0.3491|1.0123|0.4491 0.4202|0.2680 0.6577|0.2054 0.4002
dyvy 1.2932 0.3100|1.0068 | 0.4200 0.4429 | 0.2915 0.6164 |0.2245 0.3647

Considering the ensemble statistics of the joint posterior KLDs, we find that dzy has the
largest mean KLD, closely followed by d v and dy. Again, dy, features the smallest mean
KLD with a values that is ~ 63% of that for dy. The standard deviations are varying within
~ 15% and represent ~ 25% of the mean values.

We now consider the results from the data time-series (Figures 2.9a-c) obtained from the
fields in Figures 2.4g-i. The joint KLD for dp is the largest closely followed by dyy and
dyva. Their KLDs are ~ 30% higher than the others. The point clouds of posterior model
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realizations (Fig. 2.9) are rather similar, but the results obtained from dy (Fig. 2.9a) are more
compact compared to dy and dj,. For instance there is minimal scatter in the A-direction
(c.f., Fig. 2.9b) and the high a%,is better constrained (c.f. Fig. 2.9c).

Figure 2.9 — Posterior model parameter vector samples of size S = 500 obtained by the AARS
algorithm for test case m3 = (4.70,0.38m, 1.50) using different datasets as conditioning data.
The colored clouds of points represent the samples for datasets (a) dg; (b) dy; (c) das; (d)
dyv; (e) dyas (f) dgva. The colormap encodes the L; distance p between simulated and
observed data, normalized by the minimum and maximum values of p of the test case. The
inset plots of (a), (b) and (c) show, respectively, the 50 realizations of time-series o oV and
M generated for m, using different R-realizations. The data considered here for inference are

shown by thick-colored curves. The resulting KLD values are given for each dataset.

The marginal KLDs are again the highest for 0% followed by I, and A. The relative mean biases
show a similar trend, being smallest for 0. The marginal probability densities for o7 (Fig.
2.10a) show that dy best constrain this parameter, followed by d v and dgv ;. The marginal
KLD for dy are only ~ 10% larger than for d v and d vy, but its bias is 30% lower. Note also
that djy is strongly biased towards too low 0'%,. For I, and A, both KLDs and biases indicate
that dy, dyy and dv )y are the most informative, while dy has the poorest performance.
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Figure 2.10 — Marginal posterior PDFs associated to each type of conditioning datady, dy,
dys, dpv, dyy and dgy )y for test case mz = (4.7,0.38m, 1.5). Marginal prior and posterior
PDFs corresponding to (a) ai (b) I, and (c) A.

2.5 Discussion

2.5.1 General findings

The absolute values of the computed KLDs and biases are dependent on the choices made
when approximating the posterior probability densities (Subsection 2.2), such as the width of
the acceptance kernel of the AARS algorithm (Algorithm 2) and the bandwidth of the kernel
density function used to represent the probability densities. For this reason, we focus our
discussion below on relative differences between datasets and test cases. We first summarize
the main results that apply to all test cases before discussing the test cases one-by-one. After
this, we discuss broader implications of this research.

Considering the ensemble statistics of 50 hydraulic conductivity realizations for each test
case, we find that the information content of di measured by the KLD is higher than dy,
which in turn is higher than dj, for the three test cases considered: m; (Table 2.1), m, (Table
2.2) and m3 (Table 2.3). The added value of combining different data types (dyv and d v ) is
generally found to be comparatively low. When considering individual hydraulic conductivity
realizations and associated fields (Figure 2.4), we generally obtain relative rankings of the
different data types that are consistent with those of the ensemble means. Given that we
consider non-ergodic model domains, the actual locations of high- and low hydraulic conduc-
tivities governed by the nuisance variable R plays an important role in the data-generating
process. Its impact is manifested by the comparatively high standard deviations of the KLD
estimates (Tables 2.1-3) and in the variability of the generated time-series (Figs. 2.5a-c, 2.7a-c
and 2.9a-c). Despite this inherent stochastic variability, we consistently find that the best
constrained parameter is a%,, followed by I, and A. The individual test cases are discussed in
detail below.
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2.5.2 Lessons learned from the three test cases

Test case m; features a highly heterogeneous field K (x) with relatively small structures (Fig.
2.4a), for which one could possibly assume that ergodic conditions are fullfilled and conse-
quently that the geostatistical parameters are well-represented within the modelling domain,
yet it corresponds to the least-constrained test case. Indeed, the R-realization plays here
a very important role, implying a rather weak mapping from the time-series to the geosta-
tistical parameters of interest. To understand this, note first that {o'} and {o"} are only
sensitive to the underlying geostatistical parameters through the solute spreading patterns
that these parameters induce. Indeed, the electrical responses result from optimal current
patterns established throughout the highly non-ergodic and time-evolving distribution of
local concentrations (i.e., conductivities) that are, in turn, driven by the flow field q(x). As
in the example in Figure 2.2, the hydraulic conductivity field K(x) has small-scale structures
and is close to isotropic (Fig. 2.4a) but its associated flow field q(x) exhibits pronounced
channeling (Fig. 2.4b). This tendency of the flow field to concentrate in preferential flow
channels for high 0%, is well-known (e.g., Cvetkovic et al., 1996). Hence, an ergodic K(x) is
no guarantee of well-sensed geostatistical parameters when using geoelectrically monitored
saline tracer tests. Nevertheless, compared to the prior, the estimated marginal posterior
densities suggest that the geostatistical model that needs a comparatively high a%, (Fig. 2.6a)
and very small or high I, (Fig 2.6b) are unlikely.

Test case my corresponds to a layered distribution of hydraulic conductivity with a moderate
0%,. The KLDs (Table 2.2), and consequently the constraining nature of the time-series, are
much higher than for test cases m; (Table 2.1) and m3 (Table 2.3). For my, the smallest
variations between the R-realizations are observed (Figs. 2.7a-c) since the actual location of
the flow channels is of secondary importance in the data-generating process. The hydraulic
conductivity field (Figs. 2.4d) and its associated flow field (Fig. 2.4e) are visually more similar
to each other than for m,. This is a consequence of the large anisotropy factor imposing
horizontally continuous structures within which the flow-field channels are naturally devel-
oped. Both {o'} and {M} are highly sensitive to the arrival of horizontal connections that
are established by the solute when it arrives to the outlet. Considering the marginal KLDs,
we find that high and low o%-values are incompatible with the data (Fig. 2.8a), as is large I,.
For this test case my, A is particularly interesting as its true value is high and, therefore, of
low prior probability (Fig. 2.8c). We see a strong ability of all time-series including {o"} to
constrain this parameter.

Test case mj is a highly heterogeneous test case that distinguishes itself from m; by its larger
I,. A consequence of the resulting larger structures is that the generated data vary widely
between the different hydraulic conductivity realizations (see insets in Figs. 2.9a-c). Yet the
KLDs (Table 2.3) are higher than for test case m;. Considering the marginal posterior PDFs,
all datasets indicate that the underlying geostatistical model has a high 0%, (Fig. 2.10a), at
least a moderately high I, (Fig. 2.10b) and that the field is close to isotropic (Fig. 2.10c).
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2.5.3 Physical insights and open questions

In our idealized numerical investigation, we found consistently that geoelectrical data per-
formed better than mass breakthrough data in constraining the geostatistical parameters.
This is a consequence of the fact that, for a given geostatistical model, the actual positioning
of high- and low hydraulic conductivity fields, governed by the nuisance variable R, has a
larger impact on the mass breakthrough data than on the geoelectrical data (e.g., compare the
insets in Figs. 2.9a-c). We understand this as a consequence of the local flux-averaged nature
of the tracer breakthrough, compared to the more integrative non-linear volume-averaging of
the electrical responses over the concentration field. Additionally, since {M} is only sensitive
to the time-evolution of the solute concentration field at the outlet, it cannot determine the
causality of the arrival times, that is, if they originate from large horizontal correlation scales
or from high variance, for instance.

We also found that {o"} always has a higher constraining power than {¢"}. This can be
understood by noting that {o''} is sensitive to electrical conduction paths created by the
concentration field in the flow direction, leading to a very strong sensitivity to tracer arrivals
at the outlet (e.g., Fig. 2.2e, or the generally steep slopes in the generated time-series in
the insets of Figs. 2.5a, 2.7a and 2.9a). In Figure 2.12 we plot the generated current density
distributions determining {o’} and {o"} for the concentration fields shown in Figs. 2.4c, 2.4f
and 2.4j. We see that for {o} (Figs. 2.12a-c) the support of the current density field (i.e. the
regions of high current flow) is almost coincident with the area occupied by the invading
tracer driven by the flow-field. This does not occur for oV} (Figs. 2.12d-f), indicating why
{oH} is more informative than {¢"}. Clearly, {0V} results from current patterns that are mainly
constrained by vertical connection bottlenecks that become more common further away
from the inlet region. This can be appreciated by the high density of current field streamlines
observed at the inlet regions in Figs. 2.11d, 2.11e and 2.11f. This suggests that the main ability
of {0V} to sense the geostatistical parameters is through its sensitivity to the trailing end of
the tracer front. Again, it is the connectivity-aspect of the electrical data that is at play.
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Figure 2.11 — Natural logarithm of the absolute value of the current density fields (and their
streamlines) resulting from exciting the sample both in the (a-c) horizontal and (d-f) vertical
modes. The electrical conductivity distribution is given by the saline concentration fields
shown in Figure 2.4, that is, at time 103 s for the three evaluated test cases (a, d) m; (column
1), (b, €) my and (c, f) mg.

Our results also suggest a strong dependence on the injection type. For a pulse injection,
we expect {0} to be much less informative, compared to the present continuous injection
case, as there will be no horizontal connections of salinity to sense. That is, the connectivity
created by establishing a continuous concentration field across the domain is very helpful for
electrical-based inference of geostatistical properties from tracer tests.

For all test cases, we find that O'%, is the best constrained parameter. This is explained by the
fact that U%, controls the spreading rate of the solute (e.g., Gelhar and Axness, 1983)) and is,
thus, a first-order feature of the time-series. It will determine the time-spacing or pace of
occurrence of the horizontal connection events as sensed particularly well by {o}. However,
also the trailing part of the tracer field as sensed by {¢ "} is affected by 0'%,.

One open question is to what extent the electrical data can constrain mixing and spreading.
Intuitively, there should be a strong sensitivity to the spreading width as o' is highly sensitive
to the front of the tracer plume and ¢ to its end. Since solute spreading ultimately controls
solute mixing (e.g., Villermaux, 2019)), the high sensitivity of the electrical data to the former
indicates that these data are able to at least quantify the mixing potential of the solute
(e.g., de Dreuzy et al., 2012)). This will be the topic of future research. Furthermore, the
equivalent electrical conductivity tensor time-series is determined by the time-evolution of
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the concentration field, which in turn is driven by the flow-field. This suggests that that the
electrical data might be more strongly related with the flow-field than the geostatistical model
of log-hydraulic conductivity. In the future, we plan to study the geoelectrical sensitivity to
flow-field descriptors (e.g., Koponen et al., 1996; Englert et al., 2006)). Similarly, we would like
to relate the electrical data to concentration field descriptors. However, as the concentration
field is time-variant, this is more challenging to summarize than the steady-state flow field.
One possibility is to relate it to the spatial distribution of localized temporal moments of the
solute concentration field (Cirpka and Kitanidis, 2000).

2.5.4 Implications for field-based studies

Our work has several implications for field-based and laboratory-based electrical time-lapse
monitoring of tracer tests. The first is that ignoring significant tracer-concentration hetero-
geneity below a given scale will tend to underestimate mass when interpreting tomograms
(Fig. 2.3d) and bias inferred transport parameters when performing a fully-coupled hydro-
geophysical inversion. This can be circumvented through appropriate geostatistics-based
time-lapse hydrogeophysical inversions (e.g., Kowalsky et al., 2005)) provided that overly sim-
ple model parameterizations are avoided (Hinnell et al., 2010). Furthermore, we demonstrate
for non-ergodic situations, common to many hydrogeophysically-monitored tracer tests, that
both the locations of high- and low hydraulic conductivities (in our case controlled by R) and
the geostatistical model have a strong impact on the measured data, suggesting that inver-
sion approaches should attempt to constrain both of these aspects (Laloy et al., 2015). Our
results suggest that for a well-designed time-lapse experiment, it might be possible to infer
geostatistical parameters with relatively few measurement configurations, that is, without the
need to actually resolve the tracer plume. Indeed, all the inferences performed in this study
are based on upscaled equivalent values at the scale of the experiment. Another implication
is that strong geoelectrical responses are mainly linked to preferential current pathways that
in clay free formations are dependent on a near-continuous high-salinity region between
the current electrodes. This suggests that continuous (compared to pulse) injections are
preferable and that it could be beneficial to favor measurement configurations with one of
the current electrodes located in the tracer source region (i.e., in the pit in which injection is
performed or in a packed-off injection interval in a borehole). It also suggests that using push-
pull technology for electrode installations, thereby allowing for more of a 3-D localization
of electrodes without associated borehole effects (Doetsch et al., 2010) and costly boreholes,
could enable improved imaging by allowing the tracer to arrive to the electrodes (Pidlisecky
etal., 2006). Furthermore, unaccounted saline tracer heterogeneity should lead to anisotropic
behavior at larger scales. For instance, when interpreting crosshole time-lapse data with
two boreholes using so-called AB-MN configurations (current and potential electrodes in
different boreholes) leading to mainly vertical current patterns or AM-BN configurations
(one current and potential eletrode in each borehole) leading to mainly horizontal current
patterns (Bing and Greenhalgh, 2001), then it might be essential to account for anisotropy in
the inversion to avoid inversion artifacts (Herwanger et al., 2004). Furthermore, we expect
that any inferred upscaled anisotropy measures such as anisotropy factors could guide the
interpretation about the spatial organization of the concentration field below the resolution
scale of the resulting tomograms (e.g., different behaviors of {o} and {¢"} in Fig. 2.3d).
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2.6 Conclusions

We use Approximate Bayesian Computation to assess to what extent equivalent electrical
conductivity time-series associated with tracer tests constrain geostatistical parameters gov-
erning small-scale structure. We consider an idealized set-up in which local concentration
and electrical conductivity is linearly and perfectly correlated, implying that the results cor-
respond to a best-case scenario. By considering three different geostatistical test models
and ensemble statistics of 50 corresponding hydraulic conductivity field realizations, we find
that {o} is the most informative data type, followed by {o"} and {M}. The added value of
combining different time-series is comparatively low. We further find that 0%, is the best-
constrained geostatistical parameter followed by I, and A. The geostatistical parameters
are the best constrained when considering data generated with a large A. Ignoring concen-
tration heterogeneity (i.e., assuming well-mixed conditions below a given scale) leads to
underestimated solute mass when interpreting electrical data. This is a consequence of
non-linear averaging and suggests that hydrogeophysical data interpretations and coupled
hydrogeophysical inversions need to consider highly resolved hydraulic conductivity, fluid
flow, concentration and electrical simulations in order to avoid biased results. Casting the
inference problem within a geostatistical framework decreases the number of electrical con-
figurations needed to constrain the geostatistical parameters. Since the electrical data are
primarily sensitive to the presence (or not) of a connected high-concentration field between
current electrodes, we recommend experimental setups favoring continuous tracer injections
including measurement configurations with one electrode located within the tracer injection
area.
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Electrical signatures of diffusion-limited
mixing: Insights from a milli-fluidic tracer
experiment
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Abstract

We investigate how diffusion-limited mixing of a layered solute concentration distribution
within a porous medium impacts bulk electrical conductivity. To do so, we perform a milli-
fluidic tracer test by injecting a fluorescent and electrically conductive tracer in a quasi
two-dimensional (2D) and water-saturated porous medium. High resolution optical- and
geoelectrical monitoring of the tracer is achieved by using a fluorimetry technique and equip-
ping the flow cell with a resistivity meter, respectively. We find that optical and geoelectrical
outputs can be related by a temporal re-scaling that accounts for the different diffusion rates
of the optical and electrical tracers. Mixing-driven perturbations of the electrical equipoten-
tial field lines cause apparent electrical conductivity time-series, measured perpendicularly
to the layering, to peak at times that are in agreement with the diffusion transport time-scale
associated with the layer width. Numerical simulations highlight high sensitivity of such
electrical data to the layers’ degree of mixing and their distance to the injection electrodes.
Furthermore, the electrical data correlate well with time-series of two commonly used solute
mixing descriptors: the concentration variance and the scalar dissipation rate.

3.1 Introduction

Time-lapse direct-current (DC) geophysical data acquired during saline tracer tests in porous
media can provide constraints, both in the field and in the laboratory, on the temporal evo-
lution of solute mixing processes. DC electrical resistance data are typically acquired using
electrode configurations consisting of two electrode pairs: one to drive a known electrical cur-
rent between two positions (points, along lines or across surfaces depending on application)
and another to measure the voltage difference between two other positions (e.g., Keller and
Frischknecht, 1966). When considering the injected current and the measurement geometry,
these voltages are readily transformed into apparent resistivities. The number of electrode
configurations used are sometimes few, for example when considering the equivalent elec-
trical conductivity (inverse of resistivity) tensor of small-scale laboratory core samples (e.g.,
Maineult et al., 2016; Ghosh et al., 2018), and sometimes large (hundreds or many thousands)
for field experiments aiming at inferring the spatial distribution of bulk electrical resistivity; a
process often referred to as Electrical Resistivity Tomography (ERT). When applied in time-
lapse mode, DC measurements are repeated over time to produce time-series of apparent
resistivities. See the recent book by Binley and Slater (2020) for a comprehensive overview.

The bulk electrical conductivity of a fluid-saturated porous medium, with an insignificantly
conductive matrix, depends on the porosity and non-linearly on the fluid electrical conduc-
tivity field o (x) within the pore space (e.g., Torquato and Haslach Jr, 2002; Milton and Sawicki,
2003). During DC-monitored saline tracer tests, the interstitial fluid electrical conductivity
field o (x) originates from the heterogeneous and time-dependent saline concentration field
c(x), whereby o (x) and c(x) are related by a monotonically-increasing relationship (e.g., Sen
and Goode, 1992).
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Time-lapse DC data have been routinely acquired during conservative saline tracer tests to
retrieve solute transport parameters. Examples include the calibration of advective-dispersive
transport models (e.g., Kemna et al., 2002; Vanderborght et al., 2005; Koestel et al., 2008)
highlighting the ability to constrain the spreading state and dynamics of solutes, which in
turn have a strong impact on their mixing rate (e.g., Dentz et al., 2011; Villermaux, 2019).
They have also been used to calibrate dual-domain transport models (e.g., Singha et al.,
2007; Day-Lewis et al., 2017), thereby, highlighting the sensitivity of DC conductivity to
incomplete mixing. Regardless of context, there is always an implicit or explicit reliance on
a petrophysical relationship linking the salinity field to the bulk electrical conductivity at
some scale. Almost all petrophysical relationships (e.g., Archie’s law (Archie, 1942)) ignore
heterogeneity in fluid conductivity below the scale at which the petrophysical relationship
is applied. This not only leads to biased estimates of mean saline concentrations (see the
well-documented problem of apparent mass loss in, for instance, Singha and Gorelick (2005),
but it also neglects potentially-valuable information pertaining to mixing and spreading.
Indeed, recent numerical modelling has demonstrated that equivalent electrical conductivity
time-series can constrain geostatistical models of log-hydraulic conductivity fields (Visentini
etal., 2020).

Advancing our understanding of how tracer heterogeneity affects bulk electrical conductivity
is necessary to obtain quantitative and robust spreading and mixing-related measures of the
salinity field from geoelectrical data. Theoretical work on upscaling is needed, but also well-
controlled experiments with simultaneous monitoring of upscaled electrical conductivities
of porous medium samples together with highly-resolved imaging of concentration fields.
Optically-monitored tracer tests (e.g., Willingham et al., 2008; de Anna et al., 2014; Jiménez-
Martinez et al., 2015, 2017)) with geoelectrical monitoring (e.g., Kozlov et al., 2012; Jougnot
et al., 2018; Izumoto et al., 2020) provides a suitable framework for such experiments. For
example, Kozlov et al. (2012) used a micro-model sample filled with brine, oil and air to
highlight the percolation-driven response of bulk electrical conductivity. Another study by
Jougnot et al. (2018) considered advectively-dominated solute transport in saturated and
unsaturated conditions to demonstrate that the apparent loss of mass that commonly plagues
hydrogeophysical investigations is, at least partly, a consequence of assuming complete
mixing (i.e., a constant salinity) below the averaging scale.

Milli-fluidic experiments combining optical- and electrical monitoring are challenging and
few such studies have been performed to date. Errors in electrical monitoring and mod-
elling, in the inferred time-evolving concentration field or in the concentration-conductivity
relationship may lead to misleading findings. The strong connectivity-dependence of the
salinity field on the electrical response places higher demands on the concentration imaging
than in purely hydrological experiments (e.g., Willingham et al., 2008; de Anna et al., 2014;
Jiménez-Martinez et al., 2015, 2017). Consequently, there is a need for comparatively simple
experiments covering well-known processes that can can used to ensure consistency in all
aspects of the experimental setup, processing and modelling.

Here, we investigate the impact of diffusion-limited solute mixing on the temporal evolution
of bulk electrical conductivity in a quasi two-dimensional (2-D) saturated porous medium.
To this end, we have developed a milli-fluidic cell which allows monitoring the transport
of a saline and fluorescent tracer both optically and electrically. High resolution optical
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monitoring of the time-evolving 2-D (depth-averaged) solute concentration field is achieved
by a fluorimetric technique combined with careful calibration to link light intensity with
solute concentration. The resulting time-series of 2D concentration fields are used to predict
the associated spatial distribution of local electrical conductivities. These are then used to
predict the apparent conductivities under various configurations of current injection and
voltage measurements. Direct electrical measurements of apparent conductivities are also
carried out, by equipping the flow cell with a resistivity meter. The porous medium consists
of three regions with two contrasting permeabilities, one region of higher permeability being
sandwiched across the medium’s width between two identical regions of lower permeability.
We investigate the electrical signature of diffusive mass transfer from the high permeability
region to the others.

The article is organized as follows. In Section 3.2, the materials and methods used for
performing the experiment are described, including the tracer test procedure, the milli-
fluidic, geoelectrical and optical acquisition setups, along with the fluorimetry technique
and associated image processing workflow. In Section 3.3, we provide a summary of the
implemented modelling approaches to simulate DC-conductivity and solute diffusion. In
Sections 3.4 and 3.5, the main results are presented and discussed, respectively. Section 3.6
concludes the paper.

3.2 Materials and experimental methods

3.2.1 Porous medium design

We consider a Polydimethylsiloxane (PDMS) flow cell with length L = 590mm, width w =
74mm and height & = 0.4mm that contains a hexagonal lattice of length Lpy; = 330mm
formed by impermeable cylindrical pillars, representing the grains of a porous medium
(black disks in Fig. 3.1a). We designed the porous system as three regular networks of
pillars: as shown in Figure 3.1b, the top and bottom networks are characterized by radii
R; = 0.50mm and spacing (pore throats) of 1; = 0.20 mm, while the middle one by Ry = 2mm
and A, = 0.70mm. The porosity is ¢» = 0.35 and the pore volume is 3.42ml. For flow regimes
characterized by low Reynolds number (Re = A v/v, v being the average fluid velocity and
v its kinematic viscosity), the fluid motion is controlled by the confinement scale A, as
described by the Kozeny-Carman formulae (e.g., Bear, 1972): each region’s (layer from now
on) permeability is proportional to A2, thus, the permeability contrast between the layers is 16.
This induces a temporal scale separation of the same amount (16) in the advective transport
for the middle layer compared to the top-bottom layers. Details on the cell construction are
given in Appendix 3A. In Table 3.1 we include a summary of the parameters used to describe
the flow and porous medium geometry.
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Figure 3.1 — (a) Top schematic view of the flow cell including, from left to right, an inlet
chamber, an artificial layered porous medium, and an outlet chamber. The flow direction
during the tracer injection is indicated with a pair of blue arrows. The sets of current injection
electrodes Ay-By (measurement mode My) and A,-B, (measurement mode M), are indi-
cated with red dots and the potential electrodes with yellow dots. (b) Zoom-in of the region
indicated by a green rectangle in (a) (x € [160,200] and y € [52,72] mm) showing the interface
separating the top from the middle porous layers, the former saturated with background
(grey-colored) and the latter being saturated with fluorescent tracer (white-colored) just after
stopping the tracer injection. The radii of the grains and the linear sizes of the pore throats
are indicated, respectively, as R; and 14, for the top and bottom layer, and as R, and A, for
the middle layer.

3.2.2 Tracer solutions

We used a water-soluble tracer that is optically detectable and electrically conductive. We pre-
pared two mixtures of distilled water containing a fluorescent tracer (FS), fluorescein sodium
salt, Sigma-Aldrich, and sodium chloride (SC). Solution 1 has FS and NaCl concentrations of
0.001 and 0.015g/1, respectively, and is used to saturate the cell before injecting the tracer
Solution 2, which has FS and NaCl concentrations of 0.01 and 0.15g/1. Solution 1 is obtained
by diluting Solution 2 by a factor 15.

The FS concentration is measured with the optical method described in Subsection 3.2.5. It
serves as a proxy for the concentration of SC, which is used to create high-enough contrast
between the electrical conductivities of the background and tracer mixtures (e.g., Jougnot
et al., 2018). The FS molecule is about 3 times larger than the NaCl molecule, which results in
a factor of ~ 3.8 between the diffusion coefficients of the salts, with Dgg ~ 0.42 x 1079 m?s~!
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and Dyacp ~ 1.6 x 1079 m?s7! (e.g., Casalini et al., 2011). Such a factor also applies to the ratio
between the salts’ ionic mobility, which combined with the considered 1:15 concentration
ratio results in the FS contributing ~ 57 times less to the fluid’s electrical conductivity than
the NaCl (e.g., Lesmes and Friedman, 2005).

To conclude, note that after injecting Solution 2 some gravity-induced stratification in the
water density may arise within the cell, parallel to the x-y plane. However, the considered
small cell thickness is likely to prevent the development of a very pronounced vertical con-
centration profile. Moreover, given that our measurements of bulk electrical conductivity
utilize electrodes that traverse the cell’s height entirely (see Subsec. 3.2.4), tracer mass (fluid
conductivity) that is segregated into parallel layers is volume-averaged the same as if no
segregation occurred, that is, arithmetically, which leaves the bulk conductivity of the sample
unchanged.
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Table 3.1 — List of symbols and parameters used throughout the manuscript.

Symbols and parameters

Description

Porous medium

L =590, w = 74 and
h =0.4. Lpy = 330
(mm)

Length, width and height of the flow cell.
Length of the porous medium

R; =0.50 and R, = 2.00.

/11 =0.20 and /12 =0.70
(mm)

Cylindrical pillars radii corresponding to the
top and bottom, and middle networks, respec-
tively. Idem for the pore throats lengths

Wch = 12. Wmnjiddle = 50
(mm)

Top and bottom low-permeability layer widths.
Middle high-permeability layer width

Tracer solutions
Drs ~ 0.42 x 1072 and Diffusion coefficients of fluorescein and
Dnact ~ 1.6 x 1079 sodium chloride, the two used tracers
(m?s™)

os, =0.0218 and o, =
0.2728 (Sm™1)

Electrical conductivity of Solution 1 and Solu-
tion 2, used as tracer and background, respec-
tively

Electrical monitoring

{Ax, By} and {Ay, By}

Current electrode sets for the horizontal and
vertical measurement modes, respectively, M
and M,,

Time parameters

NeCl = 127300 and
Ty =33(s)

Diffusive and advective transport time-scales
associated with, respectively, w, and Lpy

[Nacl

Temporal coordinate used to present the re-
sults, defined in terms of £ and 7,

3.2.3 Flow system

Solution 2 is injected from a 60ml syringe that is pushed by a syringe pump (Harvard
Apparatus PHD 22/2000 Series). In order to ensure full saturation within the flow cell, it
is initially lifted from the outlet side and fixed at a nearly vertical position with the inlet side at
the bottom. The air is pushed out by slowly injecting (heavier) carbon dioxide (CO) from the
inlet during approximately one hour. After flushing with CO,, 52 pore volumes of Solution 1
are slowly injected within a period of 48 hours allowing the trapped CO, bubbles to diffuse
into the liquid and flush away. Once the flow cell is fully saturated with Solution 1, the experi-
ment starts at £ = 0s and Solution 2 is injected at a volumetric flow rate Q = 0.1 mls™!, that
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yields a mean advective velocity of v ~ 10mms~!, until Istop = 605s. This injection time was
chosen to saturate the middle more permeable porous layer with the injected tracer, while
leaving the top and bottom layers predominantly filled with Solution 1 (see Fig. 3.1b). After
stopping the injection, the tracer is left to diffuse through the cell for 4 days. During the exper-
iment, a full set of electrical measurements are made every 24 s while the FS concentration is
measured optically, as described in Subsection 3.2.5.

3.2.4 Geoelectrical system

Since we expect electrical anisotropy at the sample scale, we measure the apparent electrical
conductivity both along the x- and y-directions. To do so, we inject every 12s a voltage square
wave of AV =1V amplitude and 12s period (see Appendix 3B for details) alternatively either
through the sets of injection electrodes Ay-Bj or through the set A,-B, (see Fig. 3.1a). These
two injection modes are denoted My and M,, respectively, and we collect measurements
of: (i) the total electric currents i, and i, flowing between either set of injection electrodes,
stored as I,(¢) and I, (1), and (ii) the resulting voltages between each of the eleven potential
electrodes P; (i = 2,...,12) and the reference electrode P,. These potential electrodes are
distributed along the boundary of the porous medium (see Fig. 3.1a). Invoking the super-
position principle, the voltage between any two given electrodes P; and P; are obtained by
subtracting the voltage measured between P; and P from the one measured between P;
and P;. This allows us to construct 66 voltage-difference time-series for each injection mode,
collectively grouped as the columns of the corresponding arrays V. (¢) and V,,(#). Finally, the
resistance time-series corresponding to M and M, are obtained as Ry (#) = V,(#)/1,(t) and
R, (1) =V, (1)/1,(1), respectively, and contain data sampled every 24s.

The current injection and measurement protocols are interfaced with the datalogger
Campbell Micrologger CR3000, which executes all operations. To establish electrical contacts
with the cell, we use stainless steel cylindrical electrodes of 1 mm diameter that are inserted
through the PDMS such that they are in contact with the fluid at the designated locations.

3.2.5 Image acquisition

The concentration field of the FS within the flow cell is optically measured, from the intensity
of the light emitted by the tracer when excited (e.g., de Anna et al., 2014; Jiménez-Martinez
et al, 2015, 2017; Jougnot et al., 2018). Fluorescein sodium salt emits light around Ay, =
521 nm when excited by light at Aex = 494nm (e.g., Sjoback et al., 1995; de Anna et al., 2014).
To reduce tracer bleaching occurring during its exposition (e.g., Imamura and Koizumi, 1955),
we use a flash lamp, placed about 60cm above the cell, that is activated by an electronic
signal (transistor—-transistor logic gate, TTL) triggered by a computer through the open-source
software Micromanager, the latter also controlling a CCD camera (Ximea, MD120MU-SY),
placed 85cm below the cell. The flash lamp is combined with a parabolic umbrella with a
reflective internal surface focusing the emitted light towards the flow cell and the camera
below it. Moreover, a translucid white sheet nylon covering the open side of the umbrella
helps to homogenize the light over the flow cell. The experiment takes place in a darkroom
to avoid any light disturbance. The camera exposure time is set to 0.4s: as soon a picture
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acquisition is triggered, the controlling software triggers the flash that lasts for a few tens of
ms. A band pass optical filter (LEE 126 Mauve) is placed between the flash lamp and the flow
cell to illuminate it with light having wavelengths below 500 nm. Also, a band pass optical
filter (Edmund Optics 520nm CWL, 10nm Bandwidth) is placed in front of the camera to
only allow light in the window [510 — 530] nm to reach its sensor.

The camera records gray-scale light intensity images of 2832 x 4244 pixels with intensities
ranging from 0 to 255 (8-bit pixel depth camera). The size of each pixel corresponds to
0.06 mm, which implies that the pore throats of the finely-grained layers are resolved with 3
pixels. The collected time-series of light intensity images, I(x, y, t), consists of 2334 pictures
sampled as follows: (i) 90 every 2s; then (ii) 490 every 60s and then (iii) 1889 every 600s. This
sampling scheme follows the decaying dynamics of our tracer test: fastest at the beginning
and slowing down in time.

Note that x-, y- and ¢ interchangeably denote discrete spatial and temporal indices, used for
describing the experiment, or continuous coordinates. We prefer such a loose notation for
reasons of simplicity and because their meaning are facilitated by context.

3.2.6 Image processing

To obtain concentration images, we first build a binary image, a so-called pore space mask,
containing the spatial distribution of the pore space and grains in terms of a 2D indicator
function that takes values of 1 inside the pores and 0 elsewhere (see Appendix 3C for details
on its compilation). Second, we transform I(x, y, ) into time-series of FS concentration
fields, c(x, y, t) using a calibrated relationship. To establish this relationship, we collected a
series of 6 pictures I é (x,y) (i =1,..,6) of the flow cell when it was uniformly saturated with 6
corresponding solutions having FS concentrations C’ (i = 1,..,6) of 0.00100 (corresponding
to Solution 1), 0.00195, 0.00300, 0.00500, 0.00833 and 0.01500g/1 (corresponding to Solution
2). These solutions are obtained by successive dilution of Solution 2 until Solution 1 is
obtained. The concentrations follow approximately a log-equidistant distribution and are
slowly injected over successive periods of ~ 36h in an increasing order of concentration,
using 52 pore volumes for each of them to ensure uniform concentration fields. After, both
I g(x, y) and I(x, y, t) are registered (e.g., Brown, 1992) using the grain mask as reference, in
order to ensure that (x, y) represents the same position within the flow cell for any image.
Such a procedure, combined with the fact that both the camera and flow cell are fixed to
an aluminum solid structure during the whole duration of the experiment and calibration,
allows us to employ a pixel-by-pixel transform of the acquired light intensity I(x, y, ) into
the concentration field c(x,y, ). We use a local Piecewise Cubic Hermite Interpolating
Polynomial on the calibration data é (x,y)-C i,
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3.2.7 Concentration - electrical conductivity calibration

We calibrate an empirical relationship between concentration and fluid electrical conduc-
tivity, in order to transform c(x, y, t) into the electrical conductivity field o (x, y, ). To do so,
we rely on electrical conductivity measurements of the calibration solutions C’, using the
WTW ProfiLine Cond 3310 portable conductivity meter. This yields conductivity values of
os, =0.0218 and o, = 0.2728 Sm ™! for Solution 1 and 2, respectively, giving os,/0s, = 12.51.

3.3 Modelling

3.3.1 Electrical modelling

Once the time-series o(x, y, t) have been obtained, they are used as inputs to the governing
Laplace equation

V-(oV¢) =0, (3.1

where ¢ is the electrical potential. Equation 3.1 is solved with the finite-element solver mod-
ule of the open-source Python library pyGIMLi (Riicker et al., 2017), using mixed Dirichlet-
Neumann boundary conditions corresponding to the two injection modes. For both cases,
following conductivity measurements performed on the PDMS material, the grain mask is as-
signed a conductivity of 1079 Sm™!. Additional simulations (not included in the manuscript)
were performed using different values for the grain mask conductivity, the latter ranging
between 107°Sm™! and 1071°Sm™!. No noticeable differences were observed between these
tests. For My, values of 1 and 0V are imposed for ¢, respectively, at the positions of the
current electrodes A, (left) and B, (right) (Fig. 3.1), respectively, and no-flux conditions are
imposed on the remaining boundaries. For M, values of 1 and 0V are imposed, respectively,
at the positions of Ay and By, and a no-flux condition is imposed on the remainder of the
cell’s perimeter. This yields a pair of time-series of electrical potential fields ¢y, (x, y, £) and
¢m, (x,y, 1), corresponding to each injection mode, sampled at the positions of the potential
electrodes P; (i = 1,..,12) from which 66 voltage time-series are obtained (see Subsection
3.2.4). They are grouped into the arrays V$™ () and V}im(t). From the corresponding simu-
lated time-series of electrical current, I}im(t) and Ii,im(t), the simulated resistance time-series

are obtained as Ry™ (1) = Vi™ (1)/I§™ (¢) and R§™ (1) = V™ (1) /1™ (1).

The camera images I(x, y, t) and, hence, the resulting concentration estimates c(x, y, t) in-
clude neither the inlet nor the outlet chambers. Three modeling scenarios including these
chambers were used to assess their influence on the electrical resistance time-series. First,
we assumed the chambers to be filled with Solution 1 (background conductivity). Second,
we considered the chambers to be filled with Solution 2 (injected tracer conductivity). Third,
we assumed that the inlet chamber was filled with Solution 2 and the outlet chamber with
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Solution 1. Considering both measurement modes M, and M, the observed discrepancies
were below 0.8%.

3.3.2 Post-processing of electrical resistance time-series

The observed (simulated) electrical resistance time-series Ry(f) and R, (7) (RS™(£) and
Ri,im(t)) are transformed into corresponding time-series of apparent conductivities Xy (f)
and 2y, (7) (ZIS\}[T(I) and ZIS\}[I;‘(I)), by, first, multiplying the columns of the resistance arrays
with the corresponding 66 geometrical factors, that account for the measurement and sam-
ple geometry in a homogeneous medium (hence the term "apparent") (e.g., Keller and
Frischknecht, 1966), and, second, inverting element-wise the resulting arrays. The geomet-
rical factors are obtained by numerical simulations following a procedure similar to that of
Jougnot et al. (2010): briefly, a resistance value is simulated using a domain of the same di-
mensions of the experimental cell but having unit porosity (i.e., without grains) and saturated
with a known value of fluid resistivity. For such setting, since, by definition, the apparent resis-
tivity equates the input fluid resistivity, the corresponding geometrical factor is obtained by
dividing the latter by the simulated resistance. This has to be repeated for each measurement
configuration

The simulated time-series Zf{f(t) and ZIS\}IT(I) are calculated on a 2-D geometry that implicitly

assumes a 1 m-thick third dimension. Consequently, they are multiplied by the ratio of the
cell’s nominal thickness to 1 m, that is, 4- 1074, in order to make them comparable with the
measured time-series Xy () and ZMy( 1).

We now consider the bulk electrical conductivity (Fig. 3.2) calculated using the potential elec-
trode pair P;-Pg and the horizontal injection mode M, for 12 different solute concentrations
(including those of Solution 1 and 2). The data plot on a linear log-log plot and extrapolation
to zero fluid conductivity suggests a negligibly small bulk electrical conductivity under those
conditions. This confirms that the PDMS pillars are electrical insulators and that all electrical
conduction takes place in the liquid phase (i.e., no measurable surface conductivity). Thus,
we can use Archie’s linear relationship (Archie, 1942) to relate the electrical conductivity of
the homogeneous interstitial fluid, oqyjq, to that of the porous medium, opys, by

O fluid
F

OpM = ’ (3.2)
with F the formation factor. Note that F is constant and the same in all sub-regions (or
similar) within the artificial porous medium, given that both the network’s porosity and
geometry (i.e., its topology) are spatially invariant by design. The regression line has a slope of
1/3.34, which yields an empirical formation factor Fq,¢; = 3.34. On the other hand, simulated
values of apparent conductivity, obtained using the cell model for the same measurement
device and set of fluid conductivities, plot on a slightly different linear log-log plot (see dashed
line in Fig. 3.2), yielding a theoretical formation factor Fj, = 4.82.
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Figure 3.2 — Fluid electrical conductivity versus bulk electrical conductivity for a homoge-
neous solute concentration. The measured apparent conductivities are shown as blue dots
with the associated regression as a continuous black line. The numerically calculated bulk
conductivities are shown as a black dashed line.

In order to ensure that Fguq = Fsim, and discarding the possibility of surface conductivity
(see paragraph above), an effective cell thickness of 0.57 mm is finally used (instead of the
cell’s nominal thickness of 0.4 mm) when normalizing the simulated data. A slightly different
(larger) cell thickness is to be expected if there were small errors during the porous system
fabrication (see Appendix 3A). Indeed, anomalously deep cylindrical pillars could result from
an imperfect drilling operation when compiling the stainless-steel mould. Also, some slight
thickness variations (increments) may arise if the PDMS plate was not sandwiched perfectly
flat between the acrylic plates, that is, with a slight topography.
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3.3.3 Solute diffusion modelling in confined media

In order to model diffusion within our experimental cell after tracer injection, we adopt an
Eulerian standpoint and consider the diffusion equation in both 1- and 2-D. The 1-D model is
used as a comparison tool against our observed concentration profiles (see Fig. 3.4) whereas
the 2-D model is used for the numerical investigation presented in Subsection 5.2.

For 1-D diffusion, we consider a confined domain of length L = co and width w = 74 mm, sub-
jected to homogeneous Neumann (i.e., impermeable walls) boundary conditions. Prescribing
an initial condition f(j) (with y = y — w/2), thatis, a y-oriented concentration profile after
stopping the injection, the corresponding boundary-value problem admits the following
closed-form solution in terms of a Fourier cosine representation (e.g., Balluffi et al., 2005)):

—n?m’Dt
}, (3.3)

o0
c(y,1) = Z b, cos(nny)exp {—2
n=0 w
where D is the diffusion coefficient and the weights b,, are the Fourier coefficients of the
series, given by

2 L
b, = Zfo f@cos(@Enp)dy'. (3.4)

For 2-D diffusion, we consider a confined domain of length L = 590 mm and width w = 74mm
(as in the experimental cell, Subsec. 3.2.1), with a no-flux condition along all the boundaries.
Different initial conditions for the modelled NaCl concentration field are considered (Sub-
sec. 3.5.2) and the resulting boundary-value problem is numerically solved using the finite
difference implementation included within the groundwater solute transport simulator pack-
age MT3D-USGS (Bedekar et al., 2016).

Characteristic transport time-scales within the cell

We consider characteristic diffusive TCN}fCl and advective 7, transport time-scales for the NaCl

associated with, respectively, the length scales (i) w¢, = 12mm corresponding to the width of
the top and bottom low-permeability layers and (ii) Lpy; corresponding the porous medium
x-length. These are defined as TN = w? /DS | ~127300s (~ 16h) and 7, = Lpy/ v ~ 33s.
Note that we have replaced the bulk diffusion coefficient Dy, by the effective diffusion
coefficient Dﬁgcl = Dnac1/ V2 to account for the tortuosity of the porous medium (e.g., Bear,
1972). The smaller effective diffusion rate is a consequence of the solute needing to travel a

longer path in order to circumvent the grains.
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Time handling

Since the measured apparent electrical conductivity time-series Xy (¢) and ZMy (¢) are pre-
dominantly sensitive to the NaCl concentration field, we present such data as a function of
(NaCl 4 temporal coordinate defined as a function of ¢ as:

r—t /T O<st=t
(NaCl _ {( stop)/ Tv stop (3.5)

(t— tstop)/Tlc\Il;lCI L > Istop)

where #op refers to the end of the tracer injection (Subsec. 3.2.3) and 7, and TCN}';‘CI have been
defined in and Subsection 3.3.3. The origin is established at 7, as the main interest lies in
times after injection has stopped. With this convention, negative and positive N2! represent,
respectively, times normalized by advective and diffusion transport time-scales. The FS
sensed by the optical measurements diffuses ~ 3.8 times slower (Subsec. 3.2.2) than the NaCl
sensed by the DC data. Thus, to make geoelectrical and image-based outputs comparable,
we will present the latter as a function of tN2€!/3.8 for N2l > 0. This implies that our 4-day
experiment provides us with fluorimetry-inferred NaCl concentration fields over 4/3.8 days.

3.4 Results

We now analyze the data obtained during the tracer test. First, we consider the fluorimetry-
inferred NaCl concentration field (Subsec. 3.1) using four snapshot examples. Then, we
present measured apparent electrical conductivity time-series and compare them with simu-
lations.

3.4.1 Fluorimetry-inferred NaCl concentration field

Snapshots of the fluorimetry-inferred NaCl concentration field are shown for the following
N3l times (Subsec. 3.3.3): tNeCl = 0 (Fig. 3.3a), that is, just after the tracer injection has
been stopped; tgaCI =5x 1073 (Fig. 3.3b) and tgaa =5x 1072 (Fig. 3.3c), approximate times
at which the apparent electrical conductivity data show, respectively, an accelerated growth
rate and a local maximum (Subsec. 3.4.2); and tfaCI =5x 107! (Fig. 3.3d), that s, close to the
latest available fluorimetry-inferred NaCl concentration field.
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Figure 3.3 — Four snapshots of the fluorimetry-inferred NaCl concentration fields correspond-
ing to times (a) N3 = 0, (b) 1 =5x1073, (¢) )1 =5x 1072, and (d) £*! =5x 107". The
yellow dots indicate the potential electrodes, see Figure 3.1 for convention.

For ti\IaCI and x > 160mm (Fig. 3.3a), there is a sharp concentration gradient along the y-
direction, marking the boundaries between the layers (see also the zoom in Fig. 3.1b). The
high permeability middle layer does not exhibit a perfectly homogeneous concentration
distribution as evidenced by lower values in the middle. We attribute this to slight thickness
variations in the inlet chamber, also seen in Jougnot et al. (2018). For x < 160mm, the tracer
has slightly invaded the low permeability layers up to the x-locations of P, and Pg (3.1a).
For tgam and tgam (Figs. 3.3b and 3.3c¢), the initially sharp concentration gradient along the

67



y-direction is decreased. At the last considered time (t}faCl, Fig. 3.3d), the NaCl concentration
field has achieved a much higher degree of homogeneity in comparison to tFaCl.

Snapshots of y-oriented fluorimetry-inferred NaCl mean concentration profiles for the times
considered above are shown in Figure 3.4. These are obtained by x-averaging the 2-D con-
centration field within the horizontal coordinate range x € [140,175] mm. Additionally, we
present analytically computed NaCl concentration profiles (Equation 3.3) assuming a 1D
domain. This is done for the same width w as that of our porous medium, but also for a ten
times larger width, to mimic an unconfined domain. As initial condition, we consider the
first snapshot of the x-averaged concentration profile (note the perfect match between the
modelled and observed concentration profiles for ti\IaCI).
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Figure 3.4 — Four snapshots of fluorimetry-inferred and modeled NaCl concentration profiles
for times (a) ti\IaCI = 0 (initial conditions for the modeling), (b) t?ac} =5x1073, (c) tyaa =
5x1072,and (d) 3 =5x 1071,
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The concentration profile at tPaCl (end of the injection) is not a perfect step function but it
features a non-flat topography in its central part (Fig. 3.4a). This is caused by an imperfect
tracer injection pattern, as mentioned before (see description of Fig. 3.3). At tyaCl (Fig. 3.4b),
a small degree of smoothing has occurred, along with a slight amplitude decay (~ 2%) of
the observed concentration profile with respect to the analytically calculated profiles. At
té\laCI (Fig. 3.4¢), the smoothing, as well as the magnitude decay of the observed data, are
more pronounced (with an average of ~ 4% within the central part), the latter indicating
an ongoing loss of solute mass from the computational range x € [140,175] which is not
accounted for in the 1D solutions. At ;> (Fig. 3.4d), the NaCl profiles display a much higher
degree of homogeneity compared with the situation at £NC. Particularly, a considerable
amount of NaCl mass has been brought by diffusion to the low permeability layers. The
shapes of the observed and analytical solution for the confined domain (i.e., w = 74mm)
are very similar, although the magnitude of the former is ~ 9% smaller than that of the
latter. As expected, the analytical solution for the unconfined solution (i.e., w = 740 mm)
underestimates concentrations in the vicinity of the boundaries of the domain.

In Figure 3.5, y-averaged concentration profiles are plotted as a function of x for the same
four times. The longitudinal profile at t}\IaCI (blue solid line in Fig. 3.5) shows a decreasing
trend from left to right. The ratio of mean concentration in the inlet to the outlet is ~ 1.8.
This is mainly due to the invasion of the tracer along the low permeability channels in the
inlet region, and by the incomplete tracer saturation of the middle high permeability layer in
the outlet region (Fig. 3.3a). At tyaa (red dashed line in Fig. 3.5), the ratio of inlet to outlet
concentrations has been slightly reduced to ~ 1.75, suggesting that the mass imbalance along
the x-direction is being mitigated by the action of x-directed mass transport by molecular
diffusion. At the subsequent times tyaCl and tFaCl (respectively, green dotted and purple
dotted-dashed lines in Fig. 3.5), the ratios decrease further to 1.7 and 1.5, respectively. Note
also that the curves in Figure 3.5 as a whole exhibit a downward shift with time, indicating
that the total FS mass within the field of view, from which the NaCl concentrations are
derived, has decreased either due to photo-bleaching or horizontal mass transport. The
mean concentration, calculated by integrating the concentration field over the entire field
of view, decreases throughout the experiment from 0.11 to 0.09g/1 (inset in Figure 3.5),
suggesting an apparent loss of tracer mass. This issue is discussed in Subsection 3.5.1.

69



0.15 T T T T T T T T
0.12¢°
0.09 -
0.06 -
~0.12} ]
~
B0
=] 0.03 +
ke
= \ ..... om0
= RS 0 10% 1072 10!
8 ’\\ tNaCl
=) N
Q 4\’\.
O 0.09 ]
tll\TaCI 55555555
o t2NaCI _______
........ thaCl = \‘\ N
_ t4NaCl \'\~\
0.06 I | | | | | | | N
0 40 80 120 160 200 240 280 320
x (mm)

Figure 3.5- (a) y-averaged mean of the fluorimetry-inferred NaCl concentrations as a function
of the horizontal coordinate x for times £N2¢! = 0 (blue solid line), £Y°! = 5 x 107 (red dashed
line), £33 = 5 x 1072 (green dotted line), and 3! = 5x 107! (purple dotted-dashed line).
(b) Temporal evolution of the inferred mean concentration over the entire field of view. Note
that negative and positive N2l represent, respectively, times normalized by advective and
diffusion transport time-scales (Subsec. 3.3.3). The grey-colored rectangle highlights the
tracer injection period. The blue, red, green and purple-colored dots on the curve indicate
the mean concentration field values at times V3¢, (NaCl, NaCl g fNaCl,

3.4.2 Apparent electrical conductivity time-series

We consider three potential electrode pairs having different relative orientations with respect
to the predominant direction of diffusive mass transport (i.e., the y-direction). The chosen
pairs are located close to the cell’s center with respect to the x-direction in order to have a
minimal influence from the inlet and outlet chambers. The electrode pair P3- P9 measures a
voltage in a direction that is aligned with the y-direction, P4-Ps5 in a direction aligned with
the x-direction and P,4- Py along a diagonal line that crosses the cell’s center (see Fig. 3.1a for
details concerning the electrode positions).
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For the electrode pair P3-Pqg (Fig. 3.6a), only the time-series corresponding to the measure-
ment mode M), are plotted as the geometrical factor for measurement mode M, is above
5000m, which leads to highly unreliable apparent conductivities. Before the tracer injection
period (highlighted by the gray-colored rectangle in Figs. 3.6a-c), the system is initialized
and some electrical data is collected. For times —1.8 < tNCl < —1.25 the tracer injection
has started but Solution 2 is still saturating the inlet chamber (i.e, no tracer invasion into
the porous medium) and the measured apparent conductivity (blue scatter in Fig. 3.6a) is
approximately constant and equal to ~ 0.07Sm™!. As the tracer invades the porous medium
(—1.25 < tNaCl < 0), the measured response shows a sharp increase by ~ 5.5 times the baseline
apparent conductivity. After the injection is stopped, a smooth trend of increasing values are
seen until té\laCI =5 x 102 when the apparent electrical conductivity is ~ 25% higher than
the value at the end of the injection (at N3¢l = 0). Subsequently, the apparent conductivities
decrease slowly. The simulated apparent electrical conductivity time-series (magenta solid
line) agrees well with the measured data although there is an overestimation of ~ 7% for
—1.25 < N2l < 0, Also, the simulated data start to increasingly underestimate the data for
Nacl > tgam reaching a maximal discrepancy of ~ 5% by t}l\laCI.

71



Apparent electrical conductivity (S/m)

0.04

0.01

0.04

0.01

0.01

|
|
|
|
|
|
|
|
I 1
0 10°?

1071 10°

1073

100

O (N

-2 103

102 101 10°

tNaCl

Figure 3.6 — Measured (dots) and simulated (lines) time-series of apparent electrical conduc-
tivity under measurement modes M (red and green) and M, (blue and magenta) for electrode
pairs (a) P3-Pg, (b) P4-Ps5 and (c) P4-Py. The four vertical black dashed lines mark the times
tFaCl =0, tyam =5x1073, té\laCI =5x 1072, and t}fad =5x1071, respectively. Negative and
positive times represent, respectively, times normalized by advective and diffusion transport
time-scales (Subsec. 3.3.3). The gray-colored rectangles highlight the tracer injection period
extending over 60s.
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For electrode pair P4-P;5 (Fig. 3.6b), the measured apparent conductivity time-serie for in-
jection configuration My, shows a different behavior compared to P3-Py. First, the tracer
invasion leads only to an apparent conductivity increase of ~ 3 times the baseline value.
Second, the positive growth rate spans the full duration of the experiment with a decreased
rate from ¢NCl > té\]am. The simulated responses fit the data well, except for small over- and
underestimations for times —1.25 < N2l < 0 and ¢NaC! > tgaCI, respectively. Excepting the
injection phase, the simulated response remains within 5.5% of the measured data. The
measured apparent conductivity time-series for injection configuration M shows a larger in-
crease when the tracer invades the porous medium (~ 5 times the baseline conductivity), and
remains approximately constant during the rest of the experiment. The level of agreement
of the simulated response with the measured data for M, shows a similar behaviour of over-
and underestimation for the aforementioned time-periods. Apart from the overestimation
during tracer injection (~ 7%), the simulated responses remain within 4% of the measured
data.

The voltage time-series measured between P,- Py for injection mode M,, (Fig. 3.6¢) behaves
overall rather similarly to that of electrode pair P3-Pg (Fig. 3.6a). Around its maximum value,
the apparent conductivity surpasses the one of M. For both injection modes, the simulated
time-series show a very good agreement with the measurements, except for some over- and
underestimation at early (i.e., —1.25 < N < 0 during the tracer injection) and late (i.e.,
Nacl > ¢NaCly times, respectively. As for Py-Ps, the apparent conductivity time-series for M,
show more sensitivity to the tracer invasion than M,, and remains rather flat afterwards.

3.5 Discussion

3.5.1 Proof of concept and technical challenges

We have performed an electrically- and optically-monitored milli-fluidic tracer test by in-
jecting a solution of FS and NaCl in an artificial porous medium made of PDMS. Two key
assumptions behind our approach are that: (i) the electrical conductivity time-series deter-
mined by the time-evolving NaCl concentration field can be modelled using the observed
time-evolving FS concentration field by a suitable temporal and amplitude re-scaling; (ii)
the PDMS material represents a porous medium that is quasi 2D, rigid and with negligible
surface conductivity. In the following, we examine these two assumptions.

The simulated apparent conductivity time-series for electrode pair P3- Py and injection type
M,, are plotted in Figure 3.7 with and without temporal rescaling (see section 3.3.3). This
clearly highlights that simulated and observed data are best compared after accounting for
the different diffusion coefficients of FS and NaCl salts.
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Figure 3.7 — Apparent electrical conductivity time-series for the electrode pair P4- Py and mea-
surement mode M. Measured time-series (blue dots), simulated time-series with adequate
time-scaling of FS concentration images to account for the different diffusion coefficients
of FS and NaCl (magenta solid line) as described in section 3.3.3 and without any such
time-scaling (black solid line).

The absence of advection after injection (¢£N“! > 0) implies that the diffusion coefficient
D acts as a multiplicative constant in the governing transport equation (i.e., the diffusion
equation). Thus, a ratio Dnac)/Drs > 1 can be compensated by a change of variables in
the temporal coordinate such that the history of the unobserved NaCl concentration field
is obtained from the time-compressed history of the observed FS concentration field. A
previous study (Jougnot et al., 2018) implicitly assumed that the diffusion coefficients of
both salts are equal, but this is only defensible when working at high Péclet numbers. One
workaround at intermediate Péclet numbers is to design experiments for which the non-
dimensional advection-diffusion equations for the FS and NaCl salts have the same Péclet
number. To this aim, the salts would need to be advected by flow fields having different
mean flow velocities v differing by the ratio Dgs/ Dnac)- That is, one experiment with FS and
another with NaCl are carried out while ensuring the same 7/ D ratio.

On the one hand, the measured apparent electrical conductivity time-series appear rather
insensitive to the observed apparent mass loss in the inferred concentration fields (Fig. 3.5).
This insensitivity is particularly apparent for measurement mode My, for which the observed
responses are close to flat after stopping the injection (Fig. 3.6b,c). Given the approximately
(x-parallel) layered distribution of tracer concentration, the bulk electrical conductivity is
mainly sensitive to the arithmetic mean of the conductivities computed along y-oriented
profiles and thus, mixing along y is expected to leave the time-series unmodified, provided
that mass is conserved. On the other hand, the simulated data are impacted by the apparent
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mass loss in the inferred concentration fields, leading to an increasing underestimation of the
observed data with time ¢N3¢! > (NaCl, This growing inconsistency in time between observed
and simulated data may indicate a small, but non-negligible, degree of FS photobleaching
(e.g., Imamura and Koizumi, 1955)) leading to apparent FS mass loss. This occurred despite
that we tried to decrease such effects using a flash lamp to diminish the exposure time of the
tracer. The measured electrical data are mainly sensitive to the NaCl concentration and is,
thus, basically insensitive to FS photobleaching.

Concerning the suitability of PDMS for this type of experiments, we highlight possible issues
related to the tracer injection. At times —1.25 < N¢l < 0 we see that the simulated elec-
trical responses overestimate the observed time-series of apparent electrical conductivity
(Figs. 3.6a-c). We attribute this discrepancy to two possible PDMS-related sources of error.
First, the slight flexibility of the acrylic plates used for sandwiching the PDMS (see 3.7.1)
may have led to a slight inflation of the PDMS cell during injection, due to the applied pres-
sure. In our calibration procedure and data processing, we assumed a rigid cell and thus
a time-invariant cell thickness. For the considered range of FS concentrations, the light
intensity is an exponentially increasing function of both the concentration but also the cell
thickness (e.g., de Anna et al., 2014), implying that such an inflation could be misinterpreted
as a slight increase in the concentration. Note that the measured conductivities should also
be impacted by this effect, as they increase linearly with the height of the porous medium
sample. However, the power-law dependence of concentration on light intensity, makes the
fluorimetry data much more susceptible. Another possible error source during the injection
period is optical effects appearing when the fluorescent tracer is invading the cell from left
to right. During this period, the tracer acts as a moving light source that generates rapidly-
changing patterns of light diffractions within the translucid PDMS material. Such patterns
are manifested as secondary sources of light that might perturb the concentration estimates.
In our calibration procedure, we are unable to account for such effects as a homogeneous
distribution of the fluorescent tracer is assumed. Lastly, we confirm that the PDMS material
has negligible surface conductivity.

3.5.2 Impact of incomplete mixing and molecular diffusion on time-
series of bulk electrical conductivity

Time-series of apparent electrical conductivity

The increased growth rate (or acceleration) of the measured conductivity time-series at
~ tglaCl (Figs. 3.6a-c) suggests that diffusion has started to enhance the tracer connectivity
by transporting mass from the middle high permeability layer towards the top and bottom
low permeability layers of the porous medium (see modelled NaCl concentration profile in
Fig. 3.4b). The maxima present in all responses at ~ tyam (Figs. 3.6a-c) suggest that at this
moment the amount of NaCl mass brought by diffusion towards the sides is large enough
to create a well-connected vertical path for the electrical current. Note that the responses
reach their maxima ~ 20 times before the characteristic diffusive transport time-scale TCN}fCl.
This is simply a consequence of the presence of the impermeable boundaries located at y = 0
and y = 74mm that increase the homogenization rate (see Fig. 3.4d). Indeed, since our initial
tracer front is separated by a distance w.,, from a wall, a representative time-scale for such
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confined situation is expected to be 10 to 50 times smaller than the used TcNﬁ‘Cl (e.g., Hamada
etal., 2020).

In the following, we use numerical simulations to gain insights on the impacts of incomplete
mixing and small-scale diffusion on the time-series of apparent electrical conductivity under
injection mode M,, using electrode pair P3-Pg as example. We examine different time-
series resulting from monitoring solute plumes evolving from different initial widths and
lengths until reaching complete mixing. Note that the considered initial conditions, inspired
by the NaCl concentration field at ti\laCl in the experiment (see the inset in Fig. 3.8c for a
representation of the initial NaCl concentration field) might represent a solute finger situated
at the boundary of a field- or large-scale solute plume. Along that line, the bulk electrical
conductivity of the sample can be associated to the upscaled value conductivity for that
location impacting ERT data during a field-scale experiment. Then, our analysis may provide
insight on the ability of ERT data to capture the mixing state and dynamics at the boundaries
of field-scale solute plume bodies.

We simulate the electrical conductivity time-series following the procedure described in
Subsection 3.3.1, but also the time-evolving NaCl concentration field (Subsec. 3.3.3), used
as input for the conductivity field time-series in Equation 3.1. The modelling domain has
unit porosity and the same dimensions as the experimental flow cell (see 3.2.1). Three
different sets of initial conditions are considered, defined by the widths of the top and bottom
layers, which are w; = 6mm, w, = 12mm and w3 = 18 mm. Since the modelling domain has

the same height as the experimental flow cell, the associated middle layer widths w?’iddle
(= 74mm -2 x w;) are wMddle = 62 mm, winiddle = 50mm and w4 = 38mm. For each

set we place rectangular and identical chambers to the left and right sides of the domain,
which are saturated with tracer (as the middle layer) and background (as the top-bottom
layers) fluid, respectively (as in the experiment). In turn, for each layer width w; we vary
the chambers’ sizes such that the left chamber has six different distances to the electrode
pair Ps3-Pqg. These distances are d; = oo (1-D or layered NaCl concentration field), d, =4 x w;,
ds =2xw;, dy =1xw; and dg = 0.5 x w;. To sum up, we simulate eighteen electrically
monitored tracer tests, grouped into three sets of initial conditions that are determined by the
top-bottom and middle layer widths, which in turn comprise six different cases each, defined
by the different chamber sizes. We run the transport simulations for 8 days (twice the time of
the actual experiment) in order to ensure influence of the chambers for all the considered
values of d;. The tracer and background fluids are chosen to have electrical conductivities
of g5, =0.0218 and o, = 0.2728S.m™ !, respectively (Subsec. 3.2.7). Lastly, note that in the
actual experiment, we had w = w; (= wep, Subsec. 3.3.3), wmiddle = yymiddle gnd g = 12 x w,.
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Figure 3.8 — Simulated apparent electrical conductivity time-series for electrode pair P3-Pq

under measurement mode M,, for a cell that has top-bottom and middle layer widths of
middle _ middle _

(@) wy =6mm and w; =62mm, (b) w, = 12mm and w; =50mm (as in the actual
experiment) and (c) w3 = 18mm and wgmddle = 38mm. The time-series for each w; are

plotted as a function of normalized times t/7;, with 7; = wl? | DNacy (defined analogously as

TCN}';‘CI in sec. 3.3.3). A sketch illustrating the gepmetry of one of the initial NaCl concentration

fields is shown in (c) along with the injection (red dots) and potential (yellow dots) electrodes
P3 and Pg.



For w, (Fig. 3.8a), the apparent electrical conductivity time-series shows higher values at
intermediate times (unmixed tracer) compared to late times (mixed tracer) for all d;. This may
appear counter-intuitive when considering d; = oo as diffusion along y increases the total
current flowing through the sample (Fig. 3.9a) by connecting the top and bottom injection
electrodes. This "overshoot" in apparent conductivity occurs by virtue of the perturbation
of the electrical potential field, generated by the presence of the (horizontal) conductive
tracer front, which modifies the voltage P3-Pq. At an interface separating media of different
conductivity, the tangential component of the electric field and the normal component of
the current density field are continuous. These boundary conditions imply that the current
density field lines, perpendicular to the equipotential lines, are refracted when the former
cross the boundary between two bodies of different conductivity (e.g., Feynman et al., 2011).
Such lines bend away from (towards to) the concentration gradient direction when they enter
(exit) a more conductive body. In our setting, this is manifested in the electrical potential field
as an overall compression of its equipotential lines (Fig. 3.9¢). In particular, the compression
of such lines along the x-direction leads to a decrease in the measured voltage (Fig. 3.9b),
that translates into an increase in apparent electrical conductivity.

78



1072 _""I .' R LI B L BRI L L | '_
—-—-w; = 6mm 7] 015}
< ' 0.1}
b e
= |
5 S
O 1 800.05
=
o
>
1073

109
60 60 9
C.
= £
Eao} - 1 aof 18 S
7 N
e / /"\\ N\
/ ~
O [/J/ﬁ\$\\ V] or 110!
A
L !/fxl L
120 oV 240 120 240
x (mm)

Figure 3.9 — Simulated time-series of (a) total current flowing through the domain and (b)
voltage measured between Ps- Py, for chambers located at d; = co (see the main text) and the
three considered initial top and bottom widths of w; = 6mm, w, = 12mm and w3 = 18 mm.
The response associated to w; (i = 1,2,3) is plotted as a function of the corresponding
normalized ¢/7; (see Fig. 3.8). (c)-(d) Simulated fluid conductivity (tracer concentration)
field, normalized by os,, for w, = 12mm and d; = co at (c) /72 =0 and (d) t/72 =0.1. On
top of each fluid conductivity field, nine equipotential lines of the electrical potential field
for the levels 0.4+ 0.025 x pV (p =0, ..,8) are shown for the corresponding conductivity field
(red solid lines) and for the case of a homogeneous conductivity field (black dashed lines).
The injection electrodes are indicated (red dots) as well as the potential electrodes Ps and Pqg
(yellow dots).

Fordj=w; (j=1,..,4), the time-series are maximized at /71 ~ 0.1. As described above, the
tracer arrival by diffusion leads to further compression of the equipotential lines along x
(compare equipotential lines of Figs. 3.9c-d), which leads to a minimum of the voltage time-
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series (Fig. 3.9b), that in turn is manifested as a maximum in the conductivity time-series.
The situation is different for ds (< w;), for which the left chamber is closer to P3-Pg than the
initial tracer front. Consequently, the time-series is maximized due to the (earlier) arrival of
the tracer from the chamber.

For w,, the starting values of the apparent conductivities are smaller than the final ones.
Correspondingly, the voltage measurement from Ps- Py starts at a larger value when compared
to the case for w;. Additionally, note that for /7, ~ 3.7, which corresponds to 4 days, that is,
the duration of the actual experiment, the apparent electrical conductivity time-series for d»
show only a negligible difference compared to the data for the 1-D case. Considering that for
the PDMS cell, the chambers are located much farther apart than d, this indicates that for
the experiment, the impact of diffusion from the chambers is negligible.

For ws, the starting values of the apparent conductivities are again smaller than the final
ones, although the difference is more marked than for w,. Also, note the absence of a
clear maximum occurring around #/73. For larger w;, the tracer arrives more mixed to the
electrodes at t/7; ~ 0.1. Consequently, the associated perturbation of the electrical potential
is less marked, hence, the less pronounced signature.

The simultaneous dependence of the time-series of apparent electrical conductivity on both
the current and the voltage time-series (as illustrated by the supporting Fig. 3.9) make such
data difficult to interpret (e.g., Jung et al., 2009). However, it also makes such time-lapse data
potentially more informative on the temporal evolution of the spatial organization of the
tracer. An example is their sensitivity to the tracer arrival at the diffusion transport time-scale
for a confined sample. Also, the ratio of the initial to terminal values of apparent conductivity
is sensitive to the distance of the tracer front to the injection electrodes. In order to effectively
exploit this information, it is necessary to develop a framework that quantitatively link solute
transport-driven conductivity variations with perturbations of the electrical potential field.
This will be the topic of future research.

Time-series of the equivalent electrical conductivity tensor

We examine now the impact of the mixing of an initially layered concentration distribution on
the time-series of the equivalent electrical conductivity tensor g. We simulate the latter using
as input fluid conductivity fields derived from the fluorimetry-inferred NaCl concentration
fields (as for Section 3.4). However, we take a subregion of the images, from which four
snapshots are shown in Figure 3.10, in order to work with conductivity fields which are the
closest possible to layered.
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Figure 3.10 — Four snapshots of the image-inferred NaCl concentration field contained in
the sub-region defined by the horizontal coordinate range x € [140,175] mm at the times (a)
NaCl = 0, (b) 5% = 5% 1073, () 15! = 5% 1072 and (d) £)*°! = 5% 107!. The close views
shown on top of the full concentration maps correspond to the areas enclosed by the cyan-
colored rectangles in the corresponding full maps.

We compute numerically the electrical potential as described in Subsection 3.3.1. However,
we now excite the sample using line electrodes along the left and right (top and bottom)
boundaries of the cell, respectively, for computing the x- and y components of g, denoted by
oy and 0. As usual, for each excitation mode, a no-flux condition is imposed to the electrical
potential along the other boundaries. Due to the x-oriented layering, the spatial coordinate
system given by (x, y) is oriented along the principal directions of ¢, implying that oy and o,
are its only non-zero entries. For reference, we also compute the time-series of the Wiener
bounds of the domain, that is, the harmonic oy and arithmetic o5 means of the conductivity
fields, divided by the (spatially constant) formation factor F (:= Fgjn,, Subsec. 3.3.2):

1 N
o1 = — = 3.6)
FXnag—
fluid
and
11 & .
TA= 5 n; O fuid> 3.7)

where N and Uﬁui 4 denote, respectively, the number of pixels and the value of the fluid
conductivity for pixel i. The computed time-series are shown in Figure 3.11.
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Figure 3.11 — Simulated time-series of the x and y components of the equivalent electrical
conductivity tensor, o, and 0, and computed time-series of the arithmetic and harmonic
means o and oy over the considered sub-region (Fig. 3.10) of the time-evolving NaCl
concentration field.

The x-oriented layered tracer distribution results in qualitative behaviours of o, and o, that
are very close to those of o5 and oy, respectively. The discrepancies between o, and o, and
between o, and oy indicate that the tracer distribution within the sub-sector is not perfectly
layered (i.e., 1-D), as discussed previously. Note again the decay over time of o5 (and o),
indicative of apparent tracer mass loss within the considered sub-region (see Fig. 3.5 and
Subsec. 3.5.1). By the end of the experiment, o and o, collapse at ~ 0.03S.m~! before the
tracer has completely mixed (evidenced by the remaining separation between o and oy
at late times). At this point, the steep slopes of the conductivity time-series suggest that o,
would surpass o if longer times would have been considered. This is a consequence of the
x-oriented gradient (see Fig. 3.5). Again, this is possible since the concentration distribution
is not perfectly layered.

The time-evolution of the mean tracer concentration within the sample could be estimated
from Archie’s law (Eq. 3.2), by inputting either o, or g, as the formation conductivity. How-
ever, when using such approach, apparent loss of mass is to be expected as soon as the tracer
is not completely mixed within the sampled volume (Jougnot et al., 2018; Visentini et al., 2020).
Note that we refer here to a common problem arising during hydrogeophysical experiments,
and not to the previously mentioned (optical) apparent tracer mass loss (occurring likely due
to FS photobleaching, as discussed in Subsection 3.5.1). When compared against o (i.e., the
mean fluid electrical conductivity that is directly related to the mean tracer concentration),
they yield solute mass recoveries of 92 and 60% at early times. It is clear that the more aligned
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the layering and conductivity measurement directions are, the better. These considerations
may become relevant for anisotropic ERT experiments for which spatial distributions of both
oy and o, are recovered, instead of just distributions of bulk (scalar) electrical conductivity
values (e.g., Herwanger et al., 2004).

The time-series for o, shows an overall increase over time and no maximum at ¢/ TIC\I;CI ~0.1
as described in Subsection 3.5.2. With line electrodes in a layered 2-D media, the potential
lines are straight. Consequently, sensitivity to the temporal evolution of electrical potential
perturbations is less evident, although it may still be captured by differentiating the time-
series with respect to time (see Visentini et al. (2020).

Finally, we explore the relationship between the time-series of o, and the temporal evolution
of two common descriptors characterizing the degree of mixing: the concentration variance
o2 and the scalar dissipation rate y (e.g., Le Borgne et al., 2010). The latter is defined as

¥ = j dxvclDve. (3.8)

In Figures 3.12a-b, scatter plots of o, versus 02(t) and x(#)/ D demonstrate strong negative
correlations. We attribute the higher variability in Figure 3.12b to noise in the image-recovered
concentration gradient field rather than to variability in the relationship itself. Establishing
quantitative links between statistical descriptors of the mixing state of the solute such as
the concentration variance and the scalar dissipation rate with the time-evolution of the
electrical conductivity is the topic of ongoing research.
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Figure 3.12 - Scatter plots of the y-component of the equivalent electrical conductivity tensor,
0y, plotted against (a) the concentration variance o2(t) and (b) the scalar dissipation rate
divided by the diffusion coefficient, y(¢)/D.

3.6 Conclusions

We have performed an optically- and electrically-monitored milli-fluidic tracer test to study
the electrical signatures of diffusion-limited mixing of an initially-layered tracer distribution.
We have confirmed that fluorimetry- and geoelectrically-inferred time-series of apparent
electrical conductivity can, in a diffusion-dominated environment, be related by a temporal
re-scaling that accounts for the ratio of ~ 3.8 between the FS (optical) and NaCl (electrical)
tracer diffusion coefficients. After this correction, we find that the observed and simulated
apparent electrical conductivities are in strong agreement and demonstrate high sensitivity
to the initial tracer invasion and subsequent diffusion. Particularly, the apparent electri-
cal conductivity time-series measured perpendicularly to the concentration gradient are
consistently maximized at times that are in agreement with the NaCl diffusion transport
time-scale associated with the layer width in confined media. Numerical simulations confirm
this and indicate high sensitivity of the electrical data to the layers’ degree of mixing and their
distance to the injection electrodes. The time-evolving equivalent electrical conductivity in
the direction of layering is strongly anti-correlated to two common solute mixing descriptors:
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the concentration variance and the scalar dissipation rate. In summary, our study provides
a proof of concept for a novel experimental approach while pointing towards interesting
avenues for establishing quantitative links between the mixing dynamics of the solute and
time-series of electrical responses.

Data availability and material

The data collected during the experiment presented is publicly available in Zenodo .

3.7 Appendices

3.7.1 Appendix 3A: Porous system fabrication

The porous network is mechanically-drilled into a stainless steel rectangular plate with
0.4mm depth. A PDMS solution and curing agent (9:1 ratio) are then poured into the mold
and left to cure at room temperature during ~ 48 hours. Subsequently, the solid PDMS is
detached from the mold and placed between two 2 cm-thick transparent acrylic plates and
the sandwich is tightened using mechanical clumps. Prior to assembling, the acrylic plate
that is placed in contact with the positive reliefs of the cell is covered with a thin film of the
same PDMS solution and both the reliefs and the film are radiated with plasma (e.g., Xiong
et al., 2014) in order to ensure a high degree of cohesion of the cell.

3.7.2 Appendix 3B: Geoelectrical monitoring system

The geoelectrical monitoring system consists of two injection circuits and one measurement
circuit, all operated using the Campbell Micrologger CR3000. The system is electrically
connected to the flow cell using stainless steel cylindrical electrodes of diameter 1 mm that
are pinched into the PDMS along the cell’s contour (Fig. 3.1) through holes in the top acrylic
plate.

The injection circuits, connected to the cell using the sets of injection electrodes A,-Bj or
Ay-B), are full resistive bridges comprising (i) a voltage source of amplitude 1V, connected
in series with (ii) a bridge resistor of resistance 26700 + 1%, (iii) the flow cell, which is the
time-varying resistance of interest and (iv) another bridge resistor identical to the first one.
These circuits are alternatively activated using a voltage switch relay, controlled by a logic
port of the CR3000, to apply a voltage square wave of period 12s formed by 4 cycles of 3s each
with the following sequence: 1V, 0V, —1V and 1V. This injection protocol alternating the
polarity of the signal, standard for geoelectrical monitoring applications, is used to prevent
cumulative electrode polarization and correct for possible electrode drift.

The measurement circuit consists of 13 high impedance differential voltage measurement
channels that collect data for each injection mode. The voltage measurements are performed
using the CR3000 "VoltDiff" instruction with (i) signal integration over 3ms, in order to
remove 60 Hz noise, and (ii) polarity reversal, in order to remove any voltage offset coming
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from the datalogger circuitry. The CR3000 needs ~ 0.65s to perform the 13 measurements.
The recorded voltages are obtained by averaging the measured voltage during the positive
and negative excitation cycles mentioned above. The individual measurements for each cycle
are taken 2.3 s after initiating each current injection to allow the recorded signal to stabilize.

3.7.3 Appendix 3C: Grain mask compilation

We binarize a light intensity image that displays a high intensity contrast between the pore
space and the solid phase; it is obtained by saturating the medium with Solution 2. We use a
spatially-variable binarization threshold value obtained from Otsu’s thresholding algorithm
(Otsu, 1979) within subwindows of 20 x 20 pixels. A local thresholding is preferred due to
the spatially-varying light intensities. The binarization distorts the shape of the originally
circular grains somewhat. To avoid this, the binary image is used to locate the centroids of all
the (distorted) grains. They are then replaced by circular disks of required size. In this way,
known internal distances within the lattice are preserved.
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fields
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Abstract

We expand Archie’s relationship by introducing a new petrophysical parameter, the mixing
factor M, which accounts for the impact of small-scale saline heterogeneity on the equivalent
electrical conductivity tensor. We investigate to what extent the M-tensor can constrain
the variance, anisotropy factor and connectivity of 2-D multivariate-lognormal electrical
conductivity fields. By observing the two components of the tensor one can univocally
determine the variance and anisotropy ratio of the field, provided that the mean value
and the connectivity of the latter is known. By invoking scale separation between pore-
scale and saline heterogeneity and energy conservation arguments, we arrive at an identity
that expresses the components of M in terms of the expected value of the product of the
conductivity field fluctuations and the secondary electric field arising in response to this
heterogeneity. This narrows the problem of predicting M to gaining knowledge of the latter
relationship. We further find that the secondary electric fields are log-normally distributed
for all the considered cases of heterogeneity and connectivity. By calibrating numerical
relationships between the parameters describing the probability density function of the
conductivity and secondary electric fields, one could potentially build an upscaling approach
that requires as input only the parameters describing the statistics of the conductivity field.

4.1 Introduction

The direct-current (DC) geophysical method is regularly used to retrieve the spatial distri-
bution of the electrical resistivity. DC data are typically acquired using combinations of
electrode pairs: one to drive a known electrical current between two positions and another
to measure the voltage between two other positions (e.g., Keller and Frischknecht, 1966;
Binley and Slater, 2020). The resistance (measured voltage over injected current) is then
multiplied by a geometrical factor to remove the influence of the measurement geometry,
yielding an apparent electrical resistivity. In this study, we consider such measurements
using sheet electrodes (line electrodes) over a 3-D (2-D) sample. In this specific measurement
configuration, the resulting apparent conductivity (inverse of apparent resistivity) is then
the equivalent electrical conductivity of the sample (e.g Sanchez-Vila et al., 2006). In actual
field settings, multiple current and electrode pairs are used to obtain many hundreds or
thousands of apparent resistivities that are subsequently used to derive electrical resistivity
images at a given spatial resolution. This process is often referred to as Electrical Resistivity
Tomography (ERT) or time-lapse ERT, when repeating the measurement sequence to study
dynamic phenomena.

The equivalent electrical conductivity oeq of composite media at a given scale depends
in general on both low- and high-order spatial statistics as well as the connectivity of the
conductive phases at smaller scales; these features are often collectively referred to as the
microstructural properties of the composite medium (e.g., Torquato and Haslach Jr, 2002;
Milton and Sawicki, 2003)). In particular, for a fluid-saturated porous medium having an
isolating matrix material, oq is in general impacted by the microstructure of both the pore
space and o, (x), the heterogeneous fluid electrical conductivity field residing within the
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pores. When o (x) is constant in the pore space, then o is solely influenced by the pore
space fraction and geometry, as expressed by empirical Archie’s law (Archie, 1942).

When considering a saline tracer test in a porous medium, o, (x) originates from a heteroge-
neous and time-evolving saline concentration field c¢(x), whereby o, (x) and c(x) are related
by a monotonically-increasing relationship (e.g., Sen and Goode, 1992). Since this implies
that the time-series of g¢q carry information about the time-evolution of ¢(x), time-lapse ERT
has been routinely applied to constrain the transport of saline bodies (e.g., Binley et al., 2015).
For example, time-lapse ERT has proven effective to constrain the evolving position and
approximate shape of saline plumes (e.g., Slater et al., 2000), and it has also shown success to
constrain advective-dispersive (e.g., Kemna et al., 2002; Vanderborght et al., 2005; Koestel et al.,
2008) , as well as dual-domain transport parameters (e.g., Singha et al., 2007; Day-Lewis and
Singha, 2008). Archie’s law (Archie, 1942) remains the basis for the conversion of oq data or
inverted electrical images into salinity (e.g., Revil et al., 2018). When relying on Archie’s law it
is tacitly assumed that o, (x) is homogeneous below the scale at which the petrophysical rela-
tionship is applied. Such homogeneity of o, (x) (i.e., fully-mixed salinity field c(x)) is unlikely
during a tracer test, and operating under such an assumption contributes to a poor recovery
of spatial and temporal moments of tracer plumes estimated from electrical monitoring
(e.g., (Singha and Gorelick, 2005; Miiller et al., 2010; Doetsch et al., 2012a; Laloy et al., 2012)).
Furthermore, this assumption implies that any potentially valuable information contained in
Oeq Pertaining to the microstructure of ¢(x) is lost. Indeed, these type of aggregation errors
occurring when treating environmental systems as homogeneous below a given scale of
observation are ubiquitous and seldom treated (e.g., Kirchner, 2016; Shakas and Linde, 2017).

In the present contribution, we propose a new interpretation framework to assess the impact
of heterogeneous 0, (X) on 0¢q. We introduce a new petrophysical parameter, the mixing
factor M, which quantifies the departure of o¢q from its (maximum) value occuring given
when o, (x) is homogeneous. In doing so, we seek to remove interpretation bias associated
with aggregation and also explore the constraining power of 0¢q pertaining to microstructural
and connectivity properties of o, (x). We investigate how the M-tensor can constrain the
variance, anisotropy factor and connectivity type of 2-D multivariate-lognormal electrical
conductivity fields. We consider different connectivities using the transformation by Zinn
and Harvey (2003). We observe unique mapping between from the two components of the
M-tensor to the variance and anisotropy ratio of the conductivity field. When considering
different connectivities, we observe that the mapping is modified in ways that depend on the
geostatistical properties of the underlying field. Further, by decomposing the electric field
into its primary and secondary parts and assuming that the fluctuations of o, (x) around its
mean occur at scales that are large compared to the Representative Elementary Volume (REV)
(Hill, 1963) of F, we can relate the M-components with the expected value of the product
of the conductivity field fluctuations and the secondary electric field, in the measurement
direction. This identity highlights the non-linearity of the DC conductivity averaging, that is,
the dependence of M on the heterogeneity of 0, (x), contrary to Archie’s linear dependence
on a constant fluid conductivity. It provides also a framework that reduces the problem of
predicting M to the problem of how to gain knowledge of the joint probability density field of
the conductivity field fluctuations and the secondary electrical field. We explore the statistical
distributions of the secondary electric fields and find that they are log-normally distributed
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for all considered field variances, anisotropy ratios and connectivities. This research is work
in progress and has as its ultimate goals to build an upscaling approach that requires only the
parameters of the probability density function of the electrical conductivity field to predict
M.

In Section 4.2 we review the governing equations of DC electrical conduction, the energy
representation of o¢q that leads to the formal definition of the formation factor F and the
origin of secondary electric fields. In Section 4.3 we introduce the mixing factor M and derive
an expression for it. The main results of the numerical tests are presented and discussed in
Section 4.4. Section 4.5 concludes the paper and highlights the next steps for this research.

4.2 Theoretical background

4.2.1 Groundwater flow and solute transport

For steady-state flow and in the absence of sources or sinks, the continuity equation for the
specific discharge q(x) at the Darcy scale reads:

0=V-qx). (4.1)
Adopting Darcy’s law,
qx) = -K®)Vh(x), 4.2)

q(x) is related with the hydraulic conductivity K(x) and the hydraulic head h(x). Then, the
groundwater flow equation reads:

VK(x)Vh(x) + KX)V>h(x) = 0. 4.3)

Equation 4.3 is solved numerically using the open-source finite-difference solver MODFLOW-
2005 (Harbaugh, 2005).

We model solute transport within an Eulerian framework using the Advection-Dispersion
Equation (ADE):

oc(x,t)
ot

¢ +qx)-Vex, 1) - V[DX) - Ve, 1] =0. (4.4)

Equation 4.4 is solved numerically using the groundwater solute transport simulator package
MT3D-USGS (Bedekar et al., 2016), assuming constant dispersivity over X.
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4.2.2 Spreading and mixing of c(x, ?)

The location a(t) of the centre of mass of a solute plume observed over some volume V is
given by the first spatial moment of c(x, 1):

a(l) = f c(x, 1)xdx, (4.5)
v

assuming that c(x, ) is normalized (i.e., it satisfies [}, ¢(x, £)dx = 1). The spread of a solute
plume around its centre of mass is given by the second spatial moment of c(x, ) centred at
a(l):

Aij(t):fvc(x, Hx—a; () x—a;(n)dx. (4.6)

The scalar dissipation rate y () (e.g., Pope, 2001),
x(0)=Vc'(x,1)-DVc' (%, 1)dx, 4.7
quantifies the net mass transfer resulting from the presence of concentration gradients and

local-scale diffusion.

4.2.3 DC electrical conduction

For steady-state DC conduction, and in the absence of current sources or sinks, the principle
of electric charge conservation is expressed by the continuity equation for the current density
field J(x) at the pore scale as follows:

V-Jx) =0. (4.8)

Ohm’s law relates J(x) with the electrical conductivity o (x) and the electric field E(x) via the
linear relationship J(x) = 0 (X)E(x). Adopting the quasistatic approximation, V x E(x) = 0,
allows to express E(x) = —VU (x), where U (x) is the electrical potential. Writing J(x) in terms of
U(x) as J(x) = —o0(x) VU (x) and replacing this expression into Eq. 4.8 results in the governing
Laplace equation for the electrical potentials:

Vox)VUX) +0x) VU (Xx) = 0. (4.9)
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Once the electrical conductivity field (ECF) o(x) and boundary conditions for U (x) are given,
Eq. 4.9 can be solved for the latter.

The equivalent (or block-averaged) electrical conductivity (EEC) geq of the considered do-
main at a given scale can be defined through an averaged Ohm’s law over its volume V (e.g.,
(Sanchez-Vila et al., 2006)):

J=—0Oeq fv VU dV. (4.10)

For media that behaves anisotropically at the scale of V, geq isin general a 3 x 3 second-rank
tensor. If the conductivity measurement direction is coincident with the principal directions
of the medium, then the tensor becomes diagonal. We will assume that we are in such
a setting and continue the exposition of the theory focusing on some component of geq,
denoted gq for short.

4.2.4 Energy representation of 0.4 and the formation factor F

Let us consider a cubic-shaped and water-saturated porous medium sample with pore
volume V), and average porosity ¢ = V,,/ V. The spatial distributions of the matrix and pore
spaces are given by the indicator function ®(x), which takes values of 0 and 1 in the former
and the latter cases, respectively. The matrix material is assumed to be an electrical insulator
and the pore space is filled with a heterogeneous solution consisting of some mass m of
salt dissolved in denaturated water, which results in a saline concentration field c(x) with
mean value u. = m/V,. Further, ¢(x) induces a (spatially-variable) scalar fluid electrical
conductivity field o, (X) (e.g., Sen and Goode, 1992) of mean value p,, within the pore space.
The conductivity field of the sample can be expressed as o(x) = 0, (X)®(x). Assume we cover
two opposite faces of the cube with a pair of sheet electrodes, to impose an electrical potential
difference AU along the x-direction. This drives an electrical current i, which results from
integrating the flux of J(x) across any surface separating the injection electrodes. The power
dissipated by the sample in the form of Joule’s heat is given by iAU. Applying Ohm’s law
we can express it as SAU?, with S the conductance of the sample, in turn given as S = geqL,
where L is the side length of the cube. We can express the power in terms of the modulus
of the impressed electric field Eg, Eg = ~AU/L and g4 as — VEgaeq. Analogously, the power
dissipated locally at the point x is given by the dissipation functional E(x) -J(x). Using Ohm’s
law, we can express E(x) -J(x) = —“E(x) - 0 X)E(x). This quantity, integrated over V), must be
identical to —VEgaeq due to energy conservation. That is:

~VE20eq = —f EX) - 0cE®AV),, (4.11)

Vp
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or,

1
Oeq = @fvp EX) -0 X)EX)dV),, (4.12)

which gives the energy representation formula of the equivalent conductivity (e.g., Bernabé
and Revil, 1995).

In the simplest case, 0, (x) is constant within the pore space and equal to some value .
We then have:

Mo, f
Oeq = EX)-EX)dV,, (4.13)
“TVER Jy, g
or
Geq= ’“‘% (4.14)
with the proportionality constant &,
! Ex)-Ex)dV, (4.15)
—=— x)-E(x , .
F~VER )y, g

recognized as the inverse of the formation factor F (e.g., Avellaneda and Torquato, 1991).
The right-hand side (RHS) of Eq. 4.15 expresses a weighted average of the pore space, where
the weights E(x) - E(x) correspond to the local dissipated power, divided by the conductivity.
Note that 1/F represents the effective (electrical) porosity participating in the electrical
conduction (e.g., Revil and Cathles III, 1999) and so it encodes the relationship between
the spatial distribution of the pore space ¢(x) and 0¢q. The definition of F through Eq. 4.15
assumes that 0, (x) is constant, that the conductivity of grains and grain-water interfaces
are negligible (e.g., Bussian, 1983), and the quantity at RHS of the latter is stationary at V),
(i.e., it does not change significantly when considering volumes in the vicinity of V},). In other
words, V), must be a Representative Elementary Volume (REV) for that quantity. This requires
that ¢(x) is statistically homogeneous (e.g., Torquato and Haslach Jr, 2002) when viewed at
the scale of V,,. Note that F is an intrinsic material property that is independent of the pore
space fluid.
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4.2.5 Trapped charge and secondary electric field

At any point within the porous sample, the electric field E can be separated into primary
Eq and secondary E(x) parts. The source for the secondary or scattering field Eqy (%) is a
conduction (free) trapped charge density p f,..(X) appearing whenever the impressed field Eg
has a parallel component to the conductivity gradient field Vo (x). It is given by (e.g., Feynman
etal, 2011; Kaufman, 1985) as

Vo (x)-E(x)
P free(X) = _ET, (4.16)

where ¢ is the electrical permittivity. If o, (x) is constant within the pore space then Vo (x),
and thus p fre.(x), takes non-zero values only at the grain-fluid interface. Note that p ;¢ (x)
adopts a distribution such that the net effect of Eq(x) is that of reducing the total power
dissipated by the sample, leading to a reduction of g¢q. Consequently, a value of F larger than
unity is the consequence of a non-zero Egp ().

4.2.6 Expressions for the formation factor, electrical tortuosity and ce-
mentation exponent

Decomposing the electric field into its primary and secondary parts, we can express F in
terms of the first and second statistical moments of Eqy (x). By replacing E(x) in Eq. 4.15 by
Eo + Egyp (x) we get:

1 1

—-—=— EO'E0+2E0'ES¢+ES¢'ES¢de

F VE:Jy, win
(/) E+ Zf Ey EgpdV, + ! f Esp - EspdV, .
E2 ot v, v, 0" Ls¢pt Vp v, v, s " LsplVp |-

Expanding component-wise the products in the integrands of Eq. 4.17 and recalling that the
y-component of Eg is zero, we have

1 2F,
=2 [Ez ’ , (4.18)
0

1 1 1
= +— | EspxdVy+— f avy,+ f avy,+ f av,
0 Vp j‘v/p spx p Vp s¢px P Vp sy P Vp sz p

where Eqpy, Espy and Esy, denote the x-, y- and z-components of Egy, respectively. By
definition, the first integral of Eq. 4.18 is the mean value g, of Espx within the pore space.
The remaining integrals correspond to the sum of the squared means 7, " (,u%sw and pf, 52

and variances o2 Eyp (a Evgy and o2 Eyp ) of Egpx (Espy and Eggp,), computed over the pore space.
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Note that since Esy(X) is considered only within the pore space, where the amplitude of the
total field is always smaller than that of the impressed field, p,,x needs to be a negative
quantity. Further, pug,,, and pg,,, are identically zero. Finally, we arrive at the following
expression for F:

¢

_9 2, 2 2 2
= — | (UEg, + Eo) 0 Y OBy, T Ok, |- (4.19)
0

| =

Note that we consider conductivity measurements in the x-direction, but analogous expres-
sions can be obtained for the y- and z-directions. For anisotropic media, Esy and, thus,
1/F, will change depending on the direction of Ey. Given some value within (0,1) for the
mean porosity ¢, Esy, varies within (- Ep,0), depending on the spatial structure of the pore
volume. In particular, it is identically — Ey when the porous structure is arranged into layers
that are perpendicular to the conductivity measurement direction. In such case, ug,,, and
a%sd) (= O'%S(px + O'%S(by + aéwz) are equal to —E, and zero, respectively. If the layers are parallel
to the conductivity measurement direction then Esyy, UE, ox and U%S(P are all equal to zero. In
Appendix 4.6.1 we derive an expression similar to Eq. 4.19 but for a non-isolating matrix.

As a corollary, we make two observations. The first one is that Eq. 4.19 provides an alternative
(physical) definition for the electrical tortuosity 7.. Since (e.g., Ghanbarian et al., 2013)

To=F, (4.20)

we have that

1
o= (4.21)

24452
| gy R0

2
EO

. 2 . .
Itis clear that ug,, and o Ey, 2T€ correlated in general. For instance, as pig,,, approaches zero

2

(i.e., no secondary field), so does o Eyp'

As a second observation, we can invoke Archie’s law (Archie, 1942)

]' _ m
—=g", 4.22)
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to also provide an alternative expression for the cementation exponent m1, in terms of ,u% ox
S

and O'%S(p. By combining Eqgs. 4.19 and 4.22, we have that

1- =¢™ (4.23)

and thus by solving for m we obtain:

(LEgy, +E0)* 407,
Inl1-= "’TES‘/’
m= 0 +1. (4.24)
In [¢]

Eq. 4.24 predicts values of m within [1,00) which is consistent with the theoretical minimum
bound for this parameter. That is, m = 1 or m — oo when the matrix space is organized
into layers that are parallel or perpendicular to the conductivity measurement directions,
respectively.

4.3 The mixing factor M

In the context of electrically-monitored saline tracer tests in a medium exhibiting negligible
surface conductivity, the typical approach (e.g., Kemna et al., 2002; Singha and Gorelick,
2005; Cassiani et al., 2006; Miiller et al., 2010) is to rely on Equation 4.14 to estimate the
mean saline concentration . within the sample, by measuring or inferring o.q and assuming
knowledge of F. This approach is only meaningful when the saline field is homogeneous
(i.e., completely mixed) or exhibits lamination parallel to the conductivity measurement
direction. In these situations, the interstitial fluid electrical conductivity trivially behaves as
an additive property and then the observable apparent fluid conductivity aﬁpp (obtained as
0eqF) equates ;. This establishes a link between a?pp and (., via a simple transformation
(e.g., Sen and Goode, 1992). However, as 0, (x) departs from homogeneity (or a layered field),
o;*® becomes smaller than y,,, and then . is no longer directly accessible through o ™.
Consequently, it is in practice difficult to assign a clear meaning to a?pp, except when making
the strong assumption that deviations from homogeneity have a negligible effect.

We introduce M, a conductivity reduction factor due to heterogeneity in o (x) within the pore
space. We call M the (solute) mixing factor and we define M as:

M= “aL;;) (4.25)
O

96



Here, M € [1,00) quantifies the departure of aﬁpp from its maximum possible value y,,,, and
it evolves in response to evolution of c¢(x), which in turn is governed by the spreading and
mixing dynamics of the solute. In analogy to 1/F, 1/ M can be seen an effective fraction of
tracer mass participating in electrical conduction. Thus, F accounts for the pore structure
of the medium whereas M accounts for the structure of o,,(x), and hence c(x), within the
porous volume. For the time-being, we only consider a given time instance and omit any
explicit reference to time ¢.

Let us assume that ®(x) exhibits heterogeneity at scales which are small compared to those
in 0, (x). This argument is known as scale separation in the upscaling literature (e.g., Adrian
et al., 2000; Wood, 2009), and it allows us to decouple the impact on o¢q coming from het-
erogeneity in either ®(x) (captured by F) and 0, (x) (captured by M). Furthermore, if we
assume that F is constant in space and o, (x) is an ergodic field at the scale of the conductivity
averaging, then, using M, we can express geq as:

_ How

=M (4.26)

O.eq

Eq. 4.26 can be viewed as a generalization of Archie’s linear relationship to account for
heterogeneous o, (X).

4.3.1 Analytical expression for the mixing factor M

In order to gain physical insights regarding how a heterogeneous fluid conductivity field
0 (X) impacts g¢q, we arrive to an identity for M in terms of the secondary electric field
arising due to fluctuations of o, (x) around its mean value (i, .

It is convenient to replace Ujfpp by 0eqF as then we can express M as:

(4.27)

where o5 = uy,, / F designates the equivalent electrical conductivity of the sample when o, (x)

is homogeneous within the porous space and ajcp P equates yy,,.

Replacing o¢q by its energy representation (Eq. 4.12), we have:

A5V
M =
/i v, Eeq(X) - 0(X)Eeqx)d V),

(4.28)
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where Eeq(x) denotes the electric field within the sample in the presence of heterogeneous
o (X).

We now decompose both E¢q(x) and 0, (x) into their mean and fluctuating part, that is,
Eeq(x) = Eg + Es(x) and 0 (X) = g, + 07, (X). Under the scale separation argument invoked in
Subsection 4.3 we can assume that the secondary fields arising due to the structures present
in ®(x) and o, (x) do not interact. That is, we can invoke linearity of the responses, meaning
that Es(x) can be expressed as Eg(x) = Esy (X) + Esc (%), where Eg (x) is solely produced by the
structures of ¢p(x) and Eg (x) is solely produced by the structures of o, (x). Since F is constant,
so0 is Esy and we write the total field more conveniently as Eeq(x) = Ea + Esc(x), where Ex
(= Eg + Egg) is constant and represents the electric field when o, (x) is homogeneous. Then,
we can express the denominator in Eq. 4.28 as:

Ep-Ep +2Ep - Eg(X) + Esc (X) - Ege (%)

fEeq(x)'U(X)Eeq(X)de:fVHaw

Vp p
+OJLUEA ° EA + ZOJLUEA * Esc(x) + O'/lUEsc(x) * ESC (X)de.

(4.29)

Without loss of generality we assume that E, is parallel to the x-direction. By expanding the
dot products in Eq. 4.29 component-wise it is straightforward to see that the second and
fourth terms of the right-hand side (RHS), each of them integrated over V,, vanish exactly.
This is a consequence of the fact that both Eg.(x) and ¢’ have zero mean. Consequently,
Eq. 4.29 reduces to:

)

p

" f o Bee @) Esc () dV, + f 20", E - Ese®d V), + f 0!, (O Ese ) - Ege(®)dV,
v, v, v,

P p

P
(4.30)

The second, third and fourth terms of the RHS of Eq. 4.23 are related. By expressing the
current density Jeq(X) as the sum of its mean and fluctuating parts, respectively J5 and Jsc (),
and applying Ohm’s law we have

Ja+Jse®) = g, + 0, X X) | [Ea + Egc(X) |- (4.31)
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Multiplying Eq. 4.31 by Ea + Es¢(X), integrating over V), and distributing products, we obtain:

f Ea-Ja+Ea - Jsc(X) + Egc(X) - Ja + Es¢ (X) ']sc(X)de =

Vp

fv to, B Ba+0", (XEp-Ep + g, Bp - Bge(X) + 0y X Eg.(x) - By~ 432)
14

+Uo, Ea-Esc(X) + g, Esc(X) - Egc (X) + Ulw (X)Ep - Esc (%) + OJw (X)Esc (X)ESC(X)de.

Note that Eq. 4.32 is simply an identity for the dissipated power in the sample in terms of
the mean and fluctuating electric and current density fields, using Ohm’s law to express the
latter. We consider now the different terms of the LHS and RHS of Eq. 4.32, each of them
integrated over V. By definition, the first term of the LHS is the total power dissipated by the
sample, and it equals the sum of the first and second terms on the RHS. This implies that the
remaining terms of the LHS must be equal to zero. Again, by recalling that E, is aligned with
the x-direction and E.(x) has zero mean, the third, and fifth terms of the RHS vanish exactly.
This gives:

0= fv Mo EscX) - Esc(X)d V), + fv 0 X)Esc (X) - EAX) + 0", ®Es¢ (X) - Ec X)d V). (4.33)
p

p

Using the identity of Eq. 4.33, we replace the second and fourth terms of the RHS of Eq.4.30
and then express

)

p

Eeq(X) -0 (X)Eeq(x)dV =fv uawEA-EAde+fV 0, X Esc(x) - EAX)d V). (4.34)
p

p

Then, we can write 1/ M as

1 pr ,ugwEA-EAde+pr 0, ®Escx)-EAx)dV,

il , (4.35)
M oAE;V

or,
1 F¢ )
— =1+ 0, (%) Escx(X)d V), (4.36)
M I,I,O-Eg Vp Vp w SCX
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where E;«(x) denotes the x-component of Eg: (X).

Note that M depends on the fluid conductivity field, thereby highlighting the non-linearity of
conductivity averaging in the presence of heterogeneous o, (x). We can use the relationship
given by Eq. 4.36 to replace it in Eq. 4.26 and then express the equivalent conductivity o4 as:

l'taw (/) /
Oeqg = — + —— 0, (X)Esex(X)A V. (4.37)
eq F Eg Vp v, w scx p

Eq. 4.37 expresses 0¢q in terms of the mean value of the product of o', (x) with Esx(x). The
utility of Eq. 4.37 is that it narrows the problem of predicting o ¢q to gaining knowledge on the
mapping between the statistical properties of 0, (x) and Eg(X).

Finally, if o, (x) renders the sample electrically anisotropic, then both the equivalent electrical

conductivity and the mixing factor become tensors geq and M, respectively, and we can write
Eq. 4.37 more generally as:

uo'w =1
eq = TM . (438)

Sl

Assuming that the anisotropy is aligned with the x- y- and z-directions, we can express
Eq. 4.37 as

fV,, 0y (X) Esex(X)d V), 0 0
Teq = “%n % 0 Sy, 00 ®) Esey 30V, 0
0°pP 0 0 fvp 0, (X) Esc;,(X)d V),

(4.39)

where Escy(x) and Esc,(x) denote the components of the secondary electric field in the y- and
z-conductivity measurement directions, respectively.

In what follows, we study the relationship between M and the degree of heterogeneity, spatial
correlation and connectivity of 2-D heterogeneous conductivity fields.
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4.4 Numerical tests

We simulate the pair of equivalent electrical conductivities, o5 and U‘;,q of a 2-D rectangular
domain of length L = 10m and height & = 1m, containing heterogeneous fluid electrical
conductivity fields. We assign to the domain a constant porosity ® = 0.2 and cementation
exponent m = 1.43, which yields a formation factor F = 10. Based on Eq. 4.39 we study

numerically the behaviour of M and the secondary electric field in response to the degree
of heterogeneity and spatial (statistical) correlation of the electrical conductivity fields. We
model the later using one realization of a multivariate-lognormal field, completely defined by
its mean (i, ,, variance of the log-transformed field O'lzng and covariance model (e.g., Rubin,
2003). Fixing s, at0.1Sm™?, then the field heterogeneity and its degree of spatial correlation
are considered, respectively, via alzna, varying within [0, 2], and an anisotropic exponential
covariance model that is aligned with the x- and y-directions (longitudinal and latitudinal,
respectively). The corresponding integral scales in each direction, I, and I, vary within
I € [1,,101,], with I, = 0.02m. These values ensure to always have at least 50 integral scales
in each direction. In order to consider connectivity, we use the histogram mapping by Zinn
and Harvey (2003) that gives us in addition poorly and highly connected fields.

4.4.1 Validation

We first illustrate the appearance of trapped charge and the consequent secondary electric
field.
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Figure 4.1 — (a-b) Multivariate log-normal fluid conductivity fields, (c-d) secondary electric
field in the y-direction and (e-f) trapped charge distributions arising from applying a unit
electrical potential drop across the y-direction. The electrical conductivity fields share
the same mean value pu,, = 0.1 Sm™!, integral scales I, = 0.02m, I, = 101, and different
variances: (a) UIZM =0.5and (b) Ulzno =1.5.

We consider two heterogeneous fluid conductivity fields originated from the same random
seed, sharing the mean and integral scales but having a low (Fig. 4.1a) and high ( 4.1b)
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variance. For the low variance field, the associated secondary electric field exhibits a small
amplitude (Fig. 4.1c) compared to the field associated with the high variance case (Figs. 4.1d).
The same can be observed for the associated trapped charge density distributions appearing
at conductivity gradients that are not perpendicular to the applied electric field. For the low
variance field , the trapped charge (Figs. 4.1e) is much less compared to the case where the
variance is higher (Figs. 4.1f).

We present now some numerical examples validating Eq. 4.37. Figure 4.2a (Fig. 4.2b) shows
plots of simulated 0eqx (0eqy) and predicted, using the derived expression Eq. 4.37 and
the energy representation formula (Eq. 4.29). The agreement between the simulated and
predicted mixing factors diminishes with the variance. However, note that both Eq. 4.37
and Eq. 4.12 yield similar levels of agreement. Thus, given that Eq. 4.12 is always valid, this
suggests that the observed errors are related to numerical issues in the computation of the
primary and secondary electric fields in the presence of conductivity contrasts. For the
x-direction (Fig. 4.2a), the responses agree within 2% and 9% for A = 1 and 5, respectively,
for the maximum tested variance of the log-transformed conductivity field o}, , = 3. For the
y-direction (Fig. 4.2b) the level of agreement for the maximum variances decreases to 15%
and 8% for A =1 and 5, respectively.

103



Figure 4.2 — (solid lines) simulated and predicted equivalent electrical conductivities using
(dots) identity of Eq. 4.37 and (stars) energy representation formula (Eq. 4.12) in the (a) x-
and (b) y-directions. The underlying conductivity field is multivariate- log-normal with
mean (i, =0.1Sm ! and I, = 0.02m. A := I/, denotes the anisotropy of the underlying
conductivity fields
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4.4.2 Anisotropic mixing factors

We analyse now the behaviour of M, and M), as a function of alzna and A and the connectivity
of the heterogeneous electrical conductivity fields.

Figure 4.3 — Contour plots of (dashed) M, and (solid) M, as a function of both alzng and
A computed on multivariate log-normal electrical conductivity fields of fixed mean value
U, = 0.1Sm™! that exhibit connection of (a) conductivity values around the mean value,
(b) high conductivity values (connected field) and (c) low conductivity values (disconnected
field). Two intersections of the M- and My -contours are marked with (a) blue (b) red and (c)
green dots. Both the contours and dots appearing in (a) are reproduced in (b) and (c) as well
with transparency, for reference.

The mixing factors M, and M, increase with the variance of the electrical conductivity
fields alzna (Fig. 4.3), with M, decreasing with A whereas M, increases with this parameter.
This is because as A increases, the conduction pathways along the x-direction become less
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tortuous (decrease of M,) and the opposite occurs for the conduction pathways along the
y-direction, that is, they become more tortuous (increase of M). A given pair of M,- and
My -values maps univocally to some set [alzna Al, as seen by the intersection of the M,- and
M -contours. When the larger conductivity values of the underlying electrical conductivity
field are connected, the mapping is modified (Fig. 4.3b), mainly due to a displacement of the
M -contours towards regions of larger alzna and A-values, indicating an overall increase of My
(and thus decrease of o57). The same behaviour is observed when the smaller conductivity
values are connected (Fig. 4.3c).

The identity expressed by Eq. 4.37 indicates that the equivalent electrical conductivity is
entirely described by the statistics of the electrical conductivity field fluctuations o, (x)
and the secondary electric field E; in the conductivity measurement direction. Given the
prescribed log-normal statistics for ¢, (x), we consider the histograms of Es_y and Es_ y (e,
when the sample is excited in the x- and y-directions, respectively) as a function of both alzng
and A.
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Figure 4.4 — Histograms of secondary electric field appearing when a heterogeneous fluid
conductivity field is imposed an electrical potential difference in the (a-c) x-direction and
(b-d) y-direction. Two pairs of heterogeneous fluid conductivity fields are considered, having
variances (blue histogram) O%M = 0.3 and (orange histogram) U%’w = 3 and anisotropy factors
(first row) A = 1 and (second row) A = 5. The dashed black line marks the value of —1Vm™!.

For the x-component and A =1 (Fig. 4.4a), as O'lzng increases, the histogram of E;_, leans
towards the asymptotic value of —1Vm™!. This value is the amplitude of the impressed
primary electric field and thus represents a minimum bound for the secondary electric field,
due to energy conservation. Yet, note that there are some E;_,-values smaller than the
asymptote, thereby, highlighting the numerical issues mentioned in Subsec. 4.4.1. For the y-
component and A = 1 (Fig. 4.4b), E;_ is identically distributed to E;_ since the conductivity
field is isotropic. When A =5, a given value for alzna induces smaller amplitudes for E;_
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(Fig. 4.4c) compared to the isotropic case. The opposite behaviour is observed for E;_,
(Fig. 4.4d) that shows larger amplitudes.

For all the considered cases, the histograms seem to follow a three-parameter log-normal dis-
tribution, with the third parameter (or shift parameter) being the amplitude of the impressed
field —1Vm™!. This results remain to be confirmed through proper statistical testing.

4.4.3 Time-evolving setting

We consider now the temporal evolution of M,, for fluid conductivity fields that evolve from a
pulse injection and are transported at (Fig. 4.5a) low and (Fig. 4.5b) high Péclet numbers.

Figure 4.5 — Solute pulse transported in the positive x-direction at Péclet numbers of (a) 0.1
and (b) 1000.

It is observed that the spreading of the solute in the x-direction, A,y (Eq. 4.6) is almost
identical for the different Péclet numbers (Fig. 4.6a), however the mixing evolution, quantified
by the scalar dissipation rate y (Eq.4.7) divided by the diffusion coefficient D, y/D, is much
more marked for the high Péclet number (Fig. 4.6b). Accordingly, M, evolves differently for
both cases of transport (Fig. 4.6¢), reflecting its sensitivity to mixing. However, note that the
time-series of M), corresponding to the high Péclet number case is not very sensitive to the
mixing evolution for times before ~ 2000s. Also, by ¢ ~ 2 x 10*s, when y/D starts to decrease
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over time for the low Péclet number case, the time-series of M, corresponding to that case
do not show a decreasing trend.

Figure 4.6 — (a) Spreading of the solute, quantified by A, (b) mixing of the solute, quantified
by x/D and (c) observed mixing factor in the y-direction, M), for solute pulse transported at
Péclet numbers of (blue) 0.1 and (orange) 1000.

4.5 Conclusions and outlook

We have introduced a new petrophysical parameter, the mixing factor M, to interpret the
impact of sub-resolution saline heterogeneity on the equivalent electrical conductivity tensor.
We assessed how the observed equivalent electrical conductivity tensor, or mixing factor
tensor within our framework, can constrain the variance, anisotropy and connectivity degree
of ergodic 2-D multivariate-lognormal electrical conductivity fields. We observe that the
two components of the mixing factor tensor map univocally to the variance and anisotropy
ratio of the field with the mapping being modified by the connectivity degree of the field
in a non-homogeneous manner, that is, dependent on the geostatistical properties of the

109



underlying field. Furthermore, based on a primary-secondary decomposition of the electric
and conductivity fields we arrive at an identity that expresses the components of the mixing
factor in terms of the expected value of the product of the conductivity field fluctuations
and the secondary electric field component that is parallel to the conductivity measurement
direction. We expect that numerical issues related to the computation of electric fields in
the presence of conductivity contrasts are compromising the presented results. The main
advantage of the derived expression is that it narrows the problem of predicting equivalent
conductivity to gaining knowledge of the mapping between the statistics of the electrical
conductivity field fluctuations and those of the secondary electric field. Along this line, we
explore the statistical distributions of the secondary electric fields and we find that they are
log-normally distributed for all the cases. Considering a time-lapse setting, we observe high
sensitivity of the electrical data to differentiate between the spreading and mixing of the fluid
conductivity field.

This study remains to be further developed. First, we will continue exploring the statistical
properties of the secondary electric field in a static setting. Specifically, we will consider
electrical conductivity fields following different statistical distributions to assess how they
map to the corresponding distribution of the secondary electric field. Then, we will attempt
to calibrate numerical relationships between the variance and anisotropy factor describing
the fluid conductivity field and the variance and spatial correlation of the secondary electric
field. By advancing the knowledge concerning such mapping, the goal is to use the above-
mentioned identity to upscale electrical conductivity by using as input information the
geostatistical descriptors of the fluid electrical conductivity. Second, we will continue working
with the time-lapse setting where solutes are transported within a mass conservative system
with the mixing factors evolve over time. We will start considering the temporal evolution of
the mapping between the statistics of conductivity field and the secondary electric field under
diffusion limited transport. Within this transport scenario, given that the mixing rate depends
on the length scale of the structures (e.g., the layer widths in a layered solute concentration
field), it is expected that the observed time-series of mixing factors permit not only to extract
the anisotropy degree of the field but also to inform on an absolute measure of its structure,
for instance, the integral scale in the y-direction. After we will continue the analysis including
advection from (i) layered flow velocity fields and (ii) completely random velocity fields.

4.6 Appendices

4.6.1 Apppendix A: Equivalent electrical conductivity for non-isolating
matrix

In order to consider the case of a non-isolating matrix in our derivation we need to con-
sider Eq. 4.12 but integrating over the entire sample volume V (instead of V},) and split the
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integration volume into the pore and solid matrix volumes, V), and Vy, respectively, with
V =V, + Vm. We then have:

Opg = Ex)-Ex)dV, + — EX) -EX)dVyy,, 4.40
eq VES V,,() x)dVy, E(Z) VM() X)dVy ( )

where o)1 denotes the conductivity of the solid matrix. Proceeding similarly as before, we
arrive at the following expression for gq resulting from two conductive phases:

2

EM

(U +Eg)*+0
sSpx Slp

2 2
r +Ey))°+0
gy, + Fo) Efy

Oeq = Ho, P 52 +oMm(l—¢) 52 ) (4.41)
0 0

with Ef ® and EiV[ denoting the secondary fields in the pore and matrix spaces, respectively,
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Both u £, and u M depend on the values of u,, and ou. Thus, the two terms of Eq. 4.41

are not independent, implying that there is no assumption of conductive phases acting in
parallel, as is customary in petrophysical models relying on the high-salinity limit used to
account for surface conduction phenomena (e.g., Revil et al., 2018). Equation 4.41 has the
same form as the two-phase conductivity model proposed by Glover et al. (2000). Analogously
to the one-phase conductive model, we can derive expressions for the cementation exponents

corresponding to the solid and water phase, proposed by Glover et al. (2000), in terms of u £
and p M -
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Chapter 5

Conclusions and Outlook

Solute transport unfolds over multiple spatial and temporal scales. Conventional hydroge-
ological monitoring techniques alone are insufficient to capture all its complexity, mainly
because they provide information only at sparsely distributed locations near borehole wells.
At the same time, the direct-current (DC) geophysical method provides spatially-distributed
information on equivalent electrical conductivity, which is sensitive to the presence of
electrically-conductive tracers and carries information on tracer heterogeneity below the
electrical conductivity averaging scale. Thus, such data holds promise as a means to quanti-
tatively characterize the state and evolution of the spreading and mixing of solutes. However,
at present, no upscaling framework exists that links statistical measures of the tracer concen-
tration field and their temporal evolution with equivalent DC electrical conductivity under
general conditions. Furthermore, sub-resolution tracer heterogeneity is seldom considered
in hydrogeophysical studies and there are no uncertainty quantification related to it, leading
to systematic errors in the interpretations. The challenging nature of this problem makes it
necessary to consider controlled settings and tools allowing the electrical signatures related
to different transport scenarios to be assessed separately. In this thesis, we presented theo-
retical and experimental advances on the use of equivalent DC electrical conductivity and
associated time-series to constrain tracer heterogeneity and its evolution under advective-
and diffusive-dominated transport scenarios.

In the following, we critically discuss the results and conclusions of the research presented in
Chapters 2, 3 and 4.

5.1 Conclusions

In Chapter 2, we investigate synthetic electrically-monitored saline tracer tests performed
on heterogeneous hydraulic conductivity fields. The study is performed under continuous
tracer injection and advective-dominated transport. It is aimed to explore how the spread-
ing of solutes impacts the temporal evolution of the equivalent electrical conductivity and
what can be learned by observing the latter. We rely on a Bayesian inference framework
to quantify how well the time-series of the equivalent electrical conductivity tensor and
mass breakthrough can constrain the variance and integral scales of multivariate Gaussian
log-hydraulic conductivity fields. We focused the analysis on three test cases of hydraulic
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heterogeneity, namely, fields having either small or large isotropic structures, or fields ex-
hibiting fine layering parallel to the mean flow direction. We found that for all test cases
and data types, the variance of the fields, controlling the spreading rate of the solute, is the
best-constrained parameter, followed by the integral scales in the perpendicular and parallel
directions to the flow, respectively. We also observed that the mean flow-aligned component
of the electrical conductivity tensor consistently performs the best as conditioning data,
followed by the perpendicular component and the solute breakthrough ranking third. We
note that the parallel component is sensitive to the continuous paths created by the tracer,
that is, to the tracer arrivals at the outlet, whereas the perpendicular component is mainly
constrained by connection bottlenecks that tend to form away from the outlet region. At
the same time, the integrative nature of the electrical responses makes both components
more informative than the solute mass breakthrough, which is only directly sensitive to what
happens at the outlet of the domain. We point out that the constraining nature of the data is
assessed using both single and an ensemble of realizations of the hydraulic conductivity fields.
The performance of the electrical data appears less sensitive to the specific field realization
compared to the mass breakthrough, and this is again attributed to its integrating aspect.
Regarding differences between the test cases, the layered field is the best constrained setting.

One main limitation of the study presented in Chapter 2 is that we consider a known and
spatially-constant petrophysical relationship. In real settings this is probably not the case
and, thus, it is necessary to consider petrophysical heterogeneity within the conductivity
averaging volume, for instance, a spatially-variable formation factor. The superiority of
time-lapse geoelectrical data over mass breakthrough, observed in our study, remains to be
tested under such heterogenous petrophysical conditions. Furthermore, laboratory-based
experiments and extensions to 3-D media would be logical extensions to this study.

In Chapter 3, we report on an optically- and electrically monitored milli-fluidic laboratory
tracer test aimed at (i) testing a novel experimental setup and (ii) gaining conceptual under-
standing of the electrical signatures of the diffusion-limited mixing of an initially layered
tracer distribution. On the experimental side, we find that when working at low and interme-
diate Péclet numbers, the different diffusion rates of the optical (fluorescein) and electrical
(table salt; NaCl) tracers must be accounted for before reaching quantitative agreement
between the optically-inferred and measured time-series of equivalent DC electrical conduc-
tivity. This aspect is not considered in, for instance Jougnot et al. (2018), thereby highlighting
the importance of considering separately different transport scenarios. We observe that
electrical conductivity time-series measured using point electrodes aligned perpendicularly
to the concentration gradient are consistently maximal at times corresponding to the salt
diffusion transport time-scale associated with the layer width of our confined cell. We con-
firm this experimental finding with numerical simulations and find that these time-series
can also be used to constrain the initial layer widths and the degree of mixing of the tracer
upon arrival to the measurement electrode positions. We interpret this sensitivity in terms
of the simultaneous dependence of the time-series to both the net current flowing through
the domain and temporal variations in the electrical potential field. These discriminative
features disappear when using line electrodes as the imposed electrical potential field is
more constrained due to the electrode geometry. For the case of line electrodes, we find that
the time-evolving equivalent electrical conductivity in the direction of layering is strongly
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anti-correlated to two common solute mixing descriptors: the concentration variance and
the scalar dissipation rate.

We point out two technical challenges concerning the laboratory study presented in Chapter
3. First, the differences in the diffusion coefficients for the optical and electrical tracers
could easily be addressed in our diffusion-limited setting by a simple re-scaling of the times
for either data; a consequence of the linear dependence of the diffusion equation on the
diffusion coefficient. However, as advection becomes more relevant, such linearity does
not hold anymore. A possible workaround would be to perform separate experiments for
each salt, such that it experiences the same Péclet number at each time. To ensure this,
the two mean flow velocities in each experiment need to be chosen such that their ratio
equates the ratio of the diffusion coefficients of the salts. A second aspect to consider during
long experiments is fluorescein photobleaching, which during our experiment impacted the
image-inferred apparent conductivity time-series but not the measured ones, leading to an
increasing disagreement between the measured and simulated electrical responses over time.
In our experiment we tried to decrease photobleaching by using a flash lamp that diminished
the exposure time of the optical tracer. In addition, it is important to keep as reference a
fluorescein-saturated chamber, that is isolated from the tracer test but receives the same light
exposure over time. We stress that the non-linearity of the electrical conductivity averaging
makes it highly sensitive to eventual errors present during the collection and processing of
the optical data.

In Chapter 4 we introduce a new petrophysical parameter, the mixing factor M, which
accounts for the impact of fluid conductivity heterogeneity below the averaging volume. We
first investigate how the M-tensor can be used to constrain the degree of heterogeneity, small-
scale structure and connectivity of log-normally distributed fluid conductivity fields. We find
that the M-tensor maps univocally to the variance and anisotropy ratio of conductivity fields
and that the mapping is impacted by the connectivity of the field. By assuming that the REV of
the formation factor F is much smaller than the spatial fluctuations of the fluid conductivity
field, we use a decomposition of the electric field in its primary and secondary components to
arrive at an identity for M depending solely on the expected value of the product of the fluid
conductivity field fluctuations and the secondary electric field. This expression allows us to
attack the problem of electrical conductivity upscaling by studying the mapping between
the geostatistical properties of either field. We observe that the secondary electric fields are
log-normally distributed for all considered cases of heterogeneity. Considering a time-lapse
setting, we observe high sensitivity of the time-series of M to the mixing degree of the solute.

We point out two limitations and challenges related with the framework presented in Chapter
4. First, surface conductivity is not considered. However, by relying on the usual assumption
that surface conductivity acts in parallel with bulk fluid conductivity, we expect the corre-
sponding expansion to be straightforward. Second, it is assumed that solute mass is known
and conserved within the sample. This enables us to attribute temporal variations of the
conductivity solely to the evolution of the structure of the conductivity field. Expanding the
definition of M for non-conservative systems remains to be explored.

Below, we discuss a number of related expansions of the present work that we believe are of
significant interest.
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5.2 OQOutlook

Time-series of equivalent electrical conductivity collected during tracer tests are strongly
dependent on the time-evolution of the concentration field, which in turn is driven by the
flow-field. Thus, such data might be more strongly related with heterogeneity in the flow-field
rather than with hydraulic conductivity. This suggests that the research presented in Chapter
2 could be expanded by considering geoelectrical sensitivity to geostatistical parameters
or tortuosity (e.g., Koponen et al., 1996; Englert et al., 2006) of flow-field descriptors. For
this, we can for instance combine a Bayesian inference framework with a method producing
flow-fields with prescribed geostatistics. Regarding the inference framework, in Chapter 2
we used Approximate Bayesian Computation (e.g., Sisson et al., 2018), however we could use
instead the correlated pseudo-marginal method (Deligiannidis et al., 2018), which enables us
to assess the impact of the specific random realization of the field on the data. For generating
the flow-fields, the method by Kraichnan (1970) appears well-suited. In turn, as a next
step, we could relate the electrical data to concentration field descriptors. However, as the
concentration field is time-variant, it is more challenging to summarize than the steady-state
flow field. Spatial distributions of localized temporal moments (Cirpka and Kitanidis, 2000)
are one possibility to summarize time-series of solute concentration fields. The ultimate goal
is to estimate the uncertainty associated with electrically-inferred geostatistical or topological
descriptors of all the fields involved in the flow and transport forward modelling chain.

Electrically-monitored milli-fluidic tracer tests represent an appealing framework to (i) test
existing transport models and associated electrical conductivity upscaling frameworks and (ii)
gain conceptual insights. For instance, using milli-fluidic cells exhibiting dual porosity appear
to be an interesting way forward to assess the sensitivity of electrical data to dual-domain
mass transfer parameters and to shed light on the electrical signatures arising from multi-rate
mass transfer models. The permeability and boundary conditions of the milli-fluidic cell
can also be adapted to reproduce specific hydrogeological settings, for instance, a coastal
aquifer. Also, the usage of reactive tracers remains to be explored as well. For instance, the
average electrical response could be linked to the reactive front properties (e.g., Ghosh et al.,
2018), which can be controlled using different permeability distributions for the milli-fludic
cell. The resulting electrical potential field is very sensitive to the connectivity of the tracer
between the current injection electrodes. Such sensitivity can mask mixing-induced signals.
The self-potential method (e.g., Revil and Jardani, 2013) has shown potential to constrain the
transport of saline tracers (e.g., Straface and De Biase, 2013; MacAllister et al., 2018), thereby,
suggesting that combining milli-fludic experiments with self-potential measurements seems
worth to explore.

The research presented in Chapter 4 remains to be further developed. First, there is a need
for a systematic assessment of the mapping between the statistical properties of fluid con-
ductivity and secondary electric fields in both static and time-lapse settings. Specifically,
we will consider electrical conductivity fields following different statistical distributions to
assess how they map to the corresponding distribution of the secondary electric field. By
calibrating numerical relationships between the variance and anisotropy factor describing
the fluid conductivity field on the one hand and the variance and spatial correlation of the
secondary electric field on the other hand , the goal is to produce an upscaling approach

116



for electrical conductivity based on the mixing factor presented in Chapter 4. Within the
time-lapse setting, it is expected that the observed time-series of mixing factors permit not
only to extract the anisotropy of the saline field but also to gain insigths into its structure, for
instance, the integral scales.

As the objectives of electrically-monitored tracer tests become more quantitative and am-
bitious, it appears necessary to define the targeted quantities more precisely. The current
paradigm is based on relating equivalent electrical conductivity with mean salinity at some
scale by means of a petrophysical relationship. Sophisticated approaches have been de-
veloped around this aim, for instance, by targeting moments of the solute plume (Laloy
et al., 2012). However, based on the research presented in Chapter 4, an alternative could be
to perform inversion of the charge density distribution induced by the concentration field
gradient. This approach is explored in Li and Oldenburg (1991, 1992) but has not been pur-
sued further in hydrogeophysics. The relationship between charge density and conductivity
gradients depends on the local electric field, so the non-linearity of the electrical conductivity
averaging would still be present. For instance, a given conductivity gradient will accumulate
more or less charge depending on whether it is located at a connection bottleneck or not.
Then, translation of charge density into mean values of conductivity (or salinity) gradient
would remain a non-trivial task. However, the approach seems worth to be explored as
solute plume heterogeneity would be directly targeted. Along this line, provided that tracer
heterogenity induces a change in the volumetric chargeability (Seigel, 1959) of the medium,
the application of the Induced Polarization method (e.g., Oldenburg and Li, 1994; Ahmed
et al., 2019) could be considered as a natural complementary extension of the DC method for
mixing characterization.

One important limitation of the presented line of research is that equivalent electrical con-
ductivity is mostly impacted by the connectivity degree of the tracer, while its sensitivity to
one- and two-point statistical measures of solute concentration fields, directly related to
common spreading and mixing measures, appears rather to be a second-order factor control-
ling the average electrical response. Then, an underlying (and open) research question is,
how is the interplay between the connectivity degree of the tracer and the sensitivity of the
electrical data to its degree of solute spreading and mixing? For instance, the mixing of the
solute is very-well captured by the electrical data when it connects the injection electrodes.
However, it is largely invisible if the transport occurs perpendicularly to the conductivity
measurement direction. This is highlighted in Chapter 3. Certainly, an upscaling framework
linking small-scale tracer heterogeneity with average electrical data is likely to depend on
connectivity descriptors (e.g., Renard and Allard, 2013) of the tracer concentration field.
Along this line, percolation-based approaches could be a way forward for cases of very strong
salinity heterogeneity. However, the task becomes challenging because connectivity, while
being an intuitive notion, is not very-well defined in the literature. Thus, there is a need
of identifying a robust measure of connectivity for continuous fields and to relate it with
transport-relevant properties.
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