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1 Introduction

Let X = (X1, X2)
> be a bivariate random vector with marginal distribution functions (dfs) F1 and

F2, respectively. The upper tail dependence coefficient of X is defined by

λU = lim
u↑1

P (F1(X1) ≥ u|F2(X2) ≥ u) (1)

provided that the limit λU exists; see Nelsen (1999) and Embrechts et al. (2002). This quantity provides

insight into the tendency for the distribution to describe joint extreme events since it measures the strength

of dependence (or association) in the tails of a bivariate distribution. Generally, X is said to have

asymptotic upper tail dependence if λU is positive. In particular, trivial values λU = 1 and λU = 0

correspond to full dependence and independence, respectively.
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Tail independence of bivariate normal distributions was firstly addressed by Sibuya (1960) (see also

Embrechts et al. (2002)) while the tail dependence of symmetry t-distributions was established by Demarta

and McNeil (2005). Their skew-versions were further considered by Banachewicz and van der Varrt (2008)

and Fung and Seneta (2010). The skew t-distributions are more popular and useful since it provides

tail dependence of some extent as well as the skewness and heavy tails compared with (skew) normal

distributions. For more related studies see, e.g., Heffernan (2000), Fung and Seneta (2011), Padoan (2011),

and references therein.

In recent years, the multivariate skew-slash distributions alternatively (see (2) and (3) below for two

precise definitions) have received considerable attention both in theoretical studies for their numerous

stochastic properties, and in applied studies for robust statistical modeling of datasets involving distribu-

tions with skewness and heavy tails, see, e.g., conditional distributions, moments and applying skews-lash

distributions to fit AIS and glass-fiber data (Wang and Genton (2006)) and characteristics functions (Kim

and Genton (2011)) for skew slash distributions (3), and parameters estimation procedure such as the EM

based on MLE in Arslan (2009), MLE in Lachos et al. (2010), and empirical Bayes estimations in Zarei-

fard and Khaledi (2013) for the skew slash distributions (2). For more details see, e.g., Genç (2013) and

Punathumparambatha (2013), and references therein.

Recently, tail dependence has been discussed in financial applications related to market or credit risk;

see, e.g., Schmidt (2005), Durante (2013). A generalized tail dependence measure, namely tail quotient

correlation coefficient was proposed by Zhang (2008) where a new test statistics of tail independence was

developed; see Wu et al. (2012) for more related studies. In this paper, we shall investigate the tail

dependence coefficient for two classes of skew slash distributions. The first class is defined by the normal

variance-mean method. Specifically, a random vector X = (X1, X2)
> is called to be skew slash distributed

with parameters (λ,θ,R), denoted by X ∼ SS(λ,θ,R), if X has the following stochastic representation

(see Arslan (2008, 2009))

X =
θ

V
+
Z√
V
, (2)

where θ = (θ1, θ2)
> ∈ R2 and V ∼ Beta(λ, 1), λ > 0 with probability density function (pdf) f(x) =

λxλ−1, x ∈ (0, 1), independent of Z ∼ N2(0,R), a bivariate normal distribution with mean 0 and corre-

lation matrix R with correlation entry ρ ∈ (−1, 1). This skew slash distribution introduces randomness

into the variance and mean of a normal distribution via a beta random variable so that it is more flexible

and can provide useful asymmetric and heavy-tailed extensions of their symmetric counterparts (θ = 0)

for robust statistical modeling of datasets. For more related studies on model (2) see, e.g., generalized
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hyperbolic skew t-distributions in Kjersti and Ingrid (2006), skew grouped t-distributions in Banachewicz

and van der Varrt (2008) and skew t-distributions in Fung and Seneta (2011).

The second class of skew slash distributions is defined as the scale-mixed skew-normal distribution

(Azzalini and Dalla Valle (1996)). A random vector X is called the second type skew slash distribution,

denoted by X ∼ ASS(λ,θ,R), if X is given by

X =
Z√
V
, (3)

where V ∼ Beta(λ, 1), λ > 0, independent of Z = (Z1, Z2)
> ∼ SN2(θ,R), a bivariate skew normal

distribution with pdf

2φ2(z,R)Φ(θ>z),

where φ2(·,R) is the bivariate normal density function with mean 0 and correlation matrix R, and Φ(·)

is the standard normal distribution function. For more related studies on model (3) see, e.g., Kim and

Genton (2011), Lachos (2010) for other scaled positive variable V .

The goal of this paper is to establish the limit of the conditional distributions and to derive the upper

tail dependence coefficient of X given by (2) and (3), respectively. Comparison with the findings of tail

independence of bivariate normal (Embrechts et al. (2002)), skew-bivariate normal (Bortot (2010)); tail

dependence of two skew-t distributions (Fung and Seneta (2010), Bortot (2010)), the tail dependence of

the first class of skew slash distributions exist trivial values 0 or 1 for some special cases (Theorem 3.1),

while the second class has wider region of tail dependence (Theorem 3.2).

The rest of the paper is organized as follows. The main results are provided in Section 3. All proofs

are postponed to Section 4.

2 Preliminaries and notation

In this section, we first introduce some important functions with their asymptotic properties established

in Lemma 2.1 and then give Lemma 2.2 for the distribution properties of the skew slash random vector

X given by (2) via the normal variance-mean mixture.
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Let Kτ (x;ω) be the incomplete modified Bessel function of the third kind with index τ ∈ R defined by

Kτ (x;ω) =
1

2

∫ ∞
x

tτ−1 exp
(
−ω

2

(
t+ t−1

))
dt, x ≥ 0, ω > 0. (4)

It follows from (7.5) in Jones (2007) that for τ ∈ R

Kτ (0;ω) =

√
π

2ω
e−ω

(
1 +

4τ2 − 1

8ω
+ o

(
1

ω

))
, ω →∞. (5)

Define further Pτ (a; b) and Qυ(x; a) respectively by

Pτ (a; b) =

∫ 1

0
tτ−1 exp

(
−1

2

(
a2t+

b2

t

))
dt; Qυ(x; a) =

∫ x

−∞

(∫ a

0
tυ−1e−(1+u

2)t dt

)
du, x ∈IR, (6)

where τ > 0, a, b ≥ 0 and υ ≥ 1. For simplicity, we write Γ(·) for the Euler gamma function.

The following result is about the asymptotic behaviors of Pτ (a; b) and Qυ(x; a), respectively.

Lemma 2.1. Let Pτ (a; b) and Qυ(x; a) be those defined as in (6). Then, we have for Pτ (a; b) with τ > 0

Pτ (a; b) =



(
a2

2

)−τ
Γ(τ)(1 + o(1)), b = 0, a→∞;

bτ−1/2

aτ+1/2

√
2πe−ab

(
1 +

4τ2 − 1

8ab
(1 + o(1))

)
, b > 0, a→∞;

2
(a
b

)−τ
Kτ (0;ω)(1 + o(1)), b→ 0, a→∞, ab→ ω > 0

and for Qv(x; a) with υ ≥ 1 and x ∈IR

Qυ(x; a)→ Γ(υ)

∫ x

−∞
(1 + u2)−υ du =: Qυ(x;∞) > 0, a→∞. (7)

Recall that λU is equivalent to

λU = lim
x1→∞

P
(
X2 ≥ F−12 (F1(x1))|X1 = x1

)
+ lim
x2→∞

P
(
X1 ≥ F−11 (F2(x2))|X2 = x2

)
(8)

provided that the marginal distributions are continuous (cf. Nelsen (1999), p.11, 36). In the following we

derive the marginal distribution and the conditional distribution of X given by (2).

Lemma 2.2. For X ∼ SS(λ,θ,R) given by (2), let f2(·) and f1.2(·|x2) denote the pdfs of X2 and
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X1.2 := (X1|X2 = x2), respectively. Then, with Pτ (a; b) given by (6), we have

f2(x2) =
λeθ2x2√

2π
Pλ+1/2(|x2|; |θ2|); f1.2(x1|x2) =

eβ(x1−ρx2)√
2π(1− ρ2)

Pλ+1

(√
x
′2
1 + x22;

√
θ
′2
1 + θ22

)
Pλ+1/2(|x2|; |θ2|)

, (9)

where β(1− ρ2) = θ1 − ρθ2, x′1
√

1− ρ2 = x1 − ρx2 and θ′1
√

1− ρ2 = θ1 − ρθ2. Furthermore, for θ 6= 0

Ee−sX1.2 =
Pλ+1/2

(
|x2|;

√
θ22 + 2β(1− ρ2)s− (1− ρ2)s2

)
Pλ+1/2(|x2|; |θ2|)

e−ρx2s, s ∈ β ±

√
θ>R−1θ

1− ρ2
. (10)

Remark 2.1. Let F2 be the df of X2 for X = (X1, X2)
> defined as in (2).Then, using (9) and Lemma

2.1, we have as x2 →∞ that

1− F2(x2)=



(
θ2/x2

)λ
(1 + o(1)), θ2 > 0,(

λ̃/x2
)2λ

(1 + o(1)), θ2 = 0,

λ

2

|θ2|λ−1

xλ+1
2

e−2|θ2|x2(1 + o(1)), θ2 < 0,

(11)

with

λ̃ =

(
2λ−1Γ(λ+ 1/2)√

π

)1/(2λ)

. (12)

3 Main results

In this section, we provide the main results on the upper tail dependence coefficient λU of two skew

slash distributions given by (2) and (3). The first result is about the upper tail dependence of the skew

slash distributed random vector X defined by (2) via the normal variance-mean mixture model.

Theorem 3.1. Let X ∼ SS(λ,θ,R) be defined as in (2), and let T2λ+1(·) be the student’s t distribution

function (df) with 2λ+ 1 degrees of freedom. Then, with λ̃ given by (12), we have

(1). for θ1 = θ2 = 0,

λU = 2

(
1− T2λ+1

(√
(2λ+ 1)(1− ρ)

1 + ρ

))
;

(2). for θ1 > 0, θ2 > 0, λU = 1;
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(3). for θ1 > 0, θ2 = 0 or θ1 = 0, θ2 > 0,

λU =

∫ 1

0

(
1− Φ

(
λ̃u1/(2λ)

))
du− 1

2λ+ 1

∫ 1

0
u d

(
1− Φ

(
λ̃u1/(2λ)

))
;

(4). for the remaining cases, λU = 0.

From (11) and Theorem 3.1, if both marginals posses power laws, i.e., θ1, θ2 ≥ 0, then the skew

slash random vector X has asymptotic upper tail dependence. Therefore, regular varying tails play an

important role in the presence of tail dependence. Theorem 3.1 shows that tail dependence of the first class

of skew slash distribution exists trivial values 0 or 1, which implies that it has extremal tail dependence

(independence and full dependence), contrary to the second class of skew slash distributions showing that

the tail dependence has nontrivial values.

Theorem 3.2. Let X ∼ ASS(λ,θ,R) be defined as in (3) and let f2λ+1(·) be the probability density

function (pdf) of student’s t distribution with 2λ+ 1 degrees of freedom. Then

λU =
Γ(λ+ 1/2)

Γ(λ+ 1)

 1

Qλ+1 (µ1;∞)

∫ ∞
z′0

f2λ+1(z)Qλ+3/2

θ2
√

1−ρ2
2λ+1z + (θ1 + ρθ2)√
1 + z2/(2λ+ 1)

;∞

 dz

+
1

Qλ+1 (µ2;∞)

∫ ∞
z0

f2λ+1(z)Qλ+3/2

θ1
√

1−ρ2
2λ+1z + (θ2 + ρθ1)√
1 + z2/(2λ+ 1)

;∞

 dz

 ,

where Qλ+3/2(·;∞) is given by (7) and

µ1 = θ1+ρθ2√
1+θ22(1−ρ2)

, z0 =

((∫ µ1
−∞(1+u2)−(λ+1) du∫ µ2
−∞(1+u2)−(λ+1) du

)1/(2λ)

− ρ

)√
2λ+1
1−ρ2 ;

µ2 = θ2+ρθ1√
1+θ21(1−ρ2)

, z′0 =

((∫ µ2
−∞(1+u2)−(λ+1) du∫ µ1
−∞(1+u2)−(λ+1) du

)1/(2λ)

− ρ

)√
2λ+1
1−ρ2 .

4 Proofs

Proof of Lemma 2.1 First we consider Pτ (a; b). We will treat the following three cases in turn: (1)

b = 0, a→∞; (2) b > 0, a→∞; (3) b→ 0, a→∞ and ab→ ω > 0.

Case (1) as b = 0 and a→∞. Using integration by substitution, we have

Pτ (a; 0) =

(
a2

2

)−τ ∫ a2/2

0
tτ−1e−t dt =

(
a2

2

)−τ
Γ(τ)(1 + o(1)), a→∞
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since
∫∞
x tτ−1e−t dt = xτ−1e−x(1 + o(1)) as x→∞, the claim for Pτ (a; 0) follows.

Case (2) as b > 0 and a→∞. We rewrite Pτ (a; b) using Kτ (·; ·) given by (4) as

Pτ (a; b) = 2
(a
b

)−τ (
Kτ (0; ab)−Kτ

(a
b

; ab
))

. (13)

Noting that

Kτ

(a
b

; ab
)

=
1

2

(
ab

2

)−τ ∫ ∞
a2/2

tτ−1 exp

(
−
(
t+

a2b2

4t

))
dt

and

exp

(
−a

2b2

4t

)
= e−b

2/2
∞∑
n=0

(
u

u+ 1

)n(b2
2

)n
, u =

2t

a2
− 1,

we have ∫ ∞
a2/2

tτ−1 exp

(
−
(
t+

a2b2

4t

))
dt =

(
a2

2

)τ
exp

(
−a

2 + b2

2

) ∞∑
n=0

(
b2

2

)n
dn,

with

dn =
1

n!

∫ ∞
0

un(u+ 1)τ−n−1 exp

(
−a

2

2
u

)
du =: U(n+ 1; τ + 1; a2/2),

where U is the confluent hypergeometric function and U(n + 1; τ + 1; a2/2) = (a2/2)−n−1(1 + o(1)) as

a→∞ (cf. Chaudhry et al. (1996)). Hence,

Kτ

(a
b

; ab
)

=
aτ−2

bτ
exp

(
−a

2 + b2

2

)
(1 + o(1)).

This together with (5) yields that

Kτ

(
a
b ; ab

)
Kτ (0; ab)

=

√
2

π

aτ−3/2

bτ−1/2
exp

(
ab− a2 + b2

2

)
(1 + o(1)), (14)

which tends to zero as a→∞. Consequently, the claim for Pτ (a; b) as b > 0, a→∞ follows.

Case (3) as b→ 0, a→∞ and ab→ w > 0. The proof is similar to that of Case (2), and thus the

details are omitted here.

Next, we consider Qυ(x; a). Note that for all x ∈IR

Qυ(x; a) = Γ(υ)

∫ x

−∞
(1 + u2)−υ du −

∫ x

−∞

∫ ∞
a

tυ−1e−(1+u
2)t dtdu. (15)
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Further, recall that υ ≥ 1, and thus as a→∞

0 ≤
∫ x

−∞

∫ ∞
a

tυ−1e−(1+u
2)t dtdu ≤

(∫ x

−∞
(1 + u2)−υ du

)(∫ ∞
a

tυ−1e−t dt

)
→ 0,

implying that ∫ x

−∞

∫ ∞
a

tυ−1e−(1+u
2)t dtdu→ 0, a→∞.

Therefore, for all x ∈IR and υ ≥ 1,

Qυ(x; a)→ Γ(υ)

∫ x

−∞
(1 + u2)−υ du, a→∞.

The proof is complete. 2

Proof of Lemma 2.2 Recall that X|(V = t) ∼ N2(θ/t,R/t) with t ∈ (0, 1) given. It follows from

the total probability formula that, the pdf of X defined as in (2), denoted by fX(·), is

fX(x) =
λeθ

>R−1x

2π
√

1− ρ2

∫ 1

0
tλ+1−1 exp

(
−1

2

(
x>R−1xt+

θ>R−1θ

t

))
dt,

with x = (x1, x2)
> ∈IR2. Hence, the pdf of X2, denoted by f2(·), satisfies

f2(x2) =
λeθ2x2√

2π

∫ 1

0
tλ+1/2−1 exp

(
−1

2

(
x22t+

θ22
t

))
dt.

Consequently, the conditional density of X1.2 := X1|X2 = x2, denoted by f1.2(·|x2), is

f1.2(x1|x2) =
fX(x)

f2(x2)
=

eβ(x1−ρx2)√
2π(1− ρ2)

Pλ+1

(√
x
′2
1 + x22;

√
θ
′2
1 + θ22

)
Pλ+1/2(|x2|; |θ2|)

,

where β(1 − ρ2) = θ1 − ρθ2, x
′
1

√
1− ρ2 = x1 − ρx2, θ

′
1

√
1− ρ2 = θ1 − ρθ2. Therefore, we have with

s′ =
√

1− ρ2s

Ee−sX1.2 = e−ρx2sEe−s
′(X1.2−ρx2)/

√
1−ρ2

and

Ee−s
′(X1.2−ρx2)/

√
1−ρ2 =

Pλ+1/2 (|x2|; |θ′2|)
Pλ+1/2(|x2|; |θ2|)

,

8



with θ
′2
2 = θ

′2
1 + θ22 − (θ′1 − s′)2 and s′ satisfying θ

′2
1 + θ22 − (θ′1 − s′)2 > 0, i.e.,

θ
′2
2 = θ22 + 2β(1− ρ2)s− (1− ρ2)s2, s ∈ β ±

√
θ
′2
1 + θ22
1− ρ2

.

The proof is complete. 2

Proof of Theorem 3.1 For θ = 0, the skew slash random variable X is symmetry and has the

same marginal distributions with regular varying tail index 2λ (see (11)), and thus the claim follows by

Theorem 1 (i) of Abdous (2005). Next, we derive the remaining cases, i.e., θ 6= 0.

To this end, we need to derive the asymptotic distribution of W (x2) as x2 →∞, where

W (x2) :=

 x
−1/2
2

(
X1.2 −

(
ρx2 + β(1− ρ2)|θ2|−1

√
x22 + 2λ

))
, θ2 6= 0;

x−22 X1.2, θ2 = 0.

For θ2 6= 0, it follows from Lemma 2.2 that

Ee−sW (x2) = exp

ρx2 + β(1−ρ2)
|θ2|

√
x22 + 2λ

√
x2

s

E exp

(
− s
√
x2
X1.2

)

= exp

(
β(1− ρ2)
|θ2|

√
x2 +

2λ

x2
s

)
Pλ+1/2

(
|x2|;

√
θ22 + 2β(1−ρ2)s√

x2
− (1−ρ2)s2

x2

)
Pλ+1/2(|x2|; |θ2|)

,

which, in view of Lemma 2.1, is asymptotically equal to

exp

(
β(1− ρ2)
|θ2|

√
x2 +

2λ

x2
s

)θ22 + 2β(1−ρ2)s√
x2

− (1−ρ2)s2
x2

θ22


λ
2

exp

(
|θ2|x2 −

√
θ22 +

2β(1− ρ2)s
√
x2

− (1− ρ2)s2
x2

x2

)

= exp

(
β(1− ρ2)
|θ2|

√
x2 +

2λ

x2
s

)
exp

(
|θ2|x2

[
1−

(
1 +

2β(1− ρ2)s
θ22
√
x2

− (1− ρ2)s2

θ22x2
x2

)1/2
])(

1 +O

(
1
√
x2

))

= exp

(
−(1− ρ2)(θ′21 + θ22)

2|θ2|3
s2 +O

(
1
√
x2

))(
1 +O

(
1
√
x2

))

→ exp

(
−(1− ρ2)(θ′21 + θ22)

2|θ2|3
s2

)
, x2 →∞,

where θ′1 = (θ1 − ρθ2)/
√

1− ρ2. Therefore, by the Laplace inverse transform, we have the following

convergence in distribution (denoted by
d→ )

W (x2)
d→ Z1 ∼ N

(
0,

(1− ρ2)(θ′21 + θ22)

|θ2|3

)
, x2 →∞. (16)
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For θ2 = 0, and thus θ1 6= 0. It follows from Lemma 2.1 and Lemma 2.2 that as x2 →∞

Ee−sW (x2) →
2(
√

2θ1s)
λ+1/2Kλ+1/2(0;

√
2θ1s)

2λ+1/2Γ(λ+ 1/2)
,

which is the Laplace transform of θ1/Y where Y ∼ Γ(1/2+λ, 1/2), a Gamma distributed random variable

with shape and scale parameters 1/2 + λ, 1/2. Therefore

W (x2)
d→ θ1
Y
, x2 →∞. (17)

Further, we need the asymptotic expression of the function c(x2) = F−11 (F2(x2)). We have by Lemma 3.1

in Banachewicz and van der Vaart (2008) that

c(x2)=



θ1
θ2
x2(1 + o(1)), θ1 > 0, θ2 > 0;

θ1
λ̃2
x22(1 + o(1)), θ1 > 0, θ2 = 0;(
2|θ2|
λ+ 1

)1/λ θ1
|θ2|

x
1+1/λ
2 exp

(
2|θ2|x2
λ

)
(1 + o(1)), θ1 > 0, θ2 < 0

(18)

as x2 →∞, where λ̃ is given by (12).

Next, we give the proofs of assertions (2)–(4).

Assertion (2) as θ1 > 0, θ2 > 0. Using (16), (18) and β(1− ρ2) = θ1 − ρθ2, we have

lim
x2→∞

P
(
X1 ≥ F−11 (F2(x2))|X2 = x2

)
= lim

x2→∞
P

W (x2) ≥
c(x2)−

(
ρx2 + β(1−ρ2)

|θ2|
√
x22 + 2λ

)
√
x2

 = P (Z1 ≥ 0) =
1

2
.

Similarly, limx1→∞ P
(
X2 ≥ F−12 (F1(x1))|X1 = x1

)
= 1/2. Therefore, in view of (8), we have

λU = lim
x2→∞

P
(
X1 ≥ F−11 (F2(x2))|X2 = x2

)
+ lim
x1→∞

P
(
X2 ≥ F−12 (F1(x1))|X1 = x1

)
= 1

Assertion (3) as θ1 > 0, θ2 = 0 and θ1 = 0, θ2 > 0. For this, we only present the proof of θ1 > 0, θ2 = 0

since another case follows by the similar arguments. Using (17) and (18), we have

lim
x2→∞

P
(
X1 ≥ F−11 (F2(x2))|X2 = x2

)
= lim

x2→∞
P
(
W (x2) ≥

c(x2)

x22

)
= P

(
Y ≤ λ̃2

)
,

10



where Y ∼ Γ(1/2 + λ, 1/2) and λ̃ is defined by (12). Similarly

lim
x1→∞

P
(
X2 ≥ F−12 (F1(x1))|X1 = x1

)
= lim

x1→∞
P

X2.1 −
(
ρx1 + β′(1−ρ2)

|θ1|
√
x21 + 2λ

)
√
x1

≥
λ̃
√

x1
|θ1| −

(
ρx1 + β′(1−ρ2)

|θ1|
√
x21 + 2λ

)
√
x1


= P

(
Z ′1 ≥

λ̃√
|θ1|

)
,

where

β′(1− ρ2) = θ2 − ρθ1, Z ′1 ∼ N

(
0,

(1− ρ2)θ>R−1θ

|θ1|3

)
. (19)

Therefore, using integration by parts, we have

λU = 1− Φ(λ̃) + P
(
Y ≤ λ̃2

)
=

∫ 1

0

(
1− Φ(λ̃u1/(2λ))

)
du− 1

2λ+ 1

∫ 1

0
u d

(
1− Φ(λ̃u1/(2λ))

)
.

Assertion (4) as θ1θ2 < 0 and θ1 < 0, θ2 < 0. Here, we only present the proof of θ1 > 0, θ2 < 0. The other

cases follow by the similar arguments and thus are omitted here. Using (16), (18) and x−12 c(x2)→∞, we

have

lim
x2→∞

P
(
X1 ≥ F−11 (F2(x2))|X2 = x2

)
= 0, lim

x1→∞
P
(
X2 ≥ F−12 (F1(x1))|X1 = x1

)
= 0.

Consequently, λU = 0 for θ1 > 0, θ2 < 0. The proof is complete. 2

Proof of Theorem 3.2 Note thatX|V = t is skew normal distributed with pdf 2φ2(x; R/t)Φ(
√
tθ>x)

with t ∈ (0, 1) given. It follows from the total probability formula that the pdf of X, denoted by fX(·), is

fX(x) =
2λ

(2π)3/2|R|1/2

∫ 1

0

∫ θ>x

−∞
tλ+3/2−1 exp

(
−x
>R−1x+ u2

2
t

)
dudt

=
2λ

(2π)3/2|R|1/2
2λ+3/2

(x>R−1x)λ+1

∫ θ>x√
x>R−1x

−∞

∫ x>R−1x
2

0
tλ+3/2−1 exp

(
−(1 + u2)t

)
dtdu

=
2λ

(2π)3/2|R|1/2
2λ+3/2

(x>R−1x)λ+1
Qλ+ 3

2

(
θ>x√
x>R−1x

;
x>R−1x

2

)
, x 6= 0. (20)

Consequently, the pdf of Xi, denoted by fi(·), is given by

fi(x) =
λ

π

2λ+1

|x|2λ+1
Qλ+1

(
µisign(x);x2/2

)
, i = 1, 2, (21)

11



with

µ1 =
θ1 + ρθ2√

1 + θ22(1− ρ2)
, µ2 =

θ2 + ρθ1√
1 + θ21(1− ρ2)

.

Hence, we have by Lemma 2.1

1− F2(x2) =
x2
2λ
f2(x2)(1 + o(1))=

Γ(λ+ 1)

π

2λ

x2λ2

∫ µ2

−∞
(1 + u2)−(λ+1) du(1 + o(1))

as x2 →∞. Consequently, as x2 →∞

c(x2) = F−11 (F2(x2)) =

(∫ µ1
−∞(1 + u2)−(λ+1) du∫ µ2
−∞(1 + u2)−(λ+1) du

)1/(2λ)

x2(1 + o(1)) (22)

and the pdf of X1|X2 = x2, denoted by f1.2(·|x2), satisfies

f1.2(x1|x2) =
Γ(λ+ 1/2)

Γ(λ+ 1)

f2λ+1 ((x1 − ρx2)/s(x2))
s(x2)

Qλ+3/2

(
θ1x1+θ2x2√

x′21 +x22
;
x′21 +x22

2

)
Qλ+1

(
µ2sign(x2);

x22
2

) ,

where f2λ+1(·) is the pdf of student’s t with 2λ+ 1 degrees of freedom and

x′1
√

1− ρ2 = x1 − ρx2, s(x2) =

√
(1− ρ2)x22

2λ+ 1
.

Hence, we have by the dominated convergence theorem and Lemma 2.1 that

lim
x2→∞

P
(
X1 ≥ F−11 (F2(x2))|X2 = x2

)
=

Γ(λ+ 1/2)

Γ(λ+ 1)

1

Qλ+1 (µ2;∞)

∫ ∞
z0

f2λ+1(z)Qλ+3/2

θ1
√

1−ρ2
2λ+1z + (θ2 + ρθ1)√
1 + z2/(2λ+ 1)

;∞

 dz, (23)

where

z0 = lim
x2→∞

c(x2)− ρx2
s(x2)

=

(∫ µ1−∞(1 + u2)−(λ+1) du∫ µ2
−∞(1 + u2)−(λ+1) du

)1/(2λ)

− ρ

√2λ+ 1

1− ρ2
.

Similarly

lim
x1→∞

P
(
X2 ≥ F−12 (F1(x1))|X1 = x1

)
=

Γ(λ+ 1/2)

Γ(λ+ 1)

1

Qλ+1 (µ1;∞)

∫ ∞
z′0

f2λ+1(z)Qλ+3/2

θ2
√

1−ρ2
2λ+1z + (θ1 + ρθ2)√
1 + z2/(2λ+ 1)

;∞

 dz, (24)

12



with

z′0 =

(∫ µ2−∞(1 + u2)−(λ+1) du∫ µ1
−∞(1 + u2)−(λ+1) du

)1/(2λ)

− ρ

√2λ+ 1

1− ρ2
.

The desired result follows by (23) and (24). 2
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