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Abstract
It has often been reported that mental exertion, presumably leading to mental fatigue, can negatively affect exercise perfor-
mance; however, recent findings have questioned the strength of the effect. To further complicate this issue, an overlooked 
problem might be the presence of publication bias in studies using underpowered designs, which is known to inflate false 
positive report probability and effect size estimates. Altogether, the presence of bias is likely to reduce the evidential value 
of the published literature on this topic, although it is unknown to what extent. The purpose of the current work was to assess 
the evidential value of studies published to date on the effect of mental exertion on exercise performance by assessing the 
presence of publication bias and the observed statistical power achieved by these studies. A traditional meta-analysis revealed 
a Cohen’s dz effect size of − 0.54, 95% CI [− 0.68, − 0.40], p < .001. However, when we applied methods for estimating and 
correcting for publication bias (based on funnel plot asymmetry and observed p-values), we found that the bias-corrected 
effect size became negligible with most of publication-bias methods and decreased to − 0.36 in the more optimistic of all the 
scenarios. A robust Bayesian meta-analysis found strong evidence in favor of publication bias, BFpb > 1000, and inconclusive 
evidence in favor of the effect, adjusted dz = 0.01, 95% CrI [− 0.46, 0.37], BF10 = 0.90. Furthermore, the median observed 
statistical power assuming the unadjusted meta-analytic effect size (i.e., − 0.54) as the true effect size was 39% (min = 19%, 
max = 96%), indicating that, on average, these studies only had a 39% chance of observing a significant result if the true 
effect was Cohen’s dz = − 0.54. If the more optimistic adjusted effect size (− 0.36) was assumed as the true effect, the median 
statistical power was just 20%. We conclude that the current literature is a useful case study for illustrating the dangers of 
conducting underpowered studies to detect the effect size of interest.

Key Points 

For most of the publication bias methods, there was 
evidence in favor of selective reporting and inconclusive 
evidence in favor of the effect, and the effect is substan-
tially reduced after the correction.

Assuming the meta-analytic effect size as the true effect 
size, most studies had underpowered designs to detect it.

The presence of publication bias and studies with under-
powered designs render the effect of mental exertion on 
exercise performance inconclusive.
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1  Introduction

Mental fatigue has attracted the attention of many sport sci-
entists over the course of the last two decades given the 
potential negative consequences for exercise performance 
[1–3]. A key hypothesis in this area is that performing a 
cognitive task with high demands increases the subjective 
feeling of mental fatigue, hindering performance in a sub-
sequent physical exercise task [4]. This hypothesis relies 
mainly on two assumptions: (1) cognitive tasks with high 
demands induce a state of mental fatigue and (2) that state of 
mental fatigue alters subsequent perception of effort during 
the physical exercise, thereby reducing the amount of effort 
individuals are willing to expend [4, 5]. While a cursory 
look at the literature seems to provide strong support for 
the mental fatigue hypothesis [2, 5], these conclusions may 
be nuanced by theoretical and methodological caveats. We 
first delve into the theoretical issues, and then focus on the 
evidential value of the empirical literature, which is the main 
aim of this article.

In the context of this article,1 mental fatigue can be 
defined as the feeling of being unable to continue perform-
ing optimally, likely due to depletion of the needed resources 
to accomplish the goals of the cognitive task. This may be 
accompanied by the feeling of the need to rest, to abandon 
the demanding task, or at least to switch to an easier one [6]. 
This may or may not translate into an objective decrease in 
cognitive performance, as compensatory mechanisms could 
be put in place to keep fulfilling the task goals [9]. In fact, 
subjective and objective indexes of mental fatigue do not 
always correlate [10, 11]. Furthermore, the emergence and 
degree of mental fatigue might depend on several factors 
[12] such as the goal, motivation, expectations and execu-
tive capacity of the individual, the (objective and perceived) 
difficulty of the task, and its duration [13].

The complex relationship between cognitive process-
ing and mental fatigue seems seldom considered in the 
majority of empirical studies looking at the effect of mental 
exertion2 on subsequent physical performance. First, they 
assume that performance in a cognitive task induces mental 
fatigue, and confirm that by reporting participants’ experi-
ence of mental fatigue by means of subjective scales (e.g., 
visual analog scale). However, individuals may not be able 

to accurately assess their cognitive states because of their 
limited metacognition, social desirability biases, and their 
variability when mapping sensations to ratings [12]. This 
may hence limit the interpretation of the subjective outcome 
recorded after cognitive tasks in these studies [14]. Second, 
the employment of standardized cognitive tasks (e.g., Stroop 
task) should be considered as a limitation because of their 
lack of individualization and level of engagement [12, 15]. 
For example, if the task is too difficult for them, the individ-
ual may become overwhelmed or frustrated, but not mentally 
fatigued [16]. Conversely, if the task is too easy, the individ-
ual may become bored and lose interest [16]. Furthermore, 
in the control conditions, tasks with theoretically lower 
cognitive demands or documentaries are often included, but 
they differ not only in terms of mental demands compared 
with the experimental task but also in terms of boredom 
and engagement [14, 17]. All this can have an impact on 
subsequent physical performance, but would not necessar-
ily be accompanied by, or linked to, mental fatigue. Related 
to that, the eventual reduced overall cognitive performance 
in the experimental condition with respect to the control 
condition (when two difficulty levels are used), or a more 
pronounced decline in performance over time, might not be 
indicative of heightened mental fatigue. Finally, even if the 
tasks are prolonged over time, the decrease in resources or 
increase in mental fatigue might not necessarily be associ-
ated with different exercise performance effects [1]. This 
could be explained by the fact that performing a cognitive 
task is a dynamic experience, albeit this has not yet been 
tested empirically [18]. For example, it may become easier 
and require less effort as the task progresses, to eventually 
be automated, although still requiring effort to stay focused 
despite boredom. In other words, performance-related fac-
tors such as motivation and effort might be more important 
than the duration of the task. All in all, these shortcomings 
challenge, or at least nuance, the interpretation regarding the 
effects of mental exertion on exercise performance in these 
studies based on the idea of mental fatigue.

Research on mental exertion and physical performance 
has some similarities with research conducted in the domain 
of ego depletion [19]. Ego depletion is based on the idea that 
all acts of willpower and self-regulation deplete a limited 
pool of resources, impairing performance in a subsequent 
(cognitive) task. Although this theory has been the corner-
stone of more than two decades of research on self-control, 
the existence of the effect has been questioned in recent 
years (for a review, see Vadillo, 2020 [20]). For instance, a 
multilab replication project found that the size of the ego-
depletion effect was small with 95% confidence intervals 
encompassing zero (d = 0.04, 95% CI [− 0.07, 0.15]) [21], 
and other research has pointed to the presence of strong pub-
lication bias in the literature [22].

1  Readers should note that there is much debate about how to define 
mental fatigue, an issue that goes far beyond the purpose of this arti-
cle. In this instance, we opted to use a definition we believe describes 
well what has been studied in the literature about mental fatigue and 
exercise. It is understandable that any definition is subject to discus-
sion [6–8].
2  Our use of the concept of mental exertion is intended to avoid the 
confusion between the effect of performing a cognitive task and its 
possible interpretation.
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Equally, there have been recent accounts challenging the 
strength of the mental exertion–exercise performance effect 
[3, 23]. For instance, the only preregistered study that has 
attempted to replicate the seminal study by Marcora et al. 
[24], failed to replicate these findings [23]. After watch-
ing a 90 min documentary or performing a mental exertion 
task (AX-CPT), 30 participants (in comparison with the 
16 participants of the original study) completed a time-to-
exhaustion cycling task. There was no evidence of reduced 
performance or increased perceived effort during the cycling 
task in the mental exertion condition [23]. Nonetheless, the 
fact that an original finding cannot be replicated does not 
mean that it does not exist, since science relies on the accu-
mulation of evidence [25].

In some cases, replications do not succeed because of 
inadequate replication methods or because of factors that 
moderate the results. However, original studies might not 
be replicated for a few other reasons. First, because there is 
no effect to be found [21]. Second, the use of questionable 
research practices such as p-hacking or optional stopping can 
overestimate the true effect size and lead to a large number 
of type 1 errors in the published literature after selecting for 
statistical significance [26–28]. Third, the presence of publi-
cation bias in combination with studies using underpowered 
designs can also distort the cumulative evidence [27, 29, 30]. 
For example, Wolff et al. [31] conducted a survey where, 
on average, 16% of respondents (277 out of 1721) had pub-
lished over three studies on ego depletion, and had com-
pleted more than two additional, unpublished studies. On 
the other hand, if studies are conducted with underpowered 
designs, the sampling error can cause large swings in effect 
size estimates [29, 32]. Indeed, studies with underpowered 
designs will only reach statistical significance if the study 
happens to yield an overestimated effect size. Indeed, most 
of the studies in the literature of mental exertion-exercise are 
based on low sample sizes (mean = 15, SD = 9.14; min = 8, 
max = 63) suggesting that some studies might have under-
powered designs to detect a range of hypothetical small and 
medium effect sizes. For instance, assuming a true Cohen’s 
d effect size of − 0.49 and a within-subject design, a study 
would require a sample size of 35 participants to achieve a 
statistical power of 80%.

The presence of these biases is problematic for the cred-
ibility of research because it reduces the evidential value of 
published literature, leading to overestimated meta-analytical 
effect sizes [33, 34]. For instance, the results of a systematic 
review and meta-analysis [3] on the effect of mental fatigue 
on exercise performance seemed to indicate a significant nega-
tive effect (dz = − 0.48, 95% CI [− 0.70, − 0.28]), but a bias-
sensitive analysis suggested that after adjusting for publication 
bias, this estimate was significantly smaller (dz = − 0.14, 95% 
CI [− 0.46, 0.16]) [3]. The evidential value of a literature body 
is determined by the number of studies examining true and 

false effects, the power of the studies that examine true effects, 
the frequency of type I error rates (and how they are inflated 
by p-hacking), and publication bias [35, 36]. Given that the 
likely presence of studies with underpowered designs has been 
overlooked, there is therefore uncertainty as to whether the 
published literature on this topic has provided reliable esti-
mates of the effect of mental exertion on exercise performance, 
whatever the cause of the effect.

One way to assess the evidential value of a body of litera-
ture is by considering the presence of publication bias and 
studies with underpowered designs. However, meta-analytic 
effect sizes are often taken at face value without considering 
the evidential value of the primary studies. Therefore, we 
considered it pertinent to perform further analysis to exam-
ine the evidential value of the studies investigating this topic, 
as has been done in other sport science areas [37]. Further-
more, to date, meta-analyses on the effect of mental exertion 
have relied on one [1, 38] or two methods [2, 3] to assess 
for publication bias and small-study effects. For instance, 
Giboin and Wolf [1] and McMorris et al. [38] only used 
Egger’s test and Begg’s test, respectively. Likewise, besides 
Egger’s test, Brown et al. [2] relied on the fail-safe method 
(which is known to be outdated and should be avoided) and 
Holgado et al. [3] used a three-parameter selection model. 
However, simulation studies investigating the accuracy of 
publication bias tests have shown that factors such as high 
heterogeneity and studies with small sample sizes can inflate 
type I error rates, decrease statistical power, and overesti-
mate or underestimate the meta-analytic effect size to a 
higher or smaller degree [39–41]. Indeed, Carter et al. [39] 
argued that no single meta-analytic method consistently out-
performed all the others due to the different assumptions 
underlying these methods. As a result, researchers have 
been recommended to rely on several publication bias tests 
[39, 40]. Methods such as robust Bayesian meta-analysis 
(RoBMA [42]) allow incorporating several approaches into 
the same analysis without needing to choose among them. In 
the present manuscript, we therefore examined the evidential 
value of primary studies included in previous meta-analyses 
and recent articles that have been published afterwards by 
assessing the presence of publication bias using several tests 
and the observed statistical power for a range of hypothetical 
effect sizes achieved by these studies. We hypothesized that 
(a) there would be evidence of publication bias and (b) most 
of the published articles would not have adequate power to 
detect the estimated meta-analytic effect size.

2 � Methods

The hypothesis, methodology, and analysis plan for this 
study were preregistered in the Open Science Framework 
along with the datasets generated and R scripts required to 
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reproduce both the statistical analyses and figures included 
in this meta-analysis (https://​osf.​io/​5zbyu/).

2.1 � Literature Search

We included studies with within-participants designs from 
previous meta-analyses investigating the effect of perform-
ing a mental exertion task before a physical exercise that 
provided enough information and fulfilled the inclusion 
criteria [1–3]. Additionally, given that the last available 
meta-analysis was published in 2020 [3], studies published 
afterward and up to May 2022 were also considered. Thus, 
we conducted a literature search for new studies through 
Medline, Scopus, and Web of Science in May 2022. We used 
four search terms related to mental fatigue and another four 
terms related to exercise: “mental fatigue” OR “cognitive 
fatigue” OR “mental exertion” OR “ego-depletion” AND 
“physical performance” OR “exercise” OR “muscle fatigue” 
OR “sport”.

2.2 � Study Selection

Studies were selected on the basis of the following inclu-
sion criteria: (1) available in English, (2) within-participant 
design, (3) participants completed a mental exertion task of 
any duration prior to a physical exercise, (4) the main out-
come was a measure of exercise performance (e.g., time, dis-
tance completed, average power/speed, or total work done), 
(5) the study provides necessary descriptive information of 
the main performance outcome. Studies investigating the 
effect of mental exertion on psychomotor or tactical skills 
were not included. The list of studies reviewed and the rea-
son for exclusion is available at https://​osf.​io/​5zbyu/.

2.3 � Data Extraction

A table containing data extracted from each study can be 
found at https://​osf.​io/​5zbyu/. The major two major pieces 
of information for the current study were the study’s effect 
size and its associated p-value. If participants completed 
more than two experimental conditions, we only consid-
ered the control condition and experimental condition (i.e., 
mental exertion) without other factors (e.g., mental exertion 
in hypoxia). For each study, the following information was 
extracted: (1) study design, (2) type of experimental condi-
tions, (3) exercise protocol and type of test, (4) statistical 
test and level of significance, (5) descriptive statistics (study 
sample size and mean ± SD) for both the experimental and 
control condition, and (6) the result of the statistical test 
(e.g., t(11) = 7.2, p < .001). We contacted authors to request 
unpublished data under two circumstances. First, when no 
sufficient statistical information was reported to recompute 
either the study effect size (i.e., t-statistic and sample size) 

or the p-value (i.e., degrees of freedom and F-ratio or t-sta-
tistic). Second, when a study used a factorial design with 
more than two experimental groups but no pairwise com-
parison of mental exertion condition and control condition 
was reported. Only one t-value and p-value per independ-
ent study/sample of participants for the main outcome was 
extracted to meet the independence criteria. The extracted 
p-value corresponded to the same statistical contrast as the 
effect size estimate.

2.4 � Effect Size Calculation

Because we only included within-participant designs (i.e., 
the most common design of this literature and also because it 
allows us to control for individual cognitive differences), we 
decided to use Cohen’s dz as our type of effect size estimate. 
The advantage of doing so is that dz scores are computed 
on the basis of the same information that is used to test for 
statistical significance in these studies (i.e., a paired-sample 
t-test) and, consequently, the confidence intervals of the 
effect size are more consistent with the p-values reported in 
the original papers. Second, the computation of dz does not 
require the correlation between dependent measures since 
correlation parameters are seldom reported as part of statis-
tical analysis. Thus, all study effect sizes were calculated as 
Cohen’s dz, representing the standardized mean difference 
between mental exertion and the control group. Cohen’s 
dz was calculated directly from the t-value and the num-
ber of participants using the formula provided by Rosenthal 
[43], as follows: dz = t/√n. If a study performed a one-way 
repeated measures ANOVA for the effect of condition, the 
F-ratio was converted into a t-statistic as t = √F. Equally, if 
the t-value was not available, but the exact p-value and sam-
ple were, we calculated the t-value with the following for-
mula in R: qt(1 − (p-value/2), N). In addition, we estimated 
repeated-measures correlations from t-values and F-values 
from one-way repeated measures ANOVA to reach an over-
all repeated-measures correlation that could be imputed in 
studies with more complex designs (i.e., two-way repeated 
measures ANOVAs; 14 out of 46). Overall, we could extract 
the correlations in 28 out of 46 studies and, subsequently, we 
obtained a meta-analytic Pearson’s r of .96, 95% CI .93, .99. 
By assuming it in studies with more complex designs, we 
estimated dz from means and standard deviations.

2.5 � p‑value Recalculation

In the case that the corresponding p-value was reported rela-
tively (i.e., p < .05), the p-value was recomputed for z-curve 
analysis when degrees of freedom and t-statistic were 
reported. In the case where the t-test was reported but not the 
degrees of freedom, degrees of freedom were inferred from 
the study sample size (N − 1). p-values were recomputed in 

https://osf.io/5zbyu/
https://osf.io/5zbyu/
https://osf.io/5zbyu/
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Microsoft Excel for Mac version 16.45 using the functions 
T.DIST.2T or F.DIST.RT for t-tests and F-tests, respectively.

2.6 � Statistical Analysis

2.6.1 � Meta‑analysis

The meta-analysis was performed using the metafor R pack-
age [44] in R version 3.6.1 (R Core Team, 2019) and relied 
on a random-effects model to fit the overall effect size to 
estimate the average reported effect of mental exertion and 
to assess heterogeneity in effect sizes. The overall effect size 
is reported along with 95% confidence and prediction inter-
vals. Heterogeneity across studies was assessed by means 
of Cochran’s Q to test whether the true effect size differs 
between the studies, Thompson’s I2 to assess the proportion 
of total variability due to between-study heterogeneity, and 
tau-squared (τ2) as estimate of the variance of the underlying 
distribution of true effect sizes.

2.6.2 � Testing for Small‑Study Effects and Publication Bias

Because previous research has shown that there is no sin-
gle publication bias and small-study effects method that 
outperforms all the other methods under each and every 
assumption tested [39, 40, 45–47], we used a triangulation 
approach, also known as sensitivity analysis, where we do 
not rely on only one single publication bias method, but use 
multiple publication bias methods instead [39, 48–50]. To 
test for publication bias, we relied on two types of methods 
based either on funnel plot asymmetry or reported p-values 
and selection models. Methods based on funnel plot asym-
metry were Egger’s regression test, which measures a gen-
eral relationship between the observed effect sizes and its 
precision, the skewness test [51], which adds to the Egger’s 
test (its equivalent T1) a measure of asymmetry based on 
the shape of the effect sizes’ distribution (Ts, leading to 
an independent p-value or a common T1–Ts p-value), and 
the limit meta-analysis (LMA; R package metsense [52]). 
Among p-value methods, we used a Three-parameter selec-
tion model with a one-tailed p-value cutpoint of .025 (3PSM 
[53]) and z-curve (R package z-curve 2.0 [54]). The z-curve 
method allows testing for publication bias by considering 
whether the point estimate of the observed discovery rate 
lies within the 95% confidence interval (CI) of the expected 
discovery rate. If the observed discovery rate estimate lies 
outside the 95% CI of the expected discovery rate is consid-
ered evidence of publication bias [54].

Most of these methods also allow adjusting the observed 
effect size accounting for publication bias, excepting the 
skewness test and z-curve. Among them, the precision-
effect test–precision-effect estimate with standard error 
(PET–PEESE [50]) represents a conditional procedure to 

correct the final effect size based on the significance of 
the intercept in the Egger’s meta-regressive model. For a 
detailed description of the limitations and assumptions of the 
methods implemented in the present meta-analysis, readers 
are referred to Carter et al. [39], McShane et al. [40], Stanley 
[45], Bartos and Schimmack [54], and Sladevoka [41].

We conducted Egger’s test, PET–PEESE, skewness test, 
and LMA with Fisher’s z for being a variance-stabilizing 
transformation for the effect size and preventing the artifac-
tual dependence between Cohen’s d and its precision esti-
mate [55]. For the Fisher’s z transformation, we converted 
Cohen’s dz into Cohen’s drm [56] for the sake of equivalency 
with a two-group standardized mean difference, and Cohen’s 
drm into Fisher’s z [57].

We report three deviations from the preregistered anal-
ysis. First, the limit-meta was not included in the prereg-
istered protocol [52]. LMA is based on the concept of 
increasing the precision of the meta-analytic effect size 
using a random-effects model that accounts for small-study 
effects [41]. Second, both p-curve and p-uniform methods 
were discarded following recommendations of Carter et al. 
[39]. These methods result in the overestimation of the true 
effect size under moderate-to-large heterogeneity. Finally, 
we conducted a robust Bayesian meta-analysis (RoBMA) 
[50] as it allows weighting multiple models of publication 
bias regarding their fit to the evidence, without needing 
to choose among them. RoBMA yields one single model-
averaged estimate of the effect size after simultaneously 
applying (1) selection models that estimate relative publi-
cation probabilities (i.e., selection model) and (2) models 
of the relationship between effect sizes and their standard 
errors (i.e., PET–PEESE). RoBMA makes multimodel infer-
ences, which are guided mostly by those models that predict 
the observed data best, about the presence or absence of 
an effect. On the basis of previous literature that reflect a 
prior belief of a substantial effect of mental exertion [1–3], 
we selected a normal distribution centered at − 0.46 (i.e., 
mean of the outcomes of the three cited meta-analysis) and 
with one standard deviation as the prior of the effect in the 
alternative hypothesis. For the effect belonging to the null 
hypothesis, we assumed a normal distribution centered at 0 
an equal standard deviation.

2.6.3 � Statistical Power

Several statistical power estimates were calculated using 
two different methods based on p-values and effect sizes. 
First, we conducted a z-curve analysis, which is based on 
the concept that the average power of a set of studies can 
be derived from the distribution of p-values (see [54] for 
technical details). This method converts significant and non-
significant p-values reported in a literature into two-tailed 
z-scores, and uses the distribution of z-scores to calculate 
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two estimates of average power using finite mixture mod-
eling: the expected discovery rate, which is the percentage 
of studies predicted to be significant based on the average 
power of published studies and the expected replication rate, 
which is the average power of the studies entered, which is 
also an estimate of the percent of the studies that one would 
expect to replicate if one performed the studies in exactly 
the same way as they were done before. Second, we used 
a range of hypothetical effect sizes to estimate statistical 
power using the R package metameta [58]. This package 
allows researchers to estimate the statistical power of the 
studies included in the meta-analysis by using (a) a range of 
hypothetical effect sizes and (b) the meta-analytic effect size 
estimate as the true effect size.

3 � Results

A total of 50 effect sizes were selected for eligibility, but 4 
were discarded because descriptive data were not reported 
and authors did not provide raw data upon request.3 A total 
of 46 effect sizes from independent samples were included 
in the meta-analysis [23, 24, 61–98]. A disclosure table con-
taining the list of 50 effects selected for eligibility, includ-
ing those included in meta-analysis and the literature search 
output, can be found at https://​osf.​io/​5zbyu/.

3.1 � Overall Meta‑analysis

The results of the random-effects meta-analysis are sum-
marized in Fig. 1. Across all studies, the random-effects 
meta-analysis revealed a statistically significant meta-
analytic effect size of dz = − 0.54, 95% CI [− 0.68, − 0.40], 
p < .0001. The 95% prediction interval for the meta-analytic 
effect size was [− 1.32, 0.24]. The significant Q-statistic, 
Q(45) = 127.73, p < .0001, led us to reject the null hypothesis 
that all studies share a common effect size. Instead, there 
was true heterogeneity between studies, suggesting the true 
effect sizes differed between the studies. The estimated 
heterogeneity was τ2 = 0.15. Furthermore, I2 was 66.58%, 
indicating that about two-thirds of total variability is due to 
between-study heterogeneity.

3.2 � Small‑Study Effects and Publication Bias

Results of small-study and publication bias tests are summa-
rized in Table 1. Although a visual inspection of the funnel 

plot suggested the existence of asymmetry, the Egger’s 
regression test using Fisher’s z and its standard error yielded 
a nonsignificant outcome, b1 = − 0.32, SE = 0.53, z = − 0.61, 
p = .542 (Fig. 2). In the same line, the test of small-study 
effects in LMA was not significant, Q(1) = 0.22, p = .636. 
In contrast, the skewness test was significant, Ts = − 1.00, 
95% CI [− 1.77, − 0.23], p = .005, along with the combined 
test, T1–Ts p-value = .011, both indicating asymmetry in the 
distribution of effect sizes. Similarly, the 3PSM approached 
a better fit assuming the presence of publication bias based 
on the study’s p-values, although it did not reach the signifi-
cance level: χ2(1) = 3.80, p = .051. In the z-curve (Fig. 3), 
the observed discovery rate estimate (.59) was numerically 
larger than the expected discovery rate (.51). However, the 
observed discovery rate lay within the 95% CI [.07, .71] of 
the expected discovery rate, suggesting that the available 
evidence was not sufficient to reject the hypothesis of the 
existence of publication bias. Finally, RoBMA found strong 
evidence in favor of heterogeneity, BFrf = 659,278.66, and 
strong evidence in favor of publication bias, BFpb = 8403.64. 
Therefore, most of the methods indicated the presence of 
publication bias in the reviewed literature, and those that 
did not reach the significance level offered numerical and 
visual trends in line with the presence of selective reporting.

As a subsequent step, we used most of the previous meth-
ods to adjust the final effect in the absence of bias. All of 
the applied methods converged to a reduction of the final 
effect size, most of them indicating a null outcome (Table 2). 
PET–PEESE is a two-step procedure whereby only if the null 
hypothesis is rejected, is the second step PEESE performed 
to calculate the adjusted meta-analytic effect size [50]. The 
PET estimate was selected because the procedure returned 
a nonsignificant effect, adjusted Fisher’s z = − 0.06, 95% 
CI [− 0.25, 0.13], p = .561, and, therefore, the null hypoth-
esis of zero effect could not be rejected (versus unadjusted 
Fisher’s z = − 0.11, 95% CI [− 0.17, − 0.07]). Likewise, 
LMA returned a nonsignificant adjusted Fisher’s z = − 0.06, 
95% CI [− 0.31, 0.20], p = .664 (versus unadjusted Fisher’s 
z = − 0.12, 95% CI [− 0.19, − 0.04]). The fit of the 3PSM 
returned a significant but substantially reduced adjusted 
effect size, adjusted dz = − 0.36, 95% CI [− 0.58, − 0.15], 
p = .001 (versus unadjusted dz = − 0.54). Finally, RoBMA 
led to a mostly smaller corrected effect size and inconclusive 
evidence in favor of the effect, adjusted dz = − 0.02, 95% 
CrI [− 0.47, 0.33], BF10 = 0.90 (from the drm outcome of the 
model, and using a common r = .96).

3.3 � Statistical Power

The metameta package [99] was used to calculate statisti-
cal power estimates for a range of hypothetical effect sizes. 
The median statistical power of the studies included in the 
meta-analysis, using the meta-analytic effect size estimate 

3  Researchers should ensure that raw data is made publicly available 
on public repositories, such as the Open Science Framework to facili-
tate reproducibility and reuse of data. The statement “data will be 
made available upon request” is outdated and, in most cases, implies 
that raw data will not be shared [59, 60].

https://osf.io/5zbyu/
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Fig. 1   Forest plot of Cohen’s dz 
from each individual study and 
the meta-analyzed effect size 
[including its 95% confidence 
interval (width of the rhombus) 
and its 95% prediction interval 
(whiskers)]

Table 1   Summary results of publication bias and small-study effects tests

Test Result Interpretation

Egger’s test (Fisher’s z) b1 = − 0.32, SE = 0.53, z = − 0.61, p = .542 Nonsignificant evidence for small-study effects
LMA Q(1) = 0.22, p = .636 Nonsignificant evidence for small-study effects
Skewness Ts = − 1.00, 95% CI [− 1.77, − 0.23], p = .005

T1–Ts p-value = .011
Potential publication bias

3PSM χ2(1) = 3.80, p = .051 Nonsignificant evidence for small-study effects
z-curve ODR estimate (.59) ∈ 95% CI [.07, .71] of the EDR Nonsignificant evidence for publication bias
RoBMA BFpb = 8403.64 Potential publication bias
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as the true effect size (dz = − 0.54) was 39% (min = 19%, 
max = 96%). The statistical power estimates of the studies 
included in the meta-analysis for a range of hypothetical 
effect sizes is shown in Fig. 3. If we assume the only one 
significant bias-corrected effect size (i.e., 3PSM, dz = − 0.36) 
as a true effect size, the median observed statistical power 
of the studies would be 20% (min = 11%, max = 70%). The 
z-curve method was also used to estimate average statisti-
cal power of all studies included in the meta-analysis (see 
Fig. 4). The expected discovery rate was .51, 95% CI [.07, 
.71], indicating that the average power of all studies was 
approximately 51%. The expected replication rate was .54, 
95% CI [.20, .73], indicating that the average power of only 
those studies reporting a statistically significant effect was 
54%.

4 � Key Findings

In the present manuscript, we attempted to examine the evi-
dential value of studies investigating the effect of a mental 
exertion on a subsequent physical exercise. We hypothesized 
that (a) there would be evidence of publication bias and (b) 
most of the published articles would not have adequate 
power to detect the estimated meta-analytic effect size. 
Although some tests for funnel plot asymmetry failed to 
reach a significant result for a general relationship between 
the observed effect sizes and its precision estimate, such as 
Egger’s regression test and LMA, the skewness test, which 
performs well under substantial heterogeneity (i.e., τ2 = 0.15 
and I2 = 67%), showed evidence of asymmetry based on the 
shape of the effect sizes’ distribution. The skewness test also 
contributed with a combination of both measures of asym-
metry that suggested the presence of small-study effects in 
the literature (i.e., T1–Ts p-value = 0.011). Among tests of 
publication bias based on p-values, 3PSM showed a bet-
ter fit assuming the presence of publication bias, while the 

Fig. 2   Funnel plot of study Cohen’s dz effect size versus the study’s 
standard error

Fig. 3   Distribution of z-scores. The vertical red line refers to a z-score 
of 1.96, the critical value for statistical significance when using a 
two-tailed alpha of .05. The dark-blue line is the density distribution 
for the inputted p-values (represented in the histogram as z-scores). 
The dotted lines represent the 95% CI for the density distribution. 
Range represents the minimum and maximum values of z-scores used 
to fit the z-curve. A total of 46 independent p-values (27 significant) 
were converted into z-scores to fit the z-curve model

Table 2   Summary results of adjusted effect sizes after publication-bias corrections

Test Result Interpretation

PET–
PEESE 
(Fisher’s 
z)

Adjusted Fisher’s z = − 0.06, 95% CI [− 0.25, 0.13], p = .561 (versus unadjusted Fisher’s z = − 0.11, 95% CI 
[− 0.17, − 0.07])

Null-adjusted effect

LMA Adjusted Fisher’s z = − 0.06, 95% CI [− 0.31, 0.20], p = .664 (versus unadjusted Fisher’s z = − 0.12, 95% CI 
[− 0.19, − 0.04])

Null-adjusted effect

3PSM Adjusted dz = − 0.36, 95% CI [− 0.58, − 0.15], p = .001 Reduced but sig-
nificant adjusted 
effect

RoBMA Adjusted dz = − 0.02, 95% CrI [− 0.47, 0.33], BF10 = 0.90 (from the drm outcome of the model, and using a 
common r = .96)

Null-adjusted effect
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z-curve could not reject the null hypothesis of no publica-
tion bias. Finally, RoBMA, which offers a model-averaged 
estimate of the effect size after fitting models of both types 
of approaches (i.e., funnel plot asymmetry and selective 
reporting based on p-values) found strong evidence in favor 
of publication bias.

Therefore, it seems that there was substantial evidence in 
favor of selective reporting in the literature of mental exer-
tion on exercise performance. Under those conditions, all 
methods converged to a substantial reduction of the final 
effect size, in most cases leading to a null outcome, such 
as PET–PEESE (adjusted Fisher’s z = − 0.06, p = .561), 
LMA (adjusted Fisher’s z = − 0.06, p = .664), and RoBMA 
(adjusted dz = − 0.02, BF10 = 0.90). RoBMA also found 
inconclusive evidence in favor of the effect (BF10 = 0.90). 
The only method that reported a still significant effect was 
3PSM, although it offered a meta-analytic effect size after 
adjusting for publication bias reduced by at least 0.18 stand-
ard deviations (dz = − 0.36, p = .001). On the basis of the 
results from all the applied methods, it seems reasonable to 
conclude that the negative effect of mental exertion on exer-
cise performance, if it exists, is likely to be much smaller 
than reported.

Furthermore, the median observed statistical power 
assuming the meta-analytic effect size (dz = − 0.54) as the 

true effect size was 39% and if the more optimistic adjusted 
effect size, the one by 3PSM was assumed as the true effect 
(− 0.36), the median statistical power was 20%. These results 
are also in line with the results obtained from the z-curve 
analysis which yielded an observed statistical power of 51%, 
95% CI [.07, .71], for both significant and nonsignificant 
results. Both the shrinkage of the meta-analytic effect size 
estimate after adjusting for publication bias and the presence 
of underpowered designs might therefore suggest that the 
evidential value of the studies included in this meta-analysis 
is low on average.

4.1 � The Negative Expectancies About Mental 
Fatigue Should be Lower

In this study, we analyzed the evidential value of the empiri-
cal literature on the effect of mental exertion during a cogni-
tive task has a negative consequence on subsequent physical 
exercise [24, 63, 65], independent of the causal mecha-
nism responsible for the effect. The meta-analysis results 
(dz = − 0.54, 95% CI [− 0.68, − 0.40]) revealed that mental 
exertion might hinder exercise performance. However, when 
the overall estimate is adjusted for publication bias, most 
of the tests provided nonsignificant and a largely reduced 
adjusted estimate of the true effect of mental exertion on 

Fig. 4   Observed statistical power estimates for studies included in the 
meta-analysis assuming a range of hypothetical effect sizes [− 0.1, 
− 1]. The leftmost column (obs) refers to the observed statistical 

power assuming the meta-analytic effect size (dz = − 0.54). The rest 
of the columns represent the observed statistical power of each study 
given a hypothetical effect size
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exercise performance, suggesting that the effect might be 
substantially smaller (see Table 2). For instance, the new 
meta-analytic effect size was reduced by at least 0.18 stand-
ard deviations on the basis of the results from the 3PSM 
(dz = − 0.36, p = .001). The reasons for publication bias are 
multiple [100, 101], but it varies from editorial predilection 
for publishing positive findings, researchers’ degree of free-
dom in analyzing the data [102], authors not writing up null 
results, and other causes. The presence of publication bias 
in a set of published studies is likely to inflate study effect 
sizes and type I error rate, especially when these studies have 
underpowered designs. Indeed, the overall negative effect 
observed in this meta-analysis (Cohen’s dz = − 0.54) might 
be driven by some studies reporting inflated large effects and 
with high standard error due to study small sample sizes (see 
Fig. 2). Due to the unreliability of the cumulative evidence 
from experimental studies, there is no certainty of a causal 
effect, just as there is no certainty of its absence.

4.2 � Low Replicability

The power analysis revealed that even considering 
dz = − 0.54 as the true effect size, only three studies achieved 
the considered adequate power of 80%, and only two oth-
ers would be close (see Fig. 4). The median power of the 
literature indicates that if we were to conduct 10 exact rep-
lications, only ~ 4 out 10 studies would find the expected 
effect. If we assume the more optimistic adjusted estimate 
(among all the publication bias methods we applied), these 
results would be even more dramatic and all studies would 
be underpowered to detect the adjusted effect. Indeed, a sam-
ple size of 63 participants would be required to find a true 
effect size of − 0.36 given an intended power of 80% and 
a paired t-test. The z-curve analysis adds further support 
to the above results, since the expected discovery rate was 
.51, 95% CI [.07, .71], which corresponds to the long-run 
relative frequency of statistically significant results. There-
fore, in the future, the sample size should be significantly 
increased, rather than performing exact replicates. The prob-
lem of underpowered studies stems from three main issues.

First, just by the definition of statistical power, if a study 
has an underpowered design, it has a low probability of 
detecting a significant effect even if there is one to be found 
(or the null hypothesis is false) [103]. This is reflected in 
the observed discovery rate for this literature, which was 
estimated to be 59%—this is the percentage of articles pro-
viding a significant result assuming there is a significant 
effect to be found. One consideration of this value is that 
the observed discovery rate does not distinguish between 
true and false discoveries. Second, studies with low power 
designs are more likely to produce overestimated effect sizes 
[29, 104–106]. This will result in literature filled with exag-
gerated effect estimates if significant original findings are 

more likely to be published. As far as we know, only one 
preregistered and replication study to date has been con-
ducted, and the reported effect size was substantially lower 
and in the opposite direction of the original study [23, 24]. 
Though replication efforts are still very scarce in the field 
[107], data from similar disciplines such as psychology show 
that only half of the original studies were replicated [106, 
108] and this would be in agreement with the expected repli-
cability rate of .54 (see Fig. 3). Third, the presence of studies 
with underpowered designs to find the effect of interest may 
lead to a bias in the literature due to the increased propor-
tion of false positives [109, 110]. Altogether, the presence 
of studies with underpowered designs hinders the replicabil-
ity of scientific results and if only studies with significant 
results were going to replicate, only 54% of them would 
yield another significant result. Despite these limitations, 
the results obtained from studies with underpowered designs 
have usually been taken at face value. In the past, power 
issues had been overlooked in the evaluation of results and 
whenever an effect was significant, it was assumed that the 
study had enough power [111]. The result is that there has 
been limited incentive to conduct studies with adequate 
power [112–114]. Meta-analyses may minimize some of the 
shortcomings of low-power studies, but they cannot provide 
a realistic picture of the literature as a whole from a set of 
low-powered studies [115]. In light of this, the aphorism 
“Extraordinary claims require extraordinary evidence” may 
be applicable.

4.3 � This Effect Cannot be Discarded

Although it might sound cliché, absence of evidence of an 
effect does not necessarily prove its absence. In line with 
our results, another caveat in the literature is effect-size het-
erogeneity [1–3, 5]. Effect-size heterogeneity refers to the 
variance in true effect sizes underlying the different stud-
ies—that is, there is no single true effect size but rather there 
is a distribution of true effect sizes. Even when the mean 
distribution of the true effect size is negative, it is likely that 
some studies yield effect size estimates around zero or even 
positive. Heterogeneity is not only reflected on the results 
of Q-statistic test and I2 estimate but also on the 95% pre-
diction interval as its width accounts for the uncertainty of 
the summary estimate, the estimate of between study stand-
ard deviation in the true effect, and the uncertainty in the 
between study standard deviation estimate itself. Although 
the prediction interval is below zero [− 1.32, 0.24] and thus 
indicating the effect will be detrimental in most settings, the 
interval overlaps zero and so in some studies the effect may 
actually be nondetrimental. Then, as we are unaware of the 
true effect, the results of future implementations are unclear. 
This finding is masked when we focus only on the average 
effect and its confidence interval. However, its width will 
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be also enlarged by bias such as publication bias and stud-
ies with underpowered designs, in addition to that caused 
by genuine effect. Therefore, it is possible that performing a 
mental exertion task does not affect all types of exercise or 
that the fitness level of participants might mediate its effect. 
However, the actual presence of these moderators should be 
interpreted with caution in a set of studies with low statisti-
cal power and publication bias.

5 � Final Remarks

Studies conducted so far have not provided reliable evidence 
that a causal effect exists, but it is also not certain that one 
does not exist. It is not only this field of research that suffers 
from publication bias and low statistical power [37, 101]. In 
fact, numerous voices have recently highlighted this problem 
in sport science literature [37, 101, 116–119]. However, this 
should not be used as an excuse to ignore publication bias 
and low statistical power. Moreover, as we have seen, meta-
analyses are not the ultimate tool to solve the problem of low 
power. Despite the potential for meta-analyses to mitigate 
some shortcomings of individual studies, results are largely 
dependent on the quality of the included reports. Moreo-
ver, several sources of publication bias (e.g., small-study 
effects and selective reporting based on p-values) should be 
considered when performing meta-analyses, as each method 
is built over specific assumptions [39]. An intervention is 
sometimes considered to be effective or not based solely 
on its estimated effect size in a meta-analysis, rather than 
considering the quality of the primary studies and publica-
tion bias. Results from a meta-analysis that shows a high 
selection bias and low replication rate need to be verified 
independently in experiments with larger samples (ideally in 
a multilab study [120]). Nonetheless, the possible negative 
effects that mental exertion could have on human physical 
performance cannot be ruled out, but the current evidence 
suggests that perhaps expectations about this effect should 
be reduced [1–3, 5].

At a theoretical level, this literature would benefit from inte-
gration of other approaches. The literature has assumed that 
the increased subjective feeling of mental fatigue affects exer-
cise performance and it is mediated by perception of effort. 
Indeed, mental exertion may increase subjective feelings of 
mental fatigue, but mental fatigue and perception of effort may 
be influenced by other cognitive processes [121]. In addition, 
these studies usually employ standard tasks, and the cognitive 
load is not adapted to individual abilities [15]. Because they 
are not adapted, participants can be anywhere between the 
boredom and distress spectrum [16]. If there is insufficient 
engagement in the task, boredom can arise and it can modify 
the behavior of an individual [15, 122]. As a result of boredom, 
people might perceive the cost/value of subsequent activities 

differently [14, 123]. When bored, people search for alternative 
tasks, especially ones that they enjoy. Hence, exercise might 
be considered as a more rewarding activity and we should not 
expect a decrease in performance [123–125].

Finally, researchers cannot survive as transparent individu-
als in a system in which the lack of Open Science practices is 
the norm [126] and we strongly encourage researchers to pre-
register study protocols, conduct pre-study power calculations 
for sample size justification, and make data and materials pub-
licly available to improve credibility [59, 127–129]. Consider-
ing the present findings, we encourage caution when making 
claims or making recommendations on how to counteract the 
detrimental effects of mental fatigue on exercise performance.
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