Thrombolysis by PLAT/tPA increases serum free IGF1 leading
 to a decrease of deleterious autophagy following brain
 ischemia

Running title: Inhibition of ischemia-induced autophagy by tissue-type plasminogen
 activator through the regulation of IGF1-IGF1R receptor axis

Audrey M Thiebaut¹, Izaskun Buendia¹, Vanessa Ginet^{2,3}, Eloise Lemarchand⁴, Mehdi
Boutagouga Boudjadja⁵, Yannick Hommet¹, Laurent Lebouvier¹, Charlotte Lechevallier¹, Mike
Maillasson⁶, Elodie Hedou¹, Nicole Déglon⁷, Franck Oury⁸, Marina Rubio¹, Joan Montaner⁹,
Julien Puyal^{2,10}, Denis Vivien^{1,11}, Benoit D Roussel^{1*}.

10 1- Normandy University, UNICAEN, INSERM, UMR-S U1237, Physiopathology and Imaging of Neurological

11 Disorders (PhIND), Institute Blood and Brain @Caen-Normandie (BB@C), GIP Cyceron, Caen, FRANCE

12 2- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland

13 3- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud,
 Lausanne, Switzerland

4- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology,
 Medicine and Health, University of Manchester, Manchester, UK

17 5- Metofico Scientific, Courbevoie, France

18 6- CRCINA-IMPACT core facility, INSERM, UMR-S U1232, NANTES University, Nantes, FRANCE

19 7- Department of Clinical Neurosciences, Laboratory of Neurotherapies and Neuromodulation, Lausanne
 20 University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland

8- INSERM U1151, Institut Necker Enfants-Malades (INEM), Team 14, Université Paris Descartes-Sorbonne Paris Cité, 75014 Paris, France

23 9- Department of Neurology, Hospital Universitario Virgen Macarena, Sevilla, Spain

24 10- CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland

- 1 11- CHU Caen, Caen University Hospital, Department of clinical research, Caen, France
- 2 <u>* Corresponding author</u>: Dr Roussel Benoit: <u>broussel@cyceron.fr</u>; +33231470213
- 3 <u>Key words</u>: IGF1R, IGFBP3, LC3, MTORC1, SQSTM1/p62, stroke.

4

1 Abstract

2 Cerebral ischemia is a pathology involving a cascade of cellular mechanisms, leading to the 3 deregulation of proteostasis, including macroautophagy/autophagy, and finally to neuronal 4 death. If it is now accepted that cerebral ischemia induces autophagy, the effect of 5 thrombolysis/energy recovery on proteostasis remains unknown. Here, we investigated the 6 effect of thrombolysis by PLAT/tPA (plasminogen activator, tissue) on autophagy and neuronal 7 death. In two in vitro models of hypoxia reperfusion and an in vivo model of thromboembolic 8 stroke with thrombolysis by PLAT/tPA, we found that ischemia enhances neuronal deleterious 9 autophagy. Interestingly, PLAT/tPA decreases autophagy to mediate neuroprotection by 10 modulating the PI3K-AKT-MTOR pathways both in vitro and in vivo. We identified IGF1R 11 (insulin-like growth factor I receptor; a tyrosine kinase receptor) as the effective receptor and 12 showed in vitro, in vivo and in human stroke patients and that PLAT/tPA is able to degrade 13 IGFBP3 (insulin-like growth factor binding protein 3) to increase IGF1 (insulin-like growth 14 factor 1) bioavailability and thus IGF1R activation.

1 Abbreviations

2 AKT/protein kinase B: thymoma viral proto-oncogene 1; EGFR: epidermal growth factor 3 receptor; Hx: hypoxia; IGF1: insulin-like growth factor 1; IGF1R: insulin-like growth factor I 4 receptor; IGFBP3: insulin-like growth factor binding protein 3; Ka: Kainate; MAP1LC3/LC3: 5 microtubule-associated protein 1 light chain 3; MAPK/ERK: mitogen-activated protein kinase; 6 MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; OGD: oxygen and 7 glucose deprivation; OGD_{reox} : oxygen and glucose deprivation + reoxygentation; PepA: 8 pepstatin A1; PI3K: phosphoinositide 3-kinase; PLAT/tPA: plasminogen activator, tissue; PPP: 9 picropodophyllin; SCH77: SCH772984; ULK1: unc-51 like kinase 1; Wort: wortmannin

1 INTRODUCTION

2 Stroke is the second leading cause of death and the most frequent cause of disability in adults 3 [1]. Acute treatments have been developed: the recent endovascular thrombectomy and 4 thrombolysis by PLAT/tPA (plasminogen activator, tissue) [2]. However, endovascular 5 thrombectomy is restricted to large vessels occlusion [3], while thrombolysis with PLAT/tPA has a short therapeutic windows, a low recanalization rate, and a higher risk of haemorrhagic 6 7 transformation [2, 4]. Therefore, a better comprehension of ischemic stroke's 8 pathophysiology is required to improve prevention, therapy and reparation following the 9 disease.

10 Ischemic stroke is a complex disease involving a cascade of cellular mechanism, which 11 deregulates proteostasis and leads to cell death [5]. A key mechanism involved in proteostasis 12 regulation is autophagy [5], a protein degradation/recycling system highly conserved. 13 Macroautophagy (hereafter called autophagy) is characterized by the synthesis of a double-14 layered membrane structure called an autophagosome, which contains cargos targeted for 15 degradation. Autophagosomes then fuse with lysosomes to form autolysosomes resulting in 16 the degradation of their contents. The main autophagy-regulating pathway involves MTOR (mechanistic target of rapamycin kinase). Under physiological conditions, MTOR complex 1 17 18 (MTORC1) is phosphorylated and associated with ULK1 (unc-51 like kinase 1)-ULK2, allowing 19 the phosphorylation of ATG13 and ULK1-ULK2. This inhibits ULK1-ULK2 kinase activity, leading to an inhibition of autophagy [6]. Under pathological conditions, such as starvation or 20 21 metabolic stress, MTORC1 is inactivated by dephosphorylation and the ULK1-ULK2 kinase 22 activity is restored.

Interestingly, PLAT/tPA is involved in proteostasis by decreasing ischemia-induced endoplasmic reticulum stress [7]. Moreover, PLAT/tPA has been shown to increase neuronal survival following dissociation and plating in a JAK (Janus kinases)-STAT (signal transducer and activator of transcription)-MTOR dependent manner [8, 9] and is involved in the detection and the adaption to metabolic stress [10]. However, the impact on neuronal autophagy and its consequences during cerebral ischemia has never been explored.

7 Here, we first evidence that neuronal autophagy is an important deleterious pathway 8 activated by ischemia/reperfusion. We found that autophagy contributes to ischemia-induced 9 neuronal death both in vitro and in vivo. We then show that PLAT/tPA is able to decrease 10 ischemia-enhanced autophagy and mediates neuroprotection by modulating the 11 phosphoinositide 3-kinase (PI3K)-AKT/protein kinase B (thymoma viral proto-oncogene)-12 MTORC1 pathway both in vitro and in vivo. We identified IGF1R (insulin-like growth factor I 13 receptor) as a new receptor implicated in autophagy modulation by PLAT/tPA. Finally, we 14 showed that during thrombolysis in human stroke patients, PLAT/tPA is able to degrade 15 IGFBP3 (insulin-like growth factor binding protein 3) to increase IGF1 (insulin-like growth 16 factor 1) bioavailability and thus IGF1R activation, opening new strategies for the detection 17 and the treatment of the disease.

1 **RESULTS**

Autophagy pathways are increased by oxygen and glucose deprivation followed by reoxygenation in cortical neurons.

4 To determine the pathways affected by oxygen and glucose deprivation (OGD) and PLAT/tPA 5 treatments (300 nM), we performed a RNAseq followed by an enrichment pathways analysis. 6 In total 5383 transcripts are differentially expressed in the Ctrl Vs OGD_{reox} condition, 5126 in 7 the Ctrl Vs OGD_{reox}+ PLAT/tPA condition, and 229 in the OGD_{reox} Vs OGD_{reox}+ PLAT/tPA 8 condition (Fig. 1A). The enrichment pathway analysis shows 33 pathways differentially 9 expressed between Ctrl/OGD_{reox}/OGD_{reox}+ PLAT/tPA (Table 1). Among them, 5 are linked to 10 hypoxia/ischemia and 12 are linked to autophagy. Indeed, the most affected pathways are 11 MAPK (mitogen-activated protein kinase) (Fig. 1B), PI3K-AKT (Fig. 1C), MTOR (Fig. 1D) and the 12 autophagy (Fig. 1E) pathways. Focusing on these autophagic pathways, we found that 30 13 genes are significantly deregulated in the MAPK pathway under OGD_{reox} condition compared 14 to Ctrl (Fig. 1F), 28 genes in the PI3K-AKT pathway (Fig. 1G), 10 genes in the MTOR pathway (Fig. 1H) and 14 genes in the autophagy pathway (Fig. 1I). Furthermore, the presence of 15 16 PLAT/tPA during OGD_{reox} modified the expression of 10 genes in the PI3K-AKT pathway compared to OGD_{reox} condition (Fig. 1J), 15 in the MAPK pathway (Fig. 1K), 5 in the MTOR 17 18 pathway (Fig. 1L) and 7 in the autophagy pathway (Fig. 1M). Altogether, these results show 19 that autophagy and upstream pathways are strongly affected during OGD_{reox}, and that PLAT/tPA seems to counteract these deregulations. 20

21 PLAT/tPA decreases OGD-enhanced autophagy flux and cell death in primary cortical 22 neurons.

1 To deepen the RNAseq, we evaluated the effect of OGD_{reox} on autophagy flux in mice primary 2 cortical neurons in the presence or not of PLAT/tPA (Fig. 2A). We investigated the flux by 3 measuring the levels of both MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3)-II 4 (recruited to phagophore membranes, the precursor to autophagosomes) and SQSTM1/p62 5 (a selective autophagy receptor) [11]. As shown by western blots, the level of LC3-II increases 6 by 106.7% following OGD_{reox} (Fig. 2B and C), reflecting an increase of autophagosome 7 presence, while the level of SQSTM1/p62 decreases by 66.5% (Fig. 2B and D), suggesting that 8 OGD_{reox} enhances the autophagy flux. We next confirmed this observation by using lentivirus 9 transducing GFP-LC3 in neurons. Puncta of GFP-LC3, presumably autophagosomes, are 10 increased by 143.9% in OGD_{reox} conditions (Fig. S1A and S1B).

11 OGD_{reox} induces neuronal death by several mechanisms, including excitotoxicity, apoptosis, ER 12 stress and autophagy [5, 7, 9, 12]. To assess the role of enhanced autophagy observed in 13 OGD_{reox} conditions, we pre-treated neurons with a combination of the lysosomal enzyme 14 inhibitors E64d (10 µg/ml) and pepstatin A1 (PepA) (10 µg/ml) to block the flux and we 15 measured the neuronal death. In neurons subjected to OGD_{reox}, E64d-PepA blocks autophagy 16 as demonstrated by the greater accumulation of LC3-II (+69.1%; Fig. 2F and G), and by the 17 accumulation of SQSTM1/p62 (+41.4%, Fig. 2F and H) compared to OGD_{reox} alone. E64d-PepA has no effects on neurons in control conditions; but decreases neuronal death under OGD_{reox} 18 (Fig. 2E). Chloroquine, an inhibitor of the maturation step of autophagy by preventing the 19 20 fusion between autophagosomes and lysosomes, also protects neurons from OGD_{reox}-induced 21 cell death in a dose-dependent manner (Fig. S1C). Taken together, autophagy is deleterious in 22 our model of neuronal OGD_{reox}, and its blocking offers neuroprotection.

1 Interestingly, PLAT/tPA (300 nM) also protects neurons from death at the same level than 2 E64d-PepA (38.6% protection, Fig. 2E). As suggested by the RNAseq analysis, the presence of 3 PLAT/tPA within the media decreases OGD_{reox}-induced autophagy as demonstrated by the 4 drop of LC3-II accumulation (-42.4%, Fig. 2B and C) together with an increase of SQSTM1/p62 5 (+85.44%, Fig. 2B and D). Of note, we do not observe an effect of PLAT/tPA on autophagic flux 6 in normoxic conditions (Fig. S1D-F). The decrease of OGD_{reox}-induced autophagy flux is confirmed by the use of GFP-LC3 lentivirus, showing a decrease of GFP-LC3-positive puncta 7 8 following PLAT/tPA treatment (-40.1%, Fig. S1A and B). Additionally, several doses of PLAT/tPA 9 have been tested (from 0.3 to 300 nM): only the high dose of PLAT/tPA is able to inhibit both 10 autophagosome formation and SQSTM1/p62 degradation induced by OGD_{reox} (Fig. S1G-H). 11 However, the lowest dose of PLAT/tPA decreases autophagosome formation as suggested by 12 LC3-II western blot, without affecting SQSTM1/p62 levels (Fig. S1G-I).

Altogether, PLAT/tPA is able to decrease OGD_{reox}-enhanced autophagy leading to
 neuroprotection in an *in vitro* model of ischemia.

15 **PLAT/tPA** prevents hypoxic/excitotoxic-enhanced autophagy and neuronal death.

16 In another model, we previously shown that the combination of kainate (Ka, 30 μ M) and 17 hypoxia (Hx, 6% oxygen) for 30 min in primary cortical neuron cultures enhanced autophagy 18 and that both pharmacological (3-methyladenine or E64d-pepA) and genetic (downregulation 19 of Beclin1 and ATG7) inhibition of autophagy reduced neuronal death[12]. In this KaHx model, 20 the presence of PLAT/tPA (300 nM) is strongly neuroprotective as shown by both a reduction 21 of LDH release in the medium (-60%, Fig. 3A) and a reduction of the number of PI-positive 22 nuclei (-80%, Fig. 3B and C) 6h after the stimulus. Moreover, the KaHx-induced increase in LC3-23 II levels (Fig. 3D and E) and SQSTM1/p62 degradation (Fig. 3D and F) was nearly fully prevented 1 by PLAT/tPA treatment suggesting that autophagy was almost completely blocked. To confirm 2 this result, primary cortical neurons were transfected with a tandem mRFP-GFP-LC3 plasmid 3 that allows to simultaneously monitor autophagy induction and degradation efficiency. Based on the pH sensitivity of GFP signal, autophagosome presence is reflected by the number of 4 5 RFP+/GFP+ dots and active autolysosome/amphisome are revealed by the number of 6 RFP+/GFP- dots. As shown in Fig. 3G-J, in the presence of PLAT/tPA KaHx has no effect on the 7 number of both types of dots demonstrating that PLAT/tPA treatment completely prevented 8 the KaHx-induced autophagy flux.

9 **OGD**-enhanced autophagy is dependent on MTOR pathway.

10 The next step was then to investigate by which mechanism PLAT/tPA could modulate OGD-11 enhanced autophagy and neuronal death. The main signaling pathway leading to autophagy 12 initiation is the MTOR pathway [6]. MTOR is a large multidomain protein that exists in two 13 multiprotein complexes: MTOR complex 1 (MTORC1) associated with RPTOR/Raptor, and 14 MTOR complex 2 (MTORC2) associated with RICTOR [13]. When MTORC1 is phosphorylated, 15 it blocks the initiation of autophagy by phosphorylating ULK1-ULK2 on the Ser757, resulting in 16 the inhibition of ULK1-ULK2 complex kinase activity needed in the early steps of autophagosome biogenesis [6]. On the contrary, when MTORC1 activity is low, ULK1-ULK2 17 18 Ser757 is dephosphorylated and the complex kinase activity is restored, leading to autophagy 19 activation [6, 14]. Therefore, we measured the levels of phosphorylated MTORC1 (Ser2448; p-20 MTORC1) following OGD_{reox} (Fig. 4A). We found that p-MTORC1 is reduced under OGD_{reox} (-21 62.4%, Fig. 4A and B) suggesting an increase of autophagy. Accordingly, we also observed that 22 OGD_{reox} leads to a decrease of p-ULK1-ULK2 (Ser757) (-57.8%, Fig. 4A and D). Lastly, we found 23 that PLAT/tPA prevents the decrease of p-MTORC1 (Fig. 4A and B) and p-ULK1-ULK2 (Fig. 4A

and D) during OGD_{reox}. Similarly, KaHx-induced neuronal death involves a strong decrease in
 MTORC1 (Ser2448) phosphorylation that was completely prevented by PLAT/tPA treatment
 (Fig. S2) reinforcing the fact that PLAT/tPA prevents OGD-induced MTOR-dependent
 autophagy.

We also observed that OGD_{reox} also induces a drop in the phosphorylation of MTORC2 (-67.7%,
Fig. 4A and C). However, the effect of PLAT/tPA on p-MTORC2 is much weaker than the one
observed on p-MTORC1 as PLAT/tPA partially prevents the drop of phosphorylation (Fig. 4A
and C).

9 PLAT/tPA decreases OGD-enhanced autophagy through PI3K-AKT pathway.

10 MTORC1 is controlled by 2 main upstream pathways: MAPK/ERK and PI3K-AKT [15, 16]. We 11 confirmed that OGD_{reox} leads to a decrease of both p-MAPK/ERK (-71.2%) and p-AKT (-64%, 12 Fig5A-C), in line with our previous observations showing that OGD_{reox} leads to the inhibition 13 of MTORC1 (Fig. 4). Interestingly, when PLAT/tPA is present in the media, the decrease of p-14 MAPK/ERK and p-AKT are partially reversed (Fig. 5A-C).

15 To test whether PLAT/tPA modulates autophagy via MAPK/ERK or PI3K-AKT pathways, we used pharmacological inhibitors of each pathway: SCH772984 (SCH77) [17] and A6730 [18] 16 17 respectively. In the presence of PLAT/tPA, SCH77 does not reverse the drop of LC3-II (Fig5D 18 and E), nor the increase of SQSTM1/p62 (Fig5D and F). However, A6730 reverses the decrease of LC3-II (Fig5G and H) and the increase of SQSTM1/p62 induced by PLAT/tPA during OGD_{reox} 19 20 (Fig5G and I). It suggests that OGD_{reox} decreases p-MAPK/ERK and p-AKT, leading to p-MTORC1 21 inhibition and autophagy activation during OGD_{reox}. Also, PLAT/tPA decreases autophagy 22 through MTORC1 activation by its ability to prevent the drop of p-AKT.

It is also supported by the use of Wortmannin (Wort, 250 nM) a broad PI3K and class III
phosphatidylinositol 3-kinase (PtdIns3K) inhibitor. Our results demonstrate that Wort by itself
does not modify OGD_{reox}—induced autophagy flux (Fig5J-L). In the presence of PLAT/tPA, Wort
almost reverses the decrease of LC3-II (*p*=0.051, Fig5J and K) and restores the degradation of
SQSTM1/p62 (*p*=0.055, Fig5J and L); thus reinforcing the implication of the PI3K-AKT pathway
in the effect of PLAT/tPA on MTORC1 and autophagy.

7 PLAT/tPA decreases OGD-enhanced PI3K-AKT signaling through IGF1R receptor.

8 We and others have already shown that PLAT/tPA can induce PI3K-AKT signaling through 9 various receptors [19-21]. For instance, PLAT/tPA is able to activate EGFR (epidermal growth 10 factor receptor), a tyrosine kinase receptor promoting PI3K-AKT signaling, to mediate 11 neuroprotection [22-24]. Therefore, we tested the ability of AG1478 (a specific EGFR inhibitor) 12 to prevent the effects of PLAT/tPA on neuronal autophagy during OGD_{reox}. When EGFR activity 13 is blocked, PLAT/tPA still decreases LC3-II accumulation (Fig. 6A and B) and increases 14 SQSTM1/p62 level (Fig. 6A and C). Surprisingly enough, we observed that AG1478 alone can 15 reverse LC3-II conversion induced by OGD_{reox} (-43.5%, Fig. 6A and B), but has no effect on 16 SQSTM1/p62 level (Fig. 6A and C) indicating that AG1478 has probably no effect on OGD-17 enhanced autophagy.

We next tested picropodophyllin (PPP), a selective inhibitor of the tyrosine kinase receptor IGF1R [25]. In neurons subjected to OGD_{reox} conditions, PPP (100 nM) slightly exacerbates the decrease of p-AKT (-32.3%, Fig. 6D and E). However, PPP has no effects by itself neither on MTORC1 (Fig. 6D and F) nor on autophagy flux (Fig. 6G-I). Interestingly, when PPP is added in the presence of PLAT/tPA, LC3-II accumulation is no more reversed (-34.2%, Fig. 6G and H) and SQSTM1/p62 degradation is restored (+34.4%, Fig. 6G and I). PPP also prevents the inhibition of autophagy pathways by PLAT/tPA by decreasing PLAT/tPA -induced MTORC1
 phosphorylation (-31.1%, Fig. 6D and F). In the presence of PPP, PLAT/tPA does not longer
 induce AKT signaling under OGD_{reox} conditions (-55.2%, Fig. 6D and E).

We also activated the IGF1R by adding IGF1 (250 nM) to the culture media during OGD_{reox} (Fig.
6J-L). Contrary to the inhibition of IGF1R by PPP, its activation leads to a decrease of autophagy
flux as shown by the decrease of LC3-II (-47.6%, Fig. 6J and K) and the increase of SQSTM1/p62
(+77.3%, Fig. 6J and L). Altogether, these results indicate that PLAT/tPA decreases autophagy
by influencing IGF1R activation.

9 Proteolytically active PLAT/tPA protects neurons from cell death by decreasing autophagy 10 through IGFR/PI3k-AKT/MTORC1.

As we showed in Fig5, PLAT/tPA decreased-autophagy is independent of p-MAPK/ERK. As expected, MAPK/ERK inhibition by SCH77 does not reverse the neuroprotection induced by PLAT/tPA (Fig. 7A). On the contrary, Wortmannin reverses the protective effect of PLAT/tPA on neuronal death (Fig. 7B). AKT inhibition with A6730 also prevents PLAT/tPA -mediated neuroprotection (Fig. 7C). These results support the notion that PLAT/tPA protects neurons by decreasing autophagy through the PI3K-AKT pathway. Importantly, PPP reverses the neuroprotection mediated by PLAT/tPA (Fig. 7D).

Interestingly, we investigated the ability of an inactive form of PLAT/tPA (d-GGACK-tPA) to mediate its effect in our OGD_{reox} model *in vitro*. Our results show that inactive PLAT/tPA does not protect neurons from death (Fig. 7E). In addition, PLAT/tPA effect is independent from its capacity to activate plasminogen into active plasmin, as the use of Aprotinin, an antifibrinolytic molecule, does not reverse its neuroprotection (Fig. 7F). Altogether, these results show that

PLAT/tPA needs to be active to mediate both neuroprotection and a decrease in OGD enhanced autophagy through the IGFR/PI3K-AKT/MTORC1 pathway.

3 **PLAT/tPA** decreases autophagy and ischemic lesion in a mouse model of cerebral ischemia.

4 We then moved to an *in vivo* model of cerebral ischemia consisting in the injection of thrombin 5 directly into the middle cerebral artery to form a clot [26, 27] (Fig. 8A). Twenty-four h after, 6 the lesion volume is assessed by MRI, motor deficits are assessed by grip test, and brains are 7 harvested for further analysis. In this model, we perform thrombolysis by PLAT/tPA like in 8 clinic (i.e. 10% bolus, 90% infusion), resulting in a decrease of the infarct size 24 h after 9 ischemia (-10.11 mm³, Fig. 8B). In addition, thrombolysed animals present a higher total force 10 at the grip test (Fig. 8C). Interestingly, the force default observed in non-thrombolysed animals 11 only comes from the left paw (Fig. 8E), which is in agreement with the ischemia performed on the right middle cerebral artery. In this model, stroke leads to the cerebral activation of 12 13 autophagy, as demonstrated by the increase of LC3-II (Fig. 8F and G) together with a drop of 14 SQSTM1/p62 (Fig. 8F and H). Importantly, we found that autophagy decreases in PLAT/tPA -15 thrombolysed animals (Fig. 8I). Indeed, we showed that MTORC1 phosphorylation is increased 16 (Fig. 8J), and that LC3-II (Fig. 8K), ATG5 (Fig. 8M), and ATG7 (Fig. 8N) are decreased in PLAT/tPA 17 treated animals. However, we did not observe any difference in SQSTM1/p62 protein levels (Fig. 8L). 18

Altogether, our results show the neuroprotective effect of PLAT/tPA on neuronal death in
different *in vitro* models and in a thromboembolic mouse model of cerebral ischemia,
associated to a decrease of autophagy.

22 PLAT/tPA cleaves IGFBP3 and increases the bioavailability of IGF1 in vitro and in vivo in mice.

1 Our results show that PLAT/tPA decreases autophagy and cell death through IGF1R. Therefore, 2 we tested the ability of PLAT/tPA to directly bind to and activate IGF1R. For this purpose, we 3 measured Actilyse (the recombinant form of PLAT/tPA), Wt- PLAT/tPA (a recombinant 4 PLAT/tPA produced in the lab) and ΔEGF- PLAT/tPA (a PLAT/tPA lacking its EGF-like domain, 5 produced in the same conditions than WT PLAT/tPA; Fig. S3A) binding capacity to IGF1R. All 6 tested PLAT/tPAs are able to bind to IGF1R in a dose dependent manner (Fig. S3B), however 7 KDs are too high to mediate a biological effect (from 1.71 to 7.78 μ M; Fig. S3C). We then 8 hypothesized a role of PLAT/tPA on the bioavailability of IGF1, the natural ligand of the 9 receptor. IGF1 is normally bound to IGFBPs (insulin like growth factor binding protein) and 10 cannot activate its receptor [28]. Interestingly, IGFBP3 cerebral levels are upregulated 11 following hypoxia [29, 30]. Moreover, IGFBP3 is sensitive to protease degradation [31].

12 Therefore, we incubated recombinant IGFBP3 with PLAT/tPA (equimolar) from 15 to 280 min. 13 After 15 min of incubation, PLAT/tPA promotes the cleavage of IGFBP3, and becomes total at 14 60 min (Fig. 9A). We analyzed by ELISA the levels of IGFBP3 in our neurons supernatants from 15 OGD_{reox}+/- PLAT/tPA, and found that PLAT/tPA leads to a decrease of IGFBP3 in the media (-16 266.6µg/ml, Fig. 9B). In addition, we also measured the levels of IGFBP3 in the serum of mice 17 subjected to the thromboembolic model +/- thrombolysis by PLAT/tPA at 1 and 24 h following 18 thrombolysis. We observed that without thrombolysis, the serum level of IGFBP3 stays 19 identical at 1 h and 24 h (Fig. 9C). Interestingly, like in vitro, PLAT/tPA induces the cleavage of 20 IGFBP3 in the serum of stroke mice at 1 and 24h following thrombolysis (Fig. 9C).

As PLAT/tPA mediates proteolysis of IGFBP3, we investigated the amount of IGF1 in serum of ischemic mice with or without PLAT/tPA treatment (Fig. 9D-F). As expected, thrombolysis increases free IGF1 at both 1 h (+4.13ng/ml, Fig. 9E) and 24 h (+7.01ng/ml, Fig. 7E) compared

to non-thrombolysed animals at the same time points. Surprisingly, thrombolysis by PLAT/tPA
increases also the concentration of the serum total IGF1 (Fig. 9D). However, after analyzing
the ratio between total and free IGF1, this increase in free IGF1 over time in PLAT/tPA -treated
mice was no more significant, whereas we confirmed that thrombolysis increases the
bioavailability of IGF1 in mice serum at both 1 and 24 h (Fig. 9F).

6 PLAT/tPA cleaves IGFBP3 in humans following cerebral ischemia.

With a translational prospective, we decided to investigate in clinic the effect of thrombolysis
on serum levels of IGFBP3. In 5 acute stroke patients eligible for intravenous thrombolysis
(Table 2 for the clinical parameters), we measured baseline levels of serum IGFBP3 at 1, 2, and
24 h following PLAT/tPA injection (0.9 mg/kg). We found that IGFBP3 is decreased at 1 h and
recover with time (Fig. 9G); confirming that thrombolysis by PLAT/tPA is also responsible for
IGFBP3 cleavage in human.

1 DISCUSSION

2 Our study gives new important insight into the neuroprotective mechanisms of PLAT/tPA in 3 cerebral ischemia. We showed first that autophagy and its upstream pathways are strongly 4 activated in neurons in vitro during ischemia and in vivo after thromboembolic stroke and that 5 PLAT/tPA treatment is associated with a reduction in autophagy in ischemic conditions. 6 Second, we demonstrated that PLAT/tPA decreases autophagy through IGF1R activation and 7 MTORC1 phosphorylation, a key inhibitor of autophagy. Finally, we showed that, to mediate 8 its effects on IGF1R, PLAT/tPA degrades IGFBP3, the main inhibitor of IGF1, thus increasing its 9 bioavailability. This is particularly true with thrombolysis by PLAT/tPA in stroke patients, 10 where we show a drop of IGFBP3, opening new therapeutic approaches for the disease.

Using RNA sequencing in hypoxic neurons, we found a strong modulation of the major genes controlling autophagy and its upstream and downstream pathways. We validated this in vitro by using different pharmacological approaches. We found that OGD_{reox}-induced autophagy is due to a drop of both MAPK/ERK and AKT signaling, and a decrease of phospho-MTORC1. OGD_{reox} also decreases the phosphorylation of MTORC2, a complex between MTOR and Rictor that activates and phosphorylates AKT at Ser⁴⁷³ to promote cell survival [32, 33]. MTORC2 could then indirectly activate MTORC1 through AKT.

Autophagy has often been associated with cell death during cerebral ischemia [5, 34-37]. We have previously clearly demonstrated the role of enhanced autophagy in KaHx-induced neuronal death [12] (Sup Fig. 3). In the present study, the protective effect of E64d-PepA (Fig. 2G) and chloroquine (Sup Fig. 1) also demonstrates a direct implication of autophagy in neuronal death. The presence of PLAT/tPA is neuroprotective and alleviates the deregulation of the autophagic pathways during OGD_{reox} (Fig. 1 and 2) and in KaHx (Sup Fig. 3). We found

that PLAT/tPA is able to decrease autophagy by increasing the phosphorylation of MTORC1,
 through the activation of the PI3K-AKT pathway.

3 It has been suggested that some PLAT/tPA neuroprotection could be dependent on MTOR. In 4 non-stressed postnatal neurons, PLAT/tPA has been shown to promote survival mainly by 5 activating the MTOR cascade as its effect was reversed by rapamycin, an MTOR inhibitor [8]. 6 Similarly, Wu and collaborators have shown, in an OGD model, that PLAT/tPA can decrease 7 neuronal cell death by mediating MTOR-dependent glucose recapture though SLC2A3/GLUT3 8 [9]. However, these studies did not investigate autophagy. Here, we report that PLAT/tPA can 9 directly activate MTORC1 phosphorylation and decrease autophagosome formation and 10 autophagy degradation.

11 It is well known that IGF1R can regulate autophagy through the PI3K-AKT/MTOR pathway [38-12 40]. Here we show that the serine protease PLAT/tPA is able to mediate the activation of 13 IGF1R/PI3K-AKT/MTOR. We identified IGF1R as the receptor responsible for the PLAT/tPA -14 dependent decrease of autophagy activation and subsequent neuronal death in vitro in OGD, 15 and in vivo in a mouse model of stroke. The natural ligand of IGF1R is IGF1, that has been 16 shown to be neuroprotective in many models of stroke [41]. Similarly, injections of circulating 17 IGF1 are able to mediate neuroprotection in a rat stroke model, validating IGF1R as a 18 promising target [42].

Six IGFBPs are known to inhibit the activity of IGF1, and almost 99% of the circulating IGF1 is complexed with IGFBPs, and more particularly to IGFBP3 [43]. After cerebral ischemia, the serum level of IGF1 and IGFBP3 is decreased [44], probably because their secretion is regulated by growth hormones[45]. At the cellular level, IGFBP3 controls the bioavailability and the half-life of IGF1, by preventing its binding to IGF1R [46-48]. IGFBP3 can be cleaved by

1 many proteases such as plasmin, thrombin and MMPs [49, 50]. Interestingly it has already 2 been suggested that PLAT/tPA, as well as uPA, are capable to cleave circulating IGFBP3 during 3 pregnancy [51]. In our study, we demonstrate that PLAT/tPA can directly cleave IGFBP3 in vitro 4 and in vivo during ischemia, resulting in an increase of free circulating IGF1. Through the 5 cleavage of IGFBP3, PLAT/tPA can modulate IGF1R signaling. This is the first time that a direct 6 link between PLAT/tPA and IGF1R is described. Interestingly both are expressed in the brain 7 parenchyma and are involved in many responses including brain development [52, 53], 8 neuronal survival following hypoxia [7, 54], inflammation [55-57], tissue remodeling after an 9 ischemic lesion [42, 58] and BBB integrity [59-61].

Overall, we show here that the thrombolytic drug PLAT/tPA degrades IGFBP3 in the blood of mice and human stroke patients, leading to an increase of free IGF1 and the activation of IGFR. This activates the PI3K-AKT signaling and MTOR phosphorylation to decrease the enhancement of autophagic flux and its toxic effects. Our study demonstrate a new function of the serine protease PLAT/tPA and highlight the IGFR/PI3K/MTOR pathway as a potential therapeutic pathway to decrease deleterious enhanced autophagy following cerebral ischemia.

1 MATERIALS AND METHODS

2 Reagents.

3 Dulbecco's modified eagle's medium (DMEM; D0819), poly-D-lysine (P7280), cytosine β-d-4 arabinoside (C1768), fetal bovine serum (H7524), horse serum (H1270), D-glucose (G8644), 5 Tween 20 (P9416), phosphatase inhibitor cocktail (P2850), protease inhibitor cocktail (P2714), 6 Triton X-100 (T8787) paraformaldehyde, picropodophyllotoxin (T9576), wortmannin (W1628), 7 AKT1/AKT2 kinase inhibitor (A6730), isopropyl b-D-1-thiogalactopyranoside (IPTG; 16768), 8 E64d (E8640), aprotinin (A6130), human recombinant IGFBP3 (I5278) and TRI reagent (93289) 9 were from Sigma-Aldrich. Glutamine (25030123), laminin (23017015), glucose-free DMEM 10 (A1443001) and Pierce ECL Plus (32209) were purchased from Thermo Fisher. AG1478 (N-(3-11 chlorophenyl)-6,7-dimethoxy-4-quinazolinanine hydrochloride; 1276) and chloroquine (4109) 12 were from Tocris; Bicinchoninic acid assay (BCA Protein Assay kit; 23225) was from Pierce; 13 human recombinant PLAT/tPA (actilyse[®]) was from Boehringer Ingelheim; and MAPK1/ERK2-14 MAPK3/ERK1 inhibitor (SCH772984) was from Selleckchem. Human recombinant IGF1R (291-15 G1) was purchased from Bio-Techne. Pepstatin A (ALX-260-085) was purchased from Enzo Life 16 Sciences.

17 Primary neuronal cell culture for Oxygen and glucose deprivation model.

Primary cultures of cortical neurons were prepared from fetal mice (embryonic day 14) as previously described [62]. Briefly, cells were cultured on individual glass bottom Petri dishes (MatTek Corporation, P35G) or 24-well plates, previously coated with poly-d-lysine (0.1 mg/ml) and laminin (0.02 mg/ml), in DMEM supplemented with 5% fetal bovine serum, 5% horse serum and 1 mM glutamine. Cultures were maintained at 37°C in a humidified 5% CO₂ atmosphere. Cytosine β-D-arabinoside (10 μM) was added after 3 days in vitro (DIV) to
 inhibit glial proliferation in the 24-well plates.

3 Oxygen and glucose deprivation (OGD).

Neuronal cultures (12 DIV) were subjected for 1 h to OGD in a hypoxic chamber (AWEL
International, Ruskinn InvivO₂ 500) programmed at 0.2% O₂, 5% CO₂ and 37°C in
glucose/serum-free deoxygenated DMEM. Cortical neurons are treated with PLAT/tPA and/or
inhibitors in the hypoxic chamber, at the beginning of OGD. For reoxygenation, D-glucose
(4.5 mg/l) is added in cell media under normoxic conditions. Controls were subjected to sham
washes.

10 Primary neuronal cell culture for kainate/hypoxia model.

11 Primary cultures of cortical neurons were prepared from 2-day-old Sprague-Dawley rat pups 12 (from Janvier) in accordance with the Swiss Laws for the protection of animals as previously 13 described [63] and the procedures were approved by the Vaud Cantonal Veterinary Office. 14 Dissociated neurons were plated on poly-D-lysine pre-coated 6 wells or 12 wells in neurobasal medium supplemented with 2% B27, 0.5 mM L-glutamine and 100 µg/ml penicillin-15 16 streptomycin. For PI staining, neurons were plated on poly-D-lysine pre-coated 12-mm glass 17 coverslips (Electron microscopy Sciences, 72294-02). Primary neuronal cultures were maintained at 37°C with a humidified 5% CO₂-containing atmosphere and experiments were 18 performed after 11–13 DIV. These cultures contain around 15% of non-neuronal cells (MAP2 19 20 or RBFOX3/NeuN-negative).

21 Kainate/hypoxia model (KaHx).

1 Primary cortical neurons were subjected to a hypoxic/excitotoxic stimulus by combining 2 kainate treatment (Ka, 30 µM) with hypoxia performed in a sealed modular incubator chamber 3 (Billups-Rothenberg, MIC-101) that had been flushed for 5 min with a gas mixture at 6% oxygen, as previously described [12]. KaHx stimulation was performed for 30 min in 4 5 bicarbonate-buffered saline (BBS) solution (116 mM NaCl, 5.4 mM KCl, 0.8 mM MgSO₄, 1 mM 6 NaH₂PO₄, 26.2 mM NaHCO₃, 0.01 mM glycine, 1.8 mM CaCl₂, pH 7.4) containing 4.5 mg/mL 7 glucose and previously deoxygenated for 1 h in the hypoxic chamber. At the end of KaHx 8 stimulation, BBS was replaced with the reserved neurobasal medium. For control stimulation, 9 primary cortical neurons were subjected to 30 min in normoxic BBS.

10 RNA sequencing.

11 Three RNA-seq libraries per population (three biological replicates) were prepared using the 12 TruSeq Stranded mRNA sample Prep kit (Illumina) and sequenced on an Illumina GAIIx 13 sequencer as 75 bp paired reads by Hybrigenics-Helixio (Clermont-Ferrand, France). Samples 14 were quantified with Qubit 2.0 Fluorometer (Thermo Fischer) and checked with Nanodrop ND-15 1000 (Thermo Fisher). Libraries were prepared with three kits: NEBNext Ultra II Directional 16 Library prep Kit (New England Biolabs, E7760), NEBNext Poly(A) mRNA Isolation Module (New 17 England Biolabs, E7490) and NEBNext Multiplex Oligos (New England Biolabs, E7140). Sequencing was done with NextSeq 500 (Illumina). Data were processed with Bcl2fastq 18 19 (Illumina). Raw data were checked with FastQC (Babraham Institute). Reads were mapped on reference genome (GRCm38, release 91) with TopHat (https://ccb.jhu.edu/software/tophat) 20 21 suite, and differential expression analysis is done with Cuffdiff (Cufflinks 22 https://github.com/cole-trapnell-lab/cufflinks). IT performs tests between supplied 23 conditions. FPKM values were calculated for each transcript in each sample (geometric library

normalization, pooled dispersion method). IT uses the reference annotation GTF file (GRCm38,
release 91) and quantitates the expression values and differential regulation across BAM files.
CummeRbund (https://bioconductor.org/packages/release/bioc/html/cummeRbund.html) R
package is designed to process global statistics and quality control. Pie charts and heatmaps
were generated using MATLAB 2020.

6 Neuronal death.

7 Neuronal death was quantified 4 h after reoxygenation by measuring the LDH (lactate 8 dehydrogenase) activity released from damaged cells into the bathing medium with a 9 cytotoxicity detection kit (Roche Diagnostics, 91963). For KaHx experiments, neuronal death 10 was measured by both LDH assay using the Cytotox 96 nonradioactive cytotoxicity assay kit 11 (Promega, G1780) and quantification of the number of propidium iodide (PI)-positive nuclei as previously described [12]. For PI-staining, cortical neurons on coverslips were washed and 12 13 incubated for 5 min in 5 µg/ml PI (Sigma-Aldrich, P4170) diluted in PBS (Sigma, 14190144) 14 containing 1 mM MgCl₂. After PBS washes neurons were fixed in 4% paraformaldehyde in 0.1 15 M PBS (pH 7.4) for 15 min. After a Hoechst staining, coverslips were mounted with FluorSave 16 (Calbiochem, 345-789-20) and images were taken using a Zeiss Axioplan 2 imaging 17 microscope.

18 Construction and production of recombinant PLAT/tPA

WT PLAT/tPA and ΔEGF PLAT/tPA, rat PLAT/tPA sequence signal (aa 1–32) were amplified from
 the full-length Rattus norvegicus PLAT/tPA cDNA (Swiss-prot accession P19637) using the
 upstream primer 5'-CGGCTAGCATGAAGGGAGAGCTGTTG-3' and the downstream primer 5' GCGGATCC-GTGATGGTGAT-GGTGATGCCGA-GCTCCTCTTCT-3', thus including the Nhel and

1 BamHI restriction sites, respectively, and a 6xHis tag just before the BamHI site. PCR products 2 were digested and inserted into the eukaryotic expression system pcDNA5/FRT. Coding 3 sequence for mature rat WT PLAT/tPA and Δ EGF PLAT/tPA proteins were amplified from the 4 same PLAT/tPA cDNA sequence by using the appropriate primers. Deletion of the EGF domain 5 was obtained by fusing the PCR product corresponding to the finger and K1 domains of 6 PLAT/tPA with the PCR product corresponding to the protease domain of PLAT/tPA. PCR 7 products were inserted into pcDNA5/FRT plasmid between the BamHI and XhoI restriction 8 sites. The various plasmids obtained were systematically checked by automated sequencing 9 (GATC-Biotech, Ebersberg). 293 HEK FlpIn Cells (Invitrogen, R75007) were then transfected 10 using Lipofectamine 2000 and positive clones were isolated using a 300 µg/ml hygromycin B 11 (Sigma-Aldrich, H3274) selection. Supernatants containing PLAT/tPA -related muteins were 12 harvested and the proteins of interest purified on a nickel affinity matrix (Qiagen, 30210) as 13 described by the manufacturer. Elimination of imidazole was performed by overnight dialysis 14 against 0.5 M ammonium bicarbonate buffer. After concentration using Amicon Ultra (cutoff, 15 10 kD; Millipore, UFC5010), recombinant proteins were subjected to zymography to assess 16 their enzymatic activity and confirm their molecular mass.

17 Immunoblotting.

Cells and tissues were dissociated in ice-cold TNT buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.5% Triton X-100, phosphatase and protease inhibitors cocktails) and centrifuged (12,000 g, 4°C, 15 min). Protein concentration was measured by BCA Protein Assay method, before migration on an SDS-PAGE gel (Bio-Rad) and a transfer onto a polyvinylidene difluoride membrane. Membranes were blocked with PBS+0.1% Tween 20, 5% milk and incubated overnight at 4°C in blocking buffer containing primary antibodies. The following primary

1 antibodies and dilutions were used: rabbit anti-MTOR (1:1000; Cell Signaling Technology, 2983), rabbit anti-phospho-MTOR Ser2448 (1:1000; Cell Signaling Technology, 2971), rabbit 2 3 anti-phospho-MTOR Ser2481 (1:1000; Cell Signaling Technology, 2974), rabbit anti-AKT 4 (1:1000; Cell Signaling Technology, 9272), rabbit anti-phospho/AKT Ser473 (1:1000; Cell 5 Signaling Technology, 9271), rabbit anti-ULK1-ULK2 (1:1000; Cell Signaling Technology, 8054), 6 rabbit anti-phospho-ULK1-ULK2 Ser757 (1:1000; Cell Signaling Technology, 6888), rabbit anti-7 MAPK/ERK p44/42 (1:1000; Cell Signaling Technology, 9102), rabbit anti-phospho-MAPK/ERK 8 p44/42 (Thr202/Tyr204, 1:1000; Cell Signaling Technology, 9101), mouse anti-SQSTM1/p62 9 (1:1000; Abcam, ab56416), goat anti-IGFBRP3 (1:1000; Abcam, ab77635), rabbit anti-LC3B 10 (1:1000; Sigma-Aldrich, L7543), mouse anti-ATG5 (1:1000; Santa Cruz Biotechnology, sc-11 133158), mouse anti-ATG7 (1:1000, Santa Cruz Biotechnology, sc-376212). Membranes were then incubated with the corresponding peroxidase-conjugated secondary antibodies 12 13 (1:25000-50000; Sigma-Aldrich, A0545 and A9917) in blocking buffer, and visualized with an 14 enhanced chemiluminescence Pierce ECL Plus kit.

15 For KaHx experiments, primary cortical neurons were collected in lysis buffer (20 mM HEPES, 16 pH 7.4, 10 mM NaCl, 3 mM MgCl₂, 2.5 mM EGTA, 0.1 mM dithiothreitol, 50 mM NaF, 1 mM 17 Na₃VO₄, 1% Triton X-100) (reagents from Sigma-Aldrich), and a protease inhibitor cocktail 18 (Roche, 11873580001). After a brief sonication, protein concentration was measured by a 19 Bradford assay and proteins were separated by SDS PAGE, transferred on nitrocellulose 20 membrane and analysed by fluorescent immunoblotting. Primary antibodies were diluted in 21 blocking buffer solution (0.1% casein [Sigma-Aldrich, C8654], 0.2% PBS, dH₂O, 0.02% sodium 22 azide). The following primary antibodies were used: mouse anti-ACTB (1:2000; Invitrogen, 23 MAS-11869), rabbit anti-LC3 (1:1000; Abcam, ab48394) and rabbit anti-SQSTM1/p62 (1:2000; 24 Sigma, P0067). Membranes were then incubated with the corresponding Dy light-conjugated

secondary antibodies (1:10000; Cell Signaling Technology, 7074-7076). The Odyssey Infrared
 Imaging System (LI-COR) was used to analyze protein bands using Odyssey v1.2 software (LI COR).

4 mRFP-GFP-LC3 plasmid transfection and quantification.

5 Rat primary cortical neuronal cultures on 12-mm coverslips were transfected using 6 Lipofectamine 2000 (Invitrogen, 11668-019) as described previously [64]. Two-thirds of the 7 medium was removed and replaced for 5h by freshly prepared Neurobasal medium (Life 8 Technologies, 21103-049) plus transfection mix (3 μ g of DNA for 6 μ l of Lipofectamine) with 9 the tandem mRFP-GFP-LC3-expressing plasmid ptf LC3 (Addgene, 21074; deposited by 10 Tamotsu Yoshimori), allowing the distinction between acidic (GFP⁻ RFP⁺) and nonacidic (GFP⁺ 11 RFP⁺) LC3-positive structures. One day after transfection, cortical neurons were subjected to 12 KaHx in the presence of absence of PLAT/tPA (300 nM), then washed in PBS MgCl₂, fixed for 13 15 min in 4% paraformaldehyde in PBS and finally stained with Hoechst (2 μ g/ml for 5 min). 14 Coverslips were then mounted in FluorSave (Calbiochem, 345-789-20). Confocal images were 15 acquired using a Zeiss LSM 780 Meta confocal laser scanning microscope (Carl Zeiss). Signals 16 were sequentially visualized in the same section with acquisition performed in separated 17 mode. Images were processed with Zen software (Carl Zeiss) and mounted using Adobe Photoshop 10.0 (Adobe Systems). Total LC3-positive dots (GFP⁺ RFP⁺ and GFP⁻ RFP⁺ dots), early 18 19 autophagosomes (GFP⁺ RFP⁺ dots) and autolysosomes (GFP⁻ RFP⁺ dots) were analyzed using 20 ImageJ software and expressed as a number of positive dots per neuron per μ m².

21 Construction and production of lentivirus.

The pGFP-LC3 (Addgene, 21074; deposited by Tamotsu Yoshimori) [65] was cloned in the pENTR4 entry vector (Invitrogen, K253520). The GFP-LC3 was then transferred with the LR clonase recombination system in the SIN-cPPT-PGK-gateway vector-WPRE [66] to generate the SIN-cPPT-PGK-GFP-LC3-WPRE plasmid. The lentiviral vector was produced in 293T cells with a four-plasmid system, concentrated by ultracentrifugation and resuspended in PBS containing 1% bovine serum albumin (BSA; A9418) as previously reported [67]. Primary cortical neurons were infected at DIV2 and OGD is performed at DIV12 as described below.

8 Immunocytochemistry.

9 After a brief wash in PBS, neuronal cultures grown on glass bottom Petri dishes were fixed 10 during 5 min in 0.1 M PBS containing 4% paraformaldehyde and 5% sucrose. After PBS washes, 11 cells were blocked for 1 h in PBS-Tween 20 0.1% containing 2% BSA and then incubated 12 overnight at 4 °C in blocking buffer containing primary antibodies (chicken anti-GFP, 1:1000; 13 Abcam, ab13970; and mouse anti-RBFOX3/NeuN, 1:800, Millipore, MAB377). Primary 14 antibodies were revealed using FITC or Alexa Fluor 647-coupled secondary F(ab')2 (1:800; 15 Jackson ImmunoResearch, 715-606-150). Confocal laser-scanning microscopy was performed 16 using a Leica SP5 confocal microscope (Leica Microsystems SAS).

17 Surface Plasmon Resonance.

All SPR binding experiments were performed on BIACORE T200 instrument (GE Healthcare) at
25°C. Human recombinant IGF1R at 20 µg/mL in 5 mM maleate buffer pH 5, was immobilized
at 1000 RU by THIOL coupling procedure (according to recommendations and kits from GE
Healthcare, BR-1005-57). PLAT/tPA actilyse, WT PLAT/tPA and ΔEGF PLAT/tPA were injected
at 10, 5, 2.5, 1.25 and 0.625 µM in a kinetic titration series (Single Cycle Kinetics) at a flow rate

of 30 μL/min for a contact time of 120 s, followed by a dissociation time of 10 min. The
regeneration between each SCK cycle has been realized by a 30-s injection of 1 M
ethanolamine pH 8. All SPR data processing and analyses were performed using BiaEvaluation
software 4.1 (GE Healthcare). The SPR response as a function of time, namely the sensorgram,
was then fitted globally or at the steady state by using a 1:1 binding model.

6 IGFBP3 cleavage.

Human recombinant IGFBP3 (300 nM) was incubated in the presence or not of equimolar
human recombinant PLAT/tPA (300 nM). The reaction was carried out at 37°C in PBS + 1% BSA.
After 15 min, 1 h, 2 h or 4 h of incubation. Samples were then analyzed to SDS/PAGE and
western blotting probed with anti-IGFBP3 antibody.

11 *IGFBP3 dosage.*

12 Enzyme-linked immunosorbent assay (ELISA) was used to measure cell culture media 13 concentrations of mouse IGFBP3 (Bio-Techne, MGB300). Assays were performed according to 14 the manufacturers' instructions. Each sample was analyzed in duplicate and the mean of the 15 two values was used.

16 Animals.

17 All the experiments were approved by the French ministry of education and research 18 (agreement numbers: #18344). The animal investigations were performed under the current 19 European directive (2010/63/EU) as incorporated in national legislation (Decree 87/848) and 20 in authorized laboratories (GIP Cyceron; approval n° E14118001). Experiments were

performed on groups of male mice (urss) weighing 25-40g aged of 8-12 weeks. All animals
 were housed under standard conditions with a 12 h light/dark cycle.

3 Middle Cerebral Artery occlusion (MCAo) and PLAT/tPA (actilyse) treatment.

4 Mice were separated in two groups: vehicle group (n=10) and PLAT/tPA group (n=9). Animals 5 were anesthetized with isoflurane 5% and maintained with 2% isoflurane in a 70%-30% 6 mixture of N₂O/O₂. Rectal temperature was controlled and maintained at 37 +/- 0.5°C 7 throughout the surgical procedure using a heating pad. Once placed in the stereotactic frame, 8 a catheter was placed in the tail vein of mice, to allow intravenous injection. Then, the skin 9 between the right eye and ear was incised, the middle cerebral artery (MCA) was exposed 10 through a small craniotomy and the dura was excised. A micropipette filled with purified 11 murine alpha-thrombin (0.05 mg; Stago BNL) was introduced into the MCA lumen, and 1 µL of 12 thrombin (1UI) was injected to induce in situ clot formation. The pipette was removed 10 min 13 post occlusion (time required for clot stabilization). The fibrinolytic (Actilyse® 10 mg/kg 10% 14 bolus, 90% perfusion for 40 min) or the control vehicle (saline) was injected 20 min after MCAo 15 in the tail vein. Physiological parameters were recorded by the MouseOxPlus® system (Starr 16 Life Sciences) and blood pressure values were assessed by the tail-cuff system BP-2000 Bioseb system[®] (Visitech Systems). Surgeries and treatments were randomized and performed blind. 17 18 A sample of blood for serum purification was collected 1 h and 24 h after the end of PLAT/tPA 19 or vehicle injection.

20 Serum assays.

After blood collection, tubes are put 1 h at room temperature to promote coagulation. Then,
serum is separated by two centrifugations at 1500g for 15 min at room temperature, and

stored at 80°C until total IGFBP3, IGF1 and free IGF1 were measured. ELISAs were used to
measure serum concentrations of mouse IGFBP3 (Bio-Techne, MGB300), mouse total IGF-I
and mouse free IGF-I (Biosynex, AL136-AL137). Assays were performed according to the
manufacturers' instructions.

5 Perfusion.

6 Animals were deeply anesthetized with isoflurane 5%, and thereafter maintained with 2.5% 7 isoflurane in a 70%-30% mixture of N_2O/O_2 . A transcardial perfusion was performed with ice 8 cold 0.9% NaCl heparinized. Brains were removed and ipsilateral cortex are collected and 9 stored at -80°C immediately until processing.

10 Magnetic resonance imaging.

Experiments were carried out on a Pharmascan 7 T/12 cm system using surface coils (Bruker). T2-weighted images were acquired 24 h after cerebral ischemia using a multislice multiecho sequence: TE/TR 33 ms/2500 ms. Lesion sizes were quantified on these images using ImageJ software. T2*-weighted sequences were used to control if animals underwent hemorrhages events. Two-dimensional time-of-flight angiographies (TE/TR 12 ms/7 ms) were acquired and analyses of the MCA angiogram were performed to control the spontaneous recanalization of the arteries of the mice.

18 Functional recovery assessment.

Functional recovery was assessed using the grip strength test (BIOSEB). Mice, holding by the tail, were dropped on a T-like-bar and gently removed by the experimenter. In this context of unilateral (right) ischemic lesion due to stroke, the individual strength of each forepaw was

assessed with a wrench connected to the device, while a fake wrench (unconnected to the
electronic device) was placed on the other side. To obtain the mean strength, 5 assays per
mouse were performed to reduce variabilities with 1 min of rest between each assay. Data
were assessed in grams. Measurements were picked up the day before MCAo surgery
(baseline acquisition) and 24 h after MCAo surgery, ratio between the two values is calculated
in order to normalize each mouse with its own baseline values.

7 Human patient study.

8 Human study protocol (PR[AG]154/2004 and PR[AG]157/2011) was approved by the local 9 ethics committee at Hospital Universitari Vall d'Hebron, and all patients or relatives gave 10 written informed consent. The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments. The study included 11 12 5 patients with an acute ischemic stroke and a proximal occlusion of the middle cerebral artery 13 occlusion documented by transcranial Doppler (TCD) admitted to the Emergency Department 14 who received PLAT/tPA in a standard 0.9-mg/kg dose (10% bolus, 90% continuous infusion for 15 1 h) within 3 h of symptom onset.

A clinical examination was performed on admission, after PLAT/tPA infusion and at 24 h from
symptom onset and at discharge. Stroke severity and neurological outcome were assessed
using the National Institutes of Health Stroke Scale (NIHSS). TCD assessments were performed
by an experienced neurologist using a Multi-Dop[®] X4 (DWL Elektroniche Systeme GmbH,
Sipplingen) device as previously described 29, to assess recanalization.

Serial extractions were performed to test the effect of treatment on IGFBP3, peripheral blood
samples were drawn in all five patients at study entry (prior to t-PA administration) at 1 h and

2 h after PLAT/tPA infusion and at 24 h after stroke onset to obtain a temporal profile after
 therapy. SST tubes were used to collect the blood, and serum was immediately separated by
 centrifugation at 1500g for 15 min at 4°C, and stored at 80°C until IGFBP-3 was measured.

IGFBP-3 was measured using two ELISAs (RayBiotech, ELH-IGFBP3-1). Serum samples were
diluted at 1:300, and the assay was performed according to manufacturer's instructions. Each
sample was analyzed in duplicate and the mean of the two values was used. The mean intraassay coefficient of variation was <15% in all cases. And inter-assay variation was determined
testing two times in each plate a sample from one patient, and it was <15%.

9 Statistics.

Statistical analyses were performed using GraphPad Prism 8.0.2 software. Results are represented as mean ± S.E.M. The distribution was assessed by the D'agostino Pearson normality test. When data were normally distributed, Student's t-tests were used to compare two conditions. When analysis of the data sets via parametric approaches turned out to be inappropriate due to violation of residual normality, non-parametric approaches where used (Mann-Whitney's U-tests for independent samples). An alpha level of p < 0.05 was used for determination of significance in all statistical tests; all tests are two tailed.

For KaHx experiments if the data were normally distributed, one-way ANOVA was done followed by a Tukey's multiple comparison test. If values were not normally distributed, the non-parametric equivalent Kruskal-Wallis test was used followed by a Dunn's multiple comparison test.

1 ACKNOWLEDGEMENTS

This work was supported by the INSERM (French National Institute for Health and Medical Research), the French Ministry for Research and upper Education, the Caen-Normandy University, the RHU project Marvelous (16-RHUS-0009), the ENTRAIN Marie Sklodowska-Curie Innovative Training Network, Fonds Européens de Développement Economique et Régional (FEDER) Normandie and AIRC IG n. 15572 to PC. J.P. is supported by grants from the Swiss National Science Foundation (310030-163064 and 310030-182332).

1 DISCLOSURE STATEMENT

2 The authors declare no competing interests.

1 **REFERENCES**

Global, regional, and national burden of neurological disorders, 1990-2016: a
 systematic analysis for the Global Burden of Disease Study 2016. Lancet neurology 2019;
 18:459-80.

5 2. Thiebaut AM, Gauberti M, Ali C, et al. The role of plasminogen activators in stroke 6 treatment: fibrinolysis and beyond. Lancet neurology 2018; 17:1121-32.

Berkhemer OA, Fransen PS, Beumer D, et al. A randomized trial of intraarterial
treatment for acute ischemic stroke. The New England journal of medicine 2015; 372:11-20.

9 4. Tissue plasminogen activator for acute ischemic stroke. The National Institute of 10 Neurological Disorders and Stroke rt-PA Stroke Study Group. The New England journal of 11 medicine 1995; 333:1581-7.

Thiebaut AM, Hedou E, Marciniak SJ, et al. Proteostasis During Cerebral Ischemia.
 Frontiers in neuroscience 2019; 13:637.

Jung CH, Jun CB, Ro SH, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to
 the autophagy machinery. Mol Biol Cell 2009; 20:1992-2003.

Louessard M, Bardou I, Lemarchand E, et al. Activation of cell surface GRP78 decreases
 endoplasmic reticulum stress and neuronal death. Cell Death Differ 2017; 24:1518-29.

Grummisch JA, Jadavji NM, Smith PD. tPA promotes cortical neuron survival via mTOR dependent mechanisms. Molecular and cellular neurosciences 2016.

9. Wu F, Wu J, Nicholson AD, et al. Tissue-type plasminogen activator regulates the
neuronal uptake of glucose in the ischemic brain. J Neurosci 2012; 32:9848-58.

Wu F, Echeverry R, Wu J, et al. Tissue-type plasminogen activator protects neurons
 from excitotoxin-induced cell death via activation of the ERK1/2-CREB-ATF3 signaling
 pathway. Molecular and cellular neurosciences 2013; 52:9-19.

Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation
of assays for monitoring autophagy (4th edition). Autophagy 2021:1-382.

27 12. Ginet V, Spiehlmann A, Rummel C, et al. Involvement of autophagy in hypoxic28 excitotoxic neuronal death. Autophagy 2014; 10:846-60.

29 13. Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell 2007; 12:487-502.

Kim J, Kundu M, Viollet B, et al. AMPK and mTOR regulate autophagy through direct
phosphorylation of Ulk1. Nat Cell Biol 2011; 13:132-41.

Huang J, Manning BD. A complex interplay between Akt, TSC2 and the two mTOR
complexes. Biochemical Society transactions 2009; 37:217-22.

16. Carriere A, Cargnello M, Julien LA, et al. Oncogenic MAPK signaling stimulates mTORC1
activity by promoting RSK-mediated raptor phosphorylation. Current biology : CB 2008;
18:1269-77.

Morris EJ, Jha S, Restaino CR, et al. Discovery of a novel ERK inhibitor with activity in
models of acquired resistance to BRAF and MEK inhibitors. Cancer discovery 2013; 3:742-50.

39 18. Zheng Y, Gu S, Li X, et al. Berbamine postconditioning protects the heart from
40 ischemia/reperfusion injury through modulation of autophagy. Cell death & disease 2017;
41 8:e2577.

42 19. Echeverry R, Wu J, Haile WB, et al. Tissue-type plasminogen activator is a
43 neuroprotectant in the mouse hippocampus. The Journal of clinical investigation 2010;
44 120:2194-205.

An J, Zhang C, Polavarapu R, et al. Tissue-type plasminogen activator and the low density lipoprotein receptor-related protein induce Akt phosphorylation in the ischemic brain.
 Blood 2008; 112:2787-94.

Liot G, Roussel BD, Lebeurrier N, et al. Tissue-type plasminogen activator rescues
neurones from serum deprivation-induced apoptosis through a mechanism independent of its
proteolytic activity. J Neurochem 2006; 98:1458-64.

Bertrand T, Lesept F, Chevilley A, et al. Conformations of tissue plasminogen activator
(tPA) orchestrate neuronal survival by a crosstalk between EGFR and NMDAR. Cell death &
disease 2015; 6:e1924.

Lemarchand E, Maubert E, Haelewyn B, et al. Stressed neurons protect themselves by
 a tissue-type plasminogen activator-mediated EGFR-dependent mechanism. Cell Death Differ
 2015.

Parcq J, Bertrand T, Montagne A, et al. Unveiling an exceptional zymogen: the singlechain form of tPA is a selective activator of NMDA receptor-dependent signaling and
neurotoxicity. Cell Death Differ 2012; 19:1983-91.

16 25. Duan Z, Choy E, Harmon D, et al. Insulin-like growth factor-I receptor tyrosine kinase 17 inhibitor cyclolignan picropodophyllin inhibits proliferation and induces apoptosis in 18 multidrug resistant osteosarcoma cell lines. Molecular cancer therapeutics 2009; 8:2122-30.

Orset C, Haelewyn B, Allan SM, et al. Efficacy of Alteplase in a Mouse Model of Acute
 Ischemic Stroke: A Retrospective Pooled Analysis. Stroke 2016; 47:1312-8.

27. Orset C, Macrez R, Young AR, et al. Mouse model of in situ thromboembolic stroke and
reperfusion. Stroke 2007; 38:2771-8.

23 28. Ballard FJ, Knowles SE, Walton PE, et al. Plasma clearance and tissue distribution of 24 labelled insulin-like growth factor-I (IGF-I), IGF-II and des(1-3)IGF-I in rats. The Journal of 25 endocrinology 1991; 128:197-204.

26 29. Forbes K, Souquet B, Garside R, et al. Transforming growth factor-{beta} (TGF{beta})
27 receptors I/II differentially regulate TGF{beta}1 and IGF-binding protein-3 mitogenic effects in
28 the human placenta. Endocrinology 2010; 151:1723-31.

30. Gluckman P, Klempt N, Guan J, et al. A role for IGF-1 in the rescue of CNS neurons
following hypoxic-ischemic injury. Biochem Biophys Res Commun 1992; 182:593-9.

31 31. Xu S, Savage P, Burton JL, et al. Proteolysis of insulin-like growth factor-binding protein-32 3 by human skin keratinocytes in culture in comparison to that in skin interstitial fluid: the role 33 and regulation of components of the plasmin system. The Journal of clinical endocrinology 34 and metabolism 1997; 82:1863-8.

32. Guertin DA, Stevens DM, Thoreen CC, et al. Ablation in mice of the mTORC components
raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and
PKCalpha, but not S6K1. Dev Cell 2006; 11:859-71.

38 33. Jacinto E, Facchinetti V, Liu D, et al. SIN1/MIP1 maintains rictor-mTOR complex
39 integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006; 127:125-37.

Wen YD, Sheng R, Zhang LS, et al. Neuronal injury in rat model of permanent focal
cerebral ischemia is associated with activation of autophagic and lysosomal pathways.
Autophagy 2008; 4:762-9.

43 35. Wang N, Yang L, Zhang H, et al. MicroRNA-9a-5p Alleviates Ischemia Injury After Focal 44 Cerebral Ischemia of the Rat by Targeting ATG5-Mediated Autophagy. Cellular physiology and 45 biochemistry : international journal of experimental cellular physiology, biochemistry, and 46 pharmacology 2018: 45:78-87

46 pharmacology 2018; 45:78-87.

36. Puyal J, Vaslin A, Mottier V, et al. Postischemic treatment of neonatal cerebral ischemia
 should target autophagy. Annals of neurology 2009; 66:378-89.

3 37. Xie C, Ginet V, Sun Y, et al. Neuroprotection by selective neuronal deletion of Atg7 in
4 neonatal brain injury. Autophagy 2016; 12:410-23.

5 38. Troncoso R, Vicencio JM, Parra V, et al. Energy-preserving effects of IGF-1 antagonize
6 starvation-induced cardiac autophagy. Cardiovascular research 2012; 93:320-9.

Zin Y, Deng W, Pang J, et al. The microRNA-99 family modulates hepatitis B virus
replication by promoting IGF-1R/PI3K/Akt/mTOR/ULK1 signaling-induced autophagy. Cellular
microbiology 2017; 19.

40. Wang S, Gu K. Insulin-like growth factor 1 inhibits autophagy of human colorectal
carcinoma drug-resistant cells via the protein kinase B/mammalian target of rapamycin
signaling pathway. Molecular medicine reports 2018; 17:2952-6.

41. Kooijman R, Sarre S, Michotte Y, et al. Insulin-like growth factor I: a potential
neuroprotective compound for the treatment of acute ischemic stroke? Stroke 2009; 40:e838.

42. De Geyter D, De Smedt A, Stoop W, et al. Central IGF-I Receptors in the Brain are
Instrumental to Neuroprotection by Systemically Injected IGF-I in a Rat Model for Ischemic
Stroke. CNS neuroscience & therapeutics 2016; 22:611-6.

Kelley KM, Oh Y, Gargosky SE, et al. Insulin-like growth factor-binding proteins (IGFBPs)
 and their regulatory dynamics. Int J Biochem Cell Biol 1996; 28:619-37.

44. Schwab S, Spranger M, Krempien S, et al. Plasma insulin-like growth factor I and IGF
binding protein 3 levels in patients with acute cerebral ischemic injury. Stroke 1997; 28:17448.

Blum WF, Albertsson-Wikland K, Rosberg S, et al. Serum levels of insulin-like growth
factor I (IGF-I) and IGF binding protein 3 reflect spontaneous growth hormone secretion. The
Journal of clinical endocrinology and metabolism 1993; 76:1610-6.

46. Blat C, Villaudy J, Binoux M. In vivo proteolysis of serum insulin-like growth factor (IGF)
binding protein-3 results in increased availability of IGF to target cells. The Journal of clinical
investigation 1994; 93:2286-90.

47. Imai Y, Moralez A, Andag U, et al. Substitutions for hydrophobic amino acids in the Nterminal domains of IGFBP-3 and -5 markedly reduce IGF-I binding and alter their biologic
actions. J Biol Chem 2000; 275:18188-94.

48. Jogie-Brahim S, Feldman D, Oh Y. Unraveling insulin-like growth factor binding protein3 actions in human disease. Endocrine reviews 2009; 30:417-37.

49. Booth BA, Boes M, Bar RS. IGFBP-3 proteolysis by plasmin, thrombin, serum: heparin
binding, IGF binding, and structure of fragments. The American journal of physiology 1996;
271:E465-70.

50. Fowlkes JL, Enghild JJ, Suzuki K, et al. Matrix metalloproteinases degrade insulin-like growth factor-binding protein-3 in dermal fibroblast cultures. J Biol Chem 1994; 269:25742-6.

40 51. Bang P, Fielder PJ. Human pregnancy serum contains at least two distinct proteolytic
41 activities with the ability to degrade insulin-like growth factor binding protein-3.
42 Endocrinology 1997; 138:3912-7.

43 52. Pasquet N, Douceau S, Naveau M, et al. Tissue-Type Plasminogen Activator Controlled 44 Corticogenesis Through a Mechanism Dependent of NMDA Receptors Expressed on Radial

45 Glial Cells. Cereb Cortex 2018.

53. Nieto-Estevez V, Defterali C, Vicario-Abejon C. IGF-I: A Key Growth Factor that
 Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stages of the Brain.
 Frontiers in neuroscience 2016; 10:52.

- Liu W, D'Ercole JA, Ye P. Blunting type 1 insulin-like growth factor receptor expression
 exacerbates neuronal apoptosis following hypoxic/ischemic injury. BMC neuroscience 2011;
 12:64.
- 55. Bake S, Selvamani A, Cherry J, et al. Blood brain barrier and neuroinflammation are
 critical targets of IGF-1-mediated neuroprotection in stroke for middle-aged female rats. PLoS
 One 2014; 9:e91427.
- 56. Siao CJ, Fernandez SR, Tsirka SE. Cell type-specific roles for tissue plasminogen
 activator released by neurons or microglia after excitotoxic injury. J Neurosci 2003; 23:323442.
- 13 57. Flavin MP, Zhao G, Ho LT. Microglial tissue plasminogen activator (tPA) triggers
 14 neuronal apoptosis in vitro. Glia 2000; 29:347-54.
- 15 58. Pu H, Shi Y, Zhang L, et al. Protease-independent action of tissue plasminogen activator
 in brain plasticity and neurological recovery after ischemic stroke. Proc Natl Acad Sci U S A
 2019; 116:9115-24.
- 59. Benchenane K, Berezowski V, Ali C, et al. Tissue-type plasminogen activator crosses the
 intact blood-brain barrier by low-density lipoprotein receptor-related protein-mediated
 transcytosis. Circulation 2005; 111:2241-9.
- Liang M, Woodard LE, Liang A, et al. Protective role of insulin-like growth factor-1
 receptor in endothelial cells against unilateral ureteral obstruction-induced renal fibrosis. Am
 J Pathol 2015; 185:1234-50.
- Polavarapu R, Gongora MC, Yi H, et al. Tissue-type plasminogen activator-mediated
 shedding of astrocytic low-density lipoprotein receptor-related protein increases the
 permeability of the neurovascular unit. Blood 2007; 109:3270-8.
- Roussel BD, Mysiorek C, Rouhiainen A, et al. HMGB-1 promotes fibrinolysis and
 reduces neurotoxicity mediated by tissue plasminogen activator. Journal of cell science 2011;
 124:2070-6.
- Grishchuk Y, Ginet V, Truttmann AC, et al. Beclin 1-independent autophagy contributes
 to apoptosis in cortical neurons. Autophagy 2011; 7:1115-31.
- 32 64. Vaslin A, Puyal J, Borsello T, et al. Excitotoxicity-related endocytosis in cortical neurons.
 33 J Neurochem 2007; 102:789-800.
- Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p,
 is localized in autophagosome membranes after processing. EMBO J 2000; 19:5720-8.
- 36 66. Drouet V, Perrin V, Hassig R, et al. Sustained effects of nonallele-specific Huntingtin
 37 silencing. Annals of neurology 2009; 65:276-85.
- 38 67. Hottinger AF, Azzouz M, Deglon N, et al. Complete and long-term rescue of lesioned
 39 adult motoneurons by lentiviral-mediated expression of glial cell line-derived neurotrophic
 40. Society is the facility of the maximum and the maximum and the facility of the second s
- 40 factor in the facial nucleus. J Neurosci 2000; 20:5587-93.
- 41

1 Table 1. RNAseq pathway analysis of neurons subjected or not to OGDreox +/- 300 nM PLAT/tPA

AMPK signaling pathway	Y	Apoptosis				
Autophagy animal		Autophagy other				
Calcium signaling pathw	ay	cAMP signaling pathway				
Cell cycle		EGFR tyrosine kinase inhibitor resistance				
Endocytosis		ERBB signalling pathway				
Focal adhesion		FOXO signaling pathway				
GABAergic synapse		Glutamatergic synapse				
HIF1 signaling	pathway	JAK-STAT signaling pathway				
Long-term potentiation		Lysosome				
MAPK signaling pathway	Y	MTOR signaling pathway				
Neuroactive ligand-receptor interaction		Neurotrophin signaling pathway				
NFKB signaling pathway	,	TP53 signaling pathway				
Phagosome		Phosphatidylinositol signaling pathway				
PLD (phospholipase D) signaling pathway		PI3K-AKT signaling pathway				
Protein processing in endoplasmic reticulum		RAP1 signaling pathway				
Regulation of actin cyto	skeleton	TGFB/TGF-β signaling pathway				
TLR (toll-like receptor) s	ignaling pathway					

2 Pathways were analysed following the Kyoto Encyclopedia of Genes and Genomes (KEGG pathway).

3 Pathways linked to OGDreox or ischemia/hypoxia are highlighted in red; pathways linked to autophagy

4 are highlighted in green.

Patients	А	В	С	D	Е	Median
Age	71	97	72	68	69	71
Gender	2	1	2	1	2	2
Smoking	1	0	DM	1	0	2
Hypertension	0	0	1	0	1	2
Diabetis	1	0	0	0	0	1
Atrial fibrillation	0	1	1	0	0	2
Myocardial ischemia	0	0	0	0	0	0
Hypercholesterolemia	0	0	0	0	1	1
Antiplatelet	0	0	DM	0	0	0
Statins	0	0	1	0	1	2
Diabetis treatment	0	0	1	0	1	0
Occlusion site	MCA	MCA	MCA	Basilar	MCA	/
Initial NIHSS score	21	23	9	16	17	17

2 **Table 2.** Clinical parameters of the five acute stroke patients eligible for intravenous thrombolysis.

Woman: 1
Man: 2
No: 0
Yes: 1
MD: Missing data

3

4 LEGENDS

5 Figure 1. Autophagy pathways are increased by oxygen and glucose deprivation in cortical 6 neurons. (A) Pie charts representing significantly (p<0.05) up- and downregulated transcripts 7 in Ctrl Vs OGD_{reox}, Ctrl Vs OGD_{reox} + PLAT/tPA and OGD_{reox} Vs OGD_{reox} + PLAT/tPA conditions. 8 Heatmaps of genes significantly affected (p<0.05) in both OGD_{reox} and OGD_{reox} + PLAT/tPA 9 conditions Vs Ctrl condition for (B) MAPK signaling pathway, (C) PI3K-AKT signaling pathway, 10 (D) MTOR signaling pathway, and (E) autophagy pathway. Heatmaps of genes significantly 11 affected (p<0.05) between Ctrl and OGD_{reox} conditions for (F) MAPK signaling pathway, (G) 12 PI3K-AKT signaling pathway, (H) MTOR signaling pathway, and (I) autophagy pathway. Heatmaps of genes significantly affected (p<0.05) between Ctrl and OGD_{reox} + PLAT/tPA 13 14 conditions for (J) MAPK signaling pathway, (K) PI3K-AKT signaling pathway, (L) MTOR signaling 15 pathway, and (**M**) autophagy pathway.

1 Figure 2. PLAT/tPA decreases OGD-induced autophagy and cell death in cortical neurons. (A) 2 Schematic representation of *in vitro* ischemic model consisting in 1h of OGD followed by 3h of 3 reoxygenation (OGD_{reox}), on 12 days old murine primary cortical neurons in the presence or not of treatments. (B) Representative western blots of LC3-II, SQSTM1/p62 and ACTB in 4 5 neurons subjected or not to OGD_{reox} with and without PLAT/tPA (300 nM). Densitometric 6 quantification of LC3-II (C) and SQSTM1/p62 (D) normalized to ACTB (mean±S.E.M. n=5 and 6 independent experiments for LC3 and SQSTM1/p62 respectively; ##: p<0.01 and #: p<0.05 7 compared to Ctrl; **: p<0.01 and *: p<0.05 compared between OGD_{reox} conditions; Mann-8 9 Whitney test). (E) Neuronal death of pure cortical neurons assessed by LDH release after 10 OGD_{reox} in the presence or not of 10 μ g/ml of E64d and 10 μ g/ml pepstatin A (mean±S.E.M. 11 n=12 for Ctrl, n=16 for Ctrl+E64d-PepA, n=31 for OGD_{reox}, n=33 for OGD_{reox}+E64d-PepA, n=28 for OGD_{reox}+ PLAT/tPA from 4 independent experiments; ###: p<0.001 compared to Ctrl; ***: 12 13 p<0.001 compared between OGD_{reox}; Mann–Whitney test). (F) Representative western blots 14 of LC3-II, SQSTM1/p62 and ACTB in neurons subjected or not to OGD_{reox} in the presence or 15 not of 10 μ g/ml of E64d and 10 μ g/ml Pepstadin A. Densitometric quantification of LC3-II (G) 16 and SQSTM1/p62 (H) normalized to ACTB (mean±S.E.M. n=8 independent experiments; ##: 17 p<0.01 and ###: p<0.001 compared to Ctrl; ***: p<0.001 compared between OGD_{reox}; Mann-18 Whitney test.

Figure 3. PLAT/tPA prevents hypoxic/excitotoxic-induced autophagy and neuronal death. (A-C) PLAT/tPA (300 nM) affords strong neuroprotection against cell death induced by the combination of kainate (Ka, 30 μM) and hypoxia (Hx, 6% oxygen) for 30 min in primary cortical neuron cultures as shown by a reduction in both (A) the release of lactate dehydrogenase (LDH) and (B-C) propidium iodide (PI)-staining 6h after KaHx treatment. (A) Quantification of released LDH expressed as a percentage of the KaHx value (data are represented as

mean±S.E.M. n=8 from 3 independent experiments; ###: p<0.001 compared to Ctrl; ***: 1 p<0.001 compared between KaHx; Tukey's multiple comparisons tests) (B) Quantification of 2 3 the PI-positive nuclei expressed as a percentage of the number of KaHx PI-positive nuclei (data 4 are represented as mean±S.E.M. n=24 from 3 independent experiments; ###: p<0.001 5 compared to Ctrl; ***: p<0.001 and **: p<0.01 compared between KaHx; Tukey's multiple 6 comparisons tests) (C) Representative images of PI- (magenta) and Hoechst- (cyan) stained 7 nuclei. Bars = 100 μ m. (D-F) PLAT/tPA treatment prevents KaHx-induced autophagy as indicated by a suppression of both KaHx-induced (E) increase in LC3-II level and (F) degradation 8 9 of SQSTM1/p62. (D) Representative western blots of LC3-II and SQSTM1/p62 in neurons 10 subjected or not to KaHx in the presence of PLAT/tPA 0 to 300 nM. ACTB was used as loading 11 control. (E) Densitometric quantification of LC3-II normalized to ACTB. Levels expressed as a 12 percentage of KaHx value (data are represented as mean±S.E.M. n=8 independent 13 experiments; ##: p<0.01 compared to Ctrl; **: p<0.01 compared between KaHx; Tukey's 14 multiple comparisons tests). (F) Densitometric quantification of SQSTM1/p62 normalized to 15 ACTB. Levels expressed as a percentage of KaHx value (data are represented as mean±S.E.M. n=8 independent experiments; ###: p<0.001 and ##: p<0.01 compared to Ctrl; ***: p<0.001 16 17 compared between KaHx; Tukey's multiple comparisons tests). (G) Representative confocal 18 images of transfected cortical neurons with a tandem mRFP-GFP-LC3-expressing plasmid in 19 control (Ct) or kainate/hypoxia (KaHx) condition with or without PLAT/tPA (300 nM) 20 treatment. (H-I) Corresponding quantifications of the number of dots per μ m² of (H) GFP⁺ 21 /RFP⁺ GFP⁻/RFP⁺ (yellow) (magenta) (early autophagosomes) (I) (mature 22 autophagosomes/autolysosomes) and (J) the total of the two types (total dots). PLAT/tPA 23 treatment prevents the increase in the autophagy flux (both autophagosome formation and 24 autophagosome/lysosome fusion) induced after 3h of KaHx stimulation. Data are represented

as mean±S.E.M. n=20; ###: p<0.001 compared to Ctrl; ***: p<0.001 compared with KaHx;
 Tukey's multiple comparisons tests).

Figure 4. OGD-enhanced autophagy is dependent on MTOR pathway. (A) Representative
western blots of p-MTORC1 (Ser2448), p-MTORC2 (Ser2481), MTOR total, p-ULK1-ULK2
(Ser757) and ACTB in neurons subjected or not to OGD_{reox} with and without PLAT/tPA (300
nM). Densitometric quantification of p-MTORC1 (Ser2448) normalized to MTOR total (B), of
p-MTORC2 (Ser2481) normalized to MTOR total (C), of p-ULK1-ULK2 (Ser757) normalized to
ACTB (D) (mean±S.E.M. n=4 to 6 independent experiments; ##: p<0.01 and #: p<0.05
compared to Ctrl; **: p<0.01 and *: p<0.05 compared to OGD_{reox}; Mann–Whitney test).

10 Figure 5. PLAT/tPA decreases OGD-induced autophagy through the PI3K-AKT pathway. (A) 11 Representative western blots of p-MAPK/ERK1/2 (Thr202, Tyr204), MAPK/ERK1/2 total, p-AKT 12 (Ser473) and AKT total in neurons subjected or not to OGD_{reox} with and without PLAT/tPA (300 13 nM). Densitometric quantification of p-MAPK/ERK1/2 (Thr202, Tyr204) normalized to 14 MAPK/ERK1/2 total (B) and of p-AKT (Ser473) normalized to AKT total (C) (mean±S.E.M. n=5 15 independent experiments; ##: p<0.01 compared to Ctrl; **: p<0.01 and p<0.05 compared 16 between OGD_{reox} conditions; Mann–Whitney test). (D) Representative western blots of LC3-II, SQSTM1/p62 and ACTB in neurons subjected or not to OGD_{reox} with and without PLAT/tPA 17 18 (300 nM) in the presence or not of $5 \mu M$ SCH772984 (SCH77; MAPK/ERK1/2 inhibitor). 19 Densitometric quantification of LC3-II (E) and SQSTM1/p62 (F) normalized to ACTB 20 (mean±S.E.M. n=6 independent experiments; #: p<0.05 compared to Ctrl; **: p<0.01 and *: 21 p<0.05 compared between OGD_{reox} conditions; Mann–Whitney test). (G) Representative 22 western blots of LC3-II, SQSTM1/p62 and ACTB in neurons subjected or not to OGD_{reox} with 23 and without PLAT/tPA (300 nM) in the presence or not of $10 \,\mu$ M A6730 (AKT inhibitor).

1 Densitometric quantification of LC3-II (H) and SQSTM1/p62 (I) normalized to ACTB 2 (mean±S.E.M. n=5 and 6 independent experiments for LC3 and SQSTM1/p62 respectively; ##: 3 p<0.01 and #: p<0.05 compared to Ctrl; **: p<0.01 and *: p<0.05 compared between OGD_{reox} conditions; Mann–Whitney test). (J) Representative western blots of LC3-II, SQSTM1/p62 and 4 5 ACTB in neurons subjected or not to OGD_{reox} with and without PLAT/tPA (300 nM) in the 6 presence or not of 250 nM wortmannin (Wort; PI3K inhibitor). Densitometric quantification 7 of LC3-II (K) and SQSTM1/p62 (L) normalized to ACTB (as mean±S.E.M. n=5 independent 8 experiments; ##: p<0.01 and #: p<0.05 compared to Ctrl; *: p<0.05 compared between OGD_{reox} 9 conditions; Mann–Whitney test).

Figure 6. PLAT/tPA decreases OGD-induced PI3K-AKT signaling through IGF1R receptor. (A) 10 11 Representative western blots of LC3-II, SQSTM1/p62 and ACTB in neurons subjected or not to 12 OGD_{reox} with and without PLAT/tPA (300 nM) in the presence or not of 5 μ M AG1478 (EGFR 13 inhibitor). Densitometric quantification of LC3-II (B) and SQSTM1/p62 (C) normalized to ACTB 14 (mean±S.E.M. n=4 and 5 independent experiments for LC3 and SQSTM1/p62 respectively; ##: 15 p<0.01 and #: p<0.05 compared to Ctrl; **: p<0.01 and*: p<0.05 compared between OGD_{reox} 16 conditions; Mann–Whitney test). (D) Representative western blots of p-AKT (Ser473), AKT 17 total, p-MTORC1 (Ser2448) and MTOR total in neurons subjected or not to OGD_{reox} with and without PLAT/tPA (300 nM) in the presence or not of 100 nM Picropodophyllotoxin. 18 Densitometric quantification of p-AKT (Ser473) normalized to AKT total (E) and of MTORC1 19 20 (Ser2448) normalized to MTOR total (F) (mean±S.E.M. n=4 independent experiments; #: 21 p<0.05 compared to Ctrl; *: p<0.05 compared between OGD_{reox} conditions; Mann–Whitney 22 test). (G) Representative western blots of LC3-II, SQSTM1/p62 and ACTB in neurons subjected 23 or not to OGD_{reox} with and without PLAT/tPA (300 nM) in the presence or not of 100 nM 24 Picropodophyllotoxin (PPP; IGF1R inhibitor). Densitometric quantification of LC3-II (H) and of

SQSTM1/p62 (I) normalized to ACTB (mean±S.E.M. n=5 independent experiments; ##: p<0.01
compared to Ctrl; **: p<0.01 compared between OGD_{reox}; Mann–Whitney test). (J)
Representative western blots of LC3-II, SQSTM1/p62 and ACTB in neurons subjected or not to
OGD_{reox} with and without IGF1 (250 nM). Densitometric quantification of LC3-II (K) and
SQSTM1/p62 (L) normalized to ACTB (mean±S.E.M. n=6 and 7 independent experiments for
LC3 and SQSTM1/p62 respectively; ###: p<0.005 and ##: p<0.01 compared to Ctrl; **: p<0.01
compared between OGD_{reox} conditions; Mann–Whitney test).

8 Figure 7. Active PLAT/tPA protects neurons from cell death by decreasing autophagy through 9 IGF1R/PI3k-AKT/MTORC1. Neuronal death of pure cortical neurons assessed by LDH release 10 after OGD_{reox} in the presence or not of PLAT/tPA and 5 μ M SCH772984 (SCH77; MAPK/ERK1/2 11 inhibitor) (A), 250 nM Wortmannin (Wort; PI3K inhibitor) (B), 10 µM A6730 (AKT inhibitor) (C), 12 100 nM Picropodophyllotoxin (PPP; IGF1R inhibitor) (D), 300 nM d-GGACK- PLAT/tPA (inactive 13 PLAT/tPA) (E) or 1 μ M Aprotinin (plasmin inhibitor) (F) (mean±S.E.M. n=14 to 30 from 6 14 independent experiments; ###: p<0.001 compared to Ctrl; ***: p<0.001, **: p<0.01 and *: 15 p<0.05 compared between OGD_{reox}; Mann–Whitney test).

16 Figure 8. PLAT/tPA decreases autophagy and ischemic lesion in a mouse model of cerebral 17 ischemia. (A) Schematic representation of Middle Cerebral Artery occlusion (MCAo) based on 18 thrombin injection in the MCA. (B) Representative MRI images and infarct volumes (mm³) 24 19 h after MCAo in mice treated with vehicle or PLAT/tPA. (mean±S.E.M; n=10 for Vehicle; n=9 20 for PLAT/tPA; *: p<0.05; t test). Grip strength of both forepaws (C), right forepaw (D), or left 21 forepaw (E) in mice treated with vehicle or PLAT/tPA after MCAo. Measurements were picked 22 up the day before MCAo surgery (baseline acquisition) and 24 h after MCAo surgery, ratio 23 between the two values is calculated in order to normalize each mouse with its own baseline

1 values (mean±S.E.M; n=10 for Vehicle; n=9 for PLAT/tPA; ***: p<0.001, *: p<0.05; t test) (F) 2 Representative western blots of LC3-II, SQSTM1/p62 and ACTB in ipsilateral cortex of mice 3 after MCAo. Densitometric quantification of LC3-II (G) or SQSTM1/p62 (H) normalized to ACTB (mean±S.E.M. n=4 independent experiments; *: p<0.05; Mann–Whitney test). (I) 4 5 Representative western blots of p-MTOR (Ser2448), MTOR tot, LC3-II, SQSTM1/p62, ATG5, 6 ATG7 and ACTB in cortex treated with vehicle or PLAT/tPA after MCAo. Densitometric 7 quantification of p-MTORC1 (Ser2448) normalized to MTOR total (J), of LC3-II normalized to 8 ACTB (K), of SQSTM1/p62 normalized to ACTB (L), of ATG5 normalized to ACTB (M), of ATG7 9 normalized to ACTB (N) (mean±S.E.M. n=8 to 10; *: p<0.05; Mann–Whitney test).

10 Figure 9. PLAT/tPA cleaves IGFBP3 and increases the bioavailability of IGF1 in vitro, in vivo in 11 mice and in humans. (A) Human recombinant IGFBP3 was incubated or not with PLAT/tPA 12 during 15 min, 1 h, 2 h or 4 h. Samples were then analyzed to SDS/PAGE and western blotting 13 probed with anti-IGFBP3 antibody. (B) Concentration of IGFBP3 (ng/ml) measured by ELISA in cell culture medium of cortical neurons subjected or not to OGD_{reox} with or without PLAT/tPA 14 (300 nM) (mean±S.E.M. n=8 independent experiments; ***: p<0.001; t test). (C) 15 16 Concentration of IGFBP3 (ng/ml) measured by ELISA in serum of mice treated with vehicle or 17 PLAT/tPA after MCAo. Serum was collected 1 h and 24 h after treatment (mean±S.E.M; n=8 for vehicle 1h; n=9 for PLAT/tPA 1h; n=8 for vehicle 24h; n=7 for PLAT/tPA 1h; ##: p<0.01 18 19 vehicle 1h compared to PLAT/tPA 1h; \$: p<0.05 vehicle 24h compared to PLAT/tPA 24h; Mann-20 Whitney test). Total IGF1 (ng/ml) (D), Free IGF1 (ng/ml) (E), and ratio between free and total 21 IGF1 (F) measured by ELISA in serum of mice treated with vehicle or PLAT/tPA after MCAo. 22 Serum was collected 1 h and 24 h after treatment (mean±S.E.M; n=8 for vehicle 1h; n=9 for 23 PLAT/tPA 1h; n=8 for vehicle 24h; n=7 for PLAT/tPA 1h; ###: p<0.001, ##: p<0.01 vehicle 1h 24 compared to PLAT/tPA 1h; \$\$\$: p<0.001, \$\$: p<0.01 vehicle 24h compared to PLAT/tPA 24h;

- ***: p<0.001, *: p<0.05 PLAT/tPA 1h compared to PLAT/tPA 24h; Mann-Whitney test). (G)
 Concentration of IGFBP3 (ng/ml) was measured by ELISA in serum of stroke patients before
 PLAT/tPA injection (baseline) and 1 h, 2 h and 24 h after t PLAT/tPA injection (mean±S.E.M;
 n=5 patients; *: p<0.05; Paired t test).

Gene expression significantly changed <u>ONLY</u> in Ctrl versus OGD_{reox}

liara				
Hras				
Spp1				
Cobo				
GNDZ				
Pik3ap1				
Syk				
Cdc37				
Hen90aa1				
Capit				
Sppi				
lgt1				
Sgk1				
Gng3				
ll7r				
Deterfet				
Pagirb				
Thbs1				
ltga5				
Col1a2				
Poin				
Gng11				
Gng10				
Tlr2				
ltab1				
EOP				
0				
Creb312				
ltgb5				
Col1a1				
Gna5				
Itaa6				
Grade				
Crebo				
Jak2				
ltgb8				
Ppp2r3a				
Pdafb				
Nr/la1				
Dilan	_			
PIKOIZ				
Gng4				
Efna5				
Ppp2r2a				
Chrm2				
Botor	-			
Cando				
Cchaz				
Magi1				
laf1r				
Rps6kb1				
Pton				
Cne7				
Gng/				
Magi2				
Ppp2r2b				
Kit				
Pik3ca				
Ppp2r2c				
FPP2120				
Inn				
Jak1				
Kras				
Mtor				
Chrm1				
AL+2				
AKI3				
Akt3				
Prkaa2				
Ywhag				
Pdpk1				
Chrm1				
Cont				
5051				
Insr				
Ntrk2				
Prkca				
Man2k1				

OGD _{reox}	-	+	+	reox		•
PLAT (300 nM)	-	-	+	PLAT (300 nM) -	-	+

** **

K

G

reox					
PLAT (300 nM)	-	-	+	+	-
Wort (250 nM) PI3K inhibitor	-	-	-	+	+

(MCA injection in situ)

Vehicle

PLAT

A

+

Clinical experiment

G

Figure S1. Effect of chloroquine during OGD_{reox} and effects of PLAT/tPA on autophagy flux under normoxic conditions and dose effects during OGD_{reox}. (**A**) Representative immunostaining of neurons transduced with GFP-LC3 lentivirus then stain with anti-GFP antibody (yellow), and subjected or not to OGD_{reox} with or without 300 nM PLAT. RBFOX3/NeuN staining appears in cyan. (**B**) Corresponding percentage of area with GFP-LC3positive dots compared to total area of neuron (mean±S.E.M. n=7 for Ctrl; n=9 for OGD_{reox}; n=9 for OGD_{reox} + PLAT; from 4 independent experiments; ###: p<0.001 compared to Ctrl; *:

p<0.05 compared between OGD_{reox}; Mann–Whitney test). (**C**) Neuronal death of pure cortical neurons assessed by LDH release after OGD_{reox} in the presence or not of 50, 100 or 200 μ M of Chloroquine (mean±S.E.M. n=25 from 6 independent experiments; ***: p<0.001 and *: p<0.05 compared between OGD_{reox}; Mann–Whitney test; dose/response correlation, Pearson r=0.9801 and *: p<0.05). (**D**) Representative western blots of LC3-II, SQSTM1/p62 and actin in cortical neurons in the presence or not of PLAT (300 nM). Densitometric quantification of LC3-II (**E**), or SQSTM1/p62 (**F**) normalized to actin (mean±S.E.M. n=6 independent experiments; ns: not significant; Mann–Whitney test). (**G**) Representative western blots of LC3-II, SQSTM1 and actin in neurons subjected or not to OGD_{reox} in the presence of PLAT 0 to 300nM. Densitometric quantification of LC3-II (**H**) and SQSTM1 (I) normalized to ACTB/actin (mean±S.E.M. n=5 independent experiments; ##: p<0.01 and #: p<0.05 compared to Ctrl; **: p<0.01 and *: p<0.05 compared between OGD_{reox}; Mann–Whitney test).

Figure S2. PLAT prevents hypoxic/excitotoxic-induced MTOR dephosphorylation. PLAT (300 nM) treatment prevents KaHx-induced decrease in MTOR phosphorylation (at Ser2448) as shown by (**A**) representative immunoblots and (**B**) the corresponding quantifications of the ratio p-MTOR:MTOR (Ct: 2.1 \pm 0.2%, Ct+PLAT: 2.2 \pm 0.3, KaHx: 1 \pm 0.1%, KaHx: 1.9 \pm 0.2%) PLAT (300 nM). Values are mean \pm SEM. n = 8 or 9 from 3 independent experiments. ^{##} p< 0.01 compared to untreated control neurons, *p< 0.05, **p< 0.01. Tukey's multiple comparisons tests.

Figure S3. PLAT does not mediate a biological effect by a direct interaction to IGF1R. (**A**) Schematic representation of PLAT actilyse, wild-type PLAT (WT PLAT) and Δ EGF PLAT. PLAT (actilyse), WT PLAT and Δ EGF PLAT binding on IGF1R was measured by surface plasmon resonance (SPR) (**B**) Sensorgrams of the response (RU) versus time of the single-cycle kinetics assay performed by injecting five increasing concentrations (10, 5, 2.5, 1.25 and 0.625 μ M) of PLAT (actilyse; red), PLAT WT (green) or PLAT Δ EGF (blue) on human recombinant IGF1R. (**C**) The equilibrium dissociation constant (KD), the analyte binding capacity (Rmax) and the Chi² (the sum of squared differences between the experimental data and reference data at each point values) reported in the table were obtained by fitting data with the langmuir 1:1 binding model and with the steady state model.