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A B S T R A C T   

Purpose: One of the advantages of integrating automated processes in treatment planning is the reduction of 
manual planning variability. This study aims to assess whether a deep-learning-based auto-planning solution can 
also reduce the contouring variation-related impact on the planned dose for early-breast cancer treatment. 
Methods: Auto- and manual plans were optimized for 20 patients using both auto- and manual OARs, including 
both lungs, right breast, heart, and left-anterior-descending (LAD) artery. Differences in terms of recalculated 
dose (ΔDM

rc , ΔDA
rc) and reoptimized dose (ΔDM

ro,ΔDA
ro) for manual (M) and auto (A)-plans, were evaluated on 

manual structures. The correlation between several geometric similarities and dose differences was also explored 
(Spearman’s test). 
Results: Auto-contours were found slightly smaller in size than manual contours for right breast and heart and 
more than twice larger for LAD. Recalculated dose differences were found negligible for both planning ap
proaches except for heart (ΔDM

rc=-0.4 Gy, ΔDA
rc=-0.3 Gy) and right breast (ΔDM

rc=-1.2 Gy, ΔDA
rc=-1.3 Gy) 

maximum dose. Re-optimized dose differences were considered equivalent to recalculated ones for both lungs 
and LAD, while they were significantly smaller for heart (ΔDM

ro=-0.2 Gy, ΔDA
ro=-0.2 Gy) and right breast (ΔDM

ro 

=-0.3 Gy, ΔDA
ro=-0.9 Gy) maximum dose. Twenty-one correlations were found for ΔDM,A

rc (M=8,A=13) that 
reduced to four for ΔDM,A

ro (M=3,A=1). 
Conclusions: The sensitivity of auto-planning to contouring variation was found not relevant when compared to 
manual planning, regardless of the method used to calculate the dose differences. Nonetheless, the method 
employed to define the dose differences strongly affected the correlation analysis resulting highly reduced when 
dose was reoptimized, regardless of the planning approach.   

1. Introduction 

The use of automation in radiation therapy has recently rapidly 
increased, significantly impacting every step of the treatment process. 
Most efforts have been concentrated on addressing highly time- 
consuming tasks within the workflow, such as structures delineation 
and treatment planning. To achieve this, machine learning techniques, 
particularly knowledge- and deep learning (DL)-based approaches, have 
been employed to expedite these processes and enhance the overall 
quality of patient plans [1–3]. 

DL-based auto-segmentation techniques have been demonstrated to 
outperform other automated methods, showing good results in 

shortening the delineation time and approaching the accuracy of manual 
segmentation [4–8]. 

To relate the performance of automatic segmentation with dose 
distribution, several researchers have studied the correlation between 
contouring variation and dose differences. Nonetheless, the methods 
found in the literature used to calculate dose differences were ambig
uous, and according to their formulations, they may produce different 
correlation results for the same case. Typically, the process starts with a 
plan that is first optimised for one of the two given sets of structures 
providing the reference dose. Then two paths can be followed to 
calculate the candidate dose for the concurrent structures: a simple dose- 
volume histogram (DVH) re-calculation [6,9–11] or a new plan re- 
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optimization [12–16]. Obviously, the candidate dose will be highly 
affected by the method used for the calculation. There is even more 
ambiguity by the fact that dose difference between reference and 
candidate doses did not always refer to a structure belonging to the same 
structure set [16,17]. Both approaches used to carry out the candidate 
dose have limitations. DVH re-calculation generally over-estimates the 
dose differences for structures lying near gradient regions [18]. In 
addition, it neglects the trade-off effects between structures deriving 
from the inverse planning. Dose re-optimization provides a more real
istic dose difference than DVH re-calculation as geometrical variation 
are considered in the optimization process. However, since the optimi
zation problem has multiple solutions, dose differences may arise due to 
optimization settings rather than contour geometrical variations [15]. 

Automated planning solutions have shown they can standardize the 
quality of the dose distribution for several treatment sites, reducing the 
planning variability [4,19,20]. For manual planning, the presence of 
competing objectives for target coverage and organ sparing requires 
multiple subjective trade-offs from the planner that are translated in the 
choice of specific objective functions and relative weights assigned to 
normal structures and targets in the definition of the optimization pro
tocol. One of the factors influencing the dose trade-offs in the optimi
zation problem is the mutual position of the target and organs at risk 
(OARs) and, in manual planning, the optimization protocol implicitly 
considers their spatial relationship when defining the objective func
tions and relative weights. If this spatial relationship no longer exists, 
there is no guarantee that the same optimization protocol would pro
duce an equivalent dose distribution. Auto-planning approaches auto
matically introduce appropriate objectives and weights into the 
optimization procedure according to the prediction on the most feasible 
DVHs (knowledge-based) or 3D-dose distributions (DL-based) existing 
for the given geometry, replacing the iterative trial-and-error manual 
optimization process [21]. Therefore, they should be less sensitive to 
geometric differences and provide dose distributions that are more 

robust to contouring variation than manual planning. 
To the best of our knowledge no one has yet compared the dosimetric 

impact of contouring variation between automated and manual plan
ning approaches to assess their sensitivity to different structure sets. At 
the same time, no studies have evaluated the potential impact of the 
candidate calculation method on the correlation between contouring 
variation and dose difference. Therefore, the objective of this study was 
to assess the dosimetric impact differences between manual and DL- 
based auto-segmented OARs contouring variations for both manual 
and DL-based auto-planning approaches in left-sided early-breast cancer 
volumetric modulated arc therapy (VMAT) treatment under deep- 
inspiration breath hold (DIBH) conditions. Furthermore, for each plan
ning approach, the correlations between contouring variations and dose 
differences were evaluated. Regardless of the planning approach, such 
correlations were evaluated against two different formulations of dose 
difference (e.g. recalculated vs reoptimized dose) to demonstrate how 
the method used may affect the results. Recalculated and reoptimized 
dose differences were evaluated on the manual structure set taken as 
reference. 

2. Materials and methods 

The study workflow is summarized in Fig. 1. Patients OARs were 
manually or DL-based automatically contoured. We first compared the 
accuracy of auto-segmentation to manual segmentation based on geo
metric similarity metrics. Second, we optimized the manual- and auto- 
plans by having both the manual and auto-segmented OARs generate 
the doses needed for dose difference computation. Third, we explored 
the correlation between the geometric metrics and dosimetric differ
ences for each planning approach. 

Fig. 1. Study workflow summary. OARs of twenty patients were contoured both on manual (ground truth) and automated process. For each patient, manual and 
auto-plans were optimized using both structure sets for a total of 4 plans providing different dose distributions named according to the following nomenclature: 
Dplanningapproach

optimizationstructures|evaluationstructures, where planning approach = M (manual) or A (automatic) and optimization or evaluation structures = m (manual) or a (automatic), 
respectively. Regardless of the planning approach, two dose difference calculation methods were used to evaluate the correlation with these latter and OARs 
similarity metrics: (1) Recomputed dose difference (ΔDrc) as the dose difference between automatic and manual OARs for a plan optimized with automatic structures 
and (2) Reoptimized dose difference (ΔDro) as the difference between plans optimized with manual and automatic OARs, respectively (see Section 2.4 for 
further details). 
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2.1. Patient contouring 

Twenty left-sided early-stage breast cancer patients were randomly 
selected from our treatment database and involved in the study. They 
received a simultaneously-integrated-boost (SIB) treatment under DIBH 
conditions at our institute between 2021 and 2022. Dose prescription 
was 60 Gy and 50 Gy in 25 fractions for PTV Boost (PTV1) and PTV 
Whole Breast (PTV2), respectively. Targets and OARs were manually 
delineated by a single senior radiation oncologist according to the 
ESTRO and DBCG guidelines for early-stage breast cancer [22,23]. PTV1 
and PTV2 were generated by expanding their respective clinical target 
volumes (CTVs) by 5 mm and then cropping it 3 mm under the skin. 
Auto-segmented structures were generated using the DL-based seg
mentation model available in RayStation (RS) TPS (RaySearch Labora
tories, Stockholm, Sweden) and previously validated [6]. OARs 
evaluated in the study included contralateral breast, heart, left-anterior- 
descending artery (LAD) and both lungs. PTVs were only manually 
delineated. 

We assessed the need for ethical and/or legal approval for the pre
sent study and concluded that no approval was required. 

2.2. Geometric metrics for OARs 

To evaluate contouring differences between manual (ground truth) 
and automatically generated structures, different geometrical indices 
were calculated for every OARs. 

Given A the volume of the manual structures and B the volume of the 
auto-contoured structures, the indices were calculated as follows. 

The volume difference (ΔV(%)) measured the percentage difference 
between A and B normalized to A, ΔV(cm3) was used for LAD only 
because of the small size of the structure: 

ΔV(%) =
A − B

A
• 100 (1)  

The Dice Similarity Coefficient (DSC) measured the overlap between A 
and B, it ranges from 0 (no overlap) to 1 (complete overlap): 

DSC =
2 • |A ∩ B|
|A| + |B|

(2)  

The surface DSC (sDSC) was originally introduced by Nikolov et al. [24] 
to minimize the volume effect of DSC by providing a measure of the 
agreement between just the surfaces of two volumes above a distance 
threshold τ: 

sDSC =
|SA ∩ SBτ| + |SB ∩ SAτ|

|SA| + |SB|
(3)  

Where SA and SB are the surfaces of A and B, respectively, while SAτ and 
SBτ the annuli of SA and SB, respectively, with τ as the difference between 
inner and outer radii. In this study τ = 3 mm. As for the DSC, sDSC 
ranges from 0 (no overlap) to 1 (complete overlap). 

The maximum Hausdorff distance (maxHD) measured the maximum 
distance from one point of A to the closest pairwise point of B: 

maxHD(A,B) = max{H(A,B),H(B,A) }, (4)  

H(A,B) = max
a∈A

{

max
b∈B

{d(a, b) }
}

(5)  

where d(a, b) is the HD in 3D between the point a of A and point b of B. 
95HD and 99HD were the 95th and 99th percentile of the HD(A,B) 
distribution. Values of every HD metric, here reported in mm, tend to 
0 for good overlap and increase for poor overlap. 

2.3. Treatment planning 

Both manual and automated treatment planning were performed 
with RS (v12A). The simulation CT resolution was 1x1x2 mm3. A VMAT 
technique involving two reversed 6MV flattening-filter-free partial arcs 
was employed. For each case, both approaches shared the same treat
ment machine (Synergy C-arm linac equipped with Agility MLC, Elekta 
AB, Stockholm, Sweden) initial and final gantry angles (varying ac
cording to the patient geometry), arc span (ranging from 210◦ to 230◦), 
collimator angles (5◦ and 355◦, per arc, respectively), maximum de
livery time per arc (75 s) and number of control points (segment every 3◦

of gantry spacing). The dose calculation grid (Collapsed Cone Convo
lution (CCC) algorithm) was 3x3x3 mm3. The prescription dose was 
normalised to the median volume of PTV1 and plans were optimized and 
evaluated according to the dose-volume criteria listed in Table 1 of 
Supplementary Material. 

Auto-planning was carried out using a DL technique based on the U- 
net convolutional neural network (CNN) [25]. The model was trained 
with 80 plans manually optimized according to the criteria listed in 
Table 1 of Supplementary Material. Its validation and clinical imple
mentation are reported elsewhere [26]. The dose prediction was 
mimicked involving three intermediate CCC dose calculations: two over 
the course and one at the end of the 180 dose iterations. For each case, 
two auto-plans were generated by mapping the ROI required by the 
model to the manual and the automatic structures (see Fig. 1 of Sup
plementary Material for details), respectively, without any post- 
mimicking additional optimization. 

The manual planning process started by retrieving the clinical plan 
with its original optimization settings. Plans that did not encompass all 
the mapped structures in the clinical optimization were discarded. The 
original optimization settings were not uniform among plans due to the 
subjective choice of the planner. They were used to start a new opti
mization and applied in turn to both manual and automatic structures to 
generate the manuals plans for comparison. For consistency with the 
auto-plans, 180 iterations were used for the optimization and no post- 
optimization was allowed. This approach prevented any bias related 
to the optimization process but, at the same time, preserved the inter- 
plan variability of the plan-specific set of optimization parameters. 

Patients selected for this study were not involved in the training nor 
in the validation of the auto-plan model. 

2.4. Dose comparison and dose difference evaluation 

Dose-volume results from planning were extracted for every figure of 
merit listed in Table 1 and reported hereinafter with the nomenclature 
Dplanning approach

optimization structures|evaluation structures. The term planning approach denoted the 
planning method using for the plan optimization, either manual (M) or 
automatic (A). Optimization structures were the structures used for the 
plan optimization and the evaluation structures were the structures used 
for dose-volume output, either manual (m) or automatic (a). Dose 
comparison was carried out for DA

a|a vs DM
a|a and DA

m|m vs DM
m|m for OARs, 

and DA
a|m vs DM

a|m and DA
m|m vs DM

m|m for PTVs, respectively. Paired Wil
coxon signed-rank tests were performed to assess statistically significant 
differences (p < 0.05) between planning approaches. 

In addition, we defined two different dose-volume differences with 
the goal to assess the dosimetric impact of contouring variation when 
plans optimized on auto-contoured OARs were simply recalculated or 
fully reoptimized on the manual structure set as follows: 

ΔDM
rc = DM

a|a − DM
a|m , ΔDA

rc = DA
a|a − DA

a|m (6)  

ΔDM
ro = DM

m|m − DM
a|m , ΔDA

ro = DA
m|m − DA

a|m (7)  

On the one hand, ΔDM
rc and ΔDA

rc represent the recalculated dose-volume 
differences for the manual and automatic planning approach, respec
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tively. They are defined as the difference between automatic and manual 
structure sets for a plan optimized with the automatic structure set. 
Given the previously optimized plan, such differences largely depend 
upon the geometric differences between manual and automatic structure 
sets. On the other hand, ΔDM

ro and ΔDA
ro indicate the reoptimized dose- 

volume difference for the manual and automatic planning approach, 
respectively. They are defined as the difference between two plans 
optimized on manual and automatic structure set, respectively, and are 
calculated according to manual structures. In this context, DM

a|m and DA
a|m 

correspond to the manual structure DVH output for the manual and 
automatic planning approach, respectively. These outputs result from a 
plan optimized according to the auto-contoured structures. Paired Wil
coxon signed-rank and Levene’s tests were performed to assess signifi
cant differences (p < 0.05) between dose differences reported in Eqs. (6) 
and (7) median values and inter-quartile ranges (IQR), respectively. 

2.5. Correlation analysis 

The correlations between the previously defined geometric metrics 
and both dose differences reported in Equations (6) and (7) were 
assessed using Spearman’s correlation test and evaluated with the 
Spearman’s correlation coefficient RS. 

3. Results 

3.1. Geometric metrics for OARs 

For each OAR involved, scatter plots of volumes are shown in Fig. 2 
of Supplementary Material and volumes similarity is reported in terms of 
mean values of geometric metrics in Table 1. 

In terms of median values, auto-contours were found to be system
atically smaller than manual contours for right breast (− 4.7 %) and 
heart (− 4.2 %) and more than twice larger for LAD. No systematic dif
ferences were observed for both lungs. 

The largest variation between 95HD and HD were observed for both 
lungs due to the positional differences of contours lying in the medias
tinal region representing a small part (<5%) of the total lung volumes. 
For the right breast this variation was large too, reflecting that the worst 
agreement occurred between contours in the medial and lateral side of 
the breast. HD indexes did not vary consistently for the heart indicating 
a minor positional variation between contours. The highest value of 
95HD was found for LAD suggesting a general mismatch between auto- 
and manual contours. 

DSC values were satisfactory ≥ 0.90 for all the OARs except the LAD. 
The sDSC was found to be at least equal or smaller than DSC as expected 
for large volumes, while it was found to be almost twice than DSC for 
LAD. The increment of sDSC with respect to DSC was due to the small 
value of the volume/surface ratio for this specific narrow and elongated 
organ for which the volume effect became negligible compared to an 
increase of 3 mm surface. 

3.2. Dose comparison and dose differences 

The objectives listed in Table 1 of Supplementary Material were on 
average fulfilled for both planning approaches except for the mean dose 
of the heart that was found to be slightly above the criteria (+0.1 Gy) for 
auto-plans. 

Dose statistics are reported in Table 2. Regardless of the structure set 
used for optimization, no significant differences were observed for PTV1 
and PTV2 coverage between auto- and manual plans, avoiding any bias 
in the comparison due to different target coverage. Overall, auto-plans 
returned significantly less dose to the left lung (− 1.4 Gy and − 1.1 Gy 
of mean dose, for manual and automated contouring, respectively), and 
right breast (− 0.7 Gy and − -0.4 Gy of maximum dose, for manual and 
automated contouring, respectively) and more dose to the heart (+0.1 
Gy of mean dose, independently from the planning approach) than 
manual plans. The homogeneity of PTV2-PTV1 volume was superior for 
the auto-plans as well. No significant differences were observed for right 
lung and LAD. OARs dose differences between auto- and manual plans 
were similar and independent from the contouring approach used. 

Results for ΔDA,M
rc and ΔDA,M

ro are reported in Table 3. Regardless of 
the planning approach, recalculated dose differences were found to be 
similar and negligible except for D1% for both the heart (− 0.4 Gy and 
− 0.3 Gy for ΔDM

rc and ΔDA
rc, respectively) and the right breast (− 1.2 Gy 

and − 1.3 Gy for ΔDM
rc and ΔDA

rc, respectively). Negatives values of ΔDA,M
rc 

were due to the position of the manual contours closer to dose gradient 
regions than the automatic contours for which the dose was originally 
optimized. 

Although ΔDA
ro was found to be significantly different than ΔDA

rc for 
the mean dose for both lungs, the re-optimization process did not have 
any clinical impact if compared to the recalculated dose difference (few 
additional cGy for both lungs mean dose). Nonetheless, for the heart and 
right breast, ΔDA,M

ro was found to be higher and closer to 0 than ΔDA,M
rc 

being significant in the heart only and in both OARs for the manual and 
auto-planning approach, respectively. For these OARs, DA,M

m|m was higher 

than DA,M
a|a in particular for D1%, which suggests a smaller gap between 

manual OARs and PTVs. In any case, the reoptimization was effective in 
reducing the dose for these OARs lying adjacent to the high dose 
gradient. For LAD, ΔDA

ro was significantly smaller than ΔDA
rc while no 

significant difference was observed for manual planning. 
When comparing re-optimized dose differences, there were minor 

discrepancies between ΔDM
ro and ΔDA

ro median values. Instead, we noted 
large differences in the distribution dispersions. As reported in Table 4, 
the inter-quartile range (IQR) and range for ΔDA

ro were smaller than ΔDM
ro 

for all OARs except the right lung and this difference was found to be 
significant for the left lung where IQR and range for ΔDA

ro halved the 
ΔDM

ro values. ΔDM
ro vs ΔDA

ro comparison is reported in Supplementary 
Material (Fig. 3) with boxplots for every figure of merit. 

Table 1 
Analytics of volumes and similarity geometric metrics. * For LAD, the volume difference units are in [cm3].  

OAR  Volumes Similarity metrics  

manual automatic ΔV 95HD 99HD HD DSC sDSC   

[cm3] [%]* [mm] −

Right Breast median 552 492 − 4.7 6.3 11.7 15.5 0.90 0.90 
IQR 244 278 8.6 4.3 5.0 5.9 0.02 0.06 

LAD median 1.2 3.4 1.9* 18.2 23.1 25.2 0.39 0.73 
IQR 0.7 1.5 1.7* 14.6 16.4 16.1 0.12 0.09 

Heart median 581 561 − 4.2 6.8 8.0 11.0 0.94 0.86 
IQR 187 166 3.6 2.7 3.5 3.9 0.02 0.04 

Right Lung median 2625 2619 − 0.3 2.0 7.9 24.3 0.98 0.98 
IQR 376 435 3.1 0.8 9.5 14.0 0.01 0.01 

Left Lung median 2317 2328 0.2 2.1 7.2 23.5 0.98 0.98 
IQR 350 351 4.9 0.4 6.4 15.1 0.01 0.01  
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3.3. Correlation analysis 

For both planning approaches, we found moderate (0.4<|RS|≤0.6) 
to strong (0.6<|RS|≤0.8) correlations between ΔV and V20Gy, V40Gy 
and Dmean of the left lung and D1% of the right lung and recalculated 

dose differences. We observed moderate correlations between various 
geometric metrics (95HD, 99HD, and sDSC) and ΔDA

rc for D1% and 
Dmean of the right breast and between ΔV, 95HD, 99HD, and DSC and 
ΔDA

rc for D0.03 cc of the LAD. Specifically, a total number of 21 signif
icant correlations were observed between the recalculated dose 

Table 2 
Plan comparison between manual (M) and auto (A)-plans optimized with manual (DM

m|m vs DA
m|m) and automatic (DM

a|a vs DA
a|a) − based OARs contouring. The two 

rightmost columns report DM
a|a and DA

a|a evaluated on the manual structure set (DM
a|m and DA

a|m). Significant p-values (<0.05) are reported in bold.  

ROI   DM
m|m DA

m|m p-value DM
a|a DA

a|a p-value DM
a|m DA

a|m p-value   

Median (IQR)  Median (IQR)  Median (IQR)  

PTV1 D98% Gy 57.2 (0.7) 57.2 (0.2) 0.342 NA NA NA 57.3 (0.7) 57.2 (0.2) 0.503 
D2% Gy 61.7 (0.4) 61.5 (0.5) 0.27 NA NA NA 61.6 (0.7) 61.5 (0.5) 0.447 
V57Gy % 98.5 (1.2) 98.6 (0.6) 1 NA NA NA 98.6 (1.4) 98.7 (0.5) 0.794 
V63Gy % 0 0 NA NA NA NA 0 0 NA 

PTV2 D96% Gy 46.0 (0.9) 46.4 (0.8) 0.055 NA NA NA 46.2 (1.0) 46.5 (0.7) 0.064 
V47.5 Gy % 95.7 (1.5) 96.4 (1.2) 0.054 NA NA NA 96.0 (1.6) 96.4 (1.1) 0.144 

PTV2-PTV1 D1% Gy 58.9 (0.7) 58.0 (0.5) <0.001 NA NA NA 59.0 (0.6) 58.0 (0.6) <0.001 
V52.5 Gy % 11.1 (3.6) 10.8 (3.5) 0.039 NA NA NA 12.2 (3.6) 10.6 (3.0) 0.009 

Left Lung V5 % 30.6 (9.3) 24.8 (2.8) <0.001 31.3 (9.9) 24.9 (3.4) <0.001 31.6 (9.5) 24.9 (3.0 <0.001 
V10 % 18.5 (6.9) 14.3 (2.6) <0.001 18.9 (6.6) 14.5 (2.8) <0.001 19.0 (6.9) 14.6 (2.8) <0.001 
V20 % 9.9 (4.5) 8.0 (2.9) 0.002 10.0 (4.3) 7.7 (2.6) 0.004 10.0 (4.6) 7.8 (2.5) 0.003 
V40 % 2.0 (1.6) 1.4 (1.3) 0.055 1.7 (1.7) 1.2 (1.3) 0.011 1.9 (1.8) 1.4 (1.5) 0.010 
Mean Gy 6.6 (1.9) 5.2 (0.9) <0.001 6.4 (2.1) 5.3 (0.9) <0.001 6.3 (2.1) 5.3 (0.9) <0.001 

Right Lung D1% Gy 3.9 (2.0) 3.7 (1.4) 0.81 3.9 (1.5) 3.4 (1.8) 0.246 3.9 (1.6) 3.4 (1.8) 0.253 
Mean Gy 1.0 (0.5) 1.0 (0.3) 0.764 1.0 (0.5) 0.9 (0.43) 0.184 1.0 (0.5 0.9 (0.4) 0.189 

Heart D1% Gy 4.6 (0.6) 5.0 (1.2) 0.218 4.5 (0.7) 4.9 (1.4) 0.156 4.9 (0.8) 5.1 (1.5) 0.164 
Mean Gy 1.5 (0.2) 1.6 (0.4) 0.024 1.4 (0.2) 1.6 (0.3) 0.004 1.4 (0.2) 1.6 (0.3) 0.033 

Right Breast D1% Gy 5.6 (5.4) 4.9 (2.2) 0.136 4.6 (5.5) 4.2 (2.0) 0.007 5.9 (5.6) 5.6 (2.7) <0.001 
Mean Gy 1.3 (1.0) 1.2 (0.5) 0.312 1.3 (1.1) 1.1 (0.6) 0.035 1.4 (1.1) 1.3 (0.6) 0.028 

LAD D0.03 cm3 Gy 5.3 (2.5) 5.5 (1.5) 0.453 5.8 (3.0) 6.2 (1.3) 0.795 5.6 (3.1) 5.9 (1.6) 0.655  

Table 3 
Dosimetric differences due to the dose recalculation and dose re-optimization for both manual and automatic planning approaches. Significant p-values (<0.05) are 
reported in bold.  

OAR   ΔDM
rc ΔDM

ro p-value ΔDA
rc ΔDA

ro p-value   

Median (IQR)  Median (IQR)  

Left Lung V5 % 0.02 (0.27) 0.63 (1.80) 0.202 − 0.02 (0.20) 0.25 (0.74) 0.165 
V10 % 0.01 (0.14) 0.20 (1.29) 0.756 − 0.03 (0.10) 0.13 (0.78) 0.186 
V20 % − 0.03 (0.19) 0.01 (1.17) 0.784 − 0.03 (0.19) 0.05 (0.16) 0.118 
V40 % − 0.02 (0.25) − 0.12 (0.35) 0.177 − 0.02 (0.25) 0.05 (0.19) 0.114 
Mean Gy 0 (0.07) 0.05 (0.39) 0.452 − 0.01 (0.08) 0.05 (0.12) 0.036 

Right Lung D1% Gy 0.01 (0.04) 0 (0.34) 0.985 0.01 (0.04) 0.22 (0.54) 0.001 
Mean Gy 0.04 (0.01) − 0.01 (0.18) 0.430 0.01 (0.01) 0.08 (0.13) 0.048 

Heart D1% Gy − 0.32 (0.45) − 0.18 (0.30) < 0.001 − 0.27 (0.18) − 0.09 (0.28) 0.048 
Mean Gy − 0.05 (0.04) − 0.03 (0.12) 0.040 − 0.04 (0.03) − 0.03 (0.13) 0.870 

Right Breast D1% Gy − 1.18 (0.84) − 0.87 (1.26) 0.083 − 1.26 (0.59) − 0.34 (0.62) < 0.001 
Mean Gy − 0.13 (0.05) − 0.10 (0.10) 0.784 − 0.13 (0.06) − 0.04 (0.13) 0.002 

LAD D0.03 cm3 Gy 0.13 (0.72) − 0.09 (0.67) 0.380 0.13 (1.01) − 0.22 (0.59) 0.007  

Table 4 
Dispersion analysis for the re-optimized dose difference evaluated for both planning approaches. Paired Wilcoxon signed-rank (PWS) and Levene’s test were used to 
assess statistically significant differences for median values and IQR, respectively. Significant p-values (<0.05) are reported in bold.  

OAR   ΔDM
ro ΔDA

ro PWS ΔDM
ro ΔDA

ro Levene   

Median p-value IQR (Range) p-value 

Left Lung V5 % 0.63 0.25 0.388 1.80 (4.76) 0.74 (2.94) 0.011 

V10 % 0.20 0.13 0.927 1.29 (4.94) 0.78 (2.24) 0.011 
V20 % 0.01 0.05 0.794 1.17 (3.35) 0.16 (0.56) < 0.001 
V40 % − 0.12 0.05 0.053 0.35 (1.38) 0.19 (0.60) 0.017 
Mean Gy 0.05 0.05 0.784 0.39 (1.08) 0.13 (0.44) 0.017 

Right Lung D1% Gy 0.00 0.22 0.027 0.34 (1.35) 0.54 (1.02) 0.403 
Mean Gy − 0.01 0.08 0.202 0.18 (0.70) 0.13 (0.52) 0.567 

Heart D1% Gy − 0.18 − 0.09 0.841 0.30 (1.22) 0.28 (1.12) 0.318 
Mean Gy − 0.02 − 0.02 0.674 0.11 (0.37) 0.13 (0.46) 0.281 

Breast D1% Gy − 0.86 − 0.34 0.069 1.26 (5.05) 0.62 (4.99) 0.191 
Mean Gy − 0.10 − 0.04 0.032 0.10 (0.39) 0.13 (0.44) 0.468 

LAD D0.03 cm3 Gy − 0.09 − 0.22 0.153 0.67 (2.03) 0.59 (1.67) 0.742  
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difference and various metrics: 8 for manual plans and the remaining 13 
for auto-plans. The total number of significant correlations was drasti
cally reduced to 4 when geometric variations were evaluated against the 
re-optimized dose differences. In fact, we only observed 4 moderate 
correlations between 95HD of the left lung V20Gy, DSC of the right 
breast D1% and ΔDM

ro and between sDSC of the right breast D1% and 
ΔDA

ro. A moderate correlation found between DSC and the right lung 
mean dose for both ΔDA,M

rc and ΔDM
ro was rejected because of the unex

pected trend (due to the negative sign of the correlation) although sta
tistically significant. No other significant correlations were found, as 
summarized in Fig. 2 and in Table 2 of Supplementary Material. 

4. Discussion 

It is not uncommon to dosimetrically quantify contour variations due 
to different segmentation approaches, typically manual vs automatic, 
through DVH and dose distribution comparisons. Results may vary ac
cording to the method employed for the comparison depending on how 
many structure sets are used to optimize the plan and which one is used 
to evaluate the plan. In addition, dosimetric differences are subject to 
optimization strategies adopted during treatment planning and are 
difficult to avoid in manual planning approaches [12]. The aim of this 
study was to reduce all these uncertainties by analyzing the dosimetric 
impact on contour variations for both manual and automated planning 
strategies and by documenting the discrepancies that might arise from 
the use of various dose difference quantification methods. Manual plans 
were optimized with their original clinical settings to preserve the inter- 
planner variability and compared to auto-plans where subjective vari
ations were not present. This was intentionally done to fully exploit the 
differences between two planning approaches. 

Regardless of the structure set used for optimization, plan ap
proaches provided a similar target coverage but differed in dose to 
OARs, since the left lung and the right breast were more preserved in 
auto-plans while the heart was more spared in the manual plans. Inter- 
planner variability for manual plans was confirmed by the higher SD 
observed for OARs dose with respect to auto-plans. 

Geometric similarity for OARs results were found to be well aligned 
with the previous studies [6,10] that employed equivalent or similar DL 
auto-segmentation techniques, except for LAD whose manual contour 
was observed to be systematically smaller than the automatic contour 
(but still within the intra-observed variation (IOV) range reported by 
Almberg et al. [6]). Our manual contour was limited in the extent along 
the superior-inferior direction with respect to the automatic contour 
with large volume deviations occurring in anatomical regions placed out 
of the dose gradient. This was confirmed by the negligible D0.03 cc 
mean value of the recalculated dose difference for both planning ap
proaches (ΔA,M

rc = 0.06 Gy). This example of discordance between (poor) 
geometric overlap and (good) dosimetric output for LAD was already 
observed for breast patients treated with 3DCRT followed by electron 
sequential boost [11]. 

The relationship between contouring differences and the corre
sponding dosimetric consequence is a challenging problem. The sensi
tivity of dose difference depends on the mutual position of the OAR and 
the dose gradient, which is ultimately plan specific. The irradiation 
technique, the shape and size of both target and OARs, the mutual po
sition of the OARs and targets, optimization settings and clinical dose- 
objectives are all factors that influence dose gradients [13,16]. If dose 
gradients are fixed in dose re-calculation and variable in dose re- 
optimization, dose differences are then affected by the method 
employed for their calculation and the magnitude of the contouring 
differences. As expected, the right breast and the heart were the OARs 
that returned largest ΔA,M

rc values for D1% as the closest to dose gradient 
regions. It is worth noting that dose differences were similar between 
planning approaches, which suggests a consistency of dose gradients 
extent and direction (but not in relative position) between manual and 

Fig. 2. Spearman correlation between geometrical metrics and dose differences 
for all OARs dosimetric endpoints. Recalculated and re-optimized dose differ
ences are reported for each planning approach in the left and right column, 
respectively. Spearman correlation coefficient (|Rs|) is reported using an 
heatmap visualization in a range varying from 0 to 1. |Rs| values > 0.4 and >
0.6 were considered as moderate and strong correlations, respectively. Stars in 
the box represent |Rs| values as statistically significant (p < 0.05). Regardless of 
the planning approach, the number of correlations dropped sensibly when 
moving from recalculated to re-optimized dose differences. 

M. Zeverino et al.                                                                                                                                                                                                                               



Physica Medica 123 (2024) 103402

7

auto-planning. 
When plans were re-optimized, maximum dose differences increased 

for the heart and the right breast (D1%) and decreased for LAD (D0.03 
cm3). This was due to the difference in the optimization volumes, larger 
for the heart and the right breast and lower for LAD (see Fig. 1). How
ever, we observed only minor deviations for both lungs. In general, ΔA,M

rc 

was more sensitive than ΔA,M
ro to the maximum dose difference for the 

OARs lying in proximity to the dose gradient, while for the same OARs 
both metrics returned similar values for the mean dose difference 
estimation. 

Overall, differences between median values of ΔM
ro and ΔA

ro were not 
statistically significant or clinically relevant. However, it is interesting to 
note that both the IQR and range were reduced for ΔA

ro suggesting a 
minor sensitivity to OARs contouring variation for auto-plans. The 
presence of multiple outliers for ΔM

ro might be a consequence of the 
different optimization strategies adopted in manual planning including 
the choice of optimization functions, the relative weights assigned to 
objectives, and the use of optimization structures. According to our re
sults, inter-planner optimization variability had no consequences on the 
mean dose differences due to contouring variation when compared to 
auto-planning. 

This study also aimed to demonstrate how the correlation between 
similarity and dose metrics was highly dependent on the method used to 
calculate the dose difference. The strong correlation observed between 
ΔV and ΔDA,M

rc for the left lung V20Gy and V40Gy disappeared when 
ΔDA,M

ro was considered instead, and in general for all OARs the degree of 
correlation was sensibly reduced when passing from dose recalculation 
to dose re-optimization. This was an expected result of the study, which 
aimed to suggest caution when interpreting such correlations. For other 
treatment sites, it was demonstrated that contour variation had low 
significant impact on the corresponding dose evaluation metrics [12,14] 
and similar results were also found more recently for breast cancer [18]. 
In all cases, plans were re-optimized. Our findings confirmed the low 
degree of correlation between contour and dose variation for the eval
uated OARs in breast treatments as only two moderate correlations were 
found for the left lung V20Gy and 95HD, and for the right breast D1% 
and sDSC. Although the right lung ΔDmean and its DSC was significantly 
correlated, we considered this a statistical random error since the trend 
was not as expected. Nonetheless, no significant difference was observed 
between auto- and manual plans although auto-planning approach 
provided a smaller correlation coefficient overall. The reason for such a 
weak correlation may be because the dose gradients produced by the 
VMAT technique employed in this study that were steep enough around 
the target to reduce any dosimetry difference due to the observed con
touring variation whichever the planning approach used. 

As this study represents the first attempt to evaluate the dosimetric 
impact of auto-planning versus manual planning on contouring varia
tion, it has some limitations. First, the auto-segmentation of the struc
tures was limited to OARs only, thus excluding the target volumes. This 
reduced the interplay effect between target and OARs contouring vari
ation especially in the regions where the gap between normal structures 
and PTV was reduced (e.g., medial side of breasts, chest wall) simpli
fying the whole problem. Secondly, the plans were optimized using the 
whole OARs structure set (either manual or automatic). This could have 
reduced the real dosimetric impact of every single OARs as the resulting 
dose was affected by all other OARs. Although for this specific scenario 
the magnitude of the observed dose differences were not clinically 
relevant, it should be pointed out that the interplay effect between OARs 
may have a strong impact in evaluating dose differences when large 
deviations are observed. In addition, the results presented are valid for 
the specific formulation of the dose difference, the irradiation technique 
employed and, more importantly, for DIBH conditions only. The position 
of the heart under DIBH is more advantageous with respect to free 
breathing by reducing the dosimetric trade-offs with the PTVs. Finally, 
the manual structures taken as reference were delineated by a single 

radiation oncologist only: using multiple operators for the manual 
delineation would have produced more realistic geometric similarity 
results. 

5. Conclusion 

No clinically relevant dose differences due to contouring variation 
were observed when automated or manual planning approaches were 
used for early-breast cancer treatment planning under DIBH conditions. 
Regardless of the planning approach, the correlation between the dose 
differences due to contouring variation and geometric metrics was 
strongly affected by the method employed to calculate the dose differ
ences. It is recommended to reoptimize the plans instead of recalculating 
them on the candidate structure set to carry out a more realistic scenario 
in terms of dose difference in the high dose gradient and correlation 
between contouring variation and dose difference. 
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