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a b s t r a c t 

Recovering the T 2 distribution from multi-echo T 2 magnetic resonance (MR) signals is challenging but 

has high potential as it provides biomarkers characterizing the tissue micro-structure, such as the myelin 

water fraction (MWF). In this work, we propose to combine machine learning and aspects of paramet- 

ric (fitting from the MRI signal using biophysical models) and non-parametric (model-free fitting of the 

T 2 distribution from the signal) approaches to T 2 relaxometry in brain tissue by using a multi-layer per- 

ceptron (MLP) for the distribution reconstruction. For training our network, we construct an extensive 

synthetic dataset derived from biophysical models in order to constrain the outputs with a priori knowl- 

edge of in vivo distributions. The proposed approach, called Model-Informed Machine Learning (MIML), 

takes as input the MR signal and directly outputs the associated T 2 distribution. We evaluate MIML in 

comparison to a Gaussian Mixture Fitting (parametric) and Regularized Non-Negative Least Squares algo- 

rithms (non-parametric) on synthetic data, an ex vivo scan, and high-resolution scans of healthy subjects 

and a subject with Multiple Sclerosis. In synthetic data, MIML provides more accurate and noise-robust 

distributions. In real data, MWF maps derived from MIML exhibit the greatest conformity to anatomical 

scans, have the highest correlation to a histological map of myelin volume, and the best unambiguous 

lesion visualization and localization, with superior contrast between lesions and normal appearing tis- 

sue. In whole-brain analysis, MIML is 22 to 4980 times faster than the non-parametric and parametric 

methods, respectively. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The spin-spin relaxation rate T 2 is one of the basic tissue- 

pecific, quantitative parameters which can be measured or used 
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o give image contrast in MRI ( Haacke et al., 1999 ). However, while

ommonly presented as a single number per voxel, tissue hetero- 

eneity and partial volume effects renders it more appropriate to 

onsider distributions of T 2 s per voxel rather than a single T 2 value 

 Menon and Allen, 1991 ). We distinguish single-component T 2 re- 

axometry, where each voxel is characterized with a single T 2 , from 

ulticomponent T 2 relaxometry, where each voxel is characterized 

ith a T 2 distribution. In general, T 2 distributions are reconstructed 
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rom multi-echo T 2 MRI signals, which can be acquired, for exam- 

le, through multi-echo spin echo sequences, where a 90 ◦ excita- 

ion pulse is followed by a train of 180 ◦ refocusing pulses. Given 

 sequence of n pulses, the signal s is a vector of n measurements

t the corresponding echo times ( T E i ). Let p(T 2 ) and α denote the

istribution of T 2 s in a voxel and the effective flip angle of the re-

ocusing pulses, respectively. If α = 180 ◦ and the voxel is assumed 

o have a single T 2 , then the decay of the signal is exponential, as

s implied by the Bloch equations ( Bloch, 1946 ). In practice, inho- 

ogeneities in the transmit field ( B 1 + ) result in an effective refo-

using pulse that can vary significantly from 180 ◦ and can be spa- 

ially heterogeneous ( Prasloski et al., 2012a ). This leads the result- 

ng signal to deviate from the ideal exponential behavior, which 

an be modelled using the extended phase graph (EPG) formalism 

 Hennig, 1988 ). The EPG formalism considers as parameters α, T E, 

 1 and a single T 2 . The code used for the EPG simulations in this

ork is based on work in ( Layton et al., 2013 ). We use the com-

on simplification of fixing T 1 = 10 0 0 ms, as the T 1 relaxation time

annot be estimated using the acquisition sequences we examine 

n this work ( Neumann et al., 2014 ); hence, it is commonly fixed

o its mean value in brain tissue. Then the normalized signal fol- 

ows 

 (T E i ) = 

∫ 
EP G (T E i , T 1 , T 2 , α) p(T 2 )d T 2 . (1) 

ne key application of multi-component T 2 relaxometry is in neu- 

oimaging, where the different parts of the T 2 distribution are as- 

umed to arise from the different anatomical compartments in 

rain tissue, particularly in white matter. This can be used, for 

nstance, to generate a map of the myelin water fraction (MWF) 

 Piredda et al., 2020b ) such that areas of demyelination corre- 

ponding to the effects of neurodegenerative disorders can be 

dentified ( MacKay and Laule, 2007 ). In particular, it is commonly 

ssumed/modelled that the T 2 distribution in white matter con- 

ains multiple lobes having well-separated peaks, and that the 

ventual overlap between the T 2 lobes of myelin and the in- 

ra/extra axonal space water pools is minimal ( Mackay et al., 1994; 

hittall et al., 1997; Vasilescu et al., 1978; Menon and Allen, 1991; 

enon et al., 1992 ). 

.1. Related work 

In order to estimate p(T 2 ) from equation (1) , two main ap- 

roaches are generally used: parametric and non-parametric ap- 

roaches. Parametric approaches rely on a priori information on 

he T 2 distribution in brain tissue, particularly white matter, in or- 

er to fit the parameters of biophysical models to the MRI sig- 

al ( Raj et al., 2014a; Du et al., 2007; Yu et al., 2019; Chatterjee

t al., 2018; Akhondi-Asl et al., 2014; Björk et al., 2016 ). In these

pproaches, the MRI signal is modelled as a linear combination of 

ignals from a fixed number of water pools (around 2-3) such as 

yelin water, the water in the intra-/extra-axonal space, and cere- 

rospinal fluid: 

p(T 2 ) = 

n ∑ 

i =1 

v i F i (m i , T 2 ) (2) 

Here n is the number of water pools assumed, and F i , m i , v i 
re the probability distribution, parameters of the probability dis- 

ribution, and volume fraction of the i th water pool. A wide va- 

iety of parametric distributions (Delta, Gaussian, Truncated Gaus- 

ian, Wald, Gamma, Log-Gaussian, Laplacian) are used to model the 

 2 distributions in these pools; however, ( Raj et al., 2014a ) shows 

hat using these different distributions have negligible differences 

n the corresponding signal when using the same means and vari- 

nces; they conclude that due to the ill-posedness of the inverse 
2 
roblem, extracting more than general lobular shapes (character- 

zed by the mean and variance) is extremely difficult if not im- 

ossible, even at extremely high signal to noise ratios (SNR). The 

arameters estimated are the water volume fractions and the pa- 

ameters of the distributions which are done through optimization 

 Chatterjee et al., 2018; Björk et al., 2016 ) or Monte Carlo methods 

 Prange and Song, 2009; Yu et al., 2019 ). To stabilize the fitting and

o use prior information on the compartments, constraints are en- 

orced on the parameters. For instance, the mean T 2 of myelin wa- 

er is typically bounded between 10 and 40 ms, and the mean T 2 of

SF is typically assumed to be greater than 1 s. Some works, such 

s ( Chatterjee et al., 2018 ), go even further and fix the mean or

tandard deviations of the probability distributions of some com- 

artments to predetermined values. While parametric estimations 

re generally stable and histologically validated, they are usually 

omputationally expensive and restricted by the biophysical model 

sed; the number of compartments needs to be fixed for each 

oxel before fitting. Further, we note that the a priori information 

sed in the parametric approaches i.e. the assumption of lobular 

tructure, bounds on the parameters of the distribution, etc. comes 

rom historical evidence, where studies used non-parametric meth- 

ds to estimate the T 2 distributions and assigned lobes in their re- 

onstructions to different water pools ( Alonso-Ortiz et al., 2015 ). 

In contrast, non-parametric approaches do not make a priori 

ssumptions on the data, such as the number of compartments. 

his is relevant for studying abnormal brain tissue, where com- 

artments not considered in standard biophysical models might be 

resent ( MacKay and Laule, 2007 ). In addition, they generally re- 

uire orders of magnitude less computation time than paramet- 

ic methods. Non-parametric methods discretize equation (1) as a 

roduct of a dictionary matrix and a discretized T 2 distribution and 

olve directly for the discretized T 2 distribution ( Whittall et al., 

997; Prasloski et al., 2012a ) using non-negative least squares 

NNLS) algorithms ( Lawson and Hanson, 1995 ). The T 2 distribution, 

p(T 2 ) , is recovered by solving an inverse problem ( Whittall et al., 

997; Prasloski et al., 2012a ). First, given discretized ranges of flip 

ngle ( α) values and T 2 values, a dictionary D α of T 2 decay signals

s constructed for each α value through the EPG formalism. D α is a 

atrix where the columns are the simulated MRI signals (obtained 

rom the experimental TEs) over a range of T 2 values . Given a flip 

ngle α, the corresponding dictionary D α, and the MRI signal s , 

he following optimization problem is solved 

rg min p ≥0 ‖ D αp − s ‖ 

2 
2 + λ�(p ) (3) 

here � is a regularization function with parameter λ, and p is 

he discretized, un-normalized T 2 distribution to be estimated. The 

ip angle corresponding to s is chosen by solving the above prob- 

em (with λ = 0 ) for multiple values of α and taking the value 

hich corresponds to the least fitting error ( Prasloski et al., 2012a ). 

wo standard choices for �(p ) ( Whittall and MacKay, 1989 ) are 

• �(p ) = ‖ p ‖ 2 2 , which we refer to as Tikhonov regularization. 
• �(p ) = ‖ L p ‖ 2 

2 
, where L is a finite difference approximation of

the Laplacian operator. We refer to this as Laplacian regulariza- 

tion. 

These choices are used in order to promote increased condition- 

ng of the problem and the smoothness of the resulting distribu- 

ion ( Kroeker and Henkelman, 1986 ). Without regularization, solu- 

ions to Eq. (3) are vulnerable to noise and usually produce inaccu- 

ate solutions that overfit the signal with e.g. false positive peaks, 

tc. A common heuristic for selecting λ is to accept λ such that the 

ignal fitting error is approximately 1.02–1.025 times greater than 

he error from NNLS with no regularization ( Laule et al., 2006 ). 

owever, it is known that regularization can introduce undesirable 

ias to the reconstructed signals, e.g. over-smoothing. In particu- 

ar, regularization can contradict the expectation of disparate lobes 
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Fig. 1. An overview of our method (MIML) for multicomponent T 2 relaxometry where we learn a mapping from the multi-echo MR signal to the corresponding T 2 distribution. 

On the left are example MR signals, on the right are the corresponding T 2 distributions: the first distribution is in white matter (WM), where there are assumed to be two 

lobes: one at a T 2 of around 10–40 ms corresponding to myelin water and one at a T 2 of around 50–120 ms corresponding to the intra and extra axonal spaces. The 

second distribution includes WM and cerebrospinal fluid (CSF), whose T 2 is commonly assumed to be around 1-2s. Our method consists of training a neural network on a 

synthetic dataset derived from biophysical models to learn the mapping from signal to distribution. At the bottom, we show a small subset of 10 0 0 simulated signals and 

corresponding T 2 distributions from our synthetic training dataset. 
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n the distribution corresponding to disparate tissues in the same 

oxel (e.g. myelin and intra/extra axonal space water), particularly 

t lower SNRs. For example, at low SNRs, the myelin water lobe 

an become completely over-smoothed, for an example see Fig. 1 

n the Supplementary Material. 

Once the T 2 distribution is recovered, generating parameters 

f interest such as volume fractions of the water pools in the 

oxel require either a distribution where distinct lobes can be 

ssigned to distinct compartments (such as in the right side of 

ig. 1 ) or a priori information. After examining distributions re- 

onstructed from experimental scans, the different lobes of the 

istributions (if distinct lobes are present) are assigned to differ- 

nt water pools based on theoretical and experimental grounds 

 MacKay and Laule, 2007 ). From the mean and standard deviation 

f these lobes, bounds are derived for the T 2 values for each wa- 

er pool. Then water volume fractions for each pool are calculated 

y integrating the probability distribution between the bounds of 

he T 2 for each pool. For instance, at 3T the myelin water fraction 

MWF) is usually computed as 

W F = 

∫ T 2 =40 ms 
T 2 =10 ms p (T 2 )d T 2 ∫ T 2 =20 0 0 ms 

T 2 =10 ms p (T 2 )d T 2 
, (4) 

here the bounds 10–40 ms were obtained from the myelin water 

obe in NNLS reconstructions in past papers ( Alonso-Ortiz et al., 

015 ). 

We note previous studies found that both parametric and 

on-parametric methods require a high signal-to-noise ratio 

SNR) to detect different com ponents in the T distribution 
2 

3 
 Graham et al., 1996; Andrews et al., 2005; Wiggermann et al., 

020 ). For a clinically achievable SNR = 100, more than 5 % of the

oxels were incorrectly estimated to have no myelin water compo- 

ent, and the percentage raised to 12 % for SNR = 50 ( Kumar et al.,

012 ). Similar results were reported in ( Raj et al., 2014b ), where

he myelin water component was not found in human brain re- 

ions located in myelinated areas of the frontal and lateral projec- 

ions fibers. In addition, Wiggermann et al. (2020) found that in 

ynthetic studies, NNLS with Tikhonov Regularization tends to un- 

erestimate the true MWF value in the range of 0.3 to 4% at SNR 

0 0 0, with the problem worsening at lower SNRs; for reference, 

he MWF is assumed to be in the range of 0–30% in normal ap- 

earing white matter. 

Recently, Lee et al. ,( Liu et al., 2020 ) have both proposed to aug-

ent non-parametric approaches with machine learning in order 

o speed up the computation time. As training data, they acquired 

rain scans in several subjects in vivo using a 3D multiple echo 

radient and spin echo sequence with 32 echoes ( Prasloski et al., 

012b ). They then ran regularized NNLS reconstructions on the 

ata and obtained the probability distributions and MWF for each 

oxel. Liu et al. (2020) trained a multi-layer perceptron (MLP) to 

ake as input the raw data, and output the MWF, using the in 

ivo NNLS reconstructions as ground truth. Lee et al. (2019) trained 

LPs to reconstruct the MWF as well as the probability distri- 

utions from the raw echo data, using the in vivo NNLS recon- 

tructions as ground truth. These approaches have the advantage 

f reconstructing regularized NNLS solutions for the whole brain 

n under a minute, a fraction of the time required using the stan- 

ard NNLS algorithm. However, as their ground truth is the reg- 
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Table 1 

The ranges for the possible mean ( μ) and the standard deviations ( σ ) used for the 

Gaussian, T 2 distributions of the different water pools used in our dataset. 

Range of Mean and Standard Deviation for Simulated Water Pools 

Water Pool Range of Mean T 2 ( μ) Range of Std. of T 2 ( σ ) 

Myelin 15–30 ms 0.1–5 ms 

Intra/Extra Axonal Space (IES) 50–120 ms 0.1–12 ms 

Gray Matter (GM) 60–300 ms 0.1–12 ms 

Pathology 300–1000 ms 0.1–5 ms 

CSF 1000–2000 ms 0.1–5 ms 
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larized NNLS solution, their method inherits all the problems of 

NLS. Further, by training on data acquired from specific MRI ma- 

hines using a specific sequence, there is the problem of gener- 

lizing to different machines and different sequences. Both would 

equire new acquisitions as well as additional training time. 

In summary, parametric methods implicitly regularize and sta- 

ilize the problem by using biophysical models and prior knowl- 

dge to constrain the space of T 2 distributions. However, the re- 

ulting optimization problems to be solved are significantly more 

ostly than those of non-parametric methods, with an additional 

oss of flexibility due to imposition of the number of compart- 

ents and other details of the model. Non-parametric solutions are 

ast, but also ill-posed and highly susceptible to noise; hence, reg- 

larization is necessary, with the concomitant drawbacks of over- 

moothing and sparsity of the reconstructed distributions, particu- 

arly at clinically achievable SNRs for sequences with high spatial 

esolution. Further, the extraction of parameters of interest such as 

he MWF is theoretically based on assuming a lobular structure of 

he reconstructed distribution, which is often not the case in mid- 

ling to high levels of noise. 

.2. Contributions 

In this paper, we propose a new method for multi-component 

 2 relaxometry in brain tissue. In Fig. 1 , we show the overview 

f our proposed method as well as a prototypical T 2 distribu- 

ion in white matter, composed of the myelin water lobe and the 

obe corresponding to the water in the intra/extra axonal space; 

n addition, we show the corresponding MRI signal. We propose 

o combine machine learning and aspects of parametric and non- 

arametric approaches to the reconstruction of T 2 distributions 

rom multi-echo T 2 data. We do this by creating a synthetic dataset 

erived from biophysical models and training a multi-layer percep- 

ron (MLP) ( Rosenblatt, 1958 ) on this dataset to take as input the

RI signal and directly output the associated T 2 distribution. We 

all our method Model-Informed Machine Learning (MIML). Our 

ain contributions are as follows: 

• Construction of an extensive synthetic dataset that we con- 

struct purely from simulations guided by biophysical models, 

which we use for training the MLP. 
• Introduction of a robust loss function for the network to recover 

the T 2 distribution consisting of a combination of the mean 

squared error and the Wasserstein-1 Distance ( Villani, 2009 ). 

We show that training with the Wasserstein distance signifi- 

cantly increases the accuracy of MWF estimates on a realis- 

tic, synthetic case, compared to training with solely a mean 

squared error (MSE) loss function. 
• Rigorous and extensive evaluation of our method and previous 

work in non-parametric and parametric approaches, on syn- 

thetic and real datasets ( ex vivo, in vivo , healthy, pathological). 

We show that our method outperforms other methods in terms 

of accuracy, plausibility, and robustness of the reconstructed 

distributions and MWF maps as well as lesion visualization. 

. Methods 

Our method for reconstructing T 2 distributions from MRI data 

s based on a MLP which is trained to learn a map directly from 

RI signals with a 32 echo acquisition scheme to the correspond- 

ng T 2 distribution, as is the result in non-parametric methods. To 

educe the inherent ill-posedness of this problem, the training is 

onducted on a synthetic dataset of pairs of MRI signals and T 2 
istributions which we constructed using EPG simulations and is 

nformed by biophysical models and realistic values for the param- 

ters of interest, such as the range of T s for different water pools,
2 

4 
aken from the literature. This implicitly constrains the space of 

ossible T 2 distributions (as in parametric approaches). We show 

n overview of our method in Fig. 1 . 

.1. Synthetic dataset generation 

To generate the synthetic T 2 distributions, we start from stan- 

ard biophysical models for the brain ( Whittall et al., 1997 ). Brain 

issue can be roughly subdivided into white matter, grey matter, 

erebrospinal fluid, pathological tissue, and combinations of these 

issues. The water of these tissues are made up of a combination 

f different pools of water. We model the T 2 distributions of brain 

issue as a mixture of Gaussians, where each Gaussian component 

orresponds to a different water pool (e.g. myelin water, intra/extra 

xonal space water). 

p(T 2 ) = 

∑ 

i 

v i 
σ

√ 

2 π
exp 

(
−(T 2 − μi ) 

2 

2 σ 2 
i 

)
(5) 

 i ∈ [0 , 1] , 
∑ 

i 

v i = 1 (6) 

ere v i is the volume fraction of the i th water pool, and μi , σi are

he mean and standard deviation of the T 2 distribution of the i th 

ater pool. We justify our choice of modelling using Gaussians by 

oting that ( Raj et al., 2014a ) found that modelling the T 2 distribu-

ions using a variety of different distributions including the Gaus- 

ian distribution had negligible differences in parametric methods; 

ssentially, they found that the ill-posedness of the reconstruction 

ade it extremely difficult to distinguish between different dis- 

ributions when the mean and standard deviation were fixed. In 

able 1 , we show the water pools we consider as well as the range

f the means and standard deviations for each water pool. 

These water pools were chosen based on the commonly used 

iophysical models for the water pools in brain tissue. In para- 

etric models, white matter is modelled as a combination of the 

yelin and intra/extra axonal water pools ( Raj et al., 2014a; Du 

t al., 2007; Yu et al., 2019; Chatterjee et al., 2018; Akhondi-Asl 

t al., 2014 ). Further, they consider a water pool which accounts 

or cerebrospinal fluid (CSF). The water in gray matter can be mod- 

lled as similar to the IES water pool, with an extended mean 

 2 . However, brain pathologies can result in T 2 distributions dif- 

erent from those of white matter, gray matter, and CSF; for exam- 

le, ( Laule et al., 2007 ) found that MS lesions can contain a water

ool in the range between that of the IES pool and the CSF pool. 

e set the mean values in line with those reported in the liter- 

ture ( Mackay et al., 1994; Laule et al., 2007; Wansapura et al., 

999; Alonso-Ortiz et al., 2015 ). We included an extensive range 

or the standard deviations, ensuring that our dataset has both 

parse, intermediate, and wide T 2 distributions in order not to bias 

ur dataset towards any extreme. However, there can be partial 

olume effects, where different configurations of brain tissues are 

ontained in a single voxel; for example, water from white mat- 

er and CSF could be present in a single voxel. Therefore, in our 
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ataset, we divide T 2 distributions in the brain into seven cases, 

ach with a characteristic mixture of water pools. 

• White matter (WM) : 2 Water Pools (Myelin and IES). 
• Cerebrospinal fluid (CSF) : 1 Water Pool (CSF) 
• Gray matter : 2 Water Pools (Myelin and GM) 
• Mixture of WM and CSF : 3 Water Pools (Myelin,IES, and CSF) 
• Mixture of WM and GM : 3 Water Pools (Myelin,IES, and GM) 
• Mixture of CSF and GM : 3 Water Pools (GM and CSF) 
• Pathology : 1 Water Pool (Pathology) 

We note that as there is a small quantity of myelin in gray mat- 

er, the gray matter pool is composed primarily of the GM com- 

onent in Table 1 as well as the myelin water component which 

s constrained to have a random v i between 0 and 5%. Concretely, 

uppose we want to generate a random T 2 distribution for the case 

f a mixture of WM and CSF. This distribution is characterized by 

he combination of three water pools (myelin, IES, and CSF). 

p(T 2 ) = 

3 ∑ 

i =1 

v i 
σ

√ 

2 π
exp 

(
−(T 2 − μi ) 

2 

2 σ 2 
i 

)
(7) 

Therefore, by randomly selecting v i from a Dirichlet distribu- 

ion and uniformly sampling (μi , σi ) for the three pools within the 

ounds in Table 1 , we can generate a random T 2 distribution. Given 

he T 2 distribution, we use the EPG formalism to simulate the cor- 

esponding signal from an acquisition based on acquiring 32 echos 

ith around 10 ms spacing between each echo. In the real data we 

se for our evaluation, three slightly different echo times are used; 

he in vivo scans of healthy subjects use an echo train of 10.68 ms, 

1.36 ms,... 341.76 ms, the in vivo scan of the subject with pathol- 

gy uses an echo train of 10.36 ms, 20.72 ms,..., 331.52 ms, and 

he ex vivo scan uses an echo train of 10 ms, 20 ms,... 320 ms. In

he following, we describe our procedure with a single, fixed echo 

rain: for the evaluation, we generated three training datasets, one 

or each echo train. We note that alternative sequences with differ- 

nt numbers of echoes/different spacings can be accommodated by 

enerating a new dataset. We first construct a family of dictionar- 

es of EPG signals, defined as in the previous section, (D α) , where

e vary α from 90 to 180. We use a high resolution T 2 grid (1 ms

o 20 0 0 ms with a spacing of 0.1 ms) for the dictionaries. We gen-

rate 20 0,0 0 0 T 2 distribution variations per case by sampling ( v i )
nd ( μi , σi ) randomly from flat Dirichlet and uniform distributions, 

or a total of 1.4 million distributions. We randomly vary the flip 

ngle ( α) of the acquisition for each signal between 90 and 180 ◦

o that our method learns to account for different flip angles au- 

omatically, rather than having to first estimate the flip angle as 

n non-parametric methods. Given v i , (μi , σi ) , we numerically ap- 

roximate the corresponding T 2 distribution on the same T 2 grid 

s used for the dictionaries (D α) . Let p HR denote the discretized 

istribution. Given the pre-constructed dictionary of EPG signals 

 α corresponding to the randomly chosen α, the EPG signal cor- 

esponding to this distribution, s EPG is 

 EPG = D αp HR (8) 

s noted in the previous section, non-parametric approaches com- 

only use a much coarser, logarithmically spaced grid of T 2 s for 

he discretization of the distribution. This allows to significantly 

educe the computation time. Therefore, to directly compare our 

pproach with non-parametric approaches, we downsample the 

round truth distributions from the high resolution T 2 grid to a 

rid of 60 T 2 ’s logarithmically spaced from 10 ms to 20 0 0 ms, as

s commonly used Prasloski et al. (2012b) . Denoting this down- 

ampled, ground truth distribution as p DS , the dataset consists of 

he pairs ( s EPG , p DS ). We note that our method does not depend

n this downsampling; we use it for a fair comparison with non- 

arametric approaches. As outlined in the related work, the SNR of 
5 
he signals is a crucial aspect of the reconstruction and hence the 

ataset generation. We define SNR with respect to the first echo 

f the signal sequence. From previous studies ( Wiggermann et al., 

020; Mackay et al., 1994 ), it is known that NNLS methods, per- 

orm well in the high-SNR regime (on the order of 10 0 0). How- 

ver, clinical scans with high spatial resolutions will rarely meet 

his SNR requirement; in the real scans of healthy subjects we use 

n our evaluation, we estimate a mean SNR on the order of 100. 

n order to make our method robust to the realistically low SNR 

egime, in training we randomly vary the SNRs of the signals be- 

ween 80 and 200 in order to cover the potential SNR range of 

he voxels. We use a Rician noise model to add noise to the sig- 

als. In our evaluation, we show that training on this SNR range 

esults in robustness to a wide range of SNRs (40-10 0 0) on syn- 

hetic data. The data generation for 1.4 million signal/distribution 

airs took less than one hour on a cluster using parallelization on 

6 threads. 

Using the synthetic datasets described, we train a MLP to map 

he MRI signal to the corresponding T 2 distribution. 

.2. Mapping the MR signal to the T 2 distribution 

.2.1. Architecture 

Our network is composed of 6 hidden layers with 256 neurons 

er layer and an output layer with 60 units, corresponding to the 

ize of the discretization of the distributions we use. The hidden 

ayers use a ReLu function as the activation function, while the 

utput layer uses a SoftMax activation function since the output 

hould be the T 2 distribution. The input to the network is a vec- 

or with 32 elements corresponding to the 32 echos of the stan- 

ard acquisition sequence. We note that we normalize the input 

y the magnitude of the first echo before feeding it to the net- 

ork. To select the structure of the network, we trained 12 net- 

orks where we varied the number of hidden layers (3-6) and 

he number of neurons per layer (64,128,256,512). We selected 

 hidden layers and 256 neurons as this configuration had the 

owest validation loss at the end of training; however, we note 

hat the validation loss was not significantly different between the 

onfigurations. 

.2.2. Loss function 

Let (x , p x ) denote the normalized MRI signal and the corre- 

ponding T 2 distribution. Let �(·, θ ) denote the multi-layer per- 

eptron function with parameters θ, with �(x , θ ) the predicted 

istribution. Given a batch of training samples ( x i ) of size n, the 

ost function we use to train � is 

 (θ ) = 

1 

n 

n ∑ 

i 

λ‖ p x i − �( x i , θ ) ‖ 

2 
2 + W 1 ( p x i , �( x i , θ )) (9) 

here the first term corresponds to the squared L 2 norm (MSE 

oss) and the second term corresponds to the Wasserstein-1 dis- 

ance on probability distributions ( Villani, 2009 ). We set λ to give 

pproximately equal numerical weight to both terms in the loss 

unction. Let u, v denote 1-D probability distributions with cumu- 

ative distribution functions U, V . Then the Wasserstein-1 Distance 

s equivalent to the following formulation ( Ramdas et al., 2017 ) 

 1 (u, v ) = 

∫ ∞ 

−∞ 

| U(p) − V (p) | d p (10) 

n this formulation, the Wasserstein distance can be efficiently 

omputed on GPU using the cumulative sum function. The 

asserstein-1 distance is an appropriate metric to judge recon- 

truction quality in our application of T 2 distribution recovery as it 

orrectly penalizes deviations from the ground truth distribution in 

elation to the location of the lobes in contrast to other losses such 

s MSE or Kullback-Liebler (KL) divergence. In particular, given 



T. Yu, E.J. Canales-Rodríguez, M. Pizzolato et al. Medical Image Analysis 69 (2021) 101940 

t

o

c

c

m

c

t

t

s

d

o

w

t

t

M

2

V

f

8

t

d

i

(  

o  

b

u

T

t

s

3

t

w

l

e

t

G

t  

w

t

e

a

T

s

w

n

c

e  

o

x

w

g

i

m

a

t

f

(  

g

s

P  

G

3

3

d

2

t

t

t

3

d

a

m

f

w

l

M  

7  

t

n

T

i  

g

w

t

a

s

t

3

d

i

t

t

m

W

v

r

3

(

A

wo non-overlapping lobes, if the lobes are moved toward each 

ther (but still do not overlap), the Wasserstein Distance will de- 

rease significantly while the MSE and the KL Divergence will not 

hange. An example is presented in Fig 2. in the Supplementary 

aterial. 

Using the Wasserstein distance helps us to avoid, for example, 

ases where the location of lobes in the distribution could be arbi- 

rarily placed with a similar loss if other metrics are used. We note 

hat training with either MSE loss or Wasserstein-1 distance exclu- 

ively leads to suboptimal results, due to increased Wasserstein-1 

istance in the first case and unstable reconstructions in the sec- 

nd case. We find that training with a combination of these results 

orked optimally; we further show in our evaluation that adding 

he Wasserstein-1 distance improves the accuracy of MWF estima- 

ion in realistic cases in comparison to training exclusively with 

SE loss. 

.2.3. Implementation details 

We used TensorFlow 2.0 ( Abadi et al., 2015 ) on Python 3.6 

an Rossum et al. (20 0 0) with an Nvidia GTX 2070 laptop GPU 

or constructing and training the network. For each case, we use 

0% of the generated data for training, corresponding to a to- 

al of 1,120,0 0 0 signal/distribution pairs. We reserve 10% of the 

ataset as the validation set and the remaining 10% as the test set 

n our evaluation on synthetic data. We use the Adam optimizer 

 Kingma and Ba, 2014 ) with a learning rate of 1e-3 and a batch size

f 20 0 0. We trained for 30 epochs, where we stopped the training

ased on the validation loss oscillating/no longer decreasing. We 

se the epoch with the lowest validation loss as the final model. 

his training took approximately 70 seconds to complete, showing 

he feasibility, given a large database of signals, to retrain models 

pecific to given sequences, etc. 

. Evaluation 

We perform reconstructions of the T 2 distributions from syn- 

hetic and real data using the following methods: 

• Our proposed method, MIML,trained on signals with SNR 80- 

200 and the appropriate sequence of echoes. 
• NNLS with Tikhonov regularization (NNLS-T) 
• NNLS with Laplacian regularization (NNLS-L) 
• Gaussian Mixture Fitting (GMF) 

Both NNLS methods were implemented in-house in Python 

ith full parallelization, and we use a standard method for se- 

ecting the regularization parameter ( Prasloski et al., 2012a; Laule 

t al., 2006 ) by keeping the signal fitting error close to 1.025 times 

he signal fitting error obtained using NNLS without regularization. 

MF is our implementation of a parametric approach similar to 

hat of ( Raj et al., 2014a ), where we fit a Gaussian mixture model

ith three compartments (Myelin water, IES water, CSF), extracting 

he volume fractions, the means/standard deviations of the T 2 of 

ach compartment, and the overall normalization factor. We model 

s follows: 

p(T 2 ) = 

3 ∑ 

i =1 

v i N (μi , σi , T 2 ) . (11) 

hen, the corresponding model signal is 

 

m (T E i ) = M 0 

∫ 
EP G (T E i , T 1 , T 2 , α) p(T 2 )d T 2 . (12) 

here M 0 is the normalization constant. We calculate this integral 

umerically using a high resolution grid of T 2 s as in the dataset 

onstruction. Given the experimental decay signal s , the param- 

ters x = ((v , μ , σ ) , M ) are calculated by solving the following
i i i 0 

6 
ptimization problem: 

 = arg min x ‖ s − s m (x ) ‖ 

2 (13) 

here we constrain the μi , σi according to the bounds used for 

enerating the dataset for MIML. Finally, v i are constrained to the 

nterval (0,1), and are normalized before each calculation of the 

odel signal during the optimization. As jointly estimating the flip 

ngle adds significantly to the computation time and contributes 

o instability, we fix the flip angle in the Gaussian mixture fitting 

or each voxel to that calculated using a standard NNLS method 

 Prasloski et al., 2012a ). We validated the accuracy of this flip an-

le estimation by comparing against B1 maps acquired on healthy 

ubjects. We used the least squares optimization function in the 

ython library Scipy ( Virtanen et al., 2020 ) to fit the signals to the

aussian model. 

.1. Synthetic data 

.1.1. Test split of synthetic dataset 

We show reconstructions on the test split of the synthetic 

ataset we generated using the acquisition sequence of 10.68 ms, 

1.36 ms,... 341.76 ms. We show results over an SNR range from 40 

o 10 0 0 (40,80,150,20 0,40 0,10 0 0). We compare the methods using 

he MSE and Wasserstein Distances of the reconstructed distribu- 

ions with respect to the ground truth distributions. 

.1.2. Realistic synthetic case in WM 

MWF mapping is a crucial application of T 2 relaxometry. In or- 

er to analyze the robustness and performance of our approach in 

 realistic case in WM, we show reconstructions on the following 

odel of the distribution in a white matter voxel, with one lobe 

or myelin water and one lobe for IES water. 

p(T 2 ) = v m 

∗ In v Gamma (μm 

, σm 

) + v IE ∗ In v Gamma (μIE , σIE ) 
(14) 

here we fix the values of the parameters to realistic values in 

ine with those reported in the literature ( Alonso-Ortiz et al., 2015; 

acKay and Laule, 2007 ): v m 

= 0.15, v IE = 0.85, μm 

= 20 ms, μIE =
0 ms, σm 

= 2 . 5 ms, σIE = 6 ms. We use the inverse Gamma dis-

ribution to create the ground truth distribution to test the robust- 

ess of our method to changes in the assumed biophysical model. 

o study robustness to noise, we vary the SNR on the correspond- 

ng synthetic MRI signal from 40 to 10 0 0, as in the test split. We

enerate 10 0 0 realizations of noisy signals per SNR used. Further, 

e also show numerical results using our method without using 

he Wasserstein Distance in the loss function. We refer to this vari- 

nt as MIML’. We compare the methods using the MSE, Wasser- 

tein Distance, and estimated MWF of the reconstructed distribu- 

ions with respect to the ground truth. 

.2. Real data 

As there is no ground truth for the T 2 distributions in real 

ata, we evaluate the methods as in the literature by examin- 

ng the MWF maps/comparing to anatomical scans or correla- 

ion to histology, the plausibility of the T 2 distributions, maps of 

he mean T 2 in the 50–200 ms range, etc. We also report the 

ean SNR for each dataset, calculated in the same manner as in 

iggermann et al. (2020) , where the first echo of the signals is di- 

ided by the standard deviations of the residuals from the NNLS-T 

econstruction. 

.2.1. Ex vivo data 

We show reconstructions from a Multi Echo Spin Echo 

MESE) scan from the White Matter Microscopy Database Cohen- 

dad et al. (2020) with 32 echoes (starting from 10 ms with 10 ms 
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pacing), with a TR of 3s and 8-fold averaging, of a single, cervi- 

al slice of a dog’s spinal cord acquired ex vivo with an Agilent 

T animal scanner ( Vuong et al., 2017 ). Five days before scanning, 

he spinal cord (perfused and post-fixed with paraformaldehyde 4) 

as extracted and washed in Phosphate-buffered saline (PBS) so- 

ution. After scanning, the spinal cord was osmified for two hours, 

mbedded in EMbed 812 Resin, cut using a microtome, and pol- 

shed. A scanning electron microscope (Low-angle backscattered 

lectron mode) (JEOL 7600F) was used to image an entire slice of 

he spinal cord at a resolution of 0.26 micrometers per pixel. Using 

his histology image, we construct a histological map of the frac- 

ion of myelin in each voxel using a deep learning segmentation 

ool called Axon Deepseg ( Zaimi et al., 2018 ). We then register this

istological map to the MRI space. The resulting histological map is 

 map of the fraction of the voxel corresponding to the segmented 

yelin, not a map of the MWF. However, assuming that the frac- 

ion of myelin in a voxel scales with the amount of myelin water, 

he two maps should be linearly correlated. We conduct a corre- 

ation analysis between the histological map and the MWF maps 

roduced from the different methods. The estimated SNR on this 

lice is 784. 

.2.2. Healthy subjects 

We show reconstructions from high-resolution human brain 

cans acquired from 4 healthy controls using a 3T MRI scan- 

er (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) 

ocated at CHUV Hospital (Lausanne, Switzerland), with a stan- 

ard 64-channel head/neck coil. The dataset was collected using 

 3D multi-echo gradient and spin-echo (GRASE) sequence accel- 

rated with CAIPIRINHA ( Piredda et al., 2020a ) with the following 

arameters: matrix-size =144 × 126 ; voxel-size = 1.6x1.6x1.6mm3; 

TE/N-echoes/TR = 10.68 ms/32/1 s; prescribed FA = 180 ◦; 

umber-of-slices = 84; CAIPIRINHA acceleration factor = 3x2; 

umber of averages = 1; acquisition time = 10:30min. Each sub- 

ect was also scanned using an MPRAGE sequence for whole- 

rain T 1 -weighted imaging ( Brant-Zawadzki et al., 1992 ). To test 

he repeatability of the reconstructions, the healthy controls were 

canned twice over two consecutive scanning sessions (scan-rescan 

cenario). We compare the MWF maps and the T 2 distributions 

roduced from each method, show the coefficient of variability of 

he MWF in regions of interest (ROI) in WM, and conduct a study 

f the reproducibility of each method. The data for these subjects 

ave an estimated mean SNR of 128. 

.2.3. MS subject 

We show reconstructions on a high-resolution human brain 

can of a patient with relapsing-remitting multiple sclerosis, 

canned using a 3T MRI scanner (MAGNETOM Prisma, Siemens 

ealthcare, Erlangen, Germany) located at the University Hospi- 

al of Basel (Basel, Switzerland) with a standard 32-channel head 

oil. In this case, MET2 data was collected using the previously 

escribed GRASE sequence for the healthy subjects, albeit with a 

tarting echo time of 10.36 ms and lower spatial resolution (voxel- 

ize = 1.8x1.8x1.8mm3) to accelerate the scan. In addition, a FLAIR 

 De Coene et al., 1992 ) scan was acquired. A probabilistic lesion 

ask was generated by first using a convolutional neural network 

CNN) trained to segment WM lesions ( La Rosa et al., 2020 ) on

LAIR images with subsequent manual correction by an expert. The 

LAIR image/lesion mask were then registered to the multi-echo T 2 
pace. We use a threshold of 0.9 to denote a voxel as lesional. We 

nalyze maps of the geometric mean T 2 in the range 50–200 ms 

nd MWF maps to study the MS lesions as in ( Levesque et al.,

010 ). We also compare the correspondence of these maps to the 

esion masks. In addition, we compare the T 2 distributions pro- 

uced from each method in both normal-appearing tissue and the 

esions. The estimated SNR of this scan is 112. 
7 
. Results 

.1. Synthetic data 

.1.1. Test split of synthetic dataset 

In order to visualize the average performance over the test split, 

n Fig. 2 we plot the mean distribution over all the ground truth 

istributions in the test split. In addition, we show the mean re- 

onstructed distributions over the test split from the methods we 

ompare. We also show plots zooming in on the different T 2 re- 

ions for better visualization. MIML performs robustly and con- 

istently across the whole SNR range, providing the best confor- 

ity to the ground truth distributions over the entire range of 

 2 s . In contrast, NNLS with Tikhonov and Laplacian regularization 

oth require SNR 10 0 0 in order to generate a plausible distribu- 

ion in the T 2 range 10 − 50 ms, with SNRs below this resulting 

n highly over-smoothed distributions. Further, even at high SNRs, 

oth methods have over-smoothing in the T 2 range 50 − 20 0 0 ms. 

or the Gaussian mixture fitting, we note that only the cases of 

M and WM + CSF correspond to the model used, as it is nec- 

ssary to fix the number of compartments beforehand. Therefore, 

he relevant T 2 ranges to examine are 10 − 120 , 10 0 0 − 20 0 0 ms.

or GMF, high SNRs (20 0-10 0 0) are required for plausible distribu- 

ions with respect to the ground truth, with remaining distortions 

t low T 2 values . In Fig. 3 we show boxplots of the MSE and the

asserstein Distance between the ground truth distributions and 

he reconstructed distributions from the different methods over 

he SNR range. As the model used in GMF only applies to WM and 

M+CSF, we show the results over the whole test set as well as 

ver just the WM and WM+CSF cases in the test set. 

For both MSE and Wasserstein Distance, MIML performs the 

est with the lowest median error and comparable or smaller in- 

erquartile ranges, across the whole SNR range. As expected, all 

ethods improve with increasing SNR. The limitations of the GMF 

odel are clear, as it provides competitive results with the other 

ethods only when restricted to the signals from the WM and 

M+CSF cases, due to the need to fix the model/number of com- 

artments beforehand.Overall, MIML, which is trained on signals 

ith SNR 80 to SNR 200, generalizes well to the test set as well 

s to SNRs outside the range on which it was trained. From the 

lots of the mean distributions and the boxplots of the error met- 

ics, we can see that MIML performs better in distribution recon- 

truction than the other methods, parametric and non-parametric, 

cross a wide range of SNRs. In addition, the flexibility of using 

IML in comparison to GMF is clear, as MIML does not require 

xing the number of compartments . However, the test set is gen- 

rated according to the Gaussian mixture model; further, as we 

andomly generate the ground truth distributions, not all of the 

round truth distributions are realistic, though we note that unre- 

listic distributions in the training can improve the generalizability 

f MIML. 

.1.2. Realistic synthetic case in WM 

In Fig. 4 , we plot the ground truth distribution and the mean 

econstructed distributions from each method over the SNR range. 

n addition, we show boxplots of the MSE and Wasserstein Dis- 

ance between the ground truth distribution and the reconstructed 

istributions from the different methods over the SNR range. Fur- 

her, we show a boxplot of the error in MWF estimation. MIML 

erforms robustly and consistently, on average, across the whole 

NR range . However, the reconstructed distributions resolve a more 

pread out myelin water lobe than in the ground truth, even at 

NR 10 0 0; this could be due to training on significantly lower SNRs 

r the model mismatch. At SNRs below 400, NNLS-T and NNLS-L 

re unable to resolve a myelin water lobe due to over-smoothing as 

ell as a displaced IES lobe; GMF resolves the myelin water lobe, 
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Fig. 2. Plots of the mean distribution over all of the ground truth distributions in the test split of our synthetic dataset, as well as the mean reconstructed distribution over 

the test split from each method. We zoom in on the T 2 ranges 10–50 ms, 50–400 ms, 400–2000 ms to show the average performance in the different cases (WM, CSF, etc.). 

Our method produces the most robust and accurate reconstructions with respect to changing SNR and the ground truth distributions respectively. All other methods require 

high SNRs (40 0–10 0 0) for plausible distributions that, however, still retain distortions, particularly in the range of T 2 s associated with myelin water (10–50 ms). We note 

that the poor performance of GMF outside the T 2 range 10–120 ms, and 10 0 0–20 0 0 ms is due to model mismatch; GMF is valid only for the WM and WM+CSF cases. We 

use a logarithmic scale for the T 2 axis. 

b

N

s  

c  

I

f

s

p

a

i

M

t

d

t

S

M

m

h

t

2

M

t

w

t

m

a

g

t

a

L

t

a

t

l

t

f

t

t

d

m

1

e

c

u

a

t

a

e

t

i

F

m

ut with a significantly displaced mean. At SNR 10 0 0, NNLS-T and 

NLS-L are able to resolve the myelin water lobe accurately, albeit 

till with a small distortion at T 2 = 10 ; GMF is able to accurately

apture the myelin water lobe at SNR 10 0 0, albeit with a displaced

E lobe. 

With regard to MSE and Wasserstein Distance, MIML per- 

orms the best, with the lowest median error and comparable or 

maller interquartile range across the whole SNR range. As ex- 

ected, MIML’ performs similarly to MIML with respect to MSE 

nd significantly worse with respect to Wasserstein Distance, as it 

s only trained with the MSE loss. With regard to the estimated 

WF (obtained by summing from T 2 bounds of 10–40 ms), we see 

hat MIML performs the best in the SNR range 80-400, with me- 

ian errors closest to zero, and comparable or smaller interquar- 

ile ranges; we remind that the ground truth MWF was 0.15. At 

NR 40, all methods either significantly over or underestimate the 

WF, while at SNR 10 0 0, MIML and NNLS-L provide comparable 

edian errors. However, we note that NNLS-L has a significantly 

igher standard interquartile range than MIML at SNR 10 0 0. Fur- 

her, the results are consistent with results in ( Wiggermann et al., 

020 ) that the NNLS methods tend to underestimate the MWF. 

IML’ provides mediocre performance, generally underestimating 

he MWF value. Comparing the performance of MIML and MIML’, 

e can see that using the Wasserstein Distance in the loss func- 

ion during training significantly improves the performance of our 

ethod in terms of MWF estimation in a realistic case as well 

s the Wasserstein Distance of reconstructed distributions to the 
8 
round truth. Finally, in Fig. 5 , we show the reconstructed distribu- 

ions and the mean distribution for each method for SNRs of 200 

nd 10 0 0. Although the mean distribution from NNL S-T and NNL S- 

 corresponds well to the ground truth distribution at SNR 10 0 0, 

he reconstructions of NNLS-T and NNLS-L are highly sensitive to 

dded noise, with huge variability in the reconstructed distribu- 

ions, particularly in the myelin lobe . In contrast, MIML, and to a 

esser extent, GMF, are much more robust to the noise, showing lit- 

le variability in the reconstructed distributions. Overall, MIML per- 

orms accurately and robustly across the SNR range with respect 

o the MSE, Wasserstein Distance, and the MWF value, showing 

he robustness to changing the assumed Gaussian model for the 

istribution as well as the applicability in a realistic case. Other 

ethods perform comparably, on average, at high SNR values (SNR 

0 0 0), as expected. 

From the results on the synthetic data, we conclude that MIML, 

ven trained on a limited range of SNRs, is able to robustly and ac- 

urately reconstruct T 2 distributions over a wide range of SNR val- 

es. Overall, MIML outperforms all other methods in terms of MSE 

nd Wasserstein Distance with respect to the ground truth. Fur- 

hermore, from the realistic case, MIML is the most accurate over- 

ll method for MWF estimation, showing the applicability to MWF 

stimation. In addition, we can see the robustness to changes in 

he assumed model for the T 2 distributions, and the importance of 

ncluding the Wasserstein Distance in the loss function of MIML. 

inally, from examining all the reconstructed distributions and the 

ean reconstructed distribution, MIML is the most robust to noise, 
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Fig. 3. Boxplots of the MSE and Wasserstein Distance between the ground truth distributions in the test set of our synthetic dataset and the corresponding, reconstructed 

distributions from each method over a range of different SNRs. We show results over both the whole test set, as well as results restricted to the WM and WM+CSF cases, 

where the GMF model is valid. In general, MIML provides the most accurate and robust reconstructions, with the lowest median errors as well as lower or comparable 

interquartile ranges. As expected, the performance of GMF becomes comparable to other methods when we restrict to only the WM and WM+CSF cases, where the GMF 

model is valid. 
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hile the non-parametric methods show high variability and sen- 

itivity to noise even at SNR 10 0 0 . In the next section, we show re-

ults on real data from in vivo and ex vivo scans, considering both 

ealthy and pathological cases. 

.2. Real data 

.2.1. Ex vivo Data 

We note that in Equation (4), the MWF is obtained by sum- 

ing from T 2 = 10 ms to T 2 = 40 ms. This formula, commonly used

or acquisitions at 3T, in theory should be adjusted for higher field 

trengths due to the shortening of T 2 s ( Kolind et al., 2009; Laule

t al., 2008 ). We note that these limits historically derive from as- 

ignment of the different lobes in T 2 distributions to different wa- 

er pools e.g. myelin, IE space, etc.( Alonso-Ortiz et al., 2015 ). For 

nstance, in ( Mackay et al., 1994 ), the authors use NNLS-T on their

ata (acquired at 1.5T) and found two large T 2 lobes, one in the 

ange of 10–50 ms and the other in the range of 70–100 ms; they 

hen assigned these to myelin water and the IES water respectively. 
9 
n the following, we restrict our analysis to the white matter, and 

e will show two versions of MWF maps, with accompanying cor- 

elations to histology obtained as follows: 

• Fixed Limits: Following ( Mackay et al., 1994 ), we fix the lim- 

its of summation for each method by taking the limits of 

the myelin water lobe in the mean T 2 distribution from using 

NNLS-T. This corresponds to bounds of 10–35 ms. 
• Tailored Limits: For each method, we set the limits of summa- 

tion from the limits of the low T 2 lobe in the mean T 2 distribu-

tion from that method. For MIML and NNLS-L this corresponds 

to bounds of 10–38 ms and 10–32 ms respectively. 

In Table 2 , we show the spatial Pearson correlations (with ac- 

ompanying p-values) between the MWF maps for each method 

nd the histology map. In both cases, the MWF map from MIML 

as the highest correlation to the histology map . Only the corre- 

ation of NNLS-L changes between the two cases, increasing when 

sing the fixed bounds. In Fig 6 , we show the MWF maps corre- 

ponding to each case for the bounds, the histology map, and the 
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Fig. 4. Mean reconstructed distributions (ground truth and from each method) over a range of SNRs as well as boxplots of the MSE and Wasserstein distance between the 

ground truth and reconstructed distributions from the results on the realistic, synthetic case. MIML produces the most robust reconstructions with respect to changing SNR, 

albeit with a consistently over-smoothed myelin water lobe. However, the other methods require high SNRs (10 0 0) to resolve a myelin water lobe (still with distortions) 

close to the ground truth lobe as well as correct placement of the IE lobe. With regard to MSE and Wasserstein Distance, MIML performs the best, with the lowest median 

error and comparable or smaller interquartile range across the whole SNR range. With regard to MWF error (the ground truth MWF value is 0.15), MIML performs the best 

in the SNR range 80-400, with median errors closest to zero, and comparable or smaller interquartile ranges. MIML’ performs similarly to MIML with respect to the MSE and 

significantly worse with respect to the Wasserstein Distance and MWF Error, showing the importance of using the Wasserstein Distance in the training of our method. 

10 
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Fig. 5. Distribution reconstructions from different noise realizations for SNRs 200 and 10 0 0 on the realistic, synthetic case. The ground truth distribution is shown with 

blue crosses, and all the corresponding reconstructed distributions from different noise realizations are shown in color. The mean reconstructed distribution is shown in 

black Note that the reconstructions of NNLS-T and NNLS-L are highly sensitive to noise, even at SNR 10 0 0, with large variability in the reconstructed distributions; this is in 

contrast to the stability and robustness of the reconstructions from MIML and, to a lesser extent, GMF. Note that for SNR 10 0 0, MIML predicts virtually the same distribution 

for all the noisy signals. We use a logarithmic scale for the T 2 axis. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

Table 2 

Table of the spatial Pearson correlations (with p-values) between the MWF maps constructed from each method and the histology map of the myelin in a white matter 

mask. In bold are the highest correlations. We note that the histology map is not a map of the myelin water fraction, but a map of the fraction of pixels in the histology 

which correspond to the myelin tissue. In either case of fixed or tailored bounds, the MWF map from MIML has the highest spatial correlation to the histology. 

Pearson Correlation of MWF Maps to Histology 

MIML NNLS-T NNLS-L GMF 

Tailored Bounds ( 0.54 ,5.63E-81) (0.44,8.58E-53) (0.45,5.51E-55) (0.39,1.43E-39) 

Fixed Bounds ( 0.54 ,2.04E-81) (0.44,8.58E-53) (0.49,1.13E-64) (0.39,1.43E-39) 
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econstructed distributions for each method. MIML predicts higher 

alues for the MWF than the other methods, particularly the NNLS 

ethods. The MIML MWF map is smoother/less noisy than the 

ther methods and corresponds better to the histology map. We 

an see from the mean distributions that all methods are, on av- 

rage, able to recover the myelin water and IES water lobe in sim- 

lar locations; however, the NNLS methods, in particular NNLS-L, 

roduce more implausible, over-smoothed lobes in comparison to 

IML and GMF. Examining the reconstructed distributions, the in- 

uence of the model priors in MIML and GMF is evident, with clear 

eparation between the myelin lobe and the IES lobe, while the 

NLS methods produce distributions which are spread more uni- 

ormly across the T 2 axis . We note that the small number of dis-

ributions with lobes in the range 20 0–10 0 0 ms and the lobes in

he range 10 0 0 ms–20 0 0 ms can be attributed to the gray matter

round the spine as well as CSF. 

For all methods, the MWF values are significantly higher than 

hose of the in vivo 3T scans we show later . However, this could 

e attributed to the differences resulting from the fact that ex vivo 

can is of chemically treated spinal cord at 7T while the in vivo 

cans are of human brain at 3T. 

.2.2. Healthy subjects 

In Fig. 7 we show the MWF maps in axial, coronal, and sagit- 

al slices for two healthy subjects with corresponding, registered 

PRAGE images for comparison. In MPRAGE images, WM is hyper- 

ntense; hence, we treat the MPRAGE as a very rough proxy for 

he MWF map since MWF values are highest in the WM. Although 

he MWF maps are fairly similar, the MWF map of MIML most ac- 
11 
urately and smoothly conforms to the MPRAGE image . The NNLS 

ethods exhibit higher distortions, e.g. in the ventricles of sub- 

ect 1, and difficulty in recovering the MWF in the frontal region 

f the brain. GMF produces maps comparable to the NNLS meth- 

ds, albeit, looking noisier. We note that all methods exhibit lower 

WFs in the frontal part of the brain as compared to other regions, 

hich may stem from effects due to the gradient echo acquisition 

 Alonso-Ortiz et al., 2017 ). In Fig. 8 , we show the reconstructed dis-

ributions over the WM voxels in the axial slices. Only MIML pro- 

uces a mean WM distribution with two distinct, well-separated 

obes corresponding to myelin water and the IES water as is ex- 

ected from previous studies. Further, the peaks of the myelin wa- 

er lobe and the IES water lobe correspond to the range expected 

t 3T. The NNLS methods recover the IES water lobe in line with 

xpectations, but over-smooth the distribution in the region corre- 

ponding to myelin water, as was seen in the results on the syn- 

hetic data, with an implausible myelin water peak at 10 ms. GMF 

lso recovers the IE lobe in line with expectations, but produces a 

ispersed lobe in the myelin region. From the reconstructed dis- 

ributions, we can again see the influence of the model priors on 

IML and GMF, with the NNLS methods producing much more 

ariable distributions. We note that the small component in the 

ange 10 0 0 ms–20 0 0 ms for each method can be attributed to par-

ial volume effects with the CSF. 

In order to compare the MWF maps on regions of interest, 

nd to conduct the scan-rescan analysis we did the following: 

n a first step, all the estimated MWF images for the 4 subjects 

ere registered to the ’ICBM-DTI-81’ white-matter tract labels at- 

as ( Oishi et al., 2008; Mori et al., 2008 ) using the non-linear
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Fig. 6. MWF maps from each method, the histology map, and the reconstructed distributions for each method on the ex-vivo data. We can see that the MIML MWF map is 

smoother than those of other maps and corresponds better to the histology map. The mean distribution is shown in black, and all the reconstructed distributions in color. 

All methods can recover the myelin water and IES water lobe in similar locations; however, the NNLS methods produce more smooth lobes in comparison to those of MIML 

and GMF. The effect of the model prior on MIML and GMF is clear, with unambiguous separation between the myelin lobe and the IES lobe. We emphasize that the histology 

map is a map of the fraction of the voxel which is occupied by myelin, not the MWF. We use a logarithmic scale for the T 2 axis. 
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egistration ’BSplineSyN’ algorithm included in the ANTs software 

https://github.com/ANTsX/ANTs). After visually inspecting the im- 

ges, we removed small ROIs affected by registration errors and 

ept 44 tract labels showing a good anatomical agreement be- 

ween the atlas and subject native spaces. Finally, the mean MWF 

alue and the coefficient of variation of the MWF for each region 

f interest (ROI) was calculated for the scan and rescan maps from 

ach method. A list of the ROIs can be found in Table 1 of the

upplementary material. In Fig. 9 , we show boxplots of the mean 

WF and the standard deviation of the MWF over the WM ROIs 

or each subject. We note that MIML results in a larger mean MWF 

cross all subjects than the non-parametric methods; this can be 

xplained by the underestimation of MWF by the non-parametric 

ethods as is shown in the results on the realistic synthetic data 

s well as in ( Wiggermann et al., 2020 ). However, the standard de-

iations of the MWF from MIML are generally comparable to that 

f the other methods, similar to that of NNLS-T and slightly higher 

han that of NNLS-L. In particular, the magnitude of the increase 

n the mean MWF using MIML as compared to the other methods 

s larger than the increase in the standard deviation of the MWF. 

his indicates that the smoothness of the MIML MWF map is com- 

arable to that of other methods. 

In Tables 3 and 4 , we show the results of our scan-rescan analy-

is over all four healthy subjects; we show a table of the mean and

tandard deviation of the absolute difference between the mean 

WF values of the scan and rescan in the specified ROIs as well as 

 table of the Pearson correlation and linear regression coefficients 

etween the mean MWF values of the scan and rescan in the spec- 

fied ROIs. We can see that in general, GMF provides the smallest 

ean differences and highest Pearson correlations. In particular, it 

s difficult to rank MIML and the NNLS methods as they perform 

etter/worse on different subjects. We note that GMF’s superior re- 

t

12 
roducibility may stem from the lower flexibility in the fitting of 

he MWF, as compared to MIML and the NNLS methods. However, 

verall, the reproducibility of the methods is quite similar. 

.2.3. MS subject 

In Fig. 10 , we show the maps of the geometric mean T 2 in

he IE range of 50–200 ms as well as the MWF maps in an ax-

al slice of a subject with MS. In addition, in Fig. 3 of the Supple-

entary Material, we zoom in on the lesions for better visualiza- 

ion. For the mean T 2 maps, in all methods, all except one of the 

esions can be clearly seen as hyperintensities i.e. with increased 

ean IE T 2 . Further, the maps are similar across the methods, with 

he main differences residing in the ventricles . Visualizing the le- 

ions is far more difficult with MWF maps than with the mean 

 2 maps, as the MWF maps are much noisier independent of the 

pplied method. However, as with the healthy subjects, the MIML 

WF map in both slices most smoothly and accurately conforms 

o the WM and the cortices, with the other methods exhibiting 

ore variability and missing patches in the WM and worse delin- 

ation of the cortices; this occurs particularly in the frontal region. 

ll three lesions can be seen on the MIML MWF map with minimal 

mbiguity; in particular, in lesions 1 and 3, we can clearly delin- 

ate the lesions from very close, adjacent structures. Concerning 

he NNLS methods, it appears that Lesion 1 is exaggerated in size 

nd mixed with the adjacent structure, making it difficult to de- 

ineate the lesion as the dark region is extended far beyond the 

esion region on the FLAIR image. In addition, due to poor con- 

rast between the normal-appearing tissue and lesion tissue/noise, 

t is difficult to identify Lesion 2 unambiguously with the NNLS 

ethods. As with Lesion 1, Lesion 3 can be seen but is connected 

o the adjacent grey matter, making localization problematic. Fur- 

her, we can see that the MWF in the lesion is comparable to the 
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Fig. 7. Example MWF maps produced from each method, in the axial, coronal, and sagittal planes of two healthy subjects. On the left, we show the corresponding MPRAGE 

slice. Compared to the MPRAGE (where WM is hyper-intense), we can see that MIML most accurately and smoothly reproduces the extent of white matter, which is consistent 

with WM having relatively high MWF values. Particularly, the NNLS methods struggle in MWF recovery in the frontal part of the brain. GMF produces comparable to better 

MWF recovery than the NNLS methods, but with a noisier map. In addition, MIML has the least distortion in the ventricles. 

M

t

M

t

t

i

s

s

t

WF of the normal-appearing, contralateral brain region, due to 

he poor MWF reconstruction. The GMF MWF map resembles the 

IML MWF map albeit noisier/ with greater variability. 

In addition to the mean T 2 and MWF maps, in Fig. 4 of 

he Supplementary Material, we compare the T distributions in 
2 

13 
he lesion masks to the T 2 distributions in the normal appear- 

ng, contralateral regions. As in the healthy subjects, MIML con- 

istently produces a mean distribution with two distinct, well- 

eparated lobes corresponding to myelin water and the IES wa- 

er as is expected from previous studies . Further, the peaks of 
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Fig. 8. Reconstructed distributions (in color) in the WM voxels of the axial slices of two healthy subjects for each method. The mean distribution is shown in black. We note 

that only MIML produces a mean WM distribution with two distinct, well-separated lobes, and the myelin water peak in line with expectations at 3T. The NNLS methods 

and GMF recover the IE lobe well, but the myelin lobe is either irregular or appears at an extremely low T 2 . Further, we see that NNLS-T/L produces a much more variable 

set distributions in contrast to those from MIML and GMF which are constrained by model priors. We use a logarithmic scale for the T 2 axis. 

Fig. 9. Boxplots of the mean MWF (left) and the standard deviation of the MWF (right) for each method over all the WM ROIs for each subject in the cohort of healthy 

subjects. We see that MIML produces a larger mean MWF across all subjects than the other methods. This is likely due to the underestimation of MWF by the non-parametric 

methods as is shown in the results on the realistic synthetic data as well as in ( Wiggermann et al., 2020 ). The standard deviations of the MWF from MIML are generally 

comparable to that of the other methods, similar to that of NNLS-T and slightly higher than that of NNLS-L. We note that the magnitude of the increase in the mean MWF 

using MIML as compared to the other methods is larger than the increase in the standard deviation of the MWF. This indicates that the smoothness of the MIML MWF map 

is comparable to that of other methods. 

Table 3 

Table of the mean and standard deviation of the absolute difference between the mean MWF values of the scan and rescan in white matter ROIs for each method and for 

each healthy subject. In bold are the lowest values per subject. Overall, GMF has the smallest mean differences for 3/4 subjects with standard deviations comparable to those 

of other methods. The performance of MIML and the NNLS methods are overall quite similar; while MIML has the smallest mean difference on Subject 2, NNLS methods 

have smaller mean differences in Subjects 3 and 4. 

Mean and Standard Deviation of MWF Differences between Scan and Rescan WM ROIs 

MIML NNLS-T NNLS-L GMF 

Subject 1 (0.0067,0.0388) (0.0093,0.0353) (0.0094, 0.0305 ) ( 0.0055 ,0.0357) 

Subject 2 ( 0.0004 ,0.0448) (0.0012,0.0473) (0.0010,0.0418) (0.0044, 0.0454 ) 

Subject 3 (0.0191,0.0726) (0.0134,0.0755) (0.0176,0.0723) ( 0.0108,0.0712 ) 

Subject 4 (0.0104,0.0573) (0.0107,0.0543) (0.0103, 0.0504 ) ( 0.0065 ,0.0561) 
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he myelin water lobe and the IES water lobe correspond to the 

ange expected at 3T. The NNLS methods produce over-smoothed 

yelin water lobes with peaks occurring at implausibly low T 2 
alues. The IES water lobes are generally plausible. GMF pro- 

uces more plausible myelin water lobes than those of the NNLS 

ethods, but the lobes in the contralateral tissue are more vari- 

ble, with the estimated mean and standard deviation of the 
14 
yelin lobes varying significantly over the 3 regions of contralat- 

ral tissue. MIML reconstructs a diminished myelin water lobe 

n the lesions as compared to the normal-appearing tissue, re- 

ecting lower MWF; this is in line with expectations of MS as 

 demyelinating disorder. In contrast, the distributions from the 

NLS methods in Lesions 2/3 exhibit larger myelin water lobes 

n lesion tissue as compared to normal-appearing tissue, indica- 
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Fig. 10. Anatomical FLAIR map where the white matter is hypointense (first column), maps of the MWF (second column), and maps of the geometric mean T 2 in the range 

corresponding to the IE space (50–200 ms) (third column) for an axial slice in a subject with MS. We show the MS lesions on the FLAIR map marked in red and labeled 

numerically. Regarding the mean T 2 maps, we can see that the all lesions but Lesion 2 can be seen as hyperintensities, with the maps very similar across all methods. 

Regarding the MWF maps, as in the healthy subjects, MIML most smoothly and accurately reconstructs the WM, with the other methods exhibiting more noisy maps with 

missing patches. MIML provides the best lesion visualization due to better contrast between normal appearing tissue and lesions and a more smooth MWF map; in particular, 

lesions can clearly be delineated from close, adjacent structures in contrast to the NNLS methods (see Lesion 1, 3). See Fig. 3 in the Suppl. material for a closer look/analysis 

of the MWF maps compared to the lesions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

15 
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Table 4 

Table of the spatial Pearson correlation and the linear regression coefficients (slope and intercept) between the mean MWF values of the scan and rescan in white matter 

ROIs for each method and each healthy subject. In bold are the highest Pearson correlations per subject. All Pearson correlations have p values less than 0.01. Overall, all 

methods perform quite similarly. However, GMF has the best correlations between scans (by a small margin), with MIML and the NNLS methods performing similarly. 

Pearson Correlation and Linear Regression Coefficients between Scan and Rescan WM ROIs 

MIML NNLS-T NNLS-L GMF 

Subject 1 (0.92, 0.89,0.0069) (0.91,0.887,0.0016) ( 0.93 ,0.90,0.0004) ( 0.93 ,0.85,0.0130) 

Subject 2 (0.90,1.00,0.0002) (0.87,0.98,0.0008) (0.89,1.02,-0.0034) ( 0.91 ,0.99,0.0045) 

Subject 3 ( 0.77 ,0.74,0.0546) (0.70,0.65,0.0527) (0.72,0.69,0.0520) ( 0.77 ,0.76,0.0433) 

Subject 4 (0.87,0.87,0.0087) (0.87,0.97,-0.0064) ( 0.89 ,0.97,-0.0076) ( 0.89 ,0.96,0.0001) 

Table 5 

Table of the average computation time for whole brain reconstructions for each 

method on the healthy subjects; all reconstructions were done using the same com- 

puter, with 16 threads. MIML is orders of magnitude faster than the other methods. 

Average Computation for Whole Brain 

MIML NNLS-T NNLS-L GMF 

Time 34s 752s 701.2s 159382.4s 
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ive of the poor MWF reconstruction in the normal-appearing 

issue. 

In conclusion, all methods perform similarly in detecting le- 

ions from the mean T 2 . However, MIML improves upon the NNLS 

ethods and GMF in detecting lesions from MWF maps, by pro- 

iding better contrast between lesions and normal appearing tis- 

ues, clearer delineation of lesions from adjacent structures, and 

moother, more plausible reconstructions overall in the WM. The 

omparison of the myelin water lobes of lesion and normal ap- 

earing tissue from MIML is consistent with the demyelinating na- 

ure of MS in contrast to that from the NNLS methods. Therefore, 

he performance of MIML meets or exceeds the performance of the 

ther methods when used on a pathological case. 

From our results on real data, we see that MIML generalizes to 

ifferent machines, different magnetic field strengths, and differ- 

nt sequences since it is trained on a model of the signal decay 

hich is agnostic to these differences; MIML’s performance on the 

eal data shows its potential for multi-component T 2 relaxometry 

t clinically achievable SNRs in high resolution scans. 

.3. Computation time 

Here we provide a brief overview of the computational cost 

f the different methods. For consistent comparison, we used 

ne computer using Ubuntu 18.04 with an Intel Xeon CPU E5- 

650v4 running at 3.6 GHz with 12 available threads to run par- 

llelized whole-brain reconstructions on four of the healthy sub- 

ects (matrix size 144x126x84) using MIML, NNL S-T, NNL S-L, and 

MF; we recorded the time to completion and show the aver- 

ge computation time for each method in Table 5 . We can see 

hat MIML is 1 to 4 orders of magnitude faster than the other 

ethods. 

. Discussion 

Overall, from our evaluation on synthetic data, an ex vivo scan 

nd in vivo scans (healthy and pathological), we conclude that 

IML provides fast, noise-robust, and plausible reconstructions of 

 2 distributions, with potential for use in myelin water fraction 

apping. We attribute the performance of our method to the 

lending of the advantages of machine learning, parametric, and 

on-parametric methods. We note that our approach is essentially 

sing machine learning to solve the inverse problem of parametric 

pproaches, albeit expressing the solution non-parametrically. We 
16 
iew our approach as an extension of the recent progress in us- 

ng machine learning to solve inverse problems in many domains 

 Adler and Öktem, 2017 ). By using machine learning, our method 

s much faster than standard parametric or non-parametric ap- 

roaches. By training on solely simulated data, our approach does 

ot require expensive, in vivo acquisitions for training data, nor 

he need for multiple scans to adapt to different machines or se- 

uences. Further, by simulating random flip angles in the dataset, 

ur method is able to automatically account for the flip angle, in 

ontrast to non-parametric methods which need to estimate the 

ip angle before fitting. Altogether, this allows for noise-robust re- 

onstruction by training the network on simulated signals with an 

NR range and noise model corresponding to those from clinical 

cans. By generating the simulations guided by biophysical mod- 

ls, we can simultaneously retain stability in the reconstruction 

y constraining the space of T 2 distributions while not being re- 

tricted to a specific number of water pools at inference time. 

urther, the produced distributions are implicitly constrained to 

ave a plausible, lobular structure (as in parametric approaches), 

hich makes the interpretation of parameters of interest such as 

he MWF consistent with past studies, in contrast to potential ir- 

egular distributions from non-parametric methods. The trained 

IML model and code for generating the synthetic data and train- 

ng the model will be available at the following website: https: 

/github.com/thomas- yu- epfl/Model _ Informed _ Machine _ Learning . 

However, our current approach has several limitations. First, 

hile we attempted to be as comprehensive as possible in the sim- 

lated dataset, advances in biophysical modelling make it possible 

hat there are additional relevant water pools to be estimated. For 

xample, the Gaussian Mixture model we use assumes the sym- 

etry of the mixture distributions, which may not be true in real 

istributions; in the case of skew, ground truth distributions, our 

ethod can result in a biased reconstruction. Second, while we 

xed the Rician noise model for the training signals, with a fixed 

NR range of 80-200, we note that in some sequences, more com- 

lex noise models such as the non-central chi distribution ( Aja- 

ernández and Vegas-Sánchez-Ferrero, 2016 ) with different SNR 

anges may also be appropriate. Third, we only consider 32-echo 

equences in this work. Fourth, we use a fixed, logarithmic T 2 dis- 

retization consisting of 60 points from 10 ms to 20 0 0 ms for both

ur method and the NNLS methods. However, finer or coarser dis- 

retizations could also have been used. Finally, there may be rel- 

vant physical effects such as magnetization transfer ( Sled, 2018; 

alik et al., 2018 ) which, if modelled in the dataset, could improve 

he reconstructions. However, we highlight the flexibility and mod- 

larity of our approach for accounting for these limitations. Ad- 

itional water pools can be easily added to the training dataset. 

he noise model and SNR range used in training can be swapped 

ut for different noise models and SNRs. A sequence with a dif- 

erent number of echoes can be accommodated by reconstructing 

he dataset with the required number of echos and retraining the 

etwork. Different T 2 discretizations would simply require down- 

ampling of the high resolution T 2 distributions in our dataset to 

atch the new discretization, with subsequent retraining of the 

https://github.com/thomas-yu-epfl/Model_Informed_Machine_Learning
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etwork. More advanced physical modelling can be added to the 

eneration of new datasets. As the training of the network is quite 

ast (70s on a laptop GPU), the bottleneck for addressing these lim- 

tations is the dataset generation (1 h on 46 CPU threads). How- 

ver, while we generated our dataset on CPU, GPU acceleration of 

he EPG formalism can potentially speedup dataset generation sig- 

ificantly ( Wang et al., 2020 ). 

As for future work: in this paper, we did not study the impact 

f denoising the data on the reconstruction performance of the 

ethods compared. This is first because in our overview of the lit- 

rature, we found that presenting results on denoised data is not 

ypical unless the subject of the paper is denoising. Second, the 

ype of denoising, setting of denoising parameters, and accounting 

or potential biases due to denoising all require careful justifica- 

ion and study, which we felt was out of the scope of this paper,

hich introduces a proof of concept. However, we note that in the 

S data, particularly for the NNLS methods, ostensibly normal ap- 

earing regions of the brain had unusually low MWF values, some- 

imes less than that predicted for the lesion. These areas of unusu- 

lly low MWF values could also be seen in the scans of healthy 

ubjects. These may be due to, in part, instability/ill-posedness in 

he estimation due to comparatively low SNRs in the in vivo scans; 

he in vivo scans we used have fairly high resolution (1.6-1.8mm) 

nd are isotropic, while typical scans in the literature generally use 

uch thicker slices ( ≥ 2mm) along the axial direction ( Alonso- 

rtiz et al., 2015; Prasloski et al., 2012a ). We note that both distri-

utions and MWF maps from the NNLS methods were more plau- 

ible in the ex vivo scan, where the SNR was much higher. This 

s consistent with the observations in ( Wiggermann et al., 2020 ) 

oncerning the noise dependence of NNLS methods. Future stud- 

es will be conducted to study the impact of denoising algorithms 

uch as PCA denoising ( Does et al., 2019 ), or the NESMA filter

 Bouhrara et al., 2018 ) on MIML as well as other methods, and any

ffect this has on their comparison. 

Our method, as well as the other methods compared to in this 

ork, reconstruct the T 2 distribution in each voxel separately. How- 

ver, there are parametric and non-parametric approaches to T 2 
elaxometry which use spatial regularization ( El-Hajj et al., 2020; 

wang and Du, 2009; Kumar et al., 2018 ). These approaches as- 

ume that voxels spatially close to each other should also have 

imilar reconstructions; hence, they perform reconstructions on 

roups of adjacent voxels simultaneously, with constraints that 

imit the variation of the reconstructions over the group. In addi- 

ion, another approach estimates over groups of voxels by assum- 

ng the joint sparsity of the distributions in a region of interest 

 Nagtegaal et al., 2020 ). In future work, we will study how regular-

zation/simultaneous fitting over regions of interest can be incor- 

orated into our machine-learning framework as well as its effects 

n distribution reconstruction. 

In this paper, we tested our method on two types of sequences: 

 multi-echo spin echo sequence and a 3D gradient and spin echo 

equence. While in principle our approach is agnostic to the se- 

uence used, in the future we will further validate our method on 

ata from other sequences such as the T 2 prepared gradient echo 

equences ( Nguyen et al., 2012 ). 

Finally, we note that using more advanced neural networks 

uch as Long short term memory (LSTM) networks ( Hochreiter and 

chmidhuber, 1997 ), which are suitable for time series data, may 

ffer im proved reconstructions as well as potentially eliminating 

he need for fixed size inputs. In addition, while our synthetic 

ataset generation is based solely on the most common cases for 

iophysical modelling, we will investigate how to improve dataset 

eneration i.e. the number of pools, the maximum number of pools 

resent per signal, etc. in order to optimize the generalization ca- 

abilities of the network while minimizing the ill-posedness of the 

econstruction. 

 

17 
. Conclusion 

In this work, we presented Model-Informed Machine Learning 

MIML), an approach for estimating T 2 distributions from MRI sig- 

als using a neural network trained on synthetic data derived from 

iophysical models. Through our evaluations on synthetic data, an 

x vivo scan, as well as healthy and pathological in vivo data, 

e show that MIML provides more robust, accurate, and plausi- 

le T 2 distributions than standard parametric and non-parametric 

ethods across a wide range of SNRs. We show that MWF maps 

erived from MIML show the highest conformity to anatomical 

cans, have the greatest correlation to a histological map of myelin 

olume, and improve upon the lesion visualization capabilities of 

ther methods, with better contrast between lesions and normal- 

ppearing tissue as well as clearer delineation between lesions and 

lose adjacent structures. The code for generating the datasets and 

raining the network will be made available at https://github.com/ 

homas- yu- epfl/Model _ Informed _ Machine _ Learning . 
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