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Abstract

Fetal magnetic resonance imaging (MRI) has been increasingly used as a powerful comple-

ment imaging modality to ultrasound imaging (US) for the clinical evaluation of prenatal

abnormalities. Specifically, clinical application of fetal MRI has been significantly improved in

the nineties by hardware and software advances with the development of ultrafast multi-slice

T2-weighted (T2w) acquisition sequences able to freeze the unpredictable fetal motion and

provide excellent soft-tissue contrast. Fetal motion is indeed the major challenge in fetal

MRI and slice acquisition time should be kept as short as possible. As a result, typical fetal

MRI examination involves the acquisition of a set of orthogonally planned scans of thick

two-dimensional slices, largely free of intra-slice motion artifacts. The poor resolution in

the slice-select dimension as well as possible motion occurring between slices limits further

quantitative data analysis, which is the key for a better understanding of the developing

brain but also the key for the determination of operator-independent biomarkers that might

significantly facilitate fetal diagnosis and prognosis.

To this end, several research groups have developed in the past ten years advanced image

processing methods, often denoted by motion-robust super-resolution (SR) techniques, to

reconstruct from a set of clinical low-resolution (LR) scans, a high-resolution (HR) motion-free

volume. SR problem is usually modeled as a linear inverse problem describing the imaging

degradation due to acquisition and fetal motion. Typically, such approaches consist in iterating

between slice motion estimation that estimates the motion parameters and SR that recovers

the HR image given the estimated degradation model. This thesis focuses on the development

of novel advanced image processing methods, which have enabled the design of a completely

automated reconstruction pipeline for fetal MRI. The proposed techniques help in improving

state-of-the-art fetal MRI reconstruction in terms of efficiency, robustness and minimized

user-interactions, with the ultimate goal of being translated to the clinical environment.

The first part focuses on the development of a more efficient Total Variation (TV)-regularized

optimization algorithm for the SR problem. The algorithm uses recent advances in convex
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optimization with a novel adaptive regularization strategy to offer simultaneously fast, accu-

rate and robust solutions to the fetal image recovery problem. Extensive validations on both

simulated fetal and real clinical data show the proposed algorithm is highly robust in front of

motion artifacts and that it offers the best trade-off between speed and accuracy for fetal MRI

recovery as in comparison with state-of-the art methods.

The second part focuses on the development of a novel automatic brain localization and

extraction approach based on template-to-slice block matching and deformable slice-to-

template registration. As most fetal brain MRI reconstruction algorithms rely only on brain

tissue-relevant voxels of low-resolution (LR) images to enhance the quality of inter-slice mo-

tion correction and image reconstruction, the fetal brain needs to be localized and extracted as

a first step. These tasks generally necessitate user interaction, manually or semi-automatically

done. Our methods have enabled the design of completely automated reconstruction pipeline

that involves intensity normalization, inter-slice motion estimation, and super-resolution.

Quantitative evaluation on clinical MRI scans shows that our approach produces brain masks

that are very close to manually drawn brain masks, and ratings performed by two expert

observers show that the proposed pipeline achieves similar reconstruction quality to reference

reconstruction based on manual slice-by-slice brain extraction without any further effort.

The third part investigates the possibility of automatic cortical folding quantification, one of

the best biomarkers of brain maturation, by combining our automatic reconstruction pipeline

with a state-of-the-art fetal brain tissue segmentation method and existing automated tools

provided for adult brain’s cortical folding quantification. Results indicate that our reconstruc-

tion pipeline can provide HR MR images with sufficient quality that enable the use of surface

tessellation and active surface algorithms similar to those developed for adults to extract

meaningful information about fetal brain maturation.

Finally, the last part presents new methodological improvements of the reconstruction

pipeline aiming at improving the quality of the image for quantitative data analysis, whose

accuracy is highly dependent on the quality and resolution of the reconstructed image. In

particular, it presents a more consistent and global magnetic bias field correction method

which takes advantage of the super-resolution framework to provide a final reconstructed

image quasi free of the smooth bias field. Then, it presents a new TV SR algorithm that uses

the Huber norm in the data fidelity term to be more robust to non-Gaussian outliers. It

also presents the design of a novel joint reconstruction-segmentation framework and the

development of a novel TV SR algorithm driven by segmentation to produce images with

enhanced edge information that could ultimately improve their segmentation. Finally, it

preliminary investigates the capability of increasing the resolution in the in-plane dimensions

using SR to ultimately reduce the partial volume effect.

Keywords: Brain, Fetal, MRI, Slice-to-Volume Reconstruction, Super-Resolution, Total Vari-

ation Regularization, Convex Optimization, Atlas-based Segmentation, Slice-by-Slice De-
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formable Registration, Brain Localization, Brain Extraction, Bias Field Correction.
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Résumé

L’imagerie par résonance magnétique (IRM) cérébrale fœtale est une modalité devenue de

plus en plus utilisée comme un puissant complément à l’imagerie par ultrasons (US) pour

l’évaluation des anomalies prénatales en milieu clinique. Plus précisément, l’application

clinique de l’IRM fœtale a été considérablement améliorée dans les années nonante grâce au

développement de nouvelles séquences d’acquisition multi-coupes en pondération T2 (T2w),

capables de figer le mouvement du fœtus et de fournir un excellent contraste des tissus mous

constituant le cerveau.

Le mouvement fœtal est au fond le défi majeur de l’IRM fœtale et le temps d’acquisition

d’une coupe doit être aussi court que possible. En conséquence, les examinations actuelles

d’IRM fœtales consistent en l’acquisition d’un ensemble de coupes en deux dimensions

épaisses, en grande partie libres d’artefacts inhérents au mouvement intervenant durant

l’acquisition d’une coupe. Cependant, la mauvaise résolution obtenue dans la direction d’ac-

quisition ainsi que le mouvement pouvant survenir entre l’acquisition des coupes limitent

une analyse quantitative des images, qui est la clé d’une meilleure compréhension du déve-

loppement du cerveau, mais aussi la clé de la détermination de biomarqueurs indépendants

de l’opérateur qui pourrait faciliter considérablement le diagnostic prénatal et le pronostic.

Durant ces dernières années, plusieurs groupes de recherche ont mis au point à cette fin

des méthodes avancées de traitement d’images, souvent désignés par techniques de super-

résolution (SR). Ces méthodes sont capables de reconstruire une image à haute résolution

(HR) libre de tout mouvement, à partir d’un ensemble de scans cliniques à basse résolution.

Dans ces travaux, le problème de super-résolution est généralement modélisé comme un

problème inverse linéaire, décrivant la dégradation de l’image qui est induite par l’acquisition

et le mouvement fœtal. Cette thèse porte sur le développement de nouvelles méthodes de

traitement d’images qui ont permis la conception d’un pipeline de reconstruction entièrement

automatisé pour l’IRM foetale. Les techniques proposées aident à améliorer la reconstruction

de pointe de l’IRM foetale en termes d’efficacité, de robustesse, et en réduisant les intéractions
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de l’utilisateur, dans le but ultime d’être employées dans un environnement clinique.

La première partie porte sur le développement d’un algorithme plus efficace pour le pro-

blème de SR, regularisé avec la variation totale de l’image (TV). L’algorithme proposé utilise

les récentes avancées en optimisation convexe avec une nouvelle stratégie de régularisation

adaptative pour offrir des solutions à la fois rapides, précises et robustes au problème de

récupération de l’image HR du cerveau. Une validation approfondie montre que notre algo-

rithme est, en comparaison avec les méthodes de pointe, plus robuste aux artefacts causés

par le mouvement fœtal et qu’il offre le meilleur compromis entre vitesse et précision pour la

restauration de l’IRM fœtal à haute-résolution.

La deuxième partie porte sur le développement d’une nouvelle technique automatique de

localisation et d’extraction du cerveau, basée sur l’utilisation d’un atlas spatio-temporel et

l’appariement d’un algorithme de correspondance de blocs avec un algorithme de recallage

deformable d’images. Comme la plupart des algorithmes de reconstruction IRM du cerveau

fœtal reposent uniquement sur les voxels de tissus pertinents au cerveau pour améliorer la

qualité de la correction de mouvement inter-coupe et la reconstruction de l’image, le cerveau

du foetus doit être localisé et extrait dans un premier temps. Ces tâches nécessitent générale-

ment l’interaction de l’utilisateur, étant effectuées manuellement ou semi-automatiquement.

Nos méthodes ont permis la conception d’un pipeline de reconstruction entièrement automa-

tisé qui inclut des processus de normalisation d’intensité, d’estimation du mouvement, et de

super-résolution. Une évaluation quantitative montre que l’approche proposée produit des

masques du cerveau très proches de ceux dessinés manuellement, et une évaluation visuelle,

réalisée par deux experts, montre que le pipeline proposé permet d’obtenir une qualité de re-

construction similaire à une reconstruction de référence utilisant des masques manuellement

dessinés, sans effort supplémentaire.

La troisième partie étudie la possibilité de quantification automatique du plissement corti-

cal, qui est l’un des meilleurs indicateurs de la maturation du cerveau, en combinant notre

pipeline de reconstruction automatique avec une méthode de segmentation de pointe et

des outils automatisés, dévelopés pour la quantification du plissement cortical chez adulte.

Les résultats indiquent que notre pipeline de reconstruction peut fournir des IRM à haute

résolution, dont la qualité est suffisante pour extraire des informations utiles sur la maturation

du cerveau fœtal, tout en utilisant des algorithmes de tessellation de surfaces et de surfaces

actives similaires à ceux développés pour les cerveaux adultes.

Finalement, la dernière partie présente de très récentes améliorations méthodologiques du

pipeline de reconstruction, visant à améliorer la qualité de l’image pour l’analyse quantitative

ultérieure, dont la précision est très dépendante de la qualité et résolution de l’image recons-

truite. En particulier, elle présente une méthode plus consistente de correction du champ de

biais d’intensité, qui profite du cadre de super-résolution pour fournir une image reconstruite

finale quasiment libre du champ de biais. Cette partie présente ensuite un nouvel algorithme
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TV SR qui utilise la norme de Huber dans son terme de fidélité aux données pour être plus

robuste aux valeurs aberrantes non-Gaussiennes. Elle présente également la conception d’un

cadre novateur de reconstruction-segmentation conjointe, et le développement d’un algo-

rithme TV SR conduit par la segmentation, pour produire des images avec des interfaces aux

tissus plus accentuées qui pourrait ultimement améliorer leur segmentation. Finalement,

elle donne une enquête préliminaire sur la capacité d’augmenter la résolution dans le plan

d’acquisition à l’aide de SR pour réduire l’effet de volume partiel.

Mots-clefs : Cerveau, Fetal, IRM, Reconstruction Coupe-à-Volume, Super-Resolution, Ré-

gularisation basée sur la Variation Totale (TV), Optimisation Convexe, Segmentation basée

sur Atlas, Recallage Deformable Coupe-par-Coupe, Localisation du Cerveau, Extraction du

Cerveau, Correction du Champ de Biais d’Intensité.
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Introduction

Fetal magnetic resonance imaging: clinical context

Advances in hardware and software during the nineties have allowed magnetic resonance

imaging (MRI) as a powerful complementary imaging modality for the evaluation of in utero

fetal abnormalities in clinical settings. Since its first use in pregnancy, reported in 1983 [1], fetal

MRI is now available in many prenatal diagnostic centers. Despite the cost and complexity,

MRI has advantages over ultrasound. It provides a large field-of-view, facilitating examination

of fetuses with complex anomalies, superior soft-tissue contrast resolution, and the ability to

distinguish well individual structures such as gray and white matter in the fetal brain. It is still

a noninvasive and non-ionizing technique where no evidence of adverse outcomes regarding

fetal exposure to electromagnetic and sound energy has been reported in the literature [2].

As a precaution, fetal MRI is however only performed during the second and third trimesters

of pregnancy and is sought and performed only after an optimal ultrasound examination.

MRI is mainly indicated in pregnancy when (1) there is a history of brain abnormality in a

previous pregnancy and MRI can detect more subtle signs of recurrence than ultrasound; (2)

an abnormality is overlooked (such as corpus collosum agnesis) or identified by ultrasound

(such as lissencephaly or ventriculomegaly) and MR-specific information is sought in order

to make a diagnostic or to boost diagnostic confidence; (3) a fetus is significantly at risk for

abnormality, especially in the case of infection; and (4) ultrasound cannot be completed

due to technical problems such as maternal adiposity and fetal position. The field has now

reached a maturity with a number of clinical findings reviewed in a number of excellent

articles and the creation of atlas books [3, 4] that gives to physicians a better understanding

and interpretation of the three dimensional fetal brain anatomy. Fetal MRI has shown to

be particularly helpful in the detection of central nervous system abnormalities, including

ventriculomegaly, abnormalities of the corpus callosum, abnormalities of posterior fossa, and

severe intracranial hemorrhage [5, 6]. However, fetal MRI acquisition is very challenging due
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to unpredictable motion and current state-of-the-art fast multi-slice acquisition results in

very anisotropic and potentially motion-corrupted images (stack of thick slices) in order to be

able to freeze motion while having a sufficient signal level (Figure 1.1). The poor resolution of

the image in the through-plane dimension creates a significant partial volume effect as well as

the possible presence of motion artifacts complicate the diagnostic task of radiologists and

limit the use of computer-assisted methods for large-scale studies. There is therefore a great

interest in reconstructing a motion-free high-resolution image of the fetal brain.

In the rest of the introduction, I will familiarize the reader to the current state-of-the-art acqui-

sition solution for fetal MRI, its limitations and the emergence of advanced retrospective image

processing methods that have enabled the reconstruction of motion-free high-resolution im-

ages [7–16] and stimulated new research in the creation of spatio-temporal digital atlas of

the developing brain [17, 18] and in the analysis of in utero fetal brain development and

maturation [19–24].

Single-shot T2-weighted imaging

Fetal MRI is very challenging due to intermitent maternal and fetal motions that disrupt the

spatial encoding needed for 3D image acquisition. The development of single-shot sequences

in the nineties has made possible some sort of “snapshot” MR imaging that avoids image

degradation from fetal motion [25, 26]. One of the very first single-shot imaging methods based

upon multiple gradient echo trains, known as echo planar imaging (EPI) was first applied to

study the fetus [27]. An other family of single-shot imaging methods based on RF spin echoes

has been made available by the mid-nineties, known as Single-Shot T2-Weighted (SST2W)

imaging. The last approach has quickly shown its supremacy for the evaluation of fetal brain in

utero by providing the best contrast while being able to largely freeze motion [25, 28]. SST2W

imaging has since then been the imaging modality of choice in the field.

I will now introduce the basic MRI principles to understand how a SST2W sequence works,

how sequence parameters are fixed in practice. This will help the reader understanding

current acquisition and spatial resolution limitations and the needs of developing advanced

restrospective image processing techniques to enable the reconstruction of high-resolution

images of the fetal brain.

MRI principles MR imaging relies on the energetic interaction between spins and electro-

magnetic radiofrequency (RF) [29]. Only protons that spin with the same frequency as the

electromagnetic RF pulse (know as the Lamor or precession frequency) will respond to that RF

pulse by absorbing electromagnetic energy and modifying its spin equilibrium. During this

period of time, known as excitation, longitudinal magnetization decreases and a transverse

magnetization appears, created by spins getting into phase coherence. When the system

returns from this state of imbalance to equilibrium, there is an emission of electromagnetic

energy that creates the MR signal. The transverse magnetization decay is described by an
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exponential curve and is characterized by the time constant T2 after which it has lost 63%

of its original value. MRI signal acquisition consists in sampling k-space, often referred as

“filling” k-space, a matrix of pixel values representing spatial frequencies in the MR image. A

2D/3D MR image is thus a complex-valued map of the spatial distribution of the transverse

magnetization in the sample at a specific time point after an excitation. The image is formed by

applying a 2D/3D Fourier transform to its acquired 2D/3D k-space representation (Figure 1).

SST2W principles Fetal SST2W imaging consists of acquiring one k-space representation

for each slice which is usually a 256×256 matrix, resulting in a stack of k-space (Figure 1);

each of the line (frequency encoding direction in Figure 1) is occupied by one echo and each

of the 256 values per line is occupied by an individual sample of transverse magnetization

(phase encoding direction in Figure 1), measured after one slice selective excitation 90◦ RF

pulse [28, 30]. This 90◦ RF pulse tips the equilibrium longitudinal magnetization from a slice of

spins into the plane perpendicular to the main magnetic field, known as the “tranverse plane”.

It is followed by a series of slice selective refocusing 180◦ (theoretically), each of which leads to

the generation of a “spin-echo” that undergoes T2 decay, the decay of tranverse magnetization

due to spins getting out of phase. Then, each spin-echo is acquired using RF coils during

the frequency encoding which is preceded and followed by appropriate “wind” and “rewind”

phase encode gradients such that it forms a line in k-space. Individual spin-echo duration (TE)

is on the order of 2 to 3ms. After acquisition of all echoes, which happens after TE * number

of frequency encodings to acquire (256× [2−3]ms ≈ [500−800]ms), k-space is completely

filled and the anatomic image is generated using 2D inverse Fourier transform. The sequence

is further accelerated by half k-space acquisition using k-space symmetry to estimate the

missing lines. It avoids the need to capture the latest echoes (whose signal is much reduced

by T2 relaxation) and it allows acquisition time to be reduced by a factor close to 2. The

degree of T2 contrast weighting is governed such that the specific echo times used for the

low order phase encode lines determine the effective echo time (ETE) associated with the T2

contrast [28].

Implementation Common supplied SST2W sequences can be found under different names

depending on the manufacturer: Single-Shot Fast Spin Echo (SSFSE) for General Electric

Medical systems; HAlf-fourier Single-shot Turbo spin Echo (HASTE) for Siemens; Single-

Shot half-Fourier Turbo Spin Echo (SShTSE) for Philips; Rapid Acquisition with Relaxation

Enhancement (RARE) for Bruker Instruments. They use RF refocusing flip angles in the 120°

to 150° range; wider the angle, stronger the signal. A well-designed fetal MR imaging protocol

should consider the following “golden-rule”: each scan should take 25s or less in order to

capture quiescent periods of fetal motion during one maternal breathholding cycle [28]. This

25s “golden rule” will thus constraint the parameters associated with the SST2W sequence (in-

plane resolution and slice thickness) and the volume coverage, or number of slices, acquired

per scan. As a result, current implementations of SST2W sequences are able to generate, in

approximately 500 ms or less, a T2-weighted image with in-plane spatial resolutions from
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Figure 1 – Single-shot T2-weighted MR imaging principles. It consists of acquiring one k-space
representation for each slice which is usually a 256×256 matrix, resulting in a stack of k-space
(left); each of the line is occupied by one echo and each of the 256 values per line is occupied by
an individual sample of transverse magnetization, measured after one slice selective excitation
90◦ RF pulse [28, 30]. This 90◦ RF pulse tips the equilibrium longitudinal magnetization from a
slice of spins into the plane perpendicular to the main magnetic field, known as the “tranverse
plane”. It is followed by a series of slice selective refocusing 180◦ (theoretically), each of which
leads to the generation of a “spin-echo” that undergoes T2 decay, the decay of tranverse
magnetization due to spins getting out of phase. Then, each spin-echo is acquired using RF
coils during the frequency encoding which is preceded and followed by appropriate “wind”
and “rewind” phase encode gradients such that it forms a line in k-space. Individual spin-echo
duration (TE) is on the order of 2 to 3ms. After acquisition of all echoes, which happens after
TE * number of frequency encodings to acquire (256× [2−3]ms ≈ [500−800]ms), k-space is
completely filled and the anatomic image is generated using 2D inverse Fourier transform
(right).

0.7×0.7 to 2×2mm2 and slice thicknesses from 2 to 4mm, largely free of intra-scan motion

artifacts. In practice, several multi-slice scans are acquired, often in different orthogonal

views (Figure 1.1) in order to provide the in utero three dimensional fetal anatomy in a short

acquisition time.

Limitations Despite fast acquisition, motion remains and mostly generates inter-slice ar-

tifacts (see views orthogonal to the in-plane dimensions in Figure 1.1) as well as in-plane

degradation. In addition, acquired images suffer from significant intensity inhomogeneity

artifacts mainly due to both spin history and the proximity from the receiver coils of the fetal

brain imaged, whose location varies when the fetus is moving. Finally, the partial volume

effect, which arises when the interface between two different tissues occur within a single

4



voxel, is highly pronounced due to thick-slice acquisition. This complicates the diagnostic

tasks of radiologists and this limits the use of computer-assisted methods for large-scale

studies. As previously stated, a motion-free MR image of the fetal brain with isotropic high

resolution would be highly desired and this introduces the next section.
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Figure 2 – Clinical orthogonally-planned MRI scans of fetus of 27 weeks of gestational age.
Acquisitions were done with a Siemens Skyra 3Tesl a, HASTE (SST2W) sequence (TR: 1600ms,
TE: 116ms, slice thickness: 2.0mm, in-plane resolutions: 1.0×1.0mm2).

Towards a motion-free high-resolution image

Higher resolution is the key to reduce partial volume effect, allowing a more accurate visual-

ization of the anatomy and a more accurate assessment of size and morphology of organs and

pathologies. In recent years, major advances in the image and video processing domains indi-

cating the possibility of improving resolution using “Super-Resolution” (SR) algorithms [31]

have motivated several research groups to start adressing resolution improvement in MRI

as a post-acquisition image-processing challenge. SR deals with the task of taking benefits

from aliasing occuring in several low-resolution (LR) images acquired by a specific imaging

system (acquisition or forward model), which typically represents different “looks” of the

object from a slightly shifted field-of-view (FOV), to estimate the high-resolution (HR) image

(Figure 3). Resolution in multi-slice MRI scans is anisotropic and aliasing artifacts caused by
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poor spatial resolution usually appear such as staircase effects along sharp edges. According

to the sampling theorem, aliasing occurs when an image is sampled at a frequency lower than

twice the Nyquist frequency (maximum frequency observed in the image) which converts

high frequencies from the original HR image into low frequencies in the sampled image. Such

aliased frequencies can no longer be distinguished from accurate low frequency signals. But

indeed they still contain precious information about the high frequency content of the scene.

Extracting aliased content is a major advantage for SR over standard interpolation techniques.
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Figure 3 – Principle of super-resolution from anisotropic low-resolution images.

SR in magnetic resonance imaging A variety of SR algorithms have been proposed and

successfully applied to MR imaging data [32], where the common objective is to accuratly

estimate the HR image while minimizing noise and preserving important image constraints.

Their advantage over single HR acquisition has been proven in terms of higher SNR for a given

acquisition time [33]. SR techniques were initially dedicated to static subjects where several

low-resolution volumes were acquired with motion between them is controlled by employing

spatial subpixel shifted FOVs. While most the works have proposed SR to enhance the resolu-

tion in the slice-select dimension and the success is clear and theoritically explained [32], a

debate still exists in the SR community about the feasibility of enhancing the resolution in

the in-plane dimensions [34–36]. Due to the theoritical nature of MR data, MR images are

bandlimited since it can be expressed in Fourier basis with a finite number of coefficients,

corresponding to each acquired sample in its k-space representation. Consequently, spatial
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subpixel FOV shift in the in-plane dimension would only correspond to linear phase modula-

tion in the k-space, if the FOV and the MR signal digitalization are unchanged. Indeed this

infers that no new frequency content is acquired. Despite this controversy, it is clear from

existing results that combining in-plane FOV shifted images does improve the signal-to-ratio

(SNR), which enhances image quality especially in the case of noisy data [35]. Moreover,

few works suggested that new information (althought very small) may still be present in the

frequency encoding (“readout”) direction in each new scans if the imaged object is shifted

prior to imaging [37–39].

Application to in-utero fetal imaging Focus has been recently applied to SR of moving

subjects, with major application to in-utero fetal MRI where current SST2W scans are highly

anisotropic and fetal motion is unpredictable and likely to occur between scans and even

between slices. Under these conditions, the need of advanced retrospective image processing

techniques to enhance spatial resolution while correcting for motion is of great importance.

Most of the works assumed the fetal head to be a rigid moving object and were dedicated to

the through-plane resolution improvement. They consist of two common image processing

steps: image registration (motion estimation for the super-resolution acquisition model) and

super-resolution (SR)1 (for image recovery), that solves the so-called inverse problem (see

Figures 3 and 4 and Chapter 1).
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Figure 4 – General paradigm for direct and iterative fetal brain MR image reconstruction which
relates anisotropic acquired scan XLR

k and the HR image X̂ through the forward (image degra-
dation) model. Two iterative steps are considered until convergence: 1) an image registration
process for motion parameters estimation; 2) a super-resolution (SR) process for HR image
recovery.

Two main registration methods have been proposed to estimate inter-stack and inter-slice

1All through the thesis we will denote this step indistinctly by SR, image recovery and restoration. Let us note
that this step has to be differentiated from reconstruction or slice-to-volume reconstruction that, in this work, refers
to both motion estimation and image recovery steps.
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fetal motions. The most common technique is slice-to-volume registration, where slices are

iteratively registered to an estimation of the reconstructed 3D volume, allowing the refine-

ment of the slice alignment [7, 10, 13]. A second approach proposed by [40] formulates the

motion correction problem as the optimization of the intersections of all slice pairs from all

orthogonal scans, which consequently does not require the estimation of the 3D image as

motion estimation progresses.

Several SR methods have been proposed to restore the HR image. The pionner approaches

adressed this problem through iterative slice-to-volume registration and scattered data inter-

polation using a local neighborgood Gaussian [7] or a cubic B-Spline [8] kernel. However, those

approaches employ different fitting criterion for image reconstruction and slice alignment,

which results in a lack of any guarantee of overall convergence and may induce blurring in

the interpolation-based SR step. It has thus encouraged the authors in [9] to introduce a

Tikhonov-regularized inverse problem for SR, which gave to SR in fetal MRI a general deter-

ministic framework with mathematical proof of overall convergence, and which allowed the

introduction of spatial priors through regularization and the reconstruction of HR images

with finer details. However, Tikhonov regularization poses smoothness constraints on the

reconstruction that may result in excessive smoothing.

This has motivated several groups to refine the formulation based on the approximated Total

Variation (ε-TV) regularization [12, 13] and Non-Local Means (NLM) [15]. In addition, intensity

level of the same anatomy imaged can be inconsistent between different slice views due to

spin-history (sudden fetal motion during the slice acquisition) and the B0 bias field effect.

It has encouraged the community to develop more robust formulations that can minimize

or totally exclude the contribution of highly corrupted and misregistered slices [10, 11, 13]

and correct for intensity inhomogenities [7, 13]. A last and rather different approach was

introduced in [11] based on slice intersection motion correction combined with a gradient-

weighted averaging technique for image estimation. It was further improved in [14] within

a unified motion estimation / SR formulation by optimizing a single energy minimization

process.

All these methods relie on localizing and extracting the fetal brain (rigid component) from

surrounding maternal tissues (non-rigid components) as a preprocessing step to ensure the

success of the subsequent image processing algorithms. Consequently, they can successfully

reconstruct only a partial FOV containing the brain. Recently, a GPU implementation has

enabled the exact computation of the acquisition model for every voxel in the scans [16] and

the possibility to reconstruct the whole FOV by splitting slices into overlapping patches (which

contain rigid components) and performing patch-to-volume registration and SR reconstruc-

tion [41], in an acceptable amount of time. In the case of fetal brain studies, reconstructing a

partial FOV containing the brain benefits nonetheless from computational advantages over

reconstructing the full FOV.

Formulation based on ε-TV regularization has attracted most of the active research groups
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as it allows to use a simple gradient descent technique for optimization but it is very slow

to converge towards the solution if one whishes to recover well edges. However, fast TV-

based algorithms based on convex optimization theory have been developed in the last

years. I will present in Chapter 1 a new efficient primal-dual SR algorithm for fetal MRI

reconstruction based on exact TV regularization and fast convex optimization. An other

concern in fetal MRI reconstruction is the brain localization and extraction step which is

essential to guarantee the quality of the reconstruction. This step corresponds to the most

important effort spent by the user since it is typically done manually or semi-automatically.

Only few methods have addressed this automatization problem by adopting either template-

based segmentation [42–46] or machine learning techniques [47–50]. I will present in Chapter 2

a novel brain localization and extraction approach based on template-to-slice block matching

ans deformable slice-to-template registration which has been integrated in the reconstruction

pipeline. I will finally present in Chapter 4 new recent improvements that could allow a more

accurate image analysis tasks. They consist of the development of a more consistent bias field

inhomogeneity correction, the extension of the TV SR algorithm to resolution improvement in

the in-plane dimensions, the developement of a new robust TV SR algorithm which uses the

robust Huber norm in the data fidelity term to deal with outliers as well as a new segmentation-

driven TV SR algorithm which incorporates of discriminative Gaussian mixture models.

Such reconstructions have already proven to open new perspectives for the neuroimaging

research [51] and to improve the efficacy of clinical evaluation [52]. They has recently stimu-

lated new research aiming at, amongst others, to have a better understanding of early brain

development and maturation.

Automatic segmentation and quantification of fetal brain

The development of motion robust SR fetal MRI offers new opportunities to quantitatively

analyze fetal brain MR images. The first and essential step in fetal brain quantitative analysis

is tissue segmentation. It consists of automatically segmenting tissues, such as grey matter

(GM), white matter (WM), cerebrospinal fluid (CSF) surrounding the brain, whose appearance

changes rapidly, or structures, such as ventricules, whose size and shape highly vary, in images

adversely affected by motion artifacts, and severe intensity inhomogeneity artifacts. Many

automated segmentation methods have been suggested for MR images of the adult, mainly

based on the intensity with strong anatomical priors. However they cannot be directly adapted

to fetal MR images, since many assumptions in adults do not hold in images of the fetal brain.

Firstly, T2w contrast used to visualize the fetal brain anatomy differs from T1w contrast used

to visualize the adult brain anatomy. Secondly, the fetal brain at early to mid gestationnal

ages grows and develops at rapid pace leading to transcient tissue regions (ventricular and

subventricular germinal matrices, subplate, intermediate zone, and cortical plate) that do not

exactly correspond to the traditional white and gray matter of the late gestation fetal brain [53].

Once the segmentation of the tissue or structure of interest has been performed, further brain
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analysis consists in extracting biomarkers, e.g. quantitatively analyzing the fetal brain MR

images. Quantitative analysis of the early brain development is specific to the application. It is

the key to facilitate the diagnosis and prognosis of brain anomalies. For instance, segmentation

of the ventricules have been used to compute ventricular volumetry, which have shown to be

an excellent quantitative indicator of severe forms of ventriculomegaly [54]. Quantification of

normal cortical folding patterns over a wide GA range from 22 to 39 enabled the modeling of

the increase in folding measures with GA, which has shown in turn to be an accurate predictor

of GA from folding measures [42].

To date, several works have addressed automated segmentation and quantification of fetal

brain MR images, mainly using a spatio-temporal atlas-based approach. The first work ex-

tended the popular atlas-based expectation-maximization segmentation with a standard

Markov random field regularization (EM-MRF) approach for adult brain images [55] to the

segmentation of the fetal brain [17, 56]. The proposed framework consisted of building a

spatio-temporal atlas of tissue distribution and MR template of the fetal brain, registering the

target brain to the age-specific MR template and using the corresponding propagated tissue

probability map as spatial priors for automatic EM-MRF-based tissue segmentation of the

target brain.

This segmentation framework has been successfully employed in young fetuses ranging

from 20 to 30 weeks gestational age (GA) in a number of quantitative studies in the case of

normal growth [19, 20, 57] and in the case of abnormal growth seen in isolated mild ventricu-

lomegaly [58]. Although the previous EM-MRF techniques that incorporated a standard MRF

penalization term had shown to be sufficient to segment the young fetal brain, the standard

MRF, which penalized a specific tissue class based on its adjacency with one other specific

classe, did not explicitly address the problem of mislabelled partial volume voxels which could

result in poor performance at the cortical boundary. However, this would be essential for

accurately segmentating older fetal brains, which consists of more complex cortical structures.

The EM-MRF technique was recently improved by adding an additional second order MRF

penalization term, which could penalize a specific tissue class based on its adjacency with two

other specific classes, and was successfully applied to extract cortical surfaces and quantify

normal cortical folding patterns over a wide GA range from 22 to 39 weeks [42]. It was subse-

quently extended to the construction of a spatio-temporal cortical surface atlas [59]. Finally,

an accurate volumetric study of severe forms of fetal ventriculomegaly in a wide GA range was

performed based on a novel probabilistic framework combining a robust multi-atlas strategy

with shape-constrained optimization [54].

Despite EM-MRF approaches have demonstrated to perform well on normal brains, they

are based on strong anatomical priors coming from the atlas which may introduce a risk of

circularity as each brain is deformed to the atlas template with potentially biased results,

especially for pathological data. Only few works have investigated topological priors to avoid

this risk. The first attempt proposed to perform an initial Bayesian segmentation followed by a

three-step MRF model that introduced both local spatial priors and anatomical priors given by
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a cortical distance map [60]. A supervised approach, based on intensity-based classification,

connected components labeling, morphological filtering, and geodesic active contours level

set segmentation, was developed for the segmentation of the pericerebral fluid spaces [61]. An

other method was developed for cortex segmentation, which included structural constraints

based on a topological model to define a region of interest including the cortex, and which

used a morphological filter to identify the regions where the cortex appears the most likely [62].

Chapter 3 will investigate the possibility of automatic quantification of cortical folding by (1)

employing the robust multi-atlas multi-shape segmentation method [54] to extract the WM

volume from our reconstructed images and (2) taking advantages of existing tools for the study

of cortical folding in adult brains to extract cortical surfaces and compute cortical folding

features.

Thesis outline and contributions

In this thesis, I present a complete reconstruction pipeline with novel advanced image pro-

cessing methods that improves state-of-the-art fetal MRI reconstruction in terms of efficiency,

robustness and minimized user-interactions.

Chapter 1 will present and validate an efficient SR algorithm that combines exact Total

Variation (TV) regularization with fast convex optimization. Results will show the algorithm

is more efficient, as it is optimal in the sense of convex optimization theory, and more robust to

motion estimation errors than Tikhonov- and approximated TV-regularized based algorithms.

Chapter 1 will also give a more formal description of the SR problem in fetal MRI and an

overview of the existing SR algorithms within an unified formulation.

Chapter 2 will present and validate a novel age-matched template-based method based on

template-to-slice block matching and deformable slice-to-template registration for brain

localization and extraction automatization, two inherent steps in most existing SR methods

that are commonly performed either manually or semi-automatically. The method has been

integrated in a novel automatic reconstruction framework which combines the masking

process with intensity standardization, motion correction, and SR reconstruction. In the

proposed framework the brain masks are refined in the spatial space of the template using

a consensus fusion voting process and are re-applied to the scans as the reconstruction

proceeds. Results will show the proposed approach allow brain extraction to take into account

for inter-slice motion and thus is more robust than a global rigid 3D template-registration-

based approach. It will be also demonstrated that the proposed automatic pipeline allows

us to achieve similar reconstruction quality to reference reconstruction based on manually

drawn masks without any effort.

Chapter 3 will investigate the possibility of automatic cortical folding quantification by com-

bining our automatic reconstruction pipeline, as described in Chapter 2, with the state-

of-the-art multi-atlas multi-segmentation method [54] and existing automated tools pro-

vided for adult brain’s cortical folding quantification. Results will indicate that our recon-
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struction pipeline can provide HR MR images with sufficient quality that enables the use of

surface tessellation and active surface algorithms similar to those developed for adult brains

to extract meaningful information about fetal brain maturation.

Chapter 4 will present new improvements that can potentially improve reconstruction quality,

segmentation accuracy and quantification accuracy, whose success is highly inter-dependent.

Specifically, it will present a more consistent and global magnetic bias field correction method

which takes advantage of the super-resolution framework to provide a final reconstructed

image quasi free of the smooth bias field. Chapter 4 will present a new TV SR algorithm

based on the Huber norm that should be more robust to misaligned outlier slices. Chapter 4

will also present a novel joint reconstruction-segmentation framework which uses a new

segmentation-driven TV SR algorithm that incorporates a discriminative Gaussian mixture

modeling estimated from segmentation. Such an approach could produce images with en-

hanced edge information that could ultimately improve their segmentation. Finally, Chapter 4

will preliminary investigate the capability of increasing the resolution in the in-plane di-

mensions using SR to ultimately reduce the partial volume effect by refining the mapping

between voxels in the scans and voxels in the reconstructed HR image.

Chapter 5 will draw the conclusion and will discuss about different future perspectives.

Annex ?? will present the C++ software Medical Image Analysis Laboratory Toolbox (MI-

ALTK) based on the open-source Insight ToolKit (ITK) library [63]. It consists of the implemen-

tation of all algorithms and methods developed in this thesis. The toolbox provides therefore

tools for the entire reconstruction pipeline in order to automatically, efficiently and robustly

reconstruct HR MR image of the fetal brain.
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1
An Efficient TV Algorithm for

Super-Resolution in Fetal Brain MRI
with Adaptive Regularization

The work in this chapter was originally published as S. Tourbier, X. Bresson, P. Hagmann,

J.-P. Thiran, R. Meuli, M. Bach Cuadra, “An Efficient Total Variation Algorithm for Super-

Resolution in Fetal Brain MRI with Adaptive Regularization”, NeuroImage 2015 (118) , pp.

584-597, 2015. A 8-page conference paper was previously peer-reviewed and presented

as poster presentation at the International Conference on Medical Image Computing and

Computer-Assisted Intervention (MICCAI) 2014 and published as S. Tourbier, X. Bresson, P.

Hagmann, J.-P. Thiran, R. Meuli, M. Bach Cuadra, “Efficient Total Variation Algorithm for

Fetal Brain MRI Reconstruction”, MICCAI 2014, Part II, LNCS 8674, pp. 252–259, 2014.

1.1 Introduction

Recent advances in clinical magnetic resonance imaging (MRI) provide an unprecedented

opportunity to study the human brain growth in-utero. Concretely, T2-weighted (T2w) MR

images have proven to provide the best ability to delineate structures and layers in fetal brain

MRI [1–4]. Clinical MRI examination involves the use of ultra-fast multi-slices MR sequences,

such as Half Fourier Acquisition Single-Shot Turbo Spin Echo (HASTE) or Single-Shot Fast

Spin Echo (ssFSE) [5] to avoid as much as possible motion. In practice, these sequences are

acquired as several stacks of thick slices, often in different orthogonal views (Figure 1.1 b)) in

order to provide the in-vivo 3D fetal anatomy in a short acquisition time. This procedure has

allowed a more regular use of fetal MR imaging in clinics, with an excellent in-plane spatial

resolution (around 1mm in-plane resolution with a slice thickness between 3 and 5mm), very

good tissue contrast and anatomical detail within the images while reducing motion artifacts

(Figure 1.1 a)).
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Figure 1.1 – Fetus of 25 weeks of gestational age: (a) Sagittal view of whole volume scan, (b)
Orthogonal stacks in brain region. Acquisitions were done with a Siemens Aera 1.5Tesl a, T2w
HASTE sequence (TR 1200ms, TE 90ms, slice thickness 3.6mm, in-plane resolution1.13mm),
and (c) HR image of the fetal brain reconstructed by SR technique.

Although fetal anatomy can be adequately viewed in new multi-slice MR images, many critical

limitations remain for quantitative data analysis. Despite these fast acquisition techniques,

motion remains and mostly generates inter-slice artifacts (see top row, coronal view, in Fig-

ure 1.1 b)) but also in-plane degradation. This limits the use of computer-assisted methods

for large-scale studies. To this end, several research groups have recently developed advanced

image processing methods, often denoted by super-resolution (SR) techniques, to reconstruct

from several clinical stacks, low-resolution (LR) images, a high-resolution (HR) motion-free

volume [6–14]. Such HR volume facilitates early and precise diagnosis (see Figure 1.1 c)) and

offers, to the neuroscientist, the possibility of an automated quantitative study of the first

stages of brain development [15–18].

In the last years, SR algorithms have been successfully applied to MR imaging data [19] and

their advantage over single HR acquisition has been proven in terms of higher SNR for a

given acquisition time [20]. SR techniques were initially dedicated to static subjects where

scanning protocol can be adapted to add new information of the scene under controlled

motion conditions. More recently, focus has been applied to SR of moving subjects, where

motion is not controlled. In these cases, the need of advanced post-processing techniques

to enhance spatial resolution is of great importance. Most of these works assumed a rigid

motion and they are dedicated to the through-plane resolution improvement of fetal MRI

images, providing us a fully isotropic 3D image only limited by the in-plane resolution of

the acquisition [6–14]. Thus, these methods consist of two common image processing steps:

image registration (for motion compensation) and super-resolution1 (for image recovery),

1All through the paper we will denote this step indistinctly by super-resolution, image recovery and restoration.
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that solves the so-called inverse problem (see Figure 1.2 and Section 1.3.3).

Registration

X1
LR

SR

Converged?

X
m+1

X
m

X
^

XK
LR...

Step 1:

Motion Estimation

Step 2:

Image Restoration

Figure 1.2 – General paradigm for direct and iterative fetal brain MR image reconstruction.
Two iterative steps are considered until convergence: 1) a registration process for motion
parameters estimation; 2) a restoration process for HR image recovery.

An objective of this chapter is to provide an overview of SR techniques in the case of fetal MRI.

Along this line, our contribution differs from the recent review of Reeth-et.al. [19] that aimed

at discussing SR MRI techniques in various contexts. Here we focus on the literature of SR fetal

MRI algorithms in order to emphasize the similarities and differences between the successful

Bayesian and variational formulations for this specific problem. We built on this overview

of SR techniques and recent advances in convex optimization to present the optimization

algorithm introduced in [21] that offers simultaneously fast, accurate and robust solutions to

the fetal image recovery problem.

1.2 Contributions

• I have reviewed existing SR reconstruction algorithms for fetal MRI within a unified

mathematical formulation.

• I have designed and implemented a fast, accurate and guaranteed-to-converge regularized-

based SR algorithm for the fetal reconstruction problem that is based on the Total

Variation (TV) energy.

• I have proposed an automatic process that estimates a near-visually optimal value for

Let us note that this step has to be differentiated from reconstruction that, in this work, refers to both motion
estimation and image recovery steps.

21



Chapter 1. An Efficient TV Algorithm for Super-Resolution in Fetal Brain MRI with
Adaptive Regularization

the contribution weight of the TV regularization.

• I have extensively validated the SR algorithm on simulated fetal data and on a set of

ten clinical fetal datasets of normal and pathological brains under various acquisition

conditions, including:

– a developed comparison between our model, the baseline Tikhonov model and

the open-source state-of-the-art method [12],

– a study of robustness of regularization terms w.r.t motion error residuals,

The chapter is organized as follows. Section 1.3 provides a short review of fetal MRI recon-

struction, starting with the description of the most generic observation model used in this

context. Section 1.4 recalls our TV algorithm presented in [21] and it describes the design

and implementation of our reconstruction pipeline. Section 2.5 develops an extensive valida-

tion of our algorithm, using simulated fetal data and clinically acquired fetal data. Finally, a

conclusion is presented in Section 2.7.

1.3 Overview of fetal MRI reconstruction algorithms

1.3.1 Notations and definitions

We consider the following discrete setting throughout the paper. Let X denotes the high-

resolution (HR) image desired, XLR
kl be the l-th observed slice of the k-th LR image, nk is the

observed noise in the k-th LR image. Let Sx,Sy be two finite-dimensional real vector spaces

with inner product 〈·, ·〉, norm ‖·‖ := 〈·, ·〉1/2, dim Sx = N where N is the total number of pixels/

voxels and dim Sy = m = N ·d where d = {2,3} for 2D/3D images. Let HR images X ∈ Sx and

DX ∈ Sy their gradients. The gradient operator D : Sx → Sy is a continuous linear operator

with norm ‖D‖ := max
{‖DX‖ | X ∈ Sx, ‖X‖ ≤ 1

}
. Let ∂

∂xi
denotes the derivative operator w.r.t.

dimension xi .

1.3.2 A generic observation model

Given the literature, the most accepted image acquisition model in the context of fetal MRI is

the linear model:

XLR
kl = Hkl X+nk , (1.1)

where Hkl are linear operators that supposedly model the acquisition distortions (such as

noise, blurring, aliasing, intensity bias and motion). In this process, the MR scanner acquires

several LR stacks of 2D slices, referred as LR images, which are downsampled, degraded, and

aliased from the HR original scene (Figure 1.3). A typical acquisition model accounting for

motion, blurring and downsampling processes has been considered in [6, 7, 10, 11, 14, 22, 23].
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In those formulations, the matrix Hkl is decomposed into three matrices accounting for

motion Mkl , blurring effects Bkl , and a basic downsampling/aliasing operator Akl , i.e.:

Hkl = Akl Bkl Mkl , (1.2)

where Bkl is the 3D Point-Spread-Function (PSF) of the system and Mkl is assumed to be

6-DOF 3D rigid motion. Typically, a good approximation of the PSF is a 3D Gaussian function

with the full width at half maximum (FWHM) equal to the slice-thickness in the slice-select

direction and 1.2 × voxel size in-plane [7, 13]. In [8, 9], the slice acquisition process is fully

modeled by decomposing Bkl into two matrices, that simulate (1) the in-plane 2D PSF (Pkl )

and (2) the slice profile (Skl ):

Hkl = Akl Pkl Skl Mkl , (1.3)

where Pkl is a 2D Gaussian function with FWHM equal to 1.2 × voxel size in-plane, Skl

corresponds to a 3D rotation operator that defines the orientation of the slice plane. In [13],

the authors proposed to unify SR, regularization, robust statistics and intensity matching

within a common expectation maximization framework. The model (1.1) is modified to

consider intensity inhomogeneities (bias field and slice-dependent scaling factors) as follows:

XLR∗
kl = Hkl X+nk , XLR∗

kl i = skl exp(−Ikl i )XLR
kli , (1.4)

where XLR∗
kl represents the l -th scaled, denoised and bias-corrected slice of the k-th LR image,

XLR∗
kl i is the intensity of the i -th voxel of XLR∗

kl , XLR
kli is the intensity of the i -th voxel of the l-th

slice of the k-th original LR image, skl is the corresponding intensity scaling factor, and Ikl i

the corresponding bias field factor.

Finding the original HR image in (1.1) and (1.4) that generated the LR images XLR under the

MRI acquisition is carried out with an inverse problem strategy, where (1.1) and (1.4) are

known to be the forward models (Figure 1.3). This means that the given measures XLR are

used to generate the original unknown HR image X. The most natural way to combine the LR

images is through a standard least-square problem:

min
X

∑
kl

‖Hkl X−XLR
kl ‖2. (1.5)

However, due to the presence of noise and insufficient number of acquired LR images, the

above inverse problem is said to be ill-posed, meaning that it has generally no meaningful

solutions. A natural solution of this issue is to add priors about X, i.e. make use of known

properties that X holds such as intensity smoothness.
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Noise nk+

Intensity Inconsistency 

Ik

Motion Mk

Blurring Bk

Downsampling Dk

Motion-Robust 

SR Reconstruction

HR image X

LR image Xk
LR

Figure 1.3 – The observation model of a real MR imaging system relating the low-resolution
(LR) image XLR

k (observed images) to an high-resolution (HR) image X. The SR reconstruction
step corresponds to the inverse problem, i.e., finding X given the observations XLR

k .

1.3.3 Two-step reconstruction algorithm

Let us now introduce the most generic algorithm for fetal brain MRI reconstruction [6–14].

The algorithm consists in iterating the following two steps until convergence:

Step 1: Motion estimation

Mm+1
kl = argmin

Mkl

∑
kl

‖Akl Bkl Mkl Xm −XLR
kl ‖M , (1.6)
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where ‖.‖M is a distance function that can be based on l2-distance [8–10], cross-correlation [7],

and NMI [6, 11–13].

Step 2: Image restoration

Xm+1 = argmin
X

λ

2

∑
kl

‖Akl Bkl Mm+1
kl X−XLR

kl ‖2 +R(X),

where R(X) is a prior introduced to regularize the solution, the first term relates to data

fidelity. The parameter λ balances the trade-off between R(X) and data fidelity. The general

reconstruction scheme is illustrated in Figure 1.2. Our present work focuses on the image

restoration step. It is beyond the scope of this paper to also tackle the motion compensation

problem but we briefly summarize in the next section what the fetal MRI literature offered to

solve this problem. We refer to [24] for a detailed discussion about motion correction strategies

in fetal applications.

1.3.4 Motion estimation algorithms

The motion estimation problem is addressed through an image registration task that aims at

compensating mainly for motion occurring between slices of the LR images, typically gener-

ated by short and fast movements of the fetal head. All existing methodologies [6–14] have

addressed the problem using voxel-based registration methods where fetal motion is modeled

as a full 6 degree-of-freedom rigid 3D transformation (3 translations and 3 rotations). Typi-

cally, they consist in (1) globally co-registering the LR images (volume-to-volume registration)

and (2) hierarchically aligning every slice of the LR image to the reconstructed HR image

(slice-to-volume registration), that is built using the current estimate of slice positions.

In practice, most registration methods differ only as regards their choice of similarity metric,

the distance ‖.‖M in (1.6), and the corresponding optimization algorithm used to estimate the

spatial transformation. When the assumptions of similar levels of blur and identical contrasts

between LR volumes are made, the mean square intensity difference (MSD) is adopted [8, 9].

In order to force similar intensity values in the images being registered, a weighted MSD [10]

and cross-correlation (CC) [7] measures have also been proposed. To not be based on strong

assumptions between the two images and to be less sensitive to changes in overlap, the

Normalized Mutual Information (NMI) as cost function has also been used [6, 11–13]. In all

methods, a classical hierarchical strategy is applied in order to incorporate the interleaved

aspect of acquisition and to reduce the risk to fall into local minima. Such hierarchical

implementation involves decreasing step sizes of the optimization algorithm at the different

stages of registration.

Rather than single slice-to-volume registration, the Slice Intersection Motion Correction

(SIMC) [10] aims at solving a slice motion correction registration by seeking the collective

alignment of all slices simultaneously, and considering the matching structure along all

intersecting slice pairs.
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While all approaches deal with the motion compensation as an independent step, a unified

formulation for motion estimation and SR reconstruction was recently presented in [14]. Their

major contribution is a regularization term for the motion estimation that encodes the high

correlation between temporal neighboring slices, increasing the robustness when large motion

occur.

Despite these motion compensation efforts, the HR image may still be corrupted by remaining

registration errors and other types of motion artifacts not well-modeled by a 6 DOF trans-

formation2. To treat these cases, outlier detection and rejection schemes are used, either

implemented as a separate module preceding the SR [6, 10], or incorporated in the energy

formulation of the restoration algorithm [9, 13].

1.3.5 Fetal MRI restoration algorithms

Original restoration algorithms were designed in the frequency domain, using the shifting and

aliasing properties of the Fourier Transform in order to increase the image resolution. But

these frequency approaches have shown to have an observation model limited to translation

only. Nowadays, researchers in fetal MRI address this problem in the spatial domain, which

allow models taking into rotation [25]. Besides, desired edge-preserving properties are easier

to deal with in the spatial domain.

Interpolation models

Pioneer works on fetal HR restoration are based on the interpolation SR model [6, 7, 10,

22]. They consist in performing an iterative reconstruction procedure, interleaving rigid co-

registration of the LR images and Scattered Data Interpolation (SDI) (interpolation onto an

HR grid) steps.

Based on the acquisition model (1.2), the development of such approaches have been mo-

tivated by assuming that Bkl is linearly spatial invariant and is the same for all slices and

Mkl considers only rigid 6 DOF motions (translations + rotations). Thus, Bkl and Mkl can

commute in (1.2), and after injection in (1.1), the acquisition model becomes:

XLR
kl = Akl Mkl Bkl X+nk︸ ︷︷ ︸

Z

= Akl Mkl Z. (1.7)

A composite image on non-uniformly spaced sampling points is first obtained with the regis-

tration of LR images. Then, nonuniform interpolation is performed to get Z, an image with

uniformly spaced sampling points.

The first interpolation method that tackles the SR problem in fetal MRI was presented in [6].

The method used an interpolation SR approach that comprises slice-to-volume registration

2For instance, when fetus is displaced from the region being imaged and, due to the loss of signal, LR images
have dark slices.
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interleaved with Scattered Data Interpolation (SDI). Once motion parameters are estimated, a

bias field correction step is performed to correct the local relative intensity distortion between

LR images. Finally, a computationally efficient local neighborhood Gaussian kernel SDI is

employed for reconstruction but this reduces spatial frequency content and thus results in

excessive blurring. In [7], SDI is improved with the use of cubic B-spline kernel SDI.

Introduction of spatial priors has been later adopted. They are reviewed in the next section.

Bayesian and Variational models

Two main categories of algorithms that introduce spatial regularizations in the restoration

task can be distinguished: (1) Deterministic / variational models and (2) stochastic / Bayesian

models. Typically, stochastic approaches rely on the formulation of the problem in a Bayesian

framework such as Maximum a Posteriori (MAP), while deterministic approaches are based

on the formulation of Constrained Least Squares (CLS) energy with functional space-based

regularization. In both approaches, the HR image and motion among LR images can be

considered as either stochastic or deterministic variables, relating the SR reconstruction steps

stochastically or deterministically toward an optimal reconstruction.

Let us express the SR reconstruction problem into a full Bayesian formulation. Let Hkl =
Akl Bkl Mkl be the matrix modeling the MRI acquisition. Let suppose nk to be Gaussian. Then,

SR reconstruction can be formulated as:

X̂ = argmax
x

∏
kl

Pr(X|XLR
kl ), (1.8)

where Pr(X|XLR
kl ) refers to the posterior probability. In fetal MRI, X and Hkl are assumed to be

statistically independent and, if we suppose that Hkl is estimated beforehand, denoted as Ĥkl ,

Eq. (1.8) can be reformulated (using the Bayes rule) as:

X̂ = argmax
X

∏
kl

Pr(XLR
kl |X,Ĥkl )Pr(X). (1.9)

where probability Pr(XLR
kl |X,Ĥkl ) corresponds to the data likelihood, Pr(X) is the prior proba-

bility on the HR image desired. Eq. (1.9) describes the popular stochastic MAP formulation

of SR. When no prior distribution over the image is incorporated, the Maximum Likelihood

(ML) formulation could be obtained from Eq. (1.9). Such ML formulation has been adopted in

the pioneer work presented in [8, 9], which aims at providing an optimum solution through

maximizing the conditional probability density function Pr(XLR
kl |X) of the acquired slice XLR

kl

given the reconstructed volume X. Standard stochastic optimization techniques, such as

Monte Carlo [26, 27], Simulated annealing [28], Iterated Conditional Modes [29] or stochastic

Partial Differential Equations [30] can be used to find a solution to (1.9). However, using the

assumption of independent slice acquisition, the stochastic formulation (1.9) can be cast into

a deterministic optimization framework. If we suppose that Pr(XLR
kl |X,Ĥkl ) = e−λ‖Ĥkl X−XLR

kl ‖2
,

Pr(X) = e−R(X), when the noise residuals are presumed to be drawn from a Gaussian distribu-
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tion, and using the logarithmic function, then (1.9) becomes

X̂ =− log[argmax
X

∏
kl

Pr(XLR
kl |X,Ĥkl )Pr(X))]

= argmin
X

∑
kl

− log[Pr(XLR
kl |X,Ĥkl )]− log[Pr(X)]

= argmin
X
λ

∑
kl

‖Hkl X−XLR
kl ‖2 +R(X),

(1.10)

where R(X) corresponds to the regularization term and λ controls the trade-off between

regularization strength and data fidelity. As a result, it is equivalent to solve (1.9) and (1.10)

under the slice independence hypothesis. Several proposed methods [8, 9, 11–14] used this

equivalence to formulate the problem in a Bayesian framework and compute a solution with

variational optimization techniques. However, non-Gaussian noise and outliers might be

present in the data due to possible intensity inhomogeneities and inaccurate slice motion

estimation. In this case, the `2-norm is not robust and it has led to the development of

modified versions of (1.10). They will be reviewed in the next section.

Variational terms

A more general formulation of (1.10) is:

X̂ = argmin
X
λF (X)+R(X), (1.11)

where F (X) is a function that represents the data fidelity term. The choice of appropriate terms

as well as an adequate optimization scheme is crucial for high reconstruction quality.

Data fidelity terms In fetal MRI acquisition, motion estimation errors and intensity inho-

mogeneities usually occur. This is critical as these errors influence the quality of the restored

image. Consequently, several error norms for the data fidelity term have been considered for

dealing with outliers.

As noise might not be Gaussian, they have considered in [8, 9] a modified error weight function

Ωk (based on the Huber error function) to take into consideration more generic outliers such

that:

F (X) = ‖Ωk [
Hkl X−XLR

kl

]‖2. (1.12)

Such a formulation has shown to be a good balance between the most precise estimation

in a Gaussian environment (`2-norm) and the most robust estimation in a non-Gaussian

environment.

Alternatively in [13], the authors proposed to simultaneously maximize the fit between the

estimated reconstruction, the estimated intensity inhomogeneities and the data acquisition

s.t. X̂ = minX minIkl F (X,Ikl ), where Ikl is the underlying intensity inhomogeneity. They in-
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troduced probability density function in order to model outliers, where they consider the

inlier class posterior probability psl i ce
kl of the l-th slice of k-th LR image and the posterior

probability pvoxel
kl j of a voxel j being classified as an inlier. This corresponds to an hybrid

approach, where probabilities are integrated in a deterministic energy minimization problem

as weight functions:

F (X) = ∑
kl j

psl i ce
kl pvoxel

kl j e2
kl j , (1.13)

where ekl j = Hkl j X̂ j −XLR∗
kl j is the estimation error of the j -th voxel of the l -th slice of thek-th

intensity-corrected LR image. It has been demonstrated that this method performs better

than the method with Huber statistics and exclusion of either intensity matching or robust

statistics results in drop of performance compared to their full method.

Finally, the authors in [14] suggested to reduce outliers by optimizing F with respect to both

the underlying image X and the underlying slice motions Mkl . They also propose a unified

formulation that simultaneously maximizes the fit between the estimated reconstruction, the

estimated motion and the data acquisition data such that:

X̂ = argmin
X

min
Mkl

F (X,Mkl ). (1.14)

This method has been compared against different formulations using different estimators and

penalty terms for registration as well as different approaches such as the SIMC. On simulated

data, the method designed with a `2 estimator and a Huber penalty has proved to provide the

best overall performance.

Regularization terms Due to the ill-posedness of the restoration problem it is essential to

introduce regularization terms to constraint the solution to hold prior knowledge of the desired

image. If the regularization term is not appropriate, SR could result in too blurry images or

artifacts can be produced. Several local regularization terms have been considered in the

literature s.a. Tikhonov regularization [9, 14], Total-Variation based regularization [11, 13], and

non-local regularization terms such as non-local means [12]. In general, TV energies can been

seen as a measure of signal variability that penalizes only the total amount of gradient in the

image, preserving edges during reconstruction, as opposed to Tikhonov which penalizes its

distribution. For these reasons, they have been more widely adopted by the community.

Optimization via gradient descent

Let F (X) be the simple l2 error norm. The fetal brain reconstruction problem can be formulated

as a first order convex optimization problem such that:

min
X∈Sx

λ

2

∑
kl

‖Hkl X−XLR
kl ‖2 +‖X‖T V s.t. X ≥ 0 (1.15)
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where ‖X‖T V := ‖DX‖1 is the TV semi-norm [31]. Problem (1.15) is a convex but also non-

smooth optimization problem. Non-smooth minimization has been challenging since the

introduction of TV in imaging problems in the 90’s. The most common methodology that

optimizes TV consists in using a smooth ε-regularization of TV such that:

‖X‖T Vε
:=∑

i , j

√
|DXi , j |2 +ε → ‖X‖T V for ε→ 0. (1.16)

The natural main motivation to introduce a quadratic approximation of TV is to apply smooth

optimization tools like gradient descent or conjugate gradient schemes. In the context of

fetal reconstruction, this approach was considered with ε= 1 in [11, 13] based on the edge-

preserving technique introduced in [32]. In [9], the authors considered large ε that links to the

Dirichlet/Laplacian energy, i.e. ‖X‖T Vε
→‖X‖Di r = ‖DX‖2 for ε→∞. Standard optimization

techniques for ε-TV have been carried out with the calculus of variation followed by a forward

explicit steepest gradient descent scheme, such as in [11, 13], or followed by a quasi-Newton

optimization scheme, such as in [14]. The non-local reconstruction approach suggested

in [12], is solved by iteratively performing a basic image restoration algorithm, based on the

Dirichlet energy, and a NLM denoising algorithm, as in [33]. The energy is optimized using the

Fletcher-Reeves form of conjugate gradient descent algorithm.

TV energies have been largely adopted in the literature because of their powerful ability in

edge preservation. However, only standard steepest gradient techniques have been applied

to optimize fetal-based TV energies. But, such standard PDE-based optimization schemes

may be slow because they are restricted by the Courant-Friedrichs-Lewy’s condition [34], that

basically sets an upper bound on the time step of the iterative flow s.t. ∆t ≤ ε∆x/maxi , j ELi , j ,

where EL corresponds to the Euler-Lagrange equations (speed of the flow) and ∆x is the

spatial step. It is known that the asymptotic rate of convergence of forward steepest descent

techniques for smooth energy is O(1/n) where n is the number of iteration steps and the

iterative rate is O(1/ε), see e.g. [35]. Besides the speed, there are two other limitations with

ε-TV: (1) the TV term is not exactly solved because we compute an ε-solution, which does not

preserve as well image contrasts and small-scale structures as the exact TV, and (2) there is an

extra parameter, ε, to select (unlike exact TV).

1.4 Our Total Variation algorithm

1.4.1 Algorithm description

In the last years, fast TV-based algorithms based on convex optimization theory have been

developed to solve sparse reconstruction problems such as Compressed Sensing. Major classes

of TV optimization methods are (1) Alternating Direction Method of Multipliers (ADMM)

[36, 37], (2) Forward-Backward algorithms [35, 38–40], and (3) Uzawa-based Primal-Dual
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methods [41–43]. For the sake of clarity, we recall in this section our contribution [21] where

we reformulated (1.15) by using an accelerated primal-dual hybrid gradient (PDHG) method

based on [44] to design a fast, robust algorithm that offers accurate solutions and is guaranteed

to converge to a global solution for Eq. (1.15) (i.e. solution is independent of the initialization).

Specifically, PDHG consists in introducing the dual variable P in Eq. (1.15) that splits our

initial complex problem on the primal variable X into two simpler problems easy to solve. It

corresponds to rewrite Eq. (1.15) as the saddle point problem or equivalently as a primal-dual

optimization problem:

min
X∈SX

max
P∈SY

〈DX,P〉−F?(P)︸ ︷︷ ︸
‖X‖T V

+G(X)+δC (X)︸ ︷︷ ︸
X≥0

(1.17)

where X corresponds to the original primal variable and P corresponds to the dual variable

introduced, G(X) = λ
2

∑K
k=1 ‖Hk X−XLR

k ‖2, the convex function F? denotes the barrier function

of the `∞ unit ball, that is F?(P) = 0 if |Pi | ≤ 1 for 1 ≤ i ≤ n, otherwise F?(P) =+∞ and δC (X)

is a barrier function of the convex set C := {X ≥ 0}. As G is uniformly convex, we may therefore

apply [44] to solve Eq. (1.17). The proposed algorithm consists in iterating

Pn+1 = proxσn F?(Pn +σnDX̄n) (1.18)

Xn+1 = proxτnG+δC
(Xn −τnDt Pn+1) (1.19)

θn+1 = 1/
√

1+2ρτn , τn+1 = θn+1τn ,

σn+1 =σn/θn+1 (1.20)

X̄n+1 = Xn+1 +θn+1(Xn+1 −Xn) (1.21)

where proxE the proximal operator of E defined as proxE (X) := argminY E(Y)+ 1
2‖Y−X‖2.

Solution of the inner problem Eq. (1.18) is given by (proxσn F?(Z))i = Zi /max{1, |Zi |} where

Z = Pn +σnDX̄n . The solution of the least-square problem Eq. (1.19), minX≥0
λ
2

∑K
k=1 ‖Hk X−

XLR
k ‖2 + 1

2τn ‖X−W‖2 with W = Xn −τnDt Pn+1 can be computed with several approaches. We

use a semi-implicit gradient descent scheme that provides fast good approximate minimizing

solutions. More specifically, the Euler-Lagrange solution of Eq. (1.19) isλτn(HX−XLR )+X−W =
0 where H := ∑K

k=1 Ht
k Hk and XLR := ∑K

k=1 Ht
k XLR

k (note that H and XLR are computed only

once) and the iterative semi-implicit scheme is defined as Xl+1 =PC (Xl −∆tλτn(HXl −XLR )+
∆tW)/(1+∆t) where PC is the projection operator onto the set X ≥ 0 and ∆t = 0.1 in all

experiments.

Algorithm defined by Eq. (1.18)-(1.21) is guaranteed to converge to a saddle point (X?,P?)

to Eq. (1.17) (where P? is the maximizer of the dual problem and X? is the minimizer of the
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primal problem) and therefore a solution X? of the fetal reconstruction problem Eq. (1.15) as

long as the initial time steps are chosen to be σ0τ0 ≤ 1/‖D‖2, see [44] for more details.

We observe that TV-based models have been proposed in the literature for the fetal MRI

reconstruction problems such as [11, 13, 32]. However, these works have considered a smooth

approximation of the TV semi-norm, that is Eq. (1.16). Although our technique and the ones in

[11, 13, 32] target at optimizing the TV energy, there is a subtle but essential difference between

our approach and the other published TV-based techniques. If one wants the exact TV for best

image edge recovery in ε-TV approaches, then taking ε as small as possible is required, but

the smaller ε, the slower the convergence to the steady state solution (and ε= 0 can never be

chosen). More importantly, our approach solves the exact TV with a new optimization scheme

that is optimal for this class of problems as proved by Nesterov in [45], as the asymptotic speed

of convergence of the algorithm is quadratic, i.e. O( 1
n2 ), while optimization techniques based

on ε-TV are restricted to O( 1
n ). We will carry out a numerical experiment in Section 1.5.2 to

validate these asymptotic speeds of convergence.

1.4.2 Adaptive regularization parameter λ

Determination of an appropriate weight λ that controls the strength of the regularization

terms is the key for successful regularized image reconstruction. Intuitively, the amount of

regularization would depend on the image resolution and the number of LR images. In this

sense, the more the number of available LR images is increased, the less ill-posed the problem

will be, and thus, a lower level of regularization will be required. To our knowledge, existing SR

techniques in fetal MRI set the amount of regularization arbitrarily based on visual perception

[8, 9, 11–14]. However, many regularization parameter choice methods have been proposed

in image restoration and reconstruction problems [46, 47]. In general, they can be classified

into two major categories. Methods in the first categorie s.a. those based the discrepancy

principle [46, 47] seek to estimate the optimal value based on a priori knowledge of the image

and/or statistics of the noise while methods in the second categorie s.a. those based on

L-curve [48], generalized cross-validation (GCV) [49] and estimation of mean squared error

(MSE) [50, 51] search to estimate the optimal value directly from the data available. We refer

to [46, 47] for more details about regularization parameter choice.

In this section, we propose a first attempt for adaptive regularization parameter setting in

fetal MRI SR reconstruction. Two data-driven strategies are presented here to perform a fair

comparison between different regularization terms carried out in Section 2.5.

In fetal MRI, quantitative evaluation of the quality of the reconstruction is challenging as a

priori knowledge about the ground-truth HR image is not known. To overcome this limitation,

previous works on fetal brain SR reconstruction adopted two different approaches. On one

side, the authors in [9, 11, 13] simulated fetal data from a known HR image to evaluate their

algorithms under controlled conditions. On the other side, the authors in [13] suggested

to evaluate their algorithms on clinical fetal data by performing a leave-one-out analysis.
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For all experiments, a standard evaluation of the quality of the reconstructed images in fetal

MRI was to use either the normalized root mean squared error (N RMSE) [8, 13, 21] or the

peak signal-to-noise ratio (PSN R) [9, 11, 13], related through PSN R = 10∗ l og (1/N RMSE 2).

Therefore, we have developed two strategies, as regards as the kind of experiments, where the

PSNR is considered as the criterion for determining the optimal regularization weight, namely

λPSN R , for comparison between different regularization terms.

For simulated experiments in Section 1.5.3, we propose a strategy which automatically sets

the optimal value of the regularization parameter using the ground-truth HR image XGT .

Specifically, for each regularization term, we select λ that provides the best reconstruction

quality in terms of the highest PSNR with respect to XGT :

λPSN R = argmax
λ

PSN R(X̂,XGT ) (1.22)

For in-vivo fetal experiments in Section 1.5.4, as we do not know the ground truth HR image,

we propose a strategy which automatically sets the optimal regularization weight using the set

of available ground-truth LR images. Specifically, for each patient and for each regularization

term, we will select λ that provides the best reconstruction quality in terms of the highest

mean PSNR over the set of acquired LR images:

λPSN R = argmax
λ

1

N

∑
k

PSN R(X̂LR
k ,XLR

k ) (1.23)

where X̂LR
k = HX̂k and X̂k corresponds to the HR image reconstructed in a leave-one-out

fashion by excluding XLR
k from the reconstruction. For both strategies, an exhaustive search is

performed. To validate the quality of the estimate, we present in Section 1.5.5 a perceptual

evaluation of our adaptive regularization parameter in clinical practice using a multiple-

alternative forced-choice approach, as in where a radiologist expert was required to choose one

image as his preference from a set a reconstructed images with different levels of regularization

in a range around λPSN R .

1.4.3 Practical implementation

Data preprocessing

A first manual reorientation step is performed with Slicer [52] (Step 1 in Figure 1.4). Then,

we perform semi-manual brain masking (aided by region growing segmentation algorithm)

to ensure good results of the subsequent image processing steps, as maternal tissue sur-

rounding the brain may changes and could consequently corrupt them (Step 2 in Figure 1.4).

Note that few works have addressed this problem automatically in the last past years, either
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Figure 1.4 – Summary of the overall fetal brain HR reconstruction pipeline. Softwares, libraries
and programming languages used are listed on the right-hand side in italic.

through template-based segmentation [53–55] or through machine learning [56, 57]. Finally,

we standardize intensities of the LR stacks through N 4 bias field correction, intensity scale

standardization [58], and rescaling intensities into [0,255] (Step 3 in Figure 1.4).

Motion estimation

The estimation of motion parameters is done with BTK. Firstly, global stack registration is

used for initialization of the transforms. Then, rigid 6 degrees-of-freedom slice-to-volume

registration is performed where normalized correlation is used as metric for optimization.

Prior to motion estimation, LR images are filtered by NLM denoising. This reduces the chance

of the registration process to fall into local minimas. Finally, an initial HR image is estimated

using SDI, as in [6]. It corresponds to Step 4 in Figure 1.4.

Super-resolution

Our Total Variation algorithm is implemented in C++ with Insight Toolkit [59]. A first step is

the computation of matrices Hk in Eq. 1.15. It consists of positioning and orienting Gaussian

kernels according to the transformation between each slice and the HR image followed by

sampling to the grid of the HR image. Calculations and operations inherited from our TV

formulation are implemented using the numerical library VNL for algebra purposes. Note that

input LR images to the SR algorithm are not filtered by NLM denoising. In addition, we prefer

to not update motion estimation during super-resolution. We know that motion estimation
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updated during SR can further improve the quality of registration and consequently, the

quality of image restoration. However, we noticed that the running time was dramatically

increased. We decided to focus only on the optimization of the image restoration problem,

which is the scope of this work. It corresponds to Step 5 in Figure 1.4.

1.5 Results and validation

As described in Section 1.3.5, most published works in the literature of fetal brain MRI have

focused and stayed to these three most important regularizers, i.e. Tikhonov, TV and NLM.

In our knowledge, evaluations between different ε-TV formulations have been performed by

the authors in [11] showing that they led to similar results in terms of PSNR. However, there

is no existing comparison either with a classical Tikhonov as used in the pioneer work [9],

which is very fast to converge, or with NLM as provided by the open-source toolbox BTK [12]

(considered as one of the state-of-the-art method freely available).

In this section, we present an extensive validation of our algorithm. First, the convergence

speed of our optimization scheme is validated as regards ε-TV optimization scheme on a 2D

brain image of a mature newborn (Section 1.5.2). Then, we carry out quantitative evaluations

on 1) simulated fetal acquisitions from a newborn data and 2) normal and pathological fetal

brain MRIs, where we compare our TV with Tikhonov and NLM. We study the robustness

of the proposed TV reconstruction algorithm to different amounts of residual motion error

(Section 1.5.3). We also evaluate the ability of our algorithm to be conformed with the MRI

stacks acquired (Section 1.5.4). Eventually, we qualitatively evaluate the proposed algorithm

on fetal MRIs (Section 1.5.5).

As BTK, the Tikhonov method is implemented in C++ with Insight Toolkit [59], where the

Fletcher-Reeves version of the conjugate gradient is used for optimization. Projection onto

the set {X ≥ 0} is also applied to guarantee positive intensities. Global rigid stack registration

is used for the newborn dataset (Section 1.5.3). Global rigid stack registration followed by

slice-to-volume registration is employed in the case of the clinical datasets (Section 1.5.4).

Tests are run on a 3.4 GHz Quad-core i7-3770 CPU. Reported running times correspond to the

computational time of the SR problem optimization without motion estimation.

1.5.1 Material

Simulated fetal dataset We use a T2-weighted TurboFLASH image of a mature newborn to

simulate fetal brain MRIs, as in [9, 13]. The image was acquired on a 3T Siemens Tim Trio

with T R = 4000ms, T E = 3.7ms, slice thickness of 1.2mm and in-plane resolution of 0.78mm.

We consider the ground-truth image as the original image that was bias field corrected [60]

and isotropically interpolated to a resolution of 1mm using B-splines. Six LR images, two

per acquisition direction, with in-plane resolution of 1mm, slice thickness of 3mm, were

simulated from the ground-truth image by applying downsampling and blurring operations.

35



Chapter 1. An Efficient TV Algorithm for Super-Resolution in Fetal Brain MRI with
Adaptive Regularization

Shifts of 1mm were also introduced for images with the same acquisition direction. Note that

a number of six LR images was adopted in compliance with previous works [11, 13] showing

that the reconstruction quality marginally improves when more than 4-5 stacks LR images are

used, in similar acquisition conditions.

Clinical fetal dataset Our clinical fetal dataset is formed by 53 LR images coming from the

acquisition of 10 fetus, aged between 22 and 36 weeks GA (see Table 1.1). The acquisition

of each fetus consists of a set of 4 to 8 stacks, where at least one stack is available in each

anatomical direction. Stacks were acquired using two different MRI scanners, including 1)

a 1.5T Siemens Aera using a T2-weighted HASTE sequence with a resolution of 1.13×1.13×
3.6mm3 (TE/TR = 90/1200 ms), 1.13×1.13×4.8mm3 (TE/TR = 89/1000 ms) and 2) a 1.5T

Philips with a resolution of 1.09×1.09×5.5mm3 (TE/TR = 180/7000 ms). Our dataset is thus

heterogeneous as acquisitions come from fetus with different age, performed on different

MRI scanner, and with different slice-thickness-to-in-plane-resolution ratio, also known as

magnification factor (Mfactor). It was shown by the authors in [61] on 2D images that when

Mfactor is an integer, the sufficient number of LR images is Mfactor2. A similar number of

required LR images was found in [11, 21] in the case of fetal 3D MRI.

This study has been approved by the Cantonal Research Ethics Committee of Vaud, Switzerland.

The patient information from all data used in our study was anonymized and de-identified

prior to our analysis.

1.5.2 Numerical comparison of optimization schemes: ε-TV v.s. exact TV

The goal of this section is to show that (i) for small ε (here we take ε= 1e−4), ε-TV produces the

same quality for reconstructed SR images than exact TV but it requires more time to converge,

and (ii) for large ε (here we take ε= 1), ε-TV does not produce good image quality as the TV

approximation is too smooth to recover sharp image discontinuities, i.e. edges.

For (i), we carry out a standard numerical experiment on Figure 1.5 to validate the theoretical

asymptotic rates of convergence for ε-TV with ε= 1e −4 (using an explicit forward gradient

flow algorithm as in [11, 13]) and exact TV (using the proposed algorithm Eqs. (1.18)-(1.21)

in Section 1.4). In order to speed up the computational time, we test both algorithms on

a 2D HR image corresponding to an axial slice of the T2-weighted TurboFLASH image of

the mature newborn (simulated fetal dataset). Four LR images were generated by applying

subsampling operations and introducing noise but without adding any motion, see Figure 1.5a.

The numerical asymptotic convergence rates are given in Figure 1.5b.

The computed slope of our optimization algorithm, −1.99, is close to the theoretical one, i.e.

−2, and the slope of ε-TV, −0.82, is also close to the theory, i.e. −1. To illustrate the impact of

the difference of convergence rates, we present Figures 1.5c and 1.5d. At the 20th iteration, we

can see that the solution given by our algorithm, Figure 1.5d, is very close to the final steady

state solution with a PSNR value of 25.21dB . However, the solution provided by the ε-TV
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Table 1.1 – Clinical datasets.

Patient GA Diagnostic Brain Volume Sequence Stacks Resolution Mfactor
P1 22w Normal 112643mm3 HASTE 6 1.13×1.13×3.6 3.2

P5 22w
Important
malforma-

tion
118169mm3 HASTE 4 1.13×1.13×3.6 3.2

P2 25w
Agnesis of
the Corpus
Colossum

204882mm3 HASTE 6 1.13×1.13×3.6 3.2

P4 26w
Limited
Gyration

290421mm3 HASTE 4 1.13×1.13×3.6 3.2

P10 30w

Bilateral
ventricu-

lomegaly +
kyste +

hemorrhage

275914mm3 SSFSE 4 1.09×1.09×5.5 5.1

P3 32w Normal 470108mm3 HASTE 5 1.13×1.13×4.8 4.3

P7 32w
Normal but

small
324868mm3 SSFSE 8 1.09×1.09×5.5 5.1

P8 33w
Asymmetrical

ventricu-
lomegaly

503682mm3 SSFSE 7 1.09×1.09×5.5 5.1

P6 34w Normal 344547mm3 SSFSE 5 1.09×1.09×5.5 5.1

P9 36w

Bilateral
ventricu-

lomegaly +
Cornes

frontales

612998mm3 SSFSE 4 1.09×1.09×5.5 5.1

Total 53

algorithm, Figure 1.5c, is far away at the 20th iteration of its final solution as the PSNR value

is 6.60dB . It illustrates the fact that more iterations are required for the ε-TV algorithm to

converge. Eventually, at convergence, both solutions have the same reconstruction quality,

around 25.21−25.23dB . This confirms that ε-TV for small ε offers same solution as exact TV,

but at a higher computational cost.

For (ii), we present Figure 1.6 that compares ε-TV for large ε (Figure 1.6a), ε-TV for small ε

(Figure 1.6b), and exact TV (Figure 1.6c). The solution provided by small ε and exact TV have

almost the same PSNR value of 25.23dB , while the PSNR of large ε is lower at 20.34dB . A lower

PSNR for large ε is expected as a smoother version of TV is less able to recover image edges.
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(a) 2D T2-weighted image of the mature newborn;
Left: original HR image; Right: simulated LR image.
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Left: solution after 20 iterations; Right: final steady
state solution.
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(d) Fetal MRI reconstruction with exact TV; Left:
solution after 20 iterations; Right: final steady state
solution.

Figure 1.5 – Numerical comparison of optimization schemes: ε-TV vs exact TV.
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(a) Solution with ε-TV for large ε.
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(b) Solution with ε-TV for small ε.
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Proposed TV

(c) Solution with exact TV.

Figure 1.6 – Impact of the choice of ε in ε-TV algorithms.

1.5.3 Quantitative analysis of simulated fetal images

We assess the performance of our algorithm w.r.t. the residual motion error by randomly

affecting 1/5, 2/5, 3/5 of the slices in each LR images. Different amounts of residual motion
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errors are randomly added to one of the transform parameters (translation only and rotation

only), following [6, 7, 9]. Translation errors are selected in [−t , t ] for t = [0.1,0.2, . . . ,1.5mm]

and rotation errors are selected in [−r,r ] for r = [0.1,0.2, . . . ,2.0◦]. The amount of the overall

residual motion error is measured by computing the mean square error of the transform pa-

rameters. The reconstruction quality is evaluated with the Peak-Signal-To-Noise Ratio (PSNR).

Parameters for Tikhonov, BTK and our algorithm are selected to have the best reconstructed

HR image in the sense of the highest PSNR with respect to the original isotropic image of the

newborn. Results are presented in Figure 1.7.
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Figure 1.7 – Robustness of SR algorithms to motion error residuals when 1/5, 2/5, and 3/5 of
the slices are affected. ? denotes results obtained using the classical Tikhonov algorithm. N
denotes results obtained using the BTK algorithm based on NLM. • denotes results obtained
using our TV algorithm.

We observe that the reconstruction quality always degrades independently of the regular-

ization term as error motion residual is important. In addition, the TV regularization of

our algorithm is less sensitive to residual errors of the motion estimation than the Tikhonov

regularization and the NLM regularization employed in BTK. Finally, we observe that for

similar MSE, the restoration quality of all methods decreases as the number of affected slices

increases.

1.5.4 Quantitative analysis of real fetal images

We also assess the performance of our algorithm on clinical fetal brain MRI in terms of both

fidelity with the original LR images and contrast in the reconstructed HR image. To do so, we

perform a leave-one-out analysis, as in [13], that evaluates the ability of estimating the LR

volume left out from the SR reconstruction based on all the other available LR volumes. We

use the strategy described in Section 1.4.2 to automatically set, for each patient, an optimal

regularization weight in terms of PSNR. Figure 1.8 illustrates the PSNR curves obtained for

three different patients and for Tikhonov, BTK and TV. Obviously, λ is selected for each patient
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as the one providing the best reconstruction quality in terms of the highest mean PSNR

(over the set of LR images). For adaptive regularization setting, exhaustive searches on the λ

parameter are performed between the range of [0.001,0.002, . . . ,0.01,0.02, . . . ,0.1,0.2, . . . ,0.5]

for TV and between the range of [2/0.01,2/0.02, . . . ,2/0.1,2/0.2, . . . ,2/1.0,2/2.0, . . . ,2/5.0] for

BTK and Tikhonov.

Figure 1.8 – Optimization of the regularization parameter λ for: a) patient P3 (5/18.5), b) pa-
tient P6 (5/26), and c) patient P7 (8/26). Numbers in parenthesis (X/Y) correspond respectively
to the number X of stacks of slices and to the slice-thickness-to-in-plane-resolution ratio
Y=Mfactor2 (defined in Section 1.5.1). Both numbers indicates the “degree” of ill-posedness
of the SR problem. ? denotes the optimal regularization weight for Tikhonov. ? denotes the
optimal regularization weight for BTK. ? denotes the optimal regularization weight for our
TV. The estimated optimal values are further used for the leave-one-out analysis presented in
Table 1.2.

Once λPSN R is set, for each patient and each regularization term, we assess both quality

and speed of reconstruction with a leave-one-out analysis. Qualitative results on one left-

out ground-truth LR volume and its estimation by BTK and TV regularization are shown in

Figure 1.9. Reconstruction results in terms of PSNR and running time are reported in Table 1.2.

Table 1.2 – Leave-one-out analysis: similarity w.r.t the original LR images.

PSNR (dB) Run Time (s)

Patient Tikhonov BTK Our TV Tikhonov BTK Our TV
P1 53.64±1.12 53.71±1.29 53.85±1.19 3.21±3.89 10.76±0.36 4.85±0.06
P5 42.32±2.45 43.44±2.44 44.64±2.52 4.17±0.60 14.54±0.60 4.66±0.08
P2 48.31±2.31 48.56±2.44 48.90±2.37 6.66±2.82 21.52±1.71 8.68±0.11
P4 45.91±3.21 46.38±3.44 47.14±3.50 12.14±5.45 43.04±5.04 15.08±0.30
P10 53.35±4.47 54.22±4.46 54.84±4.40 2.79±0.48 36.53±2.41 12.76±0.16
P3 57.93±1.11 58.39±1.16 58.47±1.18 4.31±0.67 82.61±6.80 30.21±0.91
P7 57.91±8.23 58.07±8.30 57.94±8.13 4.23±0.62 52.56±4.51 23.79±0.39
P8 57.40±3.06 57.72±3.19 57.74±3.06 4.92±0.60 104.74±5.45 39.05±0.46
P6 53.04±4.24 53.39±4.15 53.91±4.09 2.83±0.40 44.99±1.91 15.88±0.17
P9 52.90±1.49 54.52±1.11 54.94±1.00 4.09±0.21 76.33±9.40 7.91±0.18
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a) b) c)

Figure 1.9 – Illustration of the leave-one-out analysis results for fetus P3 (row 1) and fetus P7
(row 2); a) Original LR Image XLR

k left for evaluation; b) X̂LR
k using BTK; b) X̂LR

k using our TV.

In terms of fidelity to the original LR stacks, both BTK and TV outperform Tikhonov and our

TV algorithm performs better than BTK (0.34 dB in average for all subjects). In terms of speed,

Tikhonov regularization is the fastest. TV regularization is about 4 times slower in average than

Tikhonov (due to an extra inner problem optimisation), and TV is about 2-3 times faster than

BTK. We also notice that BTK uses a parallel implementation of the non-local means algorithm,

while the proposed TV algorithm has no such speed-up here. A parallel implementation of TV

optimization may reduce the presented computational time.

It was observed that some reconstructed HR images suffer from reduced within-tissue contrast

despite a high PSNR. Consequently, we decide to also measure the sharpness in the recon-

structed HR image in complement to the PSNR. Sharpness validation was carried out using

the energy of the gradient magnitude image (M2), as proposed in [8]. We computed M2 by

integrating the magnitude of the gradient of the HR reconstructed image at all voxels. The

rational behind this study is that sharper structures would be observed if the motion-corrected

images are more accurately fused in the restoration process. Sharpness results are summa-

rized in Table 1.3. In most of all the patients, the HR images reconstructed by our TV-based

restoration algorithm obtained higher M2 values. Supported by better PSNR, this suggests

that our algorithm with TV regularization provides the best performance in terms of stronger

contrasts between and within tissues.

1.5.5 Perceptual evaluation of the adaptive regularization

We show in this section the capability of our TV algorithm to restore HR images for diagnosis

purposes in fetal MRI. In order to evaluate the optimality of the regularization weight λPSN R

automatically set in terms of PSNR, see Section 1.4.2, we adopted a multiple-alternative
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Table 1.3 – Leave-one-out analysis: sharpness of the reconstructed HR images. M2method

corresponds to the energy of the gradient magnitude image of the HR image reconstructed by
the respective method .

Patient M2T i khonov M2BT K M2T V

P1 1437602 1428423 1501358
P5 959734 963221 1327880
P2 1869633 1696500 2154680
P4 2234225 2277655 3040140
P10 4272910 4291232 4522360
P3 5918378 5791398 5840018
P7 3988919 4053390 4792452
P8 5785973 5441901.43 6407542
P6 4732112 5072980 4757786
P9 4233893 3988113 4247992

forced-choice approach, inspired from [62]. For each patient, a total of 6 HR images were

reconstructed using a regularization weight of λPSN R /8, λPSN R /4, λPSN R /2, λPSN R , 2λPSN R

and 4λPSN R . Then, a radiologist expert proceeded to a visual evaluation where he indicated

the best HR image in terms of image quality. Here, we consider only the reconstructed HR

images of patients P1, P2, and P6 (diagnosed as normal brain), and the reconstructed HR

images of patients P8 and P10 (diagnosed as abnormal brain) to minimize the number of

images evaluated by the expert. Reconstruction results, running time for image restoration and

the amount of regularization preferred by the expert are summarized in Figure 1.10. Results

for only 3 patients are visually shown due to space limitation.

In general, HR reconstructed images with regularization weight of λPSN R /4 were selected for a

majority of the patients (P1, P2, P8 and P10), except for patient P6, where an HR image with

regularization of λPSN R /2 was chosen. This shows that the expert does prefer to visualize a

little more regularized HR image than the one provided by the optimal PSNR (Section 1.5.4).

Let us notice that our PSNR image quality measure may be not fully correlated with the visual

image quality. Especially, outliers in the LR images are still used in the reconstruction process

which might emphasize the noise in the reconstructed HR image. Let us now recall that our

PSNR-based parameter choice method works (on a leave-one-out fashion) on LR images

simulated from the reconstructed HR image to compute the PSNR w.r.t. the excluded LR

image. This simulation process reduces the noise in the LR image simulated as regards the

real noise observed in the original HR reconstructed image. Therefore when we say “a little

more regularized image” we here talk regularization w.r.t. PSNR and not w.r.t. visual quality

measure. So even if it is more regularized w.r.t. PSNR, the image may not be regularized w.r.t.

visual quality.

This suggests that our method, originally proposed to automatically set the regularization

level for a fair comparison between our TV, Tikhonov and BTK, could indeed give an upper

bound for regularization setting in clinical practice. This also suggests that the integration of a
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LR images TV-based HR imagesFetus
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Figure 1.10 – Illustration of the qualitative analysis for fetus P1, P8 and P10.

robust outlier removal scheme could give even a more optimal estimate of the regularization

visually perceived by the radiologist expert.

1.5.6 Discussion

In this chapter, we have revisited the existing SR techniques that address the fetal MRI brain

reconstruction problem. Concretely, we have focused on the Bayesian and variational dual

formulations with the goal of reviewing and unifying current state-of-the-art methods. Built

on this formulation, we have recalled our TV-based optimization algorithm [21] and we

have presented the design and the implementation of our reconstruction pipeline. We have

also numerically recovered the theoretical speed of convergence of the proposed algorithm.

Precisely, we have shown that the proposed algorithm solves the exact TV problem and

outperforms the ε-TV optimization scheme in terms of convergence speed.

A second contribution is the extensive study of the convex TV regularization in comparison

with classical Tikhonov and BTK. Concretely, we have presented for the first time a quantitative

analysis of robustness of regularization w.r.t residual registration errors (see Section 1.5.3).

Our experiments have clearly shown that TV is more robust to motion artifacts than Tikhonov
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and BTK. Moreover, this experiment confirms that registration accuracy is very crucial for

the success of super-resolution algorithms. It also supports the development of outliers

rejection schemes, as suggested in [9, 10, 13]. Obviously, our approach would perform even

better with the inclusion of these schemes. Using the automated setting of λ for each patient

independently and inspired by [13], we have performed a leave-one-out analysis to compare

our TV regularization strategy to classical Tikhonov regularization and to NLM regularization

on real fetal data (see Section 1.5.4). We have shown that TV outperforms Tikhonov and BTK.

We have observed that such improvement is higher in the cases where less LR volumes are

available and where the Mfactor is higher i.e. in the cases where the problem is more ill-posed.

To validate this hypothesis we have conducted an experiment that analyzes, for a given subject,

the behavior of the regularization in function of the number of LR volumes (3, 6 and 9) used

in the reconstruction (see Fig. 1.11). This confirms that TV is more robust when only few LR

volumes are available. Such results go in favor of our TV, since in a clinical acquisition setting

we will often have few LR available (between 3 and 6).

Figure 1.11 – Regularization versus number of input LR images.

A third contribution is the adaptive setting of the amount of regularization w.r.t. each subject to

be reconstructed and thus adapted to the ill-posedness nature of the reconstruction problem.

We propose a first attempt to automatically select the optimal λ w.r.t each subject and each

algorithm in terms of PSNR (see Section 1.5.4). Note that only an exhaustive search on λ

was performed here. This could be improved by the formulation of the problem in terms

of quadratic energy minimization. This will allow a faster convergence towards to optimal

value of λ and it will guarantee that the solution is optimal and unique. We could also

suggest to integrate information about sharpness of the reconstructed HR image into the

energy to be minimized. This should even better estimate the appropriate regularization for
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diagnosis purposes. Moreover, we have adopted a simple heuristic approach as our goal was to

fairly compare different regularization terms but the estimation of the optimal regularization

weight could also be performed in a Bayesian framework, at the price of solving a non-convex

optimization problem and computationally more expenses.

A last contribution is to show the capability of TV to reconstruct 3D volumes for diagnosis.

We propose to proceed to a blind qualitative evaluation of the 3D reconstructed HR images

conducted by an expert radiologist, including subjects diagnosed with both normal and

abnormal brains (see Section 1.5.5). It has been shown that in general, his choice was 4

times smaller than the estimated λ, optimal w.r.t the PSNR. It demonstrates that the method,

originally developed to determine the optimal regularization weight used by each algorithm

with the leave-one-out analysis, is able to provide an upper bound to the regularization level

in clinical application. In practice, we can imagine that this value could still be manually

adjusted to fit end user expectations.

1.6 Conclusion

In summary, the proposed approach is a simple framework with an optimal and efficient

TV optimization algorithm that has shown to be well adapted to solve the HR reconstruc-

tion problem in fetal MRI. It has been noticed that TV regularization generally outperforms

Tikhonov and BTK in terms of reconstruction error w.r.t the original LR images and in terms

of sharpness of the reconstructed HR images. However, more sophisticated schemes could

be integrated into the framework, such as complete outlier rejection scheme and bias field

correction scheme in order to enhance its robustness to several kinds of clinical scenarios.

Next chapter will present a novel slice-by-slice template-based method for automatic fetal

brain localization and extraction, a crucial step of the reconstruction process, which is also

the most-consuming step if performed manually or semi-automatically.

Acknowledgment

This work was supported by the Swiss National Science Foundation under Grant SNSF-

141283 and by the CIBM of Geneva-Lausanne Universities and EPFL, as well as the Fon-

dation Leenaards and Fondation Louis-Jeantet. The authors would like to thank Prof. Laurent

Guibaud for providing access to the SSFSE data.

45





Bibliography

Bibliography

[1] D. Prayer, Fetal MRI, Springer, 2011.

[2] F. V. Coakley, O. A. Glenn, A. Qayyum, A. J. Barkovich, R. Goldstein, R. A. Filly, Fetal MRI: a

developing technique for the developing patient, American Journal of Roentgenology

182 (1) (2004) 243–252.

[3] P. Brugger, F. Stuhr, C. Lindner, D. Prayer, Methods of fetal MR: beyond T2-weighted

imaging, Eur Radiol (57) (2006) 172–181.

[4] C. Garel, New advances in fetal mr neuroimaging, Pediatr Radiol (36) (2006) 621–625.

[5] D. Levine, H. Hatabu, J. Gaa, M. Atkinson, R. Edelman, Fetal anatomy revealed with fast

mr sequences, AJR (167) (1996) 905–908.

[6] F. Rousseau, O. A. Glenn, B. Iordanova, C. Rodriguez-Carranza, D. B. Vigneron, J. A.

Barkovich, C. Studholme, Registration-based approach for reconstruction of high-

resolution in utero fetal MR brain images, Academic Radiology 13 (9) (2006) 1072–1081.

[7] S. Jiang, H. Xue, A. Glover, M. Rutherford, D. Rueckert, J. Hajnal, MRI of moving subjects

using multislice snapshot images with volume reconstruction (SVR): Application to fetal,

neonatal, and adult brain studies, Medical Imaging, IEEE Transactions on 26 (7) (2007)

967–980.

[8] A. Gholipour, S. K. Warfield, Super-resolution reconstruction of fetal brain MRI, in: MIC-

CAI Workshop on Image Analysis for the Developing Brain (IADB’2009), 2009, pp. 45–52.

[9] A. Gholipour, J. Estroff, S. Warfield, Robust super-resolution volume reconstruction from

slice acquisitions: Application to fetal brain MRI, Medical Imaging, IEEE Transactions on

29 (10) (2010) 1739–1758.

[10] K. Kim, P. Habas, F. Rousseau, O. Glenn, A. Barkovich, C. Studholme, Intersection based

motion correction of multislice MRI for 3-D in utero fetal brain image formation, Medical

Imaging, IEEE Transactions on 29 (1) (2010) 146 –158.

[11] F. Rousseau, K. Kim, C. Studholme, M. Koob, J. Dietemann, On super-resolution for fetal

brain MRI, in: T. Jiang, N. Navab, J. Pluim, M. Viergever (Eds.), Medical Image Computing

and Computer Assisted Intervention (MICCAI), International Conference on, Vol. 6362 of

Lecture Notes in Computer Science, Springer, 2010, pp. 355–362.

[12] F. Rousseau, E. Oubel, J. Pontabry, M. Schweitzer, C. Studholme, M. Koob, J.-L. Dietemann,

BTK: An open-source toolkit for fetal brain MR image processing, Computer Methods

and Programs in Biomedicine 109 (1) (2013) 65–73.

[13] M. Kuklisova-Murgasova, G. Quaghebeur, M. A. Rutherford, J. V. Hajnal, J. A. Schnabel,

Reconstruction of fetal brain MRI with intensity matching and complete outlier removal,

Medical Image Analysis 16 (8) (2012) 1550–1564.

47



Chapter 1. An Efficient TV Algorithm for Super-Resolution in Fetal Brain MRI with
Adaptive Regularization

[14] M. Fogtmann, S. Seshamani, K. Kim, T. Chapman, C. Studholme, A unified approach

for motion estimation and super resolution reconstruction from structural magnetic

resonance imaging on moving objects, in: MICCAI workshop on Perinatal and Paediatric

Imaging: PaPI, 2012, pp. 9–16.

[15] A. Gholipour, J. A. Estroff, C. E. Barnewolt, S. A. Connolly, S. K. Warfield, Fetal brain

volumetry through MRI volumetric reconstruction and segmentation, International

Journal of Computer Assisted Radiology and Surgery 6 (3) (2011) 329–339.

[16] J. Corbett-Detig, P. Habas, J. Scott, K. Kim, V. Rajagopalan, P. McQuillen, A. Barkovich,

O. Glenn, C. Studholme, 3D global and regional patterns of human fetal subplate growth

determined in utero, Brain Structure and Function 215 (2011) 255–263.

[17] J. A. Scott, P. A. Habas, K. Kim, V. Rajagopalan, K. S. Hamzelou, J. M. Corbett-Detig, A. J.

Barkovich, O. A. Glenn, C. Studholme, Growth trajectories of the human fetal brain tissues

estimated from 3D reconstructed in utero MRI, International Journal of Developmental

Neuroscience 29 (5) (2011) 529–536.

[18] P. A. Habas, J. A. Scott, A. Roosta, V. Rajagopalan, K. Kim, F. Rousseau, A. J. Barkovich, O. A.

Glenn, C. Studholme, Early folding patterns and asymmetries of the normal human brain

detected from in utero MRI, Cerebral Cortex 22 (1) (2012) 13–25.

[19] E. Van Reeth, I. W. K. Tham, C. H. Tan, C. L. Poh, Super-resolution in magnetic resonance

imaging: A review, Concepts in Magnetic Resonance Part A 40A (6) (2012) 306–325.

[20] E. Plenge, D. H. J. Poot, M. Bernsen, G. Kotek, G. Houston, P. Wielopolski, L. van der

Weerd, W. J. Niessen, E. Meijering, Super-resolution methods in MRI: Can they improve

the trade-off between resolution, signal-to-noise ratio, and acquisition time?, Magnetic

Resonance in Medicine 68 (6) (2012) 1983–1993.

[21] S. Tourbier, X. Bresson, P. Hagmann, J.-P. Thiran, R. Meuli, M. Bach Cuadra, Efficient

total variation algorithm for fetal brain MRI reconstruction, in: P. Golland, N. Hata,

C. Barillot, J. Hornegger, R. Howe (Eds.), Medical Image Computing and Computer

Assisted Intervention (MICCAI), International Conference on, no. 8674 in Lecture Notes

in Computer Science, Springer, 2014, pp. 252–259.

[22] K. Kim, M. Hansen, P. Habas, F. Rousseau, O. Glenn, A. Barkovich, C. Studholme, Inter-

section based registration of slice stacks to form 3d images of the human fetal brain,

in: Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International

Symposium on, 2008, pp. 1167–1170.

[23] F. Rousseau, A non-local approach for image super-resolution using intermodality priors,

Medical Image Analysis 14 (4) (2010) 594–605.

[24] C. Malamateniou, S. J. Malik, S. J. Counsell, J. M. Allsop, A. K. McGuinness, T. Hayat,

K. Broadhouse, R. G. Nunes, A. M. Ederies, J. V. Hajnal, M. A. Rutherford, Motion-

48



Bibliography

Compensation Techniques in Neonatal and Fetal MR Imaging., AJNR American journal

of neuroradiology.

[25] J. Yang, T. Huang, Image super-resolution: historical overview and future challenges, from

the book: Super-Resolution Imaging (edited by Peyman Milanfar), CRC Press (Taylor &

and amp and Francis Group), 2011.

[26] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of

state calculations by fast computing machines, Journal of Chemical Physics 21 (1953)

1087–1092.

[27] W. Hastings, Monte carlo sampling methods using markov chains and their applications,

Biometrika 57 (1970) 97–109. doi:10.1093/biomet/57.1.97.

[28] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science

220 (1983) 671–680.

[29] J. Besag, On the statistical analysis of dirty pictures, Journal of the Royal Statistical Society.

Series B (Methodological) 48 (3) (1986) 259–302.

[30] N. Zabaras, Solving Stochastic Inverse Problems: A Sparse Grid Collocation Approach,

John Wiley & Sons, Ltd, 2010, pp. 291–319.

[31] L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms,

Physica D: Nonlinear Phenomena 60 (14) (1992) 259 – 268.

[32] P. Charbonnier, L. Blanc-féraud, G. Aubert, M. Barlaud, Deterministic edge-preserving

regularization in computed imaging, IEEE Trans. Image Processing 6 (1997) 298–311.

[33] J. Manjón, P. Coupé, A. Buades, V. Fonov, D. L. Collins, M. Robles, Non-local MRI upsam-

pling, Medical Image Analysis 14 (6) (2010) 784 – 792.

[34] R. Courant, K. Friedrichs, H. Lewy, On the partial difference equations of mathematical

physics, IBM J. Res. Dev. 11 (2) (1967) 215–234.

[35] A. Beck, M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse

Problems, SIAM J. Imaging Sci. 2(1) (2009) 183–202.

[36] R. Glowinski, P. L. Tallec, Augmented Lagrangian and Operator-Splitting Methods in

Nonlinear Mechanics, SIAM, 1989.

[37] T. Goldstein, S. Osher, The Split Bregman Method for L1-Regularized Problems, SIAM

Journal on Imaging Sciences 2(2) (2009) 323–343.

[38] Y. Nesterov, Smooth Minimization of Non-Smooth Functions, Mathematic Programming

103 (2005) 127–152.

[39] P. Combettes, V. Wajs, Signal Recovery by Proximal Forward-Backward Splitting, Multi-

scale Modeling and Simulation 4(4) (2006) 1168–1200.

49

http://dx.doi.org/10.1093/biomet/57.1.97


Chapter 1. An Efficient TV Algorithm for Super-Resolution in Fetal Brain MRI with
Adaptive Regularization

[40] P. Combettes, J. Pesquet, Proximal Splitting Methods in Signal Processing, Fixed-Point

Algorithms for Inverse Problems in Science and Engineering.

[41] K. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Non-Linear Programming, Stanford

University Press.

[42] M. Zhu, T. Chan, An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation

Image Restoration, UCLA CAM Report 08-34.

[43] A. Chambolle, T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with

Applications to Imaging, Journal of Mathematical Imaging and Vision 40(1) (2011) 120–

145.

[44] A. Chambolle, T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with

Applications to Imaging, JMIV 40(1) (2011) 120–145.

[45] Y. Nesterov, Smooth Minimization of Non-Smooth Functions, Mathematic Programming

103 (2005) 127–152.

[46] N. Galatsanos, A. Katsaggelos, Methods for choosing the regularization parameter and

estimating the noise variance in image restoration and their relation, Image Processing,

IEEE Transactions on 1 (3) (1992) 322–336.

[47] W. C. Karl, Regularization in image restoration and reconstruction, Handbook of Image

and Video Processing 2nd Ed. (2005) 183–202.

[48] P. Hansen, D. O’Leary, The use of the l-curve in the regularization of discrete ill-posed

problems, SIAM Journal on Scientific Computing 14 (6) (1993) 1487–1503.

[49] R. M. Mersereau, S. J. Reeves, Optimal estimation of the regularization parameter and

stabilizing functional for regularized image restoration, Optical Engineering 29 (5) (1990)

446–454.

[50] C. M. Stein, Estimation of the mean of a multivariate normal distribution, Ann. Statist.

9 (6) (1981) 1135–1151.

[51] S. Ramani, Z. Liu, J. Rosen, J. Nielsen, J. Fessler, Regularization parameter selection for

nonlinear iterative image restoration and MRI reconstruction using gcv and sure-based

methods, Image Processing, IEEE Transactions on 21 (8) (2012) 3659–3672.

[52] S. Pieper, M. Halle, R. Kikinis, 3D Slicer, ISBI (2004) 632–635.

[53] J. Anquez, E. D. Angelini, I. Bloch, Automatic segmentation of head structures on fetal

MRI., in: Biomedical Imaging (ISBI), International Symposium on, IEEE, 2009, pp. 109–

112.

[54] Y. Taleb, M. Schweitzer, C. Studholme, M. Koob, J.-L. Dietemann, F. Rousseau, Automatic

template-based brain extraction in fetal MR images, in: Organization for Human Brain

Mapping (OHBM) conference., 2013.

50



Bibliography

[55] S. Tourbier, X. Bresson, P. Hagmann, M. Cagneaux, M. Schaer, L. Guibaud, J.-P. Thiran,

R. Meuli, M. B. Cuadra, Automated Brain Extraction in Fetal MRI by Multi-Atlas Fusion

Strategy: Study on Healthy and Pathological Subjects., Joint Annual Meeting ISMRM-

ESMRMB, 2014.

[56] M. Ison, E. Dittrich, R. e. Donner, G. Kasprian, D. Prayer, G. Langs, Fully automated

brain extraction and orientation in raw fetal MRI, MICCAI workshop on Perinatal and

Paediatric Imaging: PaPI (2012) 17–24.

[57] K. Keraudren, M. Kuklisova-Murgasova, V. Kyriakopoulou, C. Malamateniou, M. Ruther-

ford, B. Kainz, J. Hajnal, D. Rueckert, Automated fetal brain segmentation from 2D MRI

slices for motion correction, NeuroImage 101 (2014) 633–643.

[58] L. G. Nyúl, J. K. Udupa, X. Zhang, New variants of a method of MRI scale standardization,

Medical Imaging, IEEE Transactions on 19 (2) (2000) 143–150.

[59] T.S. Yoo and M. J. Ackerman and W. E. Lorensen and W. Schroeder and V. Chalana and S.

Aylward and D. Metaxas and R. Whitaker, ITK - The Insight Toolkit, in: Medicine Meets

Virtual Reality, 2002, pp. 586–592.

[60] N. J. Tustison, B. B. Avants, P. A. Cook, Y. Zheng, A. Egan, P. A. Yushkevich, J. C. Gee,

N4ITK: improved N3 bias correction, Medical Imaging, IEEE Transactions on 29 (6) (2010)

1310–20.

[61] Z. Lin, H.-Y. Shum, Fundamental limits of reconstruction-based superresolution algo-

rithms under local translation, IEEE Transactions on Pattern Analysis and Machine

Intelligence.

[62] S. Reeves, A. Higdon, Perceptual evaluation of the mean-square error choice of regular-

ization parameter, Image Processing, IEEE Transactions on 4 (1) (1995) 107–110.

51





2
Automated Template-based Brain

Localization and Extraction for Fetal
Brain MRI Reconstruction

A 10-page conference paper of the work in this chapter was peer-reviewed and presented

as a poster presentation at the IntellMR workshop of the International Conference on Med-

ical Image Computing and Computer-Assisted Intervention (MICCAI) 2015 as S. Tourbier,

V. Taimouri, C. Velasco-Annis, R. Meuli, S. W. Warfield, A. Gholipour and M. Bach Cuadra,

“Fully Automated Fetal Brain MRI Reconstruction”. The dataset used in this chapter was

currently being extended at the time this thesis was written to be submitted to the Journal Neu-

roImage as S. Tourbier, V. Taimouri, C. Velasco-Annis, R. Meuli, S. W. Warfield, A. Gholipour

and M. Bach Cuadra, “Automated Template-based Brain Localization and Extraction for

Fetal Brain MRI Reconstruction”. A first preliminary work on automatic brain extraction

was presented as electronic poster at the annual 2014 meeting of the International Society

for Magnetic Resonance in Medicine (ISMRM) as S. Tourbier, X. Bresson, P. Hagmann, M.

Cagneaux, M. Schaer, L. Guibaud, J.-P. Thiran, R.Meuli, M. B. Cuadra, “Automated Brain

Extraction in Fetal MRI by Multi-Atlas Fusion Strategy: Study on Healthy and Pathological

Subjects.”. A second preliminary work as been peer-reviewed, presented as oral presentation,

and published in the proceedings of the SPIE Medical Imaging Conference as S. Tourbier, P.

Hagmann, M. Cagneaux, L. Guibaud, S. Gorthi, M. Schaer, J.-P. Thiran, R.Meuli, M. B. Cuadra,

“Automatic brain extraction in fetal MRI using multi-atlas-based segmentation”, in: Proc.

SPIE Medical Imaging, Vol. 9413, 2015, pp. 94130Y–94130Y–7.

2.1 Introduction

Fetal MRI has attracted a lot of attention and is being incrementally used as a complementary

diagnostic tool to prenatal ultrasound imaging as it provides a better soft tissue contrast. Fast
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single shot multi-slice MRI sequences are used to freeze maternal and fetal motion; but the

acquisition of thick slices (about 2 to 4mm) is necessary to obtain acceptable Signal-to-Noise

Ratio (SNR) given the short acquisition time used to avoid motion at each slice acquisition.

Thick slices and inter-slice motion artifacts limit the accuracy of volumetric analysis for clinical

diagnosis and neuroscience studies [1].

In the last years, interest in finding a high-resolution (HR) volumetric image given a set of

low-resolution slices with inter-slice motion artifacts has grown considerably. In [2, 3], the first

reconstruction techniques based on slice-to-volume registration and scattered data interpola-

tion were introduced. Later, super-resolution (SR) techniques [4–10] have boosted the quality

of the reconstructed image by modelling an inverse problem for fetal image reconstruction.

By providing finer details of the fetal brain, such techniques have enabled the neuroscience

community to perform new research on early human brain development [11–18].

The fetal MRI reconstruction pipeline consists of various image processing steps (intensity

standardization, motion estimation, and SR reconstruction). In general, algorithms [2–10,

19] rely only on brain tissue-relevant voxels of low-resolution (LR) images to warrant the

assumption of motion rigidity used in rigid motion correction. This is a crucial step of the

reconstruction algorithms. Consequently, the fetal brain (or brain region) needs to be localized

and extracted prior to motion estimation and SR reconstruction.

Fetal brain localization and extraction is typically done manually or semi-automatically, thus

corresponds to the most time-consuming, non-automatic step of the entire pipeline. It is

therefore not a realistic solution for large-scale studies. In the literature, even though accurate

brain extraction tools have been developed for adult and infant brain MRI [20, 21], those tools

are not readily applicable to fetal MRI. Fetal brain MRI differs in many ways from neonatal

or adult brain MRI in terms of image content (with maternal tissues surrounding the fetal

brain), image contrast, brain size, and especially the arbitrary (non-standard) fetal position

and orientation which also changes due to motion. Recent studies have addressed this

problem in fetal MRI by adopting either template-based segmentation [18, 22–25] or machine

learning [26–29] techniques.

2.2 Contributions

In this work, we propose to automatize fetal brain localization and extraction using a template-

based approach, and integrate it with SR reconstruction. Specifically, our contributions are:

• An automated slice-by-slice brain extraction method in every stack of thick slices (LR im-

age). It couples an accelerated template-to-slice block matching method for automatic

brain localization with a novel deformable slice-to-template brain extraction method.

• The combination of the masking process with intensity standardization, motion correc-

tion, and super-resolution reconstruction: In our proposed approach the brain masks
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are refined in the spatial space of the template using a consensus fusion voting process

and are re-applied to the LR images as the reconstruction proceeds.

• An extensive validation on clinical data including healthy and pathological cases where:

– we evaluate the brain extraction performance in terms of overlap measures with

manual delineations,

– we study for the first time the impact of automatic brain extraction performance

on the final reconstruction quality,

– we conduct a perceptual evaluation by expert observers to compare the quality of

the final reconstruction using brain masks obtained manually and automatically

with the proposed technique, and

– we investigate the potential of the brain mask refinement method to provide an

estimate of the intra-cranial fetal brain volume in the HR reconstructed images.

The chapter is organized as follows. Section 2.4 presents the proposed template-based ap-

proach. Section 2.5 develops an extensive validation of the proposed method in terms of brain

extraction performance as well as the impact on reconstruction quality and brain volumetry,

and Section 2.6 involves the discussion and conclusions.

2.3 Overview of fetal brain localization and extraction

Several, relatively recent, studies have addressed the automatic localization and extraction

of fetal brain in MRI through either template-based segmentation [18, 22–25] or machine

learning [26–29] techniques. The first attempt [22] of fetal brain extraction proposed to

estimate the location of the eyes (based on rigid template registration) in order to segment

the fetal brain using contrast, morphological and biometrical prior information. This method

gave precise results in 22 out of 24 MRI stacks of fetuses aged between 30 and 35 gestational

weeks; however, they relied on the assumption of minor motion between slices, which limits

the robustness of the method to clinical databases where moderate to large motion can occur.

More recently, a supervised approach [26], based on a two-phase random forest classifier, was

adopted in order to obtain a method applicable to all fetal ages and more robust with respect

to motion between slices. This method has shown comparable results to the method in [22]

but the whole brain was contained inside the final bounding box in only 28% (coronal) to

58% (transversal, sagittal) of the cases. Later, localization accuracy of the brain was drastically

improved by combining prior knowledge of the fetal head size with maximally stable extremal

regions detection, bundled Scale-Invariant Feature Transform (SIFT) features and a bag-of-

words model: the whole brain was contained inside the final bounding box in 85% of the

cases [27]. The method, limited to the localization of the fetal brain (bounding box), was

recently further improved with the use of spherical Gabor descriptors and 2D level-sets to

provide an accurate final segmentation of the fetal brain with a Dice overlap metric above

90% [28].
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More recently, those techniques have been integrated in the reconstruction pipeline. Multi-

atlas based brain extraction has been combined with motion correction and SR reconstruction

in [24]. However, brain localization was done manually by reorienting and cropping the LR

images as a first step. Such manual interventions prevent an automatic reconstruction and

processing pipeline. The authors in [29] have proposed to localize the fetal brain using a

Bag-of-Words model using SIFT features plus the RANdom SAmple Consensus (RANSAC)

method for robust fitting and to provide a segmentation of the brain using a combination of a

random forest classifier and a 3D conditional Random Field. Brain extraction is then refined

as the reconstruction progresses, generating a final segmentation of the reconstructed fetal

brain with a mean Dice value of 93%. In contrast to the works in [24, 29], motion correction

and reconstruction uses a bounding box around the fetal brain and brain extraction is only

applied afterward. Nevertheless, maternal tissues may mislead the registration, which may

limit the success of reconstruction.

While prior knowledge is learnt and used as features and scales based on gestational age

in previous works [28, 29], we propose in this work to use age matched templates [30] as

priors to automatize brain localization and extraction in the fetal brain MRI reconstruction

pipeline. Our approach only requires approximate gestational age of the query subject and

does not need to be retrained to be used in cases with abnormal brains. It localizes the brain

in each slice and extracts it using a template-to-slice block matching approach and using

label propagation through deformable registration, therefore effectively estimates a brain

mask through the reconstruction process. We combine brain localization and extraction with

intensity standardization, motion estimation, and SR reconstruction. The integration of this

approach into the reconstruction pipeline improves image reconstruction.

2.4 Novel template-based brain localization and extraction for fetal

MRI

The whole reconstruction pipeline is illustrated by Figure 2.1. Firstly, brain localization is

performed in each of the original acquired stacks (Box I in Figure 2.1) using the technique

described in Section 2.4.1. It generates an initial alignment of the stack and position of the

brain that crops and reorients the image to the template space. Secondly, all stacks are auto-

matically masked using the proposed brain extraction method (Box II in Figure 2.1 and Section

2.4.2) and stack intensities are made consistent through intensity standardization as described

in Section 2.4.3. Thirdly, 6-degrees-of-freedom (DOF) rigid slice-to-volume registration is

performed for motion estimation where the NCC (normalized cross correlation) is used as

the optimization metric. This step includes firstly global stack registration to initialize the

transformations followed by 6-DOF rigid slice-to-volume registration. To reduce the chance of

the registration process to fall into local minima, LR images are first denoised. Once motion

parameters of all slices are estimated, we refine the brain mask in the thick slices. Intensity

standardization (Box III in Figure 2.1) and brain mask refinement (Box V in Figure 2.1) are

repeated at each iteration of slice-to-volume registration for motion estimation (Box IV in
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Figure 2.1). Finally, an HR image is reconstructed by solving the super-resolution inverse

problem (Box VI in Figure 2.1) that follows the Total-Variation (TV) regularized SR algorithm

developed in [8, 10]. All the code was implemented in C++ with Insight Toolkit [31] and

Python.

Automatic Brain 

Extraction

Intensity 

Standardization

Brain Mask 

Refinement

TV 

Super-Resolution 

Automatic Brain 

Localization

Motion 

Estimation
Stacks of Thick Slices 

(Clinical MR scans)

I II III IV

V

VI

Final HR reconstructed

image

Figure 2.1 – Automated pipeline for fetal MRI reconstruction. The brain masks are progressively
refined using the updated motion parameters.

2.4.1 Template-to-slice block matching brain localization

We aim to localize the brain in every stack of slices based on the technique preliminary

presented in [25] where robustness to outlier slices has been improved. In contrast to the

approach presented in [29], we use an age-matched template [30] as prior and match it

directly to each slice through an accelerated block matching approach. The main benefit of

this approach is not only it can retrieve the location of the brain in the image but it can also

retrieve its global alignment in 3D. The localization problem is formulated as a block matching

algorithm in which the similarity between each block, i.e. a whole 2D slice, extracted from the

template and a query image (a fetal MRI slice) is maximized. However, the search space is large

and the problem is computationally heavy as we do not know a priori the position of the fetal

head. We decide to limit the search space by breaking the transformation model to rotation

(θ) and translation (T) parts for which parameters are estimated separately. We estimate

the translation parameters for each rotation angle through the proposed block matching

technique. The algorithm involves three steps: 1) block extraction and dimension reduction,

2) block matching using expectation maximization (EM), and 3) calculation of final transform

by maximizing similarity.

Block extraction and dimension reduction A similarity matrix SM is generated by comput-

ing the Sum of Square Distances (SSD) between a 2D block i in a template image and a 2D

block j in the query image. SMi j is defined as:

SMi j = e−SSDi j∑
k e−SSDi k

(2.1)

Since SSD is not rotation invariant, the template image needs to be initially rotated using a

rotation matrix (θ). Two-dimensional blocks are then extracted from the template and the

similarity matrix SMθ is computed for each rotation matrix. In addition, computation of SMθ

is accelerated by projection of each block to a lower dimensional space though a random
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matrix based on Johnson-Lindenstrauss Lemma [32].

Expectation maximization for match detection Let R be the template image, S be the query

image, and M be a binary matrix representing the match between blocks in the two images [33],

thus EM[Mi j ] = P(Mi j = 1). Matches between blocks and the translation are then iteratively

updated within an EM framework. The expectation step corresponds to calculating

EM[Mi j |R,S,Tθ] = P(Mi j = 1|R,S,Tθ), (2.2)

where Tθ is the translation transferring the template to the fetal brain in the image after initial

rotation θ. Then, the translation T is initially set to zero, and iteratively updated to maximize

the probability of the block ri in R being matched to the blocks s j in S

argmax
Tθ

EM[log (P(R,M|S,Tθ))] = (2.3)

argmin
Tθ

∑
i j

P(Mi j = 1|R,S,Tθ)||Tθ ◦ ri − s j ||p . (2.4)

where ||.||p is the Lp norm. If P(s j |ri ,Tθ)) follows a normal Gaussian distribution, the optimal

solution of Eq. (2.4) is obtained by p = 2, i.e. by least squares optimization. Nonetheless,

because of outliers P(s j |ri ,Tθ)) does not follow a Gaussian distribution. Robust estimation

of the conditional probabilities in Eq. (2.4) is thus desired and achieved through L1 norm

optimization, i.e. p = 1.

Matches are iteratively updated through Eq. (2.2) and Eq. (2.4). Through iterations of the EM

steps, weights are assigned to a set of blocks with highest similarity and are updated to find

the best match.

Final transformation Once the translation T is estimated, we apply T and the initial rotation

θ to the template, and calculate the similarity between the transformed template and the

fetal image. Finally, we select the transformation maximizing the similarity value as the most

probable transformation, that is,

argmax
θ,Tθ

NCC ((Tθ ◦θ)R,S) (2.5)

where NCC corresponds to the Normalized Cross Correlation as image intensities may not be

the same between the query and template images ( see Figure 2.2).

Throughout the rest of this chapter, we will consider T̂1
s = T̂θ̂ ◦ θ̂ as the global rigid transforma-

tion estimated between the s-th query stack S and the template.
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Figure 2.2 – Template-based brain localization and extraction from clinical MR scans. In each
scan s, the initial global alignment and position of the fetal brain (global rigid transformation
T̂1

s ) is estimated using a block matching approach: 2D blocks of the age-matched template
image are matched to slices in the fetal brain MRI scan. It corresponds to the brain localization
step. The contour of the best match is indicated in red. Brain masks are then obtained
through the brain extraction step. It consists of (i) cropping and reorienting the scan to
the template space using T̂1

s , (ii) performing rigid slice-to-template registration to refine the
brain localization within the slice and to correct for inter-slice motion (rigid slice-to-template
transformation T2

j ), (iii) performing a 2D B-Spline deformable registration to take into account
anatomical variability between the processed brain and the template brain (deformation
field D̂s j ), and (iv) propagating the template brain mask to each slice, using the estimated
transformations and deformation field.
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2.4.2 Deformable slice-to-template brain extraction

Propagating the template brain mask by applying the global 3D rigid transformation estimated

by the brain localization method may not be sufficient to obtain an accurate brain mask as 1)

localization may not be perfect, 2) the shape of the template may be different from the query

image, and 3) inter-slice motion can occur inside a stack of slices. In this section we develop a

new deformable slice-to-template brain extraction method to obtain a more accurate brain

mask to address these issues. The same template image used in the brain localization method

is employed as reference here for brain extraction.

Deformable transformations: Let a local coordinate system be defined for every slice of

every query stack s. The transformation between the slice in the s-th query stack and the

template (high resolution volume) is defined as:

xs j = T2
j T̂1

s︸ ︷︷ ︸
Ts j

ys j , (2.6)

where xs j is slice voxel coordinate, ys j is the voxel coordinate in the template and T2
j corre-

sponds to the slice-to-template transformation. T2
j is used to refine the brain localization

within the slice and to correct for inter-slice motion. The deformation between the slice in the

s-th query stack and the template (high resolution volume) is defined as:

x̃s j = T̂−1
s j ys j +Dj(ys j ), (2.7)

where x̃s j is the voxel coordinate of the template deformed in the j -th slice of the s-th query

stack, and Dj is a 2D free-form deformation field. Dj is modeled using B-Splines [34]. We

determined a B-Spline order of 3 with grid size of 6×7 (as fetal brain is more elongated in the

sagittal direction) yields the best compromise between an adequate amount of deformation

and accuracy. It addresses the local anatomical variabilities/deformation that may exist

between the template slice and the query slice. Therefore, the proposed method corrects

for possible brain localization inaccuracy as well as for the inter-slice motion and takes into

account anatomical variability between the processed brain and the template brain.

Metric and optimization: Similarly to the block matching algorithm, we select NCC as

the optimization metric for both registration steps. Each registration phase is performed

through maximizing NCC . Using NCC is very attractive as we can use common optimization

algorithms. By considering this strategy in both steps, we first apply a regular-step gradient

descent algorithm for the optimization of the slice-to-volume registration algorithm. The

free-form deformation, however, has a much larger number of parameters as it is composed

by the set of all the deformations associated with the nodes of the b-spline grid. For efficient

optimization of the free-form deformation model, we choose to employ the Limited memory

Broyden Fletcher Goldfarb Shannon optimization algorithm with simple Bounds (LBFGSB).
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This optimization technique also gives us the opportunity to fix an upper bound, set to 4mm,

on B-Spline control point displacements to prevent non-topology preserving deformations.

Brain label propagation: The brain mask in each slice is obtained by propagating the tem-

plate brain mask to the slice using the estimated deformation field. Figure 2.2 illustrates the

steps of our brain localization and extraction technique.

2.4.3 Intensity standardization

In fetal MRI, image intensities in the stacks may not be coherent with each other. This is due

to inherent bias field inhomogeneity as well as possible maternal and fetal motions. To tackle

this problem, we propose to successively correct slice-by-slice for the bias field using N4 [35]

and standardize the intensities using 1) slice-by-slice mean intensity equalization and 2) global

brain histogram equalization [36] (Box III in Figure 2.1). The rationale behind this approach is

that the statistics and shape of the image histogram should be similar in the stacks as they

represent the same brain anatomy.

2.4.4 Joint brain mask refinement and reconstruction

We propose to integrate our brain extraction method with the SR reconstruction process in

an iterative fashion. The brain masks generated with our brain extraction method are more

reliable for the central slices than those for the extremal slices; however, stacks are acquired in

the three (approximately) orthogonal directions, and the masks of the extremal slices in one

direction correspond to the masks of the central slices in the other two directions. Moreover,

motion estimation and reconstruction is able to recover the alignment of slices in 3D HR space

which allows refinement of the brain masks. We use these properties to design our brain mask

refinement process, which is illustrated by the pipeline in Figure 2.3. It consists of:

(i) mapping slice-by-slice every brain mask in the HR space using the estimated motion

parameters,

(ii) adopting a fusion strategy to obtain a unique HR brain mask,

(iii) filtering using a Markov Random Field to obtain a coherent and smooth HR brain mask,

and finally

(iv) mapping back the HR brain mask to each slice of every stack.

Brain masks mapped in the HR space are combined ((ii) in Figure 2.3) using Simultaneous

Truth And Performance Level Estimate (STAPLE) [37].

Let H be the hidden binary refined HR brain mask and P be the propagated brain masks. The

STAPLE fusion consists of computing the most likely binary refined HR brain mask. STAPLE
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Figure 2.3 – Pipeline for refining LR brain masks. (i) maps slice-by-slice the brain mask of every
stack into the HR space using the motion parameters estimated during motion estimation. (ii)
applies a voting strategy to obtain a unique HR brain mask. (iii) applies a Markov Random
Field filter to obtain a coherent HR brain mask. (iv) maps the refined HR brain mask back to
each slice of the stacks. Note that this has been simplified for illustration; there are usually
more than one stack of slices with their corresponding masks in each direction.

simultaneously estimates a probabilistic consensus brain mask and the quality of each brain

mask using an Expectation-Maximization (EM) framework. It aims to estimate the sensitivity

and specificity parameters
(
p,q

)
characterising the quality of the brain mask that maximizes

the log likelihood funtion

p̂, q̂ = argmax
p,q

ln f
(
P,H |p,q

)
(2.8)

where f
(
P,H |p,q

)
represents the probability mass function of the complete data. The pro-

cess to identify quality parameters of the propagated brain mask and the HR brain mask is

performed through iterations between 1) estimating the hidden HR mask given a previous

estimate of the quality parameters of the propagated brain masks, and 2) estimating the quality

parameters based on how accurate they are given the new estimate of the HR mask.
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A binary estimate of the HR brain mask is made by thresholding the probabilistic HR brain

mask at 0.5. However, it may result in a mask with holes due to motion-induced scattered

nature of the acquisitions (the fetal brain might not be entirely covered by the acquired slices,

thus the computed HR brain mask may contain gaps and holes.). To tackle this problem, we

adopt an approach based on Markov Random Fields (MRF) ((iii) in Figure 2.3). Let C1 and

C2 be a set of two classes. Let’s consider Hi (i -th voxel of the HR brain mask) belongs to C2

with centroid of 1 if it is a brain voxel, otherwise to C1 with centroid of 0. The generation of

the binary estimate of the HR brain mask is performed as follows. A distance classifier is first

employed to determine the Euclidean distance between each voxel to C1 and C2. Then the

distances of each voxel are updated by evaluating the influence of its neighbors based on a

MRF model in a 7×7×3 neighborhood. Influence of the neighbor voxels (in the same slice or

in neighboring slices) are assumed to be equal with a weight value of 1. We used the iterated

conditional modes (ICM) algorithm [38] to minimize the MRF labeling function. Each voxel

is then classified to the class for which it has the minimum distance, and we obtain a closed

binary estimate of the HR brain mask.

Finally, the HR brain mask is mapped back to each slice of every stack using the estimated

motion parameters. As the reconstruction progresses, the segmentation of the original slices

is refined thanks to their recovered alignment in 3D space.

2.5 Results

We carried out quantitative evaluation on clinical datasets. Firstly, we evaluate the perfor-

mance of the proposed brain extraction technique compared to manual brain extraction.

Secondly, we study the impact of rigid slice-to-template registration and 2D B-Spline deforma-

tion on the quality of the reconstructed image. Thirdly, we conduct a perceptual evaluation of

the reconstructed images by expert observers. Finally, we investigate the potential of the brain

mask refinement method to estimate the intra-cranial fetal brain volume in the reconstructed

images. We assessed statistical significance of the results using the Wilcoxon signed-rank test.

2.5.1 Material

Our clinical dataset is formed by 87 stacks of thick slices coming from clinical MRI scans of

15 fetuses with normal brain and 5 fetuses with abnormal brain, aged between 25 and 35

weeks GA (see Table 2.1). Brain pathologies in this study were: abnormal cerebellum (P1),

limited but normal gyration (P2), unilateral ventriculomegaly (P3), occipital meningocele

(P4), and cerebellar hypoplasia (P5). Each fetal MRI scan consists of a set of 3 to 6 stacks,

where at least one stack is available in each anatomical direction. Cases F1-F15, P1, P3 and P4

were scanned at Boston Children’s Hospital, Boston, USA, using three different MRI scanners,

including (1) a 1.5T Philips Achieva using a T2-weighted SSH-TSE sequence with a resolution

of 1.29×1.29×2mm3 (TE/TR = 120/12500ms), (2) a 3T Siemens Trio using a T2-weighted

HASTE sequence with a resolution of 1.17×1.17×3mm3 (TE/TR = 121/1600ms), and (3) a
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3T Siemens Skyra using a T2-weighted HASTE sequence with a resolution of 1×1×2mm3

(TE/TR = 116-119/1600ms). Case P2 was scanned at Centre Hospital Universitaire de Vaud

(CHUV), Lausanne, CH, using a 1.5T Siemens Aera and a T2-weighted HASTE sequence with

a resolution of 1.13×1.13×4.8mm3 (TE/TR = 89/1000ms). Case P5 was scanned at Hôpital

Femme Mère Enfant, Lyon, France, using a 1.5T Philips Achieva and a T2-weighted SSH-TSE

sequence with a resolution of 1.09×1.09×5.4mm3 (TE/TR = 180/7000ms). Our acquisition

settings allows us to acquire a majority of scans only affected by minor to moderate motion.

We did not include scans with severe motion in the analysis.

Table 2.1 – Clinical datasets.

Case GA Stacks Scanner Sequence Resolution

Healthy

F1 27weeks 5 3.0T Siemens Skyra HASTE 1.00×1.00×2mm3

F2 28weeks 5 1.5T Philips Achieva SSH-TSE 1.29×1.29×2mm3

F3 28weeks 3 1.5T Philips Achieva SSH-TSE 1.29×1.29×2mm3

F4 29weeks 4 1.5T Philips Achieva SSH-TSE 1.29×1.29×2mm3

F5 29weeks 4 3.0T Siemens Skyra HASTE 1.00×1.00×2mm3

F6 30weeks 5 1.5T Philips Achieva SSH-TSE 1.29×1.29×2mm3

F7 30weeks 6 3.0T Siemens Skyra HASTE 1.00×1.00×2mm3

F8 31weeks 4 1.5T Philips Achieva SSH-TSE 1.29×1.29×2mm3

F9 31weeks 3 3.0T Siemens Skyra HASTE 1.00×1.00×2mm3

F10 32weeks 6 3.0T Siemens Trio HASTE 1.17×1.17×3mm3

F11 33weeks 3 1.5T Philips Achieva SSH-TSE 1.29×1.29×2mm3

F12 33weeks 5 3.0T Siemens Skyra HASTE 1.00×1.00×2mm3

F13 34weeks 5 1.5T Philips Achieva SSH-TSE 1.29×1.29×2mm3

F14 35weeks 3 1.5T Philips Achieva SSH-TSE 1.29×1.29×2mm3

F15 35weeks 4 1.5T Philips Achieva SSH-TSE 1.29×1.29×2mm3

Pathological

P1 25weeks 4 3.0T Siemens Trio HASTE 1.17×1.17×3mm3

P2 26weeks 3 1.5T Siemens Aera HASTE 1.12×1.12×4.8mm3

P3 26weeks 6 3.0T Siemens Trio HASTE 1.17×1.17×3mm3

P4 30weeks 4 3.0T Siemens Trio HASTE 1.17×1.17×3mm3

P5 34weeks 5 1.5T Philips Achieva SSH-TSE 1.09×1.09×5.4mm3

Total 87

The patient information from all data used in this study was anonymized and de-identified

prior to analysis. Retrospective analysis of this data was approved by the corresponding

commitee / institutional review board commitee: USA (institutional review board commitee

at Boston Children’s Hospital), Switzerland (Cantonal Research Ethics Commitee of Vaud) and

France (Comité de Protection des Personnes).
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2.5.2 Performance of brain extraction

We assess the evolution of the performance of our slice-to-template brain extraction in terms of

brain segmentation quality, as motion-estimation and brain mask refinement progress, using

manual delineation as ground truth. Manual delineations were performed for every stack

after they were reoriented and cropped around the fetal brain thanks to the brain localization

method. Similar to [29], the performance is quantified by three overlap metrics: Dice, recall

and precision. While Dice summarizes recall and precision, recall quantifies the proportion

of true positive brain voxels included in the mask and precision quantifies the proportion of

non-brain voxels excluded. We compare the full brain extraction method that combines global

rigid block matching with rigid slice-to-template registration and 2D B-Spline deformation

with a method that uses only the rigid slice-to-template registration without deformation.

The experiment was performed by repeating the brain mask refinement loop three times. The

results of the rigid-only and the full brain extraction methods as well as results obtained right

after brain localization are reported in Table 2.2. Figure 2.4 illustrates the evolution of the

brain mask of one coronal stack through the developed pipeline.

Table 2.2 – Evolution of brain extraction performance as reconstruction progresses using (i)
rigid-only slice-to-template registration and (II) rigid and B-Spline based deformable slice-to-
template registration (full method). Loop #L corresponds to the Lth brain mask refinement
loop. Loop #0 corresponds to the performance of brain extraction without any refinement.
Best results, specifically in terms of the overall agreement with manual delineation (Dice) and
in terms of the proportion of true positive brain voxels included in the mask (recall), can be
observed using the full method after repeating two times the refinement loop.

Dice Recall Precision

Localization 92.0±3.5 89.8±5.3 94.6±4.0
Extraction

Loop #0
Rigid-only 93.4±2.6 92.7±2.6 94.3±4.3
Full 93.5±2.7 92.9±2.9 94.3±4.3
Loop #1
Rigid-only 94.2±1.9 94.3±2.8 94.1±2.6
Full 94.5±1.6 94.6±2.6 94.4±2.7
Loop #2
Rigid-only 94.3±1.6 94.8±2.4 94.0±2.5
Full 94.5±1.5 94.9±2.4 94.2±2.5
Loop #3
Rigid-only 94.4±1.6 94.7±2.4 94.1±2.6
Full 94.5±1.6 94.9±2.5 94.1±2.6

It is clear that the proposed brain extraction method improves the quality of the brain masks

obtained from brain localization, i.e., only global alignment. The results also show that the

full pipeline helps to enhance the quality of the brain masks compared to the rigid-only
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(a) After localization. (b) After extraction. (c) After three refinement loops.

Figure 2.4 – Brain mask evolution. Arrows indicate extremal slices where the proposed slice-
to-template brain extraction method failed. The brain masks are progressively refined thanks
to motion estimation and reconstruction that helped recovering the slice alignment in 3D HR
space.

approach. This shows it is important to take into account anatomical variability between

the age-matched template brain and the target brain to obtain accurate brain masks. Finally,

it is observed that the proposed iterative strategy to refine the brain masks as the motion

estimation and reconstruction proceed, improves the quality of the brain masks particularly

with an increase in the proportion of true positive brain voxels (recall). This shows that brain

masks in orthogonal stacks are complimentary to each other. Alignment in 3D HR space

recovered by motion estimation can indeed serve as a useful feedback to refine the extremal

slices of stacks where the slice-to-template brain extraction method may fail (See arrows in

Fig. 2.4 (b) and (c)).

2.5.3 Influence of brain extraction on reconstruction quality

Our ultimate goal is to reconstruct high-resolution, high-quality images of the fetal brain while

we achieve brain segmentation simultaneously. Statistically significant improvement of the

quality of brain extraction is however not an indicator of an improvement of the quality of the

reconstructed image. We propose to investigate for the first time the influence of automatic

brain extraction on the reconstruction quality. To do so, we compare the reconstruction quality

in terms of Peak Signal-to Noise Ratio (PSNR) of the final HR image reconstructed using brain

masks obtained by performing (i) only brain localization (no slice-to-template registration),

denoted as Localization, (ii) both brain localization and extraction while using rigid-only slice-

to-template registration, denoted as Rigid-only, and (iii) both brain localization and extraction

while using the full slice-to-template brain extraction method (rigid and B-Spline deformation),

denoted as Full. The HR image reconstructed using manual brain masks is considered the

reference for PSNR calculation. We also study the evolution of the image reconstruction

quality as we iterate over motion-estimation and brain mask refinement. Figure 2.5 shows

the boxplot analysis of the evolution of the PSNR values of 20 cases for 3 methods. Figure 2.6

gives a comparison of the reconstructed images with the different approaches for one case,

representative of all cases.
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Figure 2.5 – Influence of brain extraction on image reconstruction quality in terms of Peak-
Signal-to-Noise Ratios (PSNR) as reconstruction progresses using (i) only brain localization
(Localization-only), (ii) rigid-only slice-to-template registration (Rigid-only) and (iii) the full
method (Full). We use as reference the image reconstructed with the help of brain masks
manually drawn after brain localization. Loop #L corresponds to the Lth brain mask refine-
ment loop. Loop #0 corresponds to the first image reconstructed using brain masks without
any refinement. We can observe a significant improvement of the PSNR values after the first
refinement (Loop #1) that becomes not significant after the second refinement (Loop #2).
Adopting a rigid-only slice-to-template registration significantly improves the quality of the re-
constructed HR image obtained at Loop #2 with an average increase of 3.8dB (p-value=5.9e−4)
in the PSNR value. Using the full method allows us to further enhance the quality with an
average increase of 4.1dB (p-value=3.9e −4) with respect to using only brain localization and
an average increase of 0.3dB (p-value=0.047) with respect to using the rigid-only method.

Quantitative results and visual inspection confirm that a better brain extraction performance

(as shown in Section 2.5.2) results in a better final reconstruction quality. We can observe a

significant increase of the PSNR value after the first refinement loop (Loop #1 in Figure 2.5)

that, in conjonction to the brain extraction performance, stabilizes after the second refinement

(Loop #2 in Figure 2.5), independently of the method adopted. In addition, we can also clearly

see that adopting a rigid-only slice-to-template registration significantly improves the quality

of the reconstructed HR image obtained at Loop #2 with an average increase of 3.8dB (p-

value=5.9e −4) in the PSNR value. Using the full method allows us to further enhance the

quality with an average increase of 4.1dB (p-value=3.9e −4) with respect to using only brain

localization and an average increase of 0.3dB (p-value=0.047) with respect to using the rigid-

only method. This indicates that best brain extraction performace and best reconstruction

quality are obtained with the proposed pipeline after repeating only t wo refinement loops.

Based on these observations, for the next analyses we used images reconstructed by the
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Full

(28.3dB)

Rigid-only

(26.4dB)

Localization

(21.4dB)

Reference

Figure 2.6 – Comparison of reconstruction results of case F10 using (i) only brain localization
(Localization-only), (ii) rigid-only slice-to-template registration (Rigid-only) and (ii) the full
method (Full). Arrows indicate artifacts and non-brain regions included in the reconstructed
image. In general, we can observe a reconstructed image of poor quality when we use brain
masks obtained right after localization (method (i)). Using the brain masks obtained by
methods (ii) and (iii) allows us to have a reconstructed image with a quality very similar to
the quality of the image obtained using manually drawn brain masks (Reference). Only small
differences can be observed at the periphery of the brain.

proposed pipeline after two refinement loops.
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2.5.4 Perceptual evaluation of final reconstruction by expert observers

Quantitative evaluation of the quality of the reconstruction and perceived visual quality may

differ in clinical settings. We propose in this section to conduct a perceptual evaluation by

expert observers to compare the reconstructed images using the fully automated reconstruc-

tion pipeline with two brain mask refinement loops (as supported by results presented in

Sections 2.5.2 and 2.5.3) against images reconstructed using manually drawn brain masks.

We adopted a multi-alternative force-choice approach where we asked two expert observers

to indicate the best HR image in terms of perceived image quality. The two reconstructed

images were presented in random order. The experts had the choice between either choos-

ing one of the images as the best or judging both having similar quality. Ratings of the two

expert observers are reported in Table 2.3, and representative reconstructed images of a patho-

logical brain (Figure 2.7a), diagnosed with unilateral ventriculomegaly, and a healthy brain

(Figure 2.7b) are shown in Figure 2.7.

Table 2.3 – Qualitative rating of final reconstruction by two expert observers. Experts were
asked to indicate the best HR image in terms of perceived image quality between images
reconstructed using the full reconstruction pipeline and images reconstructed using manually
drawn brain masks. For each expert, we report the number of cases when he prefered the
image reconstructed using manually drawn brain masks (Manual), the image reconstructed
with the full reconstruction pipeline (Full), or when both images were judged having similar
quality (Similar).

Manual Full Similar

Expert #1 7 7 6
Expert #2 8 4 8

In summary, images reconstructed by the proposed automatic pipeline were respectively

judged in 13 / 12 cases as having similar or better quality to images reconstructed where

manual brain masks were used. We found three reasons why images reconstructed using

manual brain masks were preferred: 1) the reconstruction quality of both images was similar

but small regions of the brain were missing in the reconstructed image; 2) the reconstruction

quality of both images was similar but small regions outside the brain were included in the

image reconstructed by the proposed pipeline (Figure 2.7b); 3) the region reconstructed con-

taining the brain was similar in both images but a few more artifacts were present in the image

reconstructed by the proposed pipeline. Finally, successful reconstruction of brain images

with severe pathologies such as the unilateral ventriculomegaly (in Figure 2.7a) demonstrates

that the proposed pipeline can be used for fully automatic fetal brain MRI reconstruction

process for both healthy and pathological cases without compromising reconstruction quality.
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(a) Pathological brain after 26 weeks of gestation (b) Healthy brain after 33 weeks of gestation

Figure 2.7 – Brain extraction and reconstruction results of one pathological brain diagnosed
with unilateral ventriculomegaly (Case P3) and one healthy brain (Case F12). An overlay of
the original low-resolution image with the brain mask automatically extracted is shown in the
first row. The reconstruction results obtained using the brain masks manually drawn and the
brain masks automatically extracted are shown in the second and third row respectively. Case
P3 illustrates one case where the expert observers judged both reconstructed images having
the same quality. Case F12 illustrates one case where the expert observers prefered the image
reconstructed using manual brain masks as a small region outside the brain was included in
the fully automated reconstruction. These results, representative of all, showed that using the
proposed method allowed us to obtain fully automatic high-quality reconstructions without
the need for manual brain localization or extraction.

2.5.5 Application to intra-cranial fetal brain volumetry

In this section we evaluate the potential of the proposed full brain extraction method combined

with the proposed brain mask refinement method to estimate intra-cranial fetal brain volumes

in millilitres (mL). We compare the volumes estimated after one iteration of the proposed

pipeline where we use the brain masks manually drawn after brain localization (hence no

need of mask refinement) against volumes automatically estimated using the full method. The

total intra-cranial volume was estimated from the refined HR brain mask. Figure 2.8 shows

the results of Bland-Altman analysis.

This analysis indicates that volumes obtained automatically are highly correlated with the

volumes obtained using manual brain masks. This indicates that the combination of the

proposed brain extraction and brain mask refinement methods (originally designed to update

brain masks in the stacks of slices) can be used to estimate the intra-cranial fetal brain volume

with an average approximate accuracy of −3.1%. But the analysis also shows a tendency

to slightly underestimating the volumes with a mean difference of −8mL while using the
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Figure 2.8 – Bland-Altman plot of intra-cranial fetal brain volumetry results. It shows a good
correlation between volumes estimated using manually drawn brain masks and volumes
estimated using brain masks obtained by the full method. However, we can observe a tendency
to slightly underestimate the volumes (−8.7mL on average) while using the automatic brain
masks.

automatically extracted brain masks.

2.6 Discussion

The proposed method enables automatic brain masking, showing an average Dice overlap

measure of 94.5% with respect to manually-drawn brain masks. In addition, the success

of motion correction is highly dependent on the initial alignment of all stacks. After brain

localization, the orientation of the brain in each stack is known as the localization method aims

to estimate the global rigid transformation between each stack and the template brain which

is correctly oriented. Thus, after brain localization and application of the rigid transform, each

stack is oriented to template orientation making the alignment of all stacks consistent.

The study of the evolution of brain extraction performance (Section 2.5.2) and its impact on

reconstruction quality (Section 2.5.3) shows that it is crucial to refine the global 3D alignment

slice-by-slice as slice acquisition is interleaved and fetal and maternal motion may result in

the inclusion of non-brain tissue and amniotic fluid that can decrease the quality of motion

estimation and consequently image reconstruction. In addition, the inclusion of 2D B-Spline
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deformable registration in the slice-to-template extraction method has shown to generate 1)

superior brain extraction performance, and 2) superior-quality reconstructions compared to

rigid alignment methods. This confirms the importance of taking into account anatomical

variability between the age-matched template brain and the target brain in the brain extraction

framework.

Results point out the success of the integration of the proposed localization and extraction

method into our new reconstruction pipeline that iterates over intensity standardization,

inter-slice motion estimation and brain mask refinement, statistically improving both brain

extraction performance and image reconstruction quality. It has also shown to be a very

promising way to automatically estimate at the same time the intra-cranial fetal brain volume

in the final reconstructed image.

Successful brain localization, extraction, and reconstruction is highly dependent on good

image acquisition practice and on the robustness of the automatic image processing al-

gorithms [1]. Good image acquisition practice addresses the need for 1) appropriate MRI

sequence parameters that allow motion-robust slice acquisitions at about few hundred mil-

liseconds instant of k-space sampling for each slice and 2) multiple repeated scans to provide

the required redundancy for brain extraction refinement, motion estimation, and reconstruc-

tion. Even if good acquisition practice is fulfilled, minor to severe motions can still occurs

resulting in minor to severe artifacts in the acquired slices. This justifies the need for auto-

matic robust image processing algorithms that can detect and reject bad data and use only

good-quality data with minor to moderate motion for reconstruction. With the design and

development of smart motion detection algorithms and robust reconstruction beyond the

methods proposed in [4, 6], it will be possible to handle fetal MRI cases with severe motion

artifacts. Such developments are expected to significantly improve the efficacy of fetal MRI in

terms of accuracy, reliability, and may in-turn lead to much shorter overall scan times while

providing high-quality results.

2.7 Conclusion

In summary, we proposed and evaluated a novel template-based approach automatizing

localization, extraction and refinement of the fetal brain in the fetal MRI reconstruction

pipeline. It combines template-to-slice block matching to localize the brain, a novel slice-to-

template brain extraction approach to find automatically, slice-by-slice, the brain masks, and a

novel brain mask refinement method that updates the mask as reconstruction proceeds. The

results confirm the success of the method: a template-based approach adopted for automatic

brain localization, is followed by brain extraction and brain mask refinement, to generate 3D

reconstructed images of the fetal brain from stacks of slices corrupted with minor to moderate

inter-slice motion artifacts. Automatic brain extraction and reconstruction mitigates the need

for manual brain localization and the subjectivity of manual delineation.

Next chapter will take advantage of this completely automated HR image reconstruction
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pipeline to investigate the feasibility of designing a completely automatic image processing

pipeline for in utero cortical folding quantification.
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3
Quantification of Fetal Cortical

Folding using Super-Resolution MRI
Reconstruction and FreeSurfer

The work in this chapter was presented as first author for poster presentation at the Orga-

nization for Human Brain Mapping (OHBM) 2016 meeting as S. Tourbier, M. Schaer, S. K.

Warfield, R. Meuli, A. Gholipour, M. Bach Cuadra, “Quantification of Fetal Cortical Folding

using Slice-to-Volume Reconstructed MRI and FreeSurfer”.

3.1 Introduction

The excellent contrast between cortical gray matter (GM) and adjacent white matter (WM)

provided by SST2W imaging and the reconstruction of motion-free high-resolution (HR) MR

images of the fetal brain has opened new research perspectives in the analysis of cortical

folding in early brain development. Cortical folding, also known as gyrification is a good indi-

cator of fetal brain maturation as it is one of the most dramatic structural changes happening

during gestation. Especially, major changes occur after around 24 weeks, leading to a dramatic

increase in cortical surface area without any similar increase in cortical thickness. This process

allows more neurons to be organized in the limited intra-cranial spaces and it is thought to

be correlated to human intelligence. It is in turn critical to normal development and early

diagnosis could allow better care for the patient. Brain tissue segmentation with accurate

delineation of the inner surface of the cortical plate is an essential step towards successful

cortical folding quantification in the developing fetal brain.

Segmentation of the cortical GM is very challenging in fetal brain MRI, even with reconstructed

motion-free HR images, primarily because a significant partial volume effect is still present in

cortical GM, which is often only 1 or 2 voxels thick, and which creates ambiguous boundaries

with the adjacent cerebrospinal fluid and white matter tissue. To date, few studies have
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extracted the cerebral cortex and quantified its folding in early development stage.

The authors in [1] proposed for the first time to reconstruct 3D cortical surfaces from MR

images and to compute the global gyrification index to investigate fetal cortical folding pat-

terns happening in the 25 to 35 GA range. Cortical GM was extracted using a traditionnal

age-dependent atlas-based segmentation method followed by manual corrections for an

accurate delineation. The authors in [2] proposed to model early folding in the normal fetal

brain in the 20 to 28 GA range using morphometric analysis of the cortical plate. Cortical

GM was segmented adopting the expectation-maximization with Markovian regularization

(EM-MRF) framework [3] which uses a spatio-temporal probabilistic atlas as prior. Based on

the same EM-MRF segmentation framework, the authors in [4] have contributed with a local

approach where the local mean curvature of the inner cortical plate is computed to quantify

folding in the 22 to 25.5 GA range. Recently, the authors in [5] presented a completely auto-

matic image processing framework for successful quantification of cortical folding patterns

over a wide GA range (22 to 39 weeks) involving HR image reconstruction, extraction of the

cortical surface and computation of six different curvature measures. The EM-MRF frame-

work was also adopted in this work to extract the cortical GM but an additional second order

MRF penalization term was introduced for addressing the partial volume problem at cortical

boundaries, essential in late gestational fetal brain with complex cortical structures. It was

subsequently extended to the construction of a spatio-temporal cortical surface atlas [6]. In

all existing works, cortical surfaces have been reconstructed using their own designed method

based either on spherical-mesh deformation algorithms [1, 5, 6] or using topology-preserving

marching cubes algorithms [2, 4].

In this chapter, I will take advantage of the completely automated HR image reconstruction

pipeline, presented in Chapter 2, and I will investigate the feasibility of designing a completely

automatic image processing pipeline for in vivo prenatal cortical folding quantification. For

this purpose, I propose as a first step to use the age-specific multi-atlas-based brain tissue

segmentation method, which has shown to capture well anatomic variability in severe forms

of ventriculomegaly, to segment the brain into different tissue types which can be then used to

create the WM volume. As a second step, I use FreeSurfer (http://surfer.nmr.mgh.harvard.edu),

an open-source brain imaging software, widely adopted in the neuroscientist community for

analysis and visualization of adult brain MRI, for the analysis of in-vivo fetal cortical folding

from MR images reconstructed with the proposed automated pipeline. This approach explore

the feasibility of taking advantages of the existing set of automated tools provided of the adult

brain’s cortical surface to 1) extract fetal cortical surfaces, 2) to compute brain maturation

indicators, and 3) to render the results. Preliminary results on three fetuses in the 27 to 32 GA

range will show that quality of the images reconstructed with the proposed pipeline is now

adapted to subsequent tissue segmentation and cortical folding quantification tasks.
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3.2 Contributions

This work was initiated during a short visit at the Cognitive and Systems Neuroscience Labora-

tory, Standford, USA. My personnal contributions are the following:

• I collected clinical fetal scans at the Boston Children’s Hospital and reconstructed the

HR image using the automated pipeline that I designed.

• I familiarized with the multi-atlas multi-shape segmentation algorithm, performed

tissue segmentation of the reconstructed images, and formed the WM volume by com-

bining the tissue labels lying inside.

• I investigated and identified, in collaboration with Dr. Marie Schaer, a FreeSurfer expert

in cortical folding quantification, which parts of the FreeSurfer recon-all pipeline should

be used and how they be adapted when applied to fetal brain MRI to extract cortical

surfaces and compute folding features.

• I extracted cortical (inner, pial, outer-pial) surfaces and computed the curvature maps

as well as the local gyrification index.

• I rendered the results using the FreeSurfer tksurfer visualization tool.

• A generic script has been provided to facilitate reprocibility of this work.

3.3 Methods

The proposed image processing framework (Figure 3.1) consists of combining: (1) automatic

reconstruction of a HR motion-corrected image where fetal brain is isolated (Steps 1.1 and 1.2

in Figure 3.1), (2) automatic estimation of the white matter (WM) volume (Steps 2.1 and 2.2

inFigure 3.1), and (3) automatic extraction of the cortical surface (Step3.1 in Figure 3.1) and

computation of folding measures (Step 3.2 in Figure 3.1).

Automated image reconstruction The HR image is reconstructed using an entirely auto-

mated reconstruction pipeline. It involves brain localization and extraction, intensity stan-

dardization, motion estimation, brain mask refinement, detailed in Chapter 2, and the efficient

TV SR reconstruction, detailed in Chapter 1. In addition, the active surface algorithm used to

extract the pial surface was designed for adult brain T1W MR images and is looking for a bright

region as a stopping criteria of surface evolution which is not observed in fetal MRI. As a result,

a white halo (width of 2 voxels) is added around the brain, which reduces the risk of infinite

evolution of the pial surface into the background. This creates the initial MR image that will

be used by FreeSurfer (referred as T1.mgz after data preparation and format conversion).
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Figure 3.1 – Image processing pipeline for in-vivo fetal cortical folding quantification taking
advantage of the set of tools provided by FreeSurfer. Automatic high-resolution image recon-
struction, insertion of the white halo, automatic brain tissue segmentation and creation of the
white matter volume are implemented in C++ with the help of the ITK library.

Brain tissue segmentation Seven classes of tissue are segmented in the HR image using the

multi-atlas multi-shape segmentation method [7]. In contrast to the EM-MRF framework

which incorporates prior information from a spatio-temporal probabilistic atlas, this approach

is based on the recent probabilistic shape optimization framework [] which incorporates

shape model of structures, regional intensity values and prior information from multi-atlas

segmentations. The multi-atlas segmentation consists of using multiple atlases, applying a

pairwise registration between the target image and each atlas followed by label propagation,

and the multi-atlas segmentation is obtained using a robust label fusion strategy. The STAPLE

algorithm is used for robust label fusion which gives less weight to less reliable propagated

labels from registered atlases than those from more reliable ones. Multi-atlas approach have

been supported by a large number of works in the literature to allow an increase in segmenta-

tion accuracy and robustness when compared to a single-best-atlas approach [?]. However,

the success of multi-atlas approaches is trongly influenced by the accuracy of inter-subject reg-

istration, and thus may not be enough accurate in the presence of large anatomical variations,

even while a robust voting is adopted. Using shape models and intensity-based information

from multi-atlas segmentation as priors in the shape optimization framework has shown

to achieve robust and accurate segmentation of the ventricules in severe forms of ventricu-

lomegaly where there exist a large anatomical variability. After brain tissue segmentation, the

initial WM volume used by FreeSurfer is created (referred as wm.mgz after data preparation

and format conversion), by combining all tissue labels lying inside it.

Cortical folding quantification The whole sequence of instructions for preparing data and

performing surface extraction and cortical folding quantification using FreeSurfer is detailed

in a generic script (Figure 3.2). Data preparation involves creation of the subject directory

(routine “mksubjdirs”), data conversion to “MGZ” format (routine “mri_convert”), creation

of additional input images required by FreeSurfer, computation of the sagittal and transversal
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cutting planes based on the corpus callosum and pons coordinates and generation of two solid

masses of connected voxels using a connected components analysis, each representing a single

cortical hemisphere (routine “mri_fill”). This is followed by the execution of specific parts

of the FreeSurfer “recon-all” pipeline intended to extract the cortical surfaces and compute the

folding measures. First, a two-pass procedure is performed to extract smooth inner and pial

cortical surfaces using surface triangle-based tessellation (flag “-tessellate”) of the two cortical

masses followed by a deformable surface algorithm guided by local MRI intensity values

(flags “-smooth1” and “-smooth2”), interleaved by surface inflation (flag “-inflate1”), quasi-

homeomorphic spherical transformation (flag “-qsphere”), topological defects removal (flag

“-fix”) and creation of the new topology-corrected tessellation (flag “-white”). The resulting

smooth inner and pial surfaces are then inflated (flag “-inflate2”), necessary in order to then

perform a spherical transformation (flag “-sphere”) and register the transformed surface to

the spherical atlas (flag “-surfreg”). The step “-jacobian_white” computes the amount of

distorsion encountered by the white surface during the registration to the spherical atlas (Step

“-surfreg”). The step “-avgcurv” resamples the average curvature maps from the atlas to that of

the subject. Finally, all cortical surfaces are generated (routine “mris_make_surfaces”) and

the local gyrification index is computed at each point of the inner and pial surfaces (recon-all

called with the flag “-localGI” only).

3.4 Results

We process three fetuses with normal brain, denoted as C1, C2 and C3. Acquisitions were

performed at the Boston Children’s Hospital respectively during the 27th (C1), the 30th (C2)

and the 32th (C3) week of gestation. A Siemens Skyra 3T MR scanner with HASTE sequences

(TE/TR = 121/1600ms) was used to acquire 5 (C1), 6 (C2) and 6 (C3) 3D orthogonal stacks

of thick 2D T2w MR images (1.2x1.2x2mm3), with at least 1 stack per anatomical direction.

Figure 3.3 presents quantitative results obtained with the proposed image processing pipeline,

with extracted surfaces, curvature and local gyrification measures. The atlas dataset used in

this work is composed by a set of age-specific MR template images in the 21 to 37 GA range [?]

and a set of 80 reconstructed HR images of subjects. Templates and reconstructed images in

the same GA range of the target fetal brain were used in atlas-based segmentation. Manual

correction of the original WM volume were not performed in this study but would be required

for an accurate quantification, which was beyond the scope of this work.

3.5 Discussion

Figure 3.3 shows that the quality of reconstructed HR images has enabled brain tissue seg-

mentation and cortical folding quantification tasks. Despite significant differences in size,

shape, and complexity of the fetal brain and adult brain, the use of active surface deformation

algorithms such as the one provided by Freesurfer seems to be helpful in characterizing fetal

cortical surface features. Thanks to the curvature maps, we can well observe sulci (areas with
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1 # ! / bin/bash

3 ## Go into the FreeSurfer " subjects " directory .
cd $SUBJECTS_DIR

5

## Creation of a new subject directory (XXX) .
7 mksubjdirs XXX

9 ## Go into the subject directory .
cd XXX

11

## Copy your HR reconstructed image ( with the white halo ) and i t s the corresponding WM
volume image into the " orig " folder .

13 cp "YOUR_HR_IMAGE_WITH_HALO_FULL_PATH" " orig /HR_halo_image . n i i "
cp "YOUR_WHITE_MATTER_VOLUME_IMAGE_FULL_PATH" " orig /wm. n i i "

15

## Convert images in the FreeSurfer "MGZ" format . Flag "−cm" i s very important for the
WM volume image ; i f not set , the " m r i _ f i l l " routine w i l l f a i l .

17 mri_convert orig /HR_halo_image . n i i T1 .mgz
mri_convert −cm orig /wm. n i i wm.mgz

19

## Prepare the input images required by FreeSurfer routines ( brain . mgz, norm. mgz, bain .
f i n a l s u r f s .mgz) .

21 cp T1 .mgz brain .mgz
cp T1 .mgz norm.mgz

23 cp brain .mgz brain . f i n a l s u r f s .mgz

25 ## Create the subcort ical mass from which the " orig " surface i s b u i l t . You need here to
provide the voxel coordinates of both the corpus callosum and the pons . They can

be i d e n t i f i e d using the " tkmedit " program .
m r i _ f i l l −PV 128 132 128 −CV 128 110 138 wm.mgz f i l l e d .mgz

27

## Normalize the HR image
29 mri_normalize T1 .mgz brain .mgz

31 ## Estimate c o r t i c a l surfaces and compute average curvatures .
recon−all −t e s s e l l a t e −smooth1 −i n f l a t e 1 −qsphere − f i x −noaseg −white −smooth2 −

i n f l a t e 2 −sphere −surfreg −jacobian_white −avgcurv −s XXX
33

## Create c o r t i c a l surfaces
35 mris_make_surfaces −white NOWRITE −mgz −T1 brain −noaparc −noasef XXX lh

mris_make_surfaces −white NOWRITE −mgz −T1 brain −noaparc −noasef XXX rh
37

## Compute global / l o c a l g y r i f i c a t i o n indexes ( GI/LGI )
39 recon−all −no−isrunning −s XXX −localGI

Figure 3.2 – Generic bash script that uses FreeSurfer to extract cortical surfaces and quantify
cortical folding.

positive value) and gyri (areas with negative value) of the cortex. Visual assessment confirms

that cortical folding is more pronounced as the fetus is older. In addition, we can see in the

LGI map that the Sylvian fissure corresponds to the region where the most important amount

of cortex is buried within the sulcal folds in its surroundings. However, it can be noticed that
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Figure 3.3 – Reconstructed cortical surfaces from fetal MRI and resulting quantitative maps of
cortical folding for cases C1, C2 and C3 diagnosed with normal brains.

deformation towards the pial surface fails in some region because the algorithm originally

developed for the adult brain is based on strong assumptions on image contrast, which differ

between T1w adult and T2w fetal brain MRI, to guide it and stop it. The accuracy of the estima-

tion of the cortical surfaces could also thus be increased by adapting the intensity-based prior

to contrasts observed in fetal MRI. Moreover, manual correction of the original white matter

volume were not performed in this study but would be required for an accurate quantification,

which was beyond the scope of this work.

3.6 Conclusion

Results have shown the reconstruction of HR images using state-of-the-art TV SR, combined

with state-of-the-art brain tissue segmentation and active surface deformation algorithms

can provide meaningful indicators of brain maturation. However, the proposed approach

has still few limitations. Firstly, a white halo has to be inserted around the fetal brain in

the reconstructed high-resolution image to avoid the risk of infinite deformation of the pial

surface as the surface deformation algorithm provided by FreeSurfer is looking apriori for a

bright region to stop. Secondly, the quality of cortical surface reconstruction highly depends

on the quality of prior automatic tissue segmentation. We have noticed the proposed pipeline

performs relatively well on young fetus (around 24-28 GA) as cortex is a quite smooth structure
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that facilitates the success of cortex segmentation. Delineation of the inner cortical plate

nonetheless may not be perfect which may requires manual correction tasks in the white

matter volume for accurate cortical quantification, as it was done in [1]. Working with older

fetuses may involve more manual correction as cortical folding is more pronounced, which

makes the segmentation more prone to errors (challenging). Future work can extend the

database to study if a statistical group comparison could be also performed using Freesurfer

as it is commonly used in adult brain MRI studies.

Chapter 4 will present new methodological improvements of the reconstruction pipeline

aiming at improving the segmentation and consequently the quantification, whose accuracy

highly depend on the quality and resolution of the reconstructed image.
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4
Further

Improvements

4.1 Introduction

The main contributions of this thesis have been developed with the aim of providing a more

standardized and efficient motion-free HR reconstruction of fetal brain MR images, whose

resolution-related problem was addressed in the slice-select dimension. In this chapter, we

present new improvements with the aims to coherently correct slice-by-slice bias field intensity

inhomogeneities, make the Total Variation algorithm robust to outliers, join segmentation

and reconstruction processes, and reduce the partial volume effect, with the ultimate goal to

allow a more accurate quantitative analysis.

Section 4.3 will present a new slice-by-slice bias field inhomogeneity correction method that

takes advantage of the iterative reconstruction framework to estimate a coherent bias field in

the reconstructed image which is then propagated to each slice of the scans. This approach

allows the reconstruction of HR images free of smooth bias field intensity inhomogeneities. In

addition, reconstructed images using the currently designed TV algorithm might be corrupted

by non-Gaussian noise and the presence of outliers in the data emerging from possible

intensity inhomogeneities and inaccurate slice motion estimation. Section 4.4 will present

a new TV algorithm for super-resolution which incorporates the robust Huber norm in the

fidelty term to improve its robustness to more generic outliers, as adopted by the authors in [1].

Section 4.5 will present a novel framework where reconstruction and segmentation are seen as

joint processes. As segmentation strongly depends on the quality of the reconstruction, such

an approach can produce images with enhanced edge information that will ultimately improve

their segmentation. Finally, an other remaining problem is the segmentation of thin structures,

such as the cortical GM, which are still affected by a significant partial volume effect in the
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in-plane dimensions which migh mislead the capture of the boundaries between the interface

of the tissues. Increasing the isotropic resolution of the HR image, e.g. addressing the spatial

resolution increase in the through-plane dimension as well as in the in-plane dimensions,

becomes very attractive to reduce this problem. Although there still exists a controversy in

the MRI SR community and especially motivated by the works presented in [2, 3], Section 4.6

will investigate the feasibility of increasing the isotropic resolution by refining the mapping

between voxels in the scans and voxels in the reconstructed HR image and taking advantage

of sub-voxel motion that can occur prior to imaging.

For the sake of clarity, I recall here the contribution of this thesis presented in Chapter 2, the

primal-dual TV formulation of the super-resolution problem:

min
X∈SX

max
P∈SY

〈DX,P〉−F?(P)︸ ︷︷ ︸
‖X‖T V

+λ
2

K∑
kl

‖Hkl X−XLR
kl︸ ︷︷ ︸

ekl

‖2 +δC (X)︸ ︷︷ ︸
X≥0

. (4.1)

where X corresponds to the original primal variable (the image to reconstructed) and P corre-

sponds to the dual variable introduced, F? denotes the barrier function of the `∞ unit ball,

that is F?(P) = 0 if |Pi | ≤ 1 for 1 ≤ i ≤ n, otherwise F?(P) =+∞ and δC (X) is a barrier function

of the convex set C := {X ≥ 0}. This contribution will be extended in Sections 4.5, 4.4 and 4.6.

4.2 Contributions

In this chapter, I present new improvements aiming at providing better quality images for a

more accurate quantitative analysis. The contributions consists of:

• The design and implementation of a new bias field correction method that can estimate

a coherent bias field in the reconstructed image which is then used to correct the bias

field in the original LR images taking advantage of the super-resolution framework. Such

an approach has shown to be able to reconstruct a HR image with reduced artifacts and

quasi free of bias field inhomogeneities.

• The design and implementation of a new robust TV algorithm based on the robust

Huber norm where I preliminary show on simulated fetal data, where a number motion

error residual have been introduced, that it can provide more robust reconstruction at

higher peak-to-signal ratio.

• The design and implementation of a novel joint reconstruction-segmentation frame with

a new segmentation-driven TV SR algorithm. Preliminary results show how discrima-

tive segmentation included in the super-resolution model could potentially influence

segmentation and how segmentation could potentially influence image contrast in an

iterative reconstruction-segmentation setup.
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• A last contribution is the redefinition of the SR formulation in order to address in-plane

resolution improvement, where I preliminary compared the impact in the frequency do-

main with adopting super-resolution followed by interpolation and I preliminary show

that segmentation and consecutive quantitative volumetry results are well influenced

by the resolution.

4.3 Slice-by-slice intensity inhomogeneity correction from a globally-

estimated bias field

4.3.1 Motivation

Bias field correction constitutes an important preprocessing step for subsequent image analy-

sis tasks of MRI. The bias field is a low-frequency and smooth signal corrupting MR images

due to inhomogeneities in the magnetic fields of the scanner. It reduces the high frequency

content of the image and changes intensity values of voxels in the way the same tissue can

follow different graylevel distribution across the image. It can degrade the performance of seg-

mentation algorithms that use graylevel intensity values of the pixels in the processed image.

During the last years, several approaches have been developed for correcting the non-uniform

intensity caused by the bias field signal. The two most popular are the parametric bias field

correction (PABIC) [4] and the improved nonparametric nonuniform intensity normalization

(N4) algorithms [5]. The main difference between the two is: PABIC has to be supervised with

an a priori knowledge on the tissue intensity class mean and standard deviation while N4 is

fully automatic.

Bias field corruption is highly present in fetal MRI scans because of the distance of the fetal

brain from the receiver coils, and even emphasized when SST2W imaging is performed at 3T.

Moreover, intensity inconsistencies could affect the performance of motion estimation and

reconstruction resulting in undesired artifacts in the reconstructed images, which reinforces

the importance of bias field correction in fetal MRI reconstruction. Different solutions have

been proposed in the literature to address this problem, either as a image preprocessing

task [1, 6, 7] or integrated in the reconstruction framework [8].

In our previous works, it has been addressed as a preprocessing step where each scan was

independently corrected using N4. N4 was initially performed in the whole scan volume

(3D) (Chapter 1) and then a slice by slice (2D) correction was adopted which better took into

account fetal motion (Chapter 2). Despite the last technique in combination with inter-slice

mean shift correction and brain intensity histogram equalization has shown to make intensity

more coherent over most all slices providing satisfactory reconstruction results, a global and

smooth intensity bias field may still be present in the reconstructed image, which will affect

the performance of further brain tissue segmentation tasks. This section will present a novel

bias field correction method that takes advantage of the reconstruction framework to provide

a reconstructed image free of smooth bias field inhomogeneities.
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4.3.2 Method

The approach estimates using N4 a coherent and smooth bias field (step (IX) in Figure 4.1)

from the reconstructed image, which is then propagated to each slice of the scans using the

estimated motion and each slice is corrected (step (X) in Figure 4.1). N4 is employed as it

requires no a priori knowledge and has shown to be relatively performant in a variety of

imaging acquisition strategies. It assumes that the bias field has a multiplicative model where

the formation of an MR image is:

X(i ) = UHR (i )× IHR (i )+n(i ), (4.2)

where X is the intensity in the reconstructed image, IHR is the bias field inhomogeneity, UHR

is the true intensity and n is the noise. The bias field is estimated in the log space, making the

model additive:

log(X−n) = log(UHR )+ log(IHR ),

log(UHR ) = log(X−n)− log(IHR ).
(4.3)

(VIII) 
Brain Mask Refinement

(VII) 
TV Super-Resolution 

(I) 
Brain Localization and 

Extraction

(VI) 
Motion Estimation

Stacks of Thick Slices 

(Clinical MR scans)

HR reconstructed image 

(V) 
Intensity Rescaling in [0,255] 

(II) 
Inter-Slice Intensity Mean 

Shift Correction

(IV) 
Brain Histogram Equalization

(IX) 
Global Bias Field Estimation

(X) 
Slice-by-Slice Bias Field 

Correction

(III) 
Slice-by-Slice Bias Field 

Estimation and Correction

Figure 4.1 – Reconstruction pipeline for fetal MRI using the proposed bias field correction
method. The approach takes advantage of the reconstruction framework to provide a recon-
structed image free of smooth bias field inhomogeneities. New processes involved in the
reconstruction pipeline are highlighted in red. Step (IX) estimates a coherent and smooth
bias field from the image reconstructed at step (VII) using N4 [5], which is then propagated
to each slice of the scans using the motion estimated at step (VI) and used to correct bias
field inhomogeneity in each slice (Step (X)). Our solution is thus able to take into account
inter-slice motion and to correct for the smooth bias field. Note that the previous independent
slice-by-slice bias field correction is performed at the first loop (Step (III)) since the method is
dependent on the preceding motion estimation and super-resolution steps.
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The N4 method seeks iteratively the smooth multiplicative field that maximizes the high

frequency content of the distribution of tissue intensity. Specifically, N4 performs a bias

correction step on the corrected image from the previous iteration to estimate the residual

bias field. As it is designed to converge such that the residual bias field tends to 0, the total bias

field estimated at iteration n became the sum of the first n residual bias field. Once the bias

field IHR is estimated from the reconstructed image, the bias field ILR
kl of each slice of the scans

is generated through the propagation of IHR using the forward model of the super-resolution

problem:

ILR
kl = Hkl IHR , (4.4)

and each slice Ykl is corrected from its bias field:

ULR
kl (i ) = Ykl (i )/ILR

kl . (4.5)

Therefore, the global bias field can be more coherently corrected slice-by-slice, accounting for

possible inter-slice motions, which results in the reconstruction of images free of the smooth

bias field. A proof of concept will be provided in the next section.

4.3.3 Results

To illustrate the improvement in reconstruction quality, we will show in this section the

reconstruction results we obtained for one specific subject diagnosed with unilateral ventricu-

lomegaly, illustrative of all. Acquisition was performed during the 26th week GA at Boston

Children’s Hospital, Boston, USA, using a 3T Siemens Skyra with a T2-weighted HASTE se-

quence (TE/TR = 116-119/1600ms). The dataset is formed by 6 orthogonal scans of thick slices,

two per anatomical direction, with an anisotropic resolution of 1×1×2mm3. An HR image

has been reconstructed using (1) the previous pipeline where independent slice-by-slice bias

field estimation and correction were performed (see Chapter 2 for more details) and (2) the

new pipeline integrating our coherent slice-by-slice bias field correction approach (Figure 4.1).

Figure 4.2 shows the reconstruction results as well as the bias fields estimated using the two

different approaches.

Visual inspection shows clearly that our method allows the estimation of a coherent bias field

(c) which provides a reconstructed image quasi free of smooth intensity inhomogenities. It can

also be observed that the uncohenrency of the bias field used previously introduces intensity

artifacts that are removed with the new approach. This new pipeline will be adopted in the

rest of the works presented in this chapter.

93



Chapter 4. Further Improvements

(a)

(b)

(c)

(d)

(e)

Figure 4.2 – Visual comparison of reconstruction results obtained using the previous and the
improved slice-by-slice bias field correction methods. (a) presents one of the original acquired
scan. (b) presents the bias field estimated independently slice by slice using the previous
method. (c) presents the bias field estimated using the improved method and projected into
the space of the scan. (d) presents the HR image reconstructed when using the previous bias
field correction method. (e) presents the HR image reconstructed when using the improved
method. It can be observed that the proposed method allow the estimation of a coherent bias
field (c) which provides a reconstructed image quasi free of smooth intensity inhomogenities.
It can also be observed that the uncoherency of the bias field used previously introduces
intensity artifacts that are removed with the new approach.

4.4 A robust Total Variation algorithm based on the Huber norm

4.4.1 Motivation

The currently designed TV algorithm assumes a Gaussian noise. However, possible intensity

inhomogeneities can remain and inaccurate slice motion estimation can occur, which might
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modify the nature of the noise and might creates the presence of outliers in the data. The cur-

rent `2-norm estimation adopted is not robust to such a circumstance since its corresponding

influence function is not bounded. Different solutions have been proposed in the literature

to tackle this problem, either by adopting a robust M-estimation SR formulation based on

the Huber norm [1] or by integrating a probabilistic outlier model in the SR formulation [8].

Although the probabilistic approach has proven to be the most performant [8], the Huber

norm in the robust M-estimation approach is convex and therefore, the same fast optimization

scheme can be used, as presented in Chapter 1. This constitutes a great advantage over the

probabilistic approach.

In this section, I will extend the robust M-estimation as described by the authors in [1] to our

efficient TV SR algorithm in order to improve its robustness to outliers.

4.4.2 Method

In this section, I will present a new Total Variation SR algorithm where the `2-norm of the

error ekl in Equation (4.1) has been replaced by the robust Huber error norm function ρH

defined as

ρH (e) =
e2/2, if |e| < κ
κ|e|−κ2/2, if |e| > κ

(4.6)

where κ is a tuning parameter. It allows the estimation to be close to the `2-norm estimation

when κ is large and to be close to the `1-norm estimation when κ is small (Figure 4.3).

e0 κ

1

Low error High error

`2-norm `1-norm

ρH ,ω

ρH

ω

Figure 4.3 – Plots of the Huber error norm function and its associated weight function.

In this work, the parameter The parameter κ of the Huber norm is calculated based on the

median absolute deviation (MAD) method [9] so that

κ= t ×K ×median(|e−median(e)|), (4.7)
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where e is the error vector, K = 1.4826 is a consistency constant, t is the number of MADs from

the median the huber norm threshold κ is. Adopting the MAD allows a consistent estimator of

the standard deviation of the errors. We set the value of t depending on the severity of motion

in the scans. Based on [10, 11], we take t = 3 to be very conservative when a little/no motion

occurs, t = 2.5 to be moderately conservative when more motion occurs, and t = 2 to be poorly

conservative when severe motion occurs. When a significant number of observations are

available, statistical methods are however considered to be more reliable for detecting and

rejecting extreme outliers as compared to poorly tuned redescending influence functions [?].

By taking its associated weight function ω, defined as ω(e) = (1/e)∗dρH (e)/de (Figure 4.3),

the primal-dual TV formulation of the super-resolution problem becomes

min
X∈SX

max
P∈SY

〈DX,P〉−F?(P)︸ ︷︷ ︸
‖X‖T V

+λ
2

∑
kl

‖Ωkl (ekl )‖2
2 +δC (X)︸ ︷︷ ︸

X≥0

, (4.8)

whereΩkl is a weighting diagonal matrix with its i -th diagonal element defined byω(ekl i ))ω(ekl )

where the weighting functions of the individual voxel error and the slice error are ω(ekl i ) =
min(1,κ1/|ekl i |) and ω(ekl ) = min(1,κ2/‖ekl‖2

2) respectively. It allows us to penalize high error

values by giving them `2-norm weights while giving to low error values `1-norm weights

(Figure 4.3). The new algorithm consists now in iterating

Pn+1 = proxσn F?(Pn +σnDX̄n) (4.9)

Xn+1 = min
X≥0

λ

2

∑
kl

‖Ωkl (Hkl Xn −XLR
kl )‖2 + 1

2τn ‖X−Xn −τnDt Pn+1‖2 (4.10)

θn+1 = 1/
√

1+2ρτn , τn+1 = θn+1τn ,

σn+1 =σn/θn+1 (4.11)

X̄n+1 = Xn+1 +θn+1(Xn+1 −Xn) (4.12)

where the Euler-Lagrange solution of Eq. (4.10) is λτn(ΩX−XLR )+X−W = 0 where Ω :=∑
kl (Ωkl Hkl )tΩkl Hkl and XLR := ∑

kl (Ωkl Hkl )t XLR
k (note that Ω and XLR should be com-

puted at each iteration) and the iterative semi-implicit scheme is defined as Xl+1 =PC (Xl −
∆tλτn(ΩXl −XLR )+∆tW)/(1+∆t ) where PC is the projection operator onto the set X ≥ 0 and

∆t = 0.1 in all experiments.

4.4.3 Results

To evaluate the robustness of our algorithm, we used simulated fetal data where controled

slice motion estimation errors were introduced. A T2-weighted TurboFLASH image of a

mature newborn was used to simulate fetal brain MRIs, as in [1, 8]. The image was acquired

on a 3T Siemens Tim Trio scanner (T R/T E = 4000/3.7ms, with 1.2mm slice thickness and
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0.78mm2 in-plane resolution. We consider the isotropic HR image as the original image

that was bias field corrected [5] and isotropically interpolated to a resolution of 1mm using

B-Splines. Six LR images, two per acquisition direction, with 1mm2 in-plane resolution and

3mm slice thickness, were simulated from the isotropic HR image by applying downsampling

and blurring operations. Shifts of 1mm were also introduced in images with similar acquisition

direction.

We assess the performance of our algorithm w.r.t. the residual motion error by randomly af-

fecting 1/5 (modest), 2/5 (moderate), 3/5 (high) of the slices in each LR images. The amounts

of residual motion errors were randomly added to both translation and rotation transform

parameters, similarly to [12] and following [1, 6, 13]. Translation errors were selected in

[−5mm,5mm] and rotation errors were selected in [−10◦,10◦]. The reconstruction quality

was evaluated with the Peak-Signal-To-Noise Ratio (PSNR). We used as reference the image re-

constructed using the original TV algorithm where no residual motion errors were introduced.

Results are presented in Figure 4.4.

We observe that the reconstruction quality always degrades independently of the data fidelity

term adopted as the number of slices affected by error motion residual is important. A robust

norm used in the data fidelity term has shown to be able to provide reconstructed images

with better quality (higher PSNR) a reduced amount of artifacts coming from outliers. In

addition, the Huber norm of the new algorithm is less sensitive to residual errors of the motion

estimation than the previous `2-norm. Finally, we observe that the Huber-norm threshold

providing the best restoration decreases as the number of affected slices increases. This

confirms that the Huber norm threshold should be set with respect to the severity of motion

in the scans. The new robust TV algorithm will be adopted in the rest of this chapter.

4.5 A segmentation-driven Total Variation super-resolution algorithm

4.5.1 Motivation

Medical image segmentation and reconstruction have traditionally been regarded as separate

processes, even though segmentation performance directly depends on the quality the image

reconstructed. Adopting an integrated reconstruction-segmentation process can provide

a more efficient and accurate segmentation solution. A joint reconstruction-segmentation

framework has been recently proposed by the authors in [14] that combines reconstruction of

MR images from undersampled k-space (known as compressed-sensing) with segmentation

based on Gaussian mixture models (GMM). Results have demonstrated that the incorporation

of the GMM term in the reconstruction process provides a segmentation that degrades less

with increasing undersampling compared to separated reconstruction and segmentation.

In this section, we extend this framework to perform for the first time a joint segmentation-

reconstruction process in fetal brain MRI data. In contrast to the initial framework where

reconstruction was addressing a compressed-sensing problem (reconstruction of anatomical
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Figure 4.4 – Comparison of Total Variation Super-Resolution algorithms using in the data
fidelity term the `2-norm (first row), a poorly conservative Huber norm (second row), a moder-
ately conservative Huber norm (third row), and a very conservative Huber norm (fourth row),
for 1/5 (Modest), 2/5 (Moderate), 3/5 (High) of slices affected by error motion residual. Their
PSNR measures with respect to the image reconstructed whith no introduced residual motion
error are reported in their bottom-right corner. We can that a robust norm adopted in the
presence of outliers due to inaccurate slice motion estimation is able to provide reconstructed
images with higher PSNR. This shows that our algorithm is less sensitive to such outliers than
the previous `2-norm-based algorithm.

images from undersampled k-space), in our framework, reconstruction is addressing the

super-resolution problem in the spatial domain.
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4.5. A segmentation-driven Total Variation super-resolution algorithm

4.5.2 Methods

Our joint segmentation-reconstruction framework for fetal brain MRI has involved the design

and implementation of a new TV SR algorithm which incorporates an additional discriminative

GMM term as prior information. For joint segmentation-reconstruction purpose, an image

processing pipeline has been designed. The image processing pipeline and each image

processing step will be described in this section.

Image processing pipeline Figure 4.5 shows the image processing pipeline designed to

jointly perform reconstruction and segmentation. It is composed of (1) brain tissue segmenta-

tion, (2) estimation of GMM parameters, and (3) segmentation-driven TV super-resolution,

repeated until the segmentation reaches convergence. It allows the reconstruction to evolve

conjointly with segmentation ultimately improving the segmentation of the reconstructed

image.

Segmentation-driven 
TV Super-Resolution 

Brain Tissue Segmentation
in C classes

Estimation of GMM parameters

HR reconstructed image X̂

HR reconstructed image Xseg HR labeled image L

πc, µc, σc

Initialization

Figure 4.5 – Image processing pipeline for joint reconstruction-segmentation.

Segmentation-driven Total Variation SR algorithm Let each voxel Xseg (i ) in the segmentation-

driven reconstructed image Xseg be expressed by a mixture of C Gaussians such as P (Xseg (i )) =∑C
c=1πc (i )N (Xseg (i )|µc ,σc ) where µ, σ and π(i ) are the means, standard deviations and local

(voxel-wise) mixture weightings of the Gaussians. The segmentation-driven super-resolution

formulates reconstruction imposing a model on the data that weights the modified TV energy
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(Equation 4.8) and a GMM representation:

min
Xseg∈SX

max
P∈SY

〈DXseg ,P〉−F?(P)︸ ︷︷ ︸
‖Xseg ‖T V

+λ
2

∑
kl

‖Ωkl (ekl )‖2 +δC (Xseg )︸ ︷︷ ︸
Xseg≥0

+β lnP (Xseg |µ,σ,π)︸ ︷︷ ︸
GMM

, (4.13)

where

lnP (Xseg |µ,σ,π) =
N∑

i=1
ln

(
C∑

c=1
πc (i )N (Xseg (i )|µc ,σc )

)
(4.14)

which corresponds to summing over every voxel i the logarithm of the value of the mixture of

Gaussians. If β= 0, the problem is the same as in Equation (4.8) and is purely reconstructive

as the GMM model is not used. For β> 0, the reconstructed intensities need to be consistent

with the GMM emerging as a by-product of the reconstruction. The larger the penalisation of

this term is, the closer intensities are to the means of Gaussians, so effectively it homogenises

intensities within a region and reduces the number of intensities sitting around the boundaries

of two regions. At the extreme β→∞, each pixel intensity is set to the mean of the Gaussian

that is the most likely to have generated it. Our new algorithm consists now in iterating

Pn+1 = proxσn F?(Pn +σnDX̄n
seg ) (4.15)

Xn+1
seg = min

Xseg≥0

λ

2

∑
kl

‖Ωn
kl (Hkl Xn

seg −XLR
kl )‖2 + 1

2τn ‖Xseg −Xn
seg −τnDt Pn+1‖2

+β lnP (Xn
seg |µ,σ,π) (4.16)

θn+1 = 1/
√

1+2ρτn , τn+1 = θn+1τn , σn+1 =σn/θn+1 (4.17)

X̄n+1
seg = Xn+1

seg +θn+1(Xn+1
seg −Xn

seg ) (4.18)

where the Euler-Lagrange solution of the modified least-square problem Eq. (4.16) isλτn(ΩXseg−
XLR )+βτnGMM+Xseg−W = 0 where the i -th element of GMM is defined as GMMi = d lnP (Xn

seg |µ,σ,π)

dXseg (i )

is defined as

GMM(i ) =
∑

c
πc (i )(µc−Xseg (i ))

σc
N (Xseg (i )|µc ,σc )∑

c πc (i )N (Xseg (i )|µc ,σc )
(4.19)

and the iterative semi-implicit scheme is defined as Xl+1
seg =PC (Xl

seg −∆tλτn(ΩXl
seg −XLR

seg )−
∆tβτnGMM+∆tW)/(1+∆t) where PC is the projection operator onto the set Xseg ≥ 0 and

∆t = 0.1 in all experiments. To adopt global weights, we only have to take πc (i ) =πc , i.e., the

weights of each class c are constant over all voxels of Xseg .
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4.5. A segmentation-driven Total Variation super-resolution algorithm

Gaussian parameter estimation Gaussian parameters π,µ,σ can be estimated from a la-

beled image coming from any type of segmentation methods. In this work, five classes of

tissues or structures have been automatically segmented using the multi-atlas multi-shape

segmentation method [15]. They consist of WM, cortical GM (GM1), central nervous system

(GM2), ventricules (V) and pericerebral CSF (CSF). The mean and standard deviations are

estimated from the voxel population of each class. The weight of each voxel is computed as

the proportion of voxels of each class within a patch-neighborhood patch (Figure ??). This

approach allows us to describe (1) voxels whose patches remain completely inside a tissue

as a unique graylevel intensity Gaussian distribution describing the tissue, and (2) voxels at

tissue interface as a mixture of graylevel intensity Gaussian distributions. It has therefore

the advantage to incorporate prior information about partial voluming in the reconstruction

process.

4.5.3 Results

In this section, we will investigate for the first time the effect of reconstruction on segmenta-

tion and vice versa on small clinical fetal dataset. Three fetuses were processed: C1 and C2

were normal brains, and C3 was diagnosed with an unilateral ventriculomegaly. Acquisitions

were performed at the Boston Children’s Hospital respectively during the 27th (C1), the 30th

(C2) and the 32th (C3) week of gestation (GA). A Siemens Skyra 3T MR scanner with HASTE

sequences (TE/TR = 121/1600ms) was used to acquire 5 (C1), 6 (C2) and 6 (C3) 3D orthogonal

stacks of thick 2D T2w MR images (1×1×2mm3), with at least 1 stack per anatomical direc-

tion. A very conservative Huber norm threshold (t = 4) was selected as scans were modestly

affected by motion. For each case, a first HR image was reconstructed using the improved

reconstruction pipeline (Figure 4.1). Then, the joint reconstruction-segmentation pipeline, as

described in the last section, was adopted.

Segmentation of CSF, GM1, GM2, V, and WM was performed using the multi-atlas multi-shape

segmentation approach [15]. The atlas dataset used in this work is composed by a set of

age-specific MR template images in the 21 to 37 GA range [16]. Templates and reconstructed

images in the same GA range of the target fetal brain were used in atlas-based segmentation.

Segmentation-driven image reconstruction was performed using the proposed TV algorithm

using different contribution weight β of the GMMs (β= [0.3,0.5,1,5]) in the reconstruction

process. Figure 4.6 shows the reconstruction results. A two-tailed Wilcoxon signed-rank test is

used for evaluating the statistical significance of the differences in estimated volumetry (# of

samples = 12, significance level = 0.05).

To quantitatively evaluate the impact of the segmentation on the contrast of the reconstructed

images, we compute the brain histogram spread, a metric proposed in [17], based on the

shape of the histogram able to distinguish between the images having different contrast level.

The histogram spread (HS) of an image X is the ratio between the quartile distance and the
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β = 0.3 β = 0.5 β = 1 β = 5

C1

C2

C3

β = 0

CSF GM1 GM2 V WMTissue/Structure:

HS=18.2% HS=22.1% HS=22.5% HS=24.2% HS=28.3%

HS=18.8% HS=19.7% HS=19.7% HS=18.8% HS=17.6%

HS=19.6% HS=20.5% HS=21.4% HS=22.4% HS=27.0%

Figure 4.6 – Reconstruction and segmentation results for cases C1 (first and second
rows), C2 (third and fourth rows), and C3 (fifth and sixth rows), when using our joint
reconstruction-segmentation pipeline for a varying segmentation (GMM) contribution weight
β= [0.3,0.5,1,5] in the super-resolution process. The first row illustrates reconstructed im-
ages and their segmentations which correspond to the initial images reconstructed before
segmentation-reconstruction. The contrast in the image is evaluated using the histogram
spread metric, as suggested by [17], and shown below each reconstructed image.
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4.5. A segmentation-driven Total Variation super-resolution algorithm

range of the histogram

HS = Q3−Q1

max(X )−mi n(X )
, (4.20)

where Q3 and Q1 corresponds respectively to the 3r d and 1st quartile of the histogram. A

higher HS means a higher contrast. Results are reported below each reconstructed image in

Figure 4.6. A second segmentation of CSF, GM1, GM2, V, and WM was performed using the

images reconstructed with β= [0.3,0.5,1,5].

To quantitatively evaluate the impact of reconstruction on segmentation and further quanti-

tative analysis, we compute the volumes of each label before and after segmentation-driven

reconstruction for β = [0.3,0.5,1,5]. Figure 4.6 shows the segmentation results. Volumetry

results are reported in Figure 4.7. Differences were found statistically significant for GM1

(p = 0.011), GM2 (p = 0.004), V (p = 0.004), and WM (p = 0.015), except for CSF (p = 0.478).

Figure 4.7 – Impact of segmentation-driven reconstruction on further automatic volumetric
analysis of pericerebral CSF (CSF), cortical gray matter (GM1), central nervous system (GM2),
ventricules (V), and white matter (WM). We can clearly see differences in volumetric measure-
ments between measurements initially performed before the segmentation-reconstruction
pipeline and measurements performed after segmentation-reconstruction. Statistically signif-
icant differences have been found for GM1, GM2, V, and WM. This confirms that segmentation
results are in fact driven by the segmentation-driven reconstruction. Further evaluation of
segmentation performance in terms of region overlap and surface distance should nonetheless
be conducted to conclude if the segmentation results are ultimately improved.
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Results clearly demonstrate the inter-dependence existing between reconstruction, segmen-

tation and the resulting quantitative analysis (volumetry). Quantitative evaluation of the

constrast-related histogram spread shows higher contrast in images reconstructed using

the segmentation-driven approach than in initial images reconstructed by the improved

reconstruction-only pipeline. This might suggest that our new approach allow the recon-

struction of better contrasted tissues. We can also observe that the stronger the contribution

of the GMM term is, the more homogeneized are the intensities within a region, the more

reduced is the number of intensities sitting around the boundaries of two regions, and the

closer reconstructed images are to their segmentation. There are indeed not exactly the

same as the TV term preserves edges with respect to the reconstructed image. Differences

obtained in the volumetric measurements indicate that segmentation results are driven by the

segmentation-driven reconstruction.

Note that in this work, we have been limited in performing the segmentation-reconstruction

loop only once in order to avoid a risk of circularity as our segmentation method is not

completely atlas-free. However, it would be possible to repeat it until convergence of the

segmentation if an accurate and completely atlas-free segmentation method is adopted,

such as one based on topological and/or intensity priors, but currently available atlas-free

segmentation methods in fetal brain MRI have not shown to be sufficiently accurate yet.

4.6 Super-resolution to increasing in-plane fetal MRI resolution

4.6.1 Motivation

Although segmentation of large structures from HR images reconstructed can be accurately

handled, thick structures such as the think cortical GM layer still suffer from a significant

partial volume effect which degrades the accuracy of their delineation. On the acquisition

side, resolution of the acquired scans could not be increased with current MRI sequences

constrained by a compromise between fast acquisition speed and sufficient SNR. On the retro-

spective HR image reconstruction side, models in current fetal SR algorithms are designed

such that they could provide isotropic HR images reconstructed only at the in-plane resolution

of the acquired scans. However, the super-resolution framework (Equation 4.1) allows the

reconstruction of images at increased resolution in any dimension. Despite the debate that ex-

ists about the feasibility of addressing the resolution improvement in the in-plane dimensions

by acquiring scans with shifted FOV (in these dimensions), a relatively recent work has shown

that such an improvement is theoretically possible, if motion occurs prior to imaging [3].

As Fetal MRI fully satisfied the condition of motion prior imaging and attracted to reduce

the partial volume for subsequent segmentation and quantification tasks, this section will

gives a redefinition of the fetal super-resolution problem able to increase the resolution of the

reconstructed image by a given upsampling factor and will investigate the feasibility of such

an approach in a joint segmentation-reconstruction framework.
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4.6. Super-resolution to increasing in-plane fetal MRI resolution

4.6.2 Method

In this section, I will redefine the SR formulation given by Equation 4.1 to allow SR reconstruc-

tion at increased isotropic resolution. It will consist of (1) making a new assumption on the

isotropic voxel spacing of the reconstructed image and (2) adapting the construction of Hkl to

the new mapping between the scan voxels and the upsampled voxels in the reconstructed im-

age. Let X↑ν be the image to be reconstructed at the increased voxel resolution ∆X↑ν such that

∆X↑ν = ν∆LR
x y where ∆LR

x y is the in-plane voxel resolution of the scans and ν is the upsampling

factor. The only change will affect the construction of H, for which voxels in the scans would

be mapped to a bigger amount of upsampled voxels in the reconstructed image. As a result,

the TV SR problem keeps exactly the same primal-dual formulation

min
X↑ν∈S↑ν

X

max
P∈SY

〈DX↑ν,P〉−F?(P)︸ ︷︷ ︸
‖X↑ν‖T V

+λ
2

K∑
kl

‖Hkl X↑ν−XLR
kl︸ ︷︷ ︸

ekl

‖2 +δC (X↑ν)︸ ︷︷ ︸
X↑ν≥0

, (4.21)

and the iterative optimization scheme is unchanged. Figure 4.8 illustrates the new mapping

between each scan voxel and each voxel of the reconstructed image. Figure 4.9 illustrates

the SR problem for reconstruction at increased isotropic resolution side by side with the

construction of Hkl s. Depending on the sparsity and size of the problem (number of HR voxels

mapped to each LR voxel and number of HR voxels representing the brain), computational

time of SR at resolution ∆X↑ν is expected to be in the order of ν
∆LR

z
∆X

times longer than SR at

resolution ∆X.

∆X

∆LR
x y

(a)

∆X↑ν

∆LR
x y

(b)

Figure 4.8 – Comparison between (a) the mapping used previously and (b) the mapping
proposed for increased resolution in the in-plane dimensions. The black represents the
original in-plane isotropic resolution (∆X = ∆LR

x y ). The red grid represents the increased

resolution by an upsampling factor of 2 (∆X↑ν = 1
2∆

LR
x y ).
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∆LR
x y

∆LR
z
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...




X

Hkl = Akl Bkl MklHkl = Akl Bkl Mkl

Figure 4.9 – Mapping between anisotropic voxels of the scans (left) and voxels of the re-
constructed image (right). ∆LR

x y and ∆LR
z denote the in-plane and the slice-select direction

resolution of the acquired scans. ∆X↑ν denotes the desired increased resolution. In this ex-
ample, we consider an upsampling factor ν of 2 that corresponds to have ∆X↑ν = 0.5∆XLR

x y
. We

construct Hkl such that voxels X↑ν( j )s of the image X↑ν contributing to the value of each scan
voxel ykl (i ) of the dataset lie in the region described by the anisotropic voxel after applying
the upsampling operator Akl the estimated motion Mkl . Weight Hkl (i , j ) is computed from
our Gaussian-based point spread function Bkl modeling the image degradation and overlayed
on the reconstructed image. Illustration is done in 2D for simplification but it works the same
in 3D.

4.6.3 Results

In this section, we will investigate for the first time the impact of in-plane resolution im-

provement on fetal brain volumetry through super-resolution in fetal MRI using the small

clinical fetal dataset described and used in Section 4.5. For each case, three HR images were

reconstructed at 1×1×1mm3, 0.8×0.8×0.8mm3 (atlas resolution), and 0.5×0.5×0.5mm3

using the improved reconstruction pipeline (Figure 4.1). A very conservative Huber norm

threshold (t = 3) was selected as scans were modestly affected by motion.

To preliminary investigate the impact on quantitative analysis, we performed the same joint

reconstruction-segmentation procedure as adopted in the last section. Quantitative volumetry
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4.6. Super-resolution to increasing in-plane fetal MRI resolution

and image contrast results are respectively presented in Figure 4.10 and 4.11. Reconstruction

and segmentation results for case C1 are presented in Figure 4.12. Visual inspection and

Figure 4.10 – Impact of segmentation-driven reconstruction on further volumetric analysis
using image reconstructed with increased isotropic resolution on further volumetric analysis of
pericerebral CSF (CSF), cortical gray matter (GM1), central nervous system (GM2), ventricules
(V), and white matter (WM). Resolution corresponds to the upsampling factor relative to the
original in-plane resolution of the scans. We can clearly see differences in the volumetric
measurements between measurements performed at different reconstructed image resolution
before and after the segmentation-reconstruction pipeline. This suggests that segmentation
results are in fact affected by the resolution of the reconstruction image. Further evaluation
of segmentation performance in terms of region overlap and surface distance should be
conducted to conclude if the segmentation results are improved.

quantitative results confirms the interdependence between resolution, reconstruction and

segmentation. In general, we can observe that increasing the resolution allows segmentation

to recover smoother interfaces between tissues, suggesting that the partial volume effect might

be reduced by reconstructing images at higher resolution. Althought we cannot observe a

clear general improvement in terms of contrast, we can see a clear increase in the contrast

metric for cases C2 and C3 when the image is reconstructed at 0.5×0.5×0.5mm3, and for

case C3 when the image is reconstructed at 0.8× 0.8× 0.8mm3 (which fits the resolution

of the reconstructed image to the resolution of the atlas). This suggests that adopting a

segmentation-driven approach with increased output resolution could potentially allow the

reconstruction of images with better contrasted tissues but this has to be taken cautiously

as it could not be generalized yet. Differences in the volumetric measurements at different

reconstructed image resolution before and after the segmentation-reconstruction pipeline
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Figure 4.11 – Impact of segmentation-driven reconstruction on reconstructed image contrast
using image reconstructed with increased isotropic resolution. The contrast in the image is
evaluated, similarly to the segmentation-reconstruction study previously presented, using
the histogram spread metric, presented in [17]. Resolution corresponds to the upsampling
factor relative to the original in-plane resolution of the scans. Althought we cannot observe a
clear general improvement in terms of contrast, we can see a clear increase in the contrast
metric for cases C2 and C3 when using an upsampling factor 2, and for case C3 when using
an upsampling factor of 1.25 (which fits the resolution of the reconstructed image to the
resolution of the atlas). This suggests that adopting a segmentation-driven approach with
increased output resolution could potentially allow the reconstruction of images with better
contrasted tissues but this could not be generalized yet. We can finally observe, similarly
than in the previous segmentation-reconstruction study, that the stronger the contribution
of the GMM term is, the stronger the contrast is. This is especially true for all β values when
reconstructing images at a resolution upsampling factor of 2.

suggest that segmentation results are in fact affected by the resolution of the reconstruction

image. In order to to conclude if the segmentation results are improved, further evaluation

of segmentation performance in terms of region overlap and surface distance should be

conducted.

4.7 Conclusion

In the chapter I have presented further promising improvements that could allow a more

accurate image analysis. Firstly, new methods have been proposed to improve the reconstruc-

tion pipeline. Our bias field correction method integrated in the super-resolution framework

allows the reconstruction of an image quasi free of the smooth magnetic bias field (Section4.3).
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CSF GM1 GM2 V WMTissue/Structure:

β = 0.3 β = 0.5 β = 1 β = 5β = 0

Resolution: 1× 1× 1mm3

Resolution: 0.8× 0.8× 0.8mm3

Resolution: 0.5× 0.5× 0.5mm3

Figure 4.12 – Reconstruction and segmentation results for cases C3, when using our joint
reconstruction-segmentation pipeline for a varying segmentation (GMM) contribution weight
β= [0.3,0.5,1,5] and at varying resolution ∆X↑ν = ν∆XLR

x y with ν= [1.0,0.8,0.5] in the super-
resolution process. The first row illustrates reconstructed images and their segmentations
which correspond to the initial images reconstructed before segmentation-reconstruction.
We can observe that increasing the resolution allows to recover smoother interfaces between
tissues. This suggests that the partial volume effect might be reduced by providing images at
higher resolution.
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The integration of the Huber norm in the TV algorithm allows the reconstruction to be more

robust to inaccurate slice alignments (Section 4.4). Secondly, a novel segmentation-driven

TV algorithm as well as a reconstruction-segmentation framework have been presented to

perform jointly reconstruction and segmentation (Section 4.5). Results indicate segmentation

might allow the reconstruction of better contrasted tissues. They also indicate that volumetry

and thus segmentation results change when using segmentation-driven reconstructed images.

This supports that such an approach could produce images with enhanced edge information

that would change their segmentation. However, current results do not provide an answer yet

to whether or not such an approach could improve segmentation results. Further performance

evaluation of segmentation should thus be performed. Finally, we have preliminary investi-

gated the feasibility of using super-resolution to increase the final isotropic resolution and

the potential impact of higher resolution on volumetry results coming from segmentations

(Section 4.6).

The next chapter will give the conclusion of this thesis and it will suggest new research

perpespectives.
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Conclusion

In this thesis I have presented novel advanced image processing methods that have proven to

improve current state-of-the-art fetal MRI reconstruction in terms of efficiency, robustness

and minimized user-interactions. I will give a brief summary according to these properties.

Efficiency An efficient SR algorithm that combines exact Total Variation regularization with

fast convex optimization has been presented and extensively validated in Chapter 1. This algo-

rithm has shown to be more efficient thanks to its optimality in the sense of convex optimiza-

tion theory, and more robust to motion estimation errors than Tikhonov- and approximated

TV-regularized based algorithms [1, 2]. An extension of this algorithm has been presented and

preliminary evaluated in Chapter 4 where an additionnal discriminative GMM term estimated

from segmentation has been introduced in order to enable joint reconstruction-segmentation.

Robustness A first image preprocessing pipeline has been presented in Chapter 1 to guar-

antee the success of motion estimation and super-resolution processes. It combines brain

localization and extraction to isolate brain-relevant voxels from the surrounding tissues and

intensity standardization through global bias field correction and brain histogram equal-

ization. An improved bias field correction method has been presented in Chapter 2 which

estimates and corrects the bias field slice-by-slice taking into account possible inter-slice

motion. Although this approaches has shown to perform relatively well in most cases, few

intensity artifacts were still present in the reconstructed image and more importantly the
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reconstructed images were still corrupted by the smooth magnetic bias field inherent in MRI.

A further improved bias field correction method has been presented in Chapter 4 that has

shown to correct more consistently and more coherently the bias field, which indeed enables

the reconstruction of images quasi free of the smooth magnetic bias field. Last but not least,

the `2-norm of the efficient algorithm, as presented in Chapter 1, might be still sensitive to

misaligned slices and artifacts might be still present in the reconstructed images. A more

robust TV algorithm based on the Huber norm has been presented and preliminary evaluated

in Chapter 4.

Minimized user-interaction The intensity standardization methods involved in the image

preprocessing pipeline, as presented in Chapter 1 and improved in Chapters 2 and 4, are

non-parametric so that it is completely user interaction free. Morevover, to automatize the

first two inherent steps of the image preprocessing pipeline, involving fetal brain localization

and extraction, has been preliminary addressed using a multi-atlas strategy with reconstructed

images of patient [3, 4]. The technique has been improved and a novel age-matched template-

based method based on template-to-slice block matching and deformable slice-to-template

registration has been presented and extensively validated in Chapter 2. The proposed slice-by-

slice approach has shown to be more robust than a global rigid 3D template-registration-based

approach as it allows brain extraction to take into account for inter-slice motion. Moreover,

the proposed automatic pipeline has demonstrated to achieve similar reconstruction quality

to reference reconstruction based on manually drawn masks without any effort. Open perspec-

tive of complete automatic cortical folding quantification, one of the best indicators of brain

maturation, has been presented in Chapter 3 by combining the automatic reconstruction

pipeline, proposed in Chapter 2, with the state-of-the-art multi-atlas multi-shape brain tissue

segmentation method [5], and with existing automated tools provided for adult brain’s cortical

folding quantification. Results have indicated that the proposed automatic reconstruction

pipeline could in turn provide HR images with sufficient quality that enable the use of surface

tessellation and active surface algorithms similar to those developed for adult brains to extract

meaningful information about fetal brain maturation [6].

Perspectives

In this thesis, I have shown that fetal MRI reconstruction techniques have been taken to the

stage where a high-resolution image can now be automatically, efficiently and robustely recon-

structed. However, the quality of the reconstruction is highly dependent on the acquisition.

One should follow the 25s one scan acquisition golden rule [7] to minimize risk of motion

artifacts. We also would like to remind the reader that the illposeness of the subsequent super-

resolution problem is function of the squared of the super-resolution factor (ratio between

in-plane resolution ∆XLR
x y and slice thickness ∆XLR

x y ). In addition, a limited number of obser-

vation emphasizes the ill-poseness of the inverse problem that requires more regularization

to be stable and will result in less details in the reconstructed image. Therefore, we advise to
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take a resolution ratio in the order of 2-3, which means a number in the order of 4-9 scans are

theoritically needed for quasi optimal reconstruction. This setup has demonstrated to allow

the reconstruction of good quality images when one or two scans at least are acquired per

anatomical direction.

Despite the implementation of algorithms robust to misaligned slices, they might fail if highly

motion- and intensity- corrupted data is present in one of the scans. Such scans are typically

visually identified and discarded from the reconstruction pipeline beforehand. Automated

methods could be developed to address this quality control problem. For instance, a machine

learning system could be designed and trained in order to detect and reject bad slices and

scans. An other approach could be to use the generalized cross validation method to quantify

the effect of removing a slice or a scan on the reconstruction quality to detect and reject them.

There exists in the literature a number of quantitative studies of fetal brain development and

maturation but most of the works are limited to the study of the normal developing brain

and relies on atlas-based segmentation appoaches. Although the most promising method [5]

incorporates shape models of structures as well as regional intensity values and prior infor-

mation coming from multi-atlas segmentations intp a probabilistic optimization framework

to address to segmentation of ventricules in severe forms of ventriculomegaly where large

anatomical variability can be observed, such approaches are strongly influenced by anatom-

ical atlas priors, and therefore proned to give potentially biased results with pathological

data, as each brain is deformed to the atlas anatomy. However, application to pathological

data is essential in clinical practice. Moreover, such approaches might limit new research

perspectives. For instance, Chapter 4 has presented a novel and very promising framework to

address jointly reconstruction and segmentation processes but this framework is currently

limited by the risk of circularity of the segmentation method adopted.

The development of an accurate atlas-free segmentation methods for fetal brain MRI would

be of great importance to overcome circularity in this joint reconstruction and segmentation

process. Only a few fetal brain segmentation methods have been proposed in the literature

to address this problem, from which one of the most promising method uses structural con-

straints based on a topological model and a morphological filter to identify the regions where

the cortex appears the most likely [8]. An other direction would be to use non-local infor-

mation, extracted from a graph representation of the image [9]. Indeed such segmentation

framework has shown to be performant in a variety of application. It has also shown to provide

the flexibility in incorporating many soft prior, including local spatial priors, sparsity con-

staints (like the Total Variation regularization), or data-driven priors from labels. Ultimately,

this would open new perspectives to jointly perform reconstruction and segmentation until

segmentation has converged.

Fetal MRI reconstruction techniques can provide high-resolution images but a significant

partial volume effect is still present in fine structures such as the cortex, which degrades the

estimation of the interface boundary between tissues. Increasing the resolution would also be
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of great importance to reduce this problem. As seen in the introduction, resolution cannot be

more improved with current dense-k-space-sampling multi-slice acquisition sequences. A

retrospective solution has been investigated in Chapter 4 by addressing in-plane resolution

improvement through super-resolution. Preliminary results shows output resolution of the

image influences segmentation and consecutive volumetric analysis. Despite preliminary

results remain inconclusive about the feasibility of super-resolution to improve the in-plane

resolution in fetal MRI, such an approach is theoritically supported as fetal motion occurs

prior to imaging of each good quality slice. In addition, results has shown the potential using

prior information from segmentation in a reconstruction-segmentation framework could

benefit in regularizing super-resolution at increased resolution.

A last but not least solution would be the development of new multi-slice sequences taking

advantage of compressed-sensing [10, 11], a new emerging field of techniques in MRI that

aims at reconstructing images from downsampled k-space, where the Nyquist sampling

criterion in not fulfilled anymore. We refer to [12] for a detailed review of compressed

sensing MRI. Porting compressed-sensing to SST2W sequences would involve (1) the design

of an adequate k-space undersampling scheme in the phase-encoding direction and (2) the

development of new compressed-sensing algorithms. By adopting compressed-sensing, one

could expect either to reach an acquisition acceleration speed-up or a resolution improvement

in the order of the undersampling k-space factor.

In summary, retrospective fetal MRI reconstruction techniques are now well established.

Despite they have demonstrated their advantages in a number of papers in the neuroscience

community, few methods are publicly available [13–16] but are not very easily accessible or

not easy-to-use for the clinical community and consequently not well integrated into clinical

practice. However, as stated in this thesis, the translation of these techniques into clinical

practice have a great potential in significantly facilitating diagnosis and prognosis of the

developing fetus. Typically, medical centers with Siemens scanners use the vendor-provided

imaging software syngo.via in clinics. The recently developed syngo.via Frontier would allow

us to integrate our own algorithms into the rountinely used syngo.via software in a transparent

way for the clinicians. This would enable to test and further improve these techniques in close

link with the clinicians able to evaluate their potential impacts.
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A
MIALSRTK:

C++ Medical Image Analysis
Laboratory Super-Resolution ToolKit

In this annex, we will briefly describe the Medical Image Analysis Laboratory Super-Resolution

Toolkit (MIALSRTK). This toolkit consists of a set of C++ image processing tools based on the

open-source image processing Insight ToolKit (ITK) library [1] and the command line parser

TCLAP library. Source code is available on a git repository. To clone the repository, use the

following command:

1 g i t clone https : / / tourbier@git . e p f l . ch/repo/ e x t e r n a l m i a l t o o l k i t . g i t

Note: The address of the git repository corresponds to the one used at the time of writing this

thesis. Please check on the Medical Image Analysis Laboratory website for the most up-to-date

repository address and it might change in the future.

A readme file is provided to guide the user in the installation process. The toolkit has been

implemented and tested on Linux (Debian Ubuntu 12.04) and MacOSX (10.9.5). MIALSRTK

consists of a set of tools necessary to perform the whole reconstruction pipeline (Figure A.1)

where all algorithms and methods for brain localization and extraction, intensity standard-

ization, motion estimation, and super-resolution have been implemented, except the NLM

denoising program which is part of the Baby ToolKit (BTK) library [2]. The USAGE message

of each tool can be obained using either the −h or −−h flag. They will be listed and briefly

described according to their role in the pipeline.

A.1 Image denoising

mialsrtkGaussianDenoising Denoises the image through basic anisotropic Gaussian de-

noising.
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Appendix A. MIALSRTK: C++ Medical Image Analysis Laboratory Super-Resolution
Toolkit

(VIII) 
Brain Mask Refinement

(VII) 
TV Super-Resolution 

(I)
Brain Localization and 

Extraction

(VI) 
Motion Estimation

Stacks of Thick Slices 

(Clinical MR scans)

HR reconstructed image 

(V) 
Intensity Rescaling in [0,255] 

(IV) 
Brain Histogram Equalization

(IX) 
Global Bias Field Estimation

(X) 
Slice-by-Slice Bias Field 

Correction

(III) 
Slice-by-Slice Bias Field 

Estimation and Correction

(II) 
Inter-Slice Intensity Mean 

Shift Correction

Figure A.1 – Our ultimate reconstruction pipeline for fetal MRI using MIALSRTK. All algo-
rithms and methods developed in the context of this thesis have been implemented in the
toolkit. They are highlighted according to their role in the pipeline. It consists of a set of tools
addressing automatically brain extraction (red), intensity standardization (yellow), motion
estimation (green) and super-resolution (blue).

mialsrtkTVDenoising Denoises the image through efficient minimization of the exact Total

Variation energy. TV denoising like TV super-resolution is not trivial and the primal-dual

technique [3] is adopted for optimization.

A.2 Brain localization and extraction

mialsrtkFetalBrainLocalizer Performs brain localization using the slice-to-template block

matching algorithm [4], presented in Section 2.4.1. It outputs a LR image that has been

reoriented and cropped in the template brain space.

mialsrtkOrientImage Depending on the imaging center protocol, it can happen that the

slice-select direction does not correspond to the third dimension. However, the motion

estimation and super-resolution algorithms are implemented based on the assumption that

the slice-select direction is the third direction, in which context they fail. This tool allows us to

fix this issue by specifing a correct anatomical slice-select direction (axial, coronal or sagittal).

mialsrtkRefineHRMask Refines the brain mask of multiple scans. Specifically, it uses the

method presented in Section 2.4.4 where brain masks are refined in the spatial space of the

template using a consensus fusion voting process, which are re-applied to the scans using the

tool mialsrtkMaskImage.
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A.3. Intensity standardization

mialsrtkSegmentationWeightedFusionWithUnanimousConsensus Performs label fusion

of multiple segmentation, where the fusion strategy can be: majority voting, global weighted

voting and local weighted voting. Weight are based on the normalized cross correlation. This

tool has been implemented in the context of our first works on brain extraction [5, 6] using

multiple reconstructed images from subjects as atlases.

mialsrtkSliceToTemplateCompositeVersor2DBSplineRegistration Performs rigid slice-to-

template registration followed by two-dimensional B-Spline deformation (essential in case of

anatomical variability) to refine the brain mask slice by slice (essential in case of motion). It

implements the slice-by-slice brain extraction method presented in Section 2.4.2.

A.3 Intensity standardization

mialsrtkCorrectSliceIntensity Estimates a global mean intensity in the brain region of the

volumetric image and mean intensity in the brain region of each slice is shifted towards

the global mean intensity. It has as effect to correct for shifts in intensity levels that might

be present between the slices. It implements the slice-by-slice mean intensity equalization

method presented in Section 2.4.3.

mialsrtkCorrectBiasFieldWithMotionApplied Generates the bias field and corrects each

slice for it, given a global and smooth bias field estimated in the HR space (using the tool mial-

srtkN4BiasFieldCorrection presented below) and using the estimated motion parameters. It

implements the improved slice-by-slice bias field correction method presented in Section 4.3.

mialsrtkHistogramNormalization Normalizes intensities in multiple images using the brain

intensity histogram equalization method [8], as presented in Section 2.4.3.

mialsrtkIntensityStandardization Rescale the intensity in the [0,255] range.

mialsrtkN4BiasFieldCorrection Estimates a global three-dimensional bias field in the input

image using the N4 method [7].

mialsrtkSliceBySliceCorrectBiasField Applies the bias field estimated by the tool mialsrtk-

SliceBySliceN4BiasFieldCorrection (presented below) to other images. In practice, the bias

field is estimated on a denoised image and then used for correction in the corresponding

original image.

mialsrtkSliceBySliceN4BiasFieldCorrection Estimates and corrects a two-dimensional bias

field independently in each slice of the input image using the N4 method [7]. It implements

the slice-by-slice bias field correction method presented in Section 2.4.3.

121



Appendix A. MIALSRTK: C++ Medical Image Analysis Laboratory Super-Resolution
Toolkit

A.4 Motion estimation

mialsrtkImageReconstruction Estimates the motion parameters using the most common

iterative method [9–11] which alternate between slice-to-volume registration and scattered

data interpolation using a Gaussian kernel. It implements the registration method used in all

works.

A.5 Super-resolution

mialsrtkRobustTVSuperResolution Restores the HR image by performing TV super-reso-

lution. It implements the efficient TV super-resolution algorithm presented in Section 1.4.

By default, the `2-norm is used in the data fidelity term. It also implements the more robust

implementation based on the Huber norm, as presented in Section 4.4, which can be selected

with the −−use−robust and the discriminative mode of the Huber norm set with the −−mode

flag.

mialsrtkRobustTVSuperResolutionWithGMM Restores the HR image by performing seg-

mentation-driven TV super-resolution. It implements the TV algorithm that incorporates

discriminative GMM terms coming from a previous segmentation, as presented in Section 4.5.

It also implements the more robust implementation based on the Huber norm, as presented

in Section 4.4, which can be selected with the −−use−robust and the discriminative mode of

the Huber norm set with the −−mode flag.

A.6 Evaluation tools

mialsrtkEvaluateReconstructionQualityMeasures Computes mean squared error (MSE),

root mean squared error (RMSE), normalized root mean squared error (NRMSE), and peak

signal-to-noise ratio (PSNR) between an input image and a reference image for the evaluation

of the reconstruction quality.

mialsrtkEvaluateSharpnessMeasures Computes the gradient-based M1 and M2 sharpness

measures of an input image for the evaluation of image contrast.

mialsrtkEvaluateLabelOverlapMeasures Computes different region overlap measures for

the evaluation of segmentation performance. It includes: true and false positive, true and

false negative, dice coefficient, precision, recall and accuracy.

mialsrtkComputeImageMedianCNR Computes the median contrast to noise ratio between

two tissues given an input image and its segmentation.

mialsrtkComputeHaussdorfDistance Computes the Haussdorf distance between two seg-

mentations.
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A.7. Other tools

mialsrtkComputeHistogramSpread Computes the brain histogram spread of an input im-

age for the evaluation of image contrast.

A.7 Other tools

mialsrtkComputeVolume Computes the volume of a given label in a given segmentation.

mialsrtkCropImageUsingMask Crops an input image where the cropping region is deter-

mined by smallest bounding box containing the brain mask.

mialsrtkMaskImage Masks an image with a given binary image.

mialsrtkFourierTransform Computes the magnitude of the Fourier transform of an input

image.

mialsrtkCreateWhiteMatterVolumeFromLabels Combines all labels of an input segmen-

tation lying inside the white matter volume in order to create the binary white matter volume

used in Section 3.3.

mialsrtkCreateImageWithHalo Create a two-voxel width halo around the brain, as it was

presented in 3.3
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