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A B S T R A C T

Tumor cell fraction (TCF) estimation is a common clinical task with well-established large inter-
observer variability. It thus provides an ideal test bed to evaluate potential impacts of employing a
tumor cell fraction computer-aided diagnostic (TCFCAD) tool to support pathologists’ evaluation.
During a National Slide Seminar event, pathologists (n ¼ 69) were asked to visually estimate TCF in
10 regions of interest (ROIs) from hematoxylin and eosin colorectal cancer images intentionally
curated for diverse tissue compositions, cellularity, and stain intensities. Next, they re-evaluated the
same ROIs while being provided a TCFCAD-created overlay highlighting predicted tumor vs non-
tumor cells, together with the corresponding TCF percentage. Participants also reported confidence
levels in their assessments using a 5-tier scale, indicating no confidence to high confidence,
respectively. The TCF ground truth (GT) was defined by manual cell-counting by experts. When
assisted, interobserver variability significantly decreased, showing estimates converging to the GT.
This improvement remained even when TCFCAD predictions deviated slightly from the GT. The
standard deviation (SD) of the estimated TCF to the GT across ROIs was 9.9% vs 5.8% with TCFCAD (P
the United States& Canadian Academy of Pathology. This is an open access article
-nc-nd/4.0/).
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< .0001). The intraclass correlation coefficient increased from 0.8 to 0.93 (95% CI, 0.65-0.93 vs 0.86-
0.98), and pathologists stated feeling more confident when aided (3.67 ± 0.81 vs 4.17 ± 0.82 with the
computer-aided diagnostic [CAD] tool). TCFCAD estimation support demonstrated improved scoring
accuracy, interpathologist agreement, and scoring confidence. Interestingly, pathologists also
expressed more willingness to use such a CAD tool at the end of the survey, highlighting the
importance of training/education to increase adoption of CAD systems.

© 2023 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy
of Pathology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
Introduction

Digitization of glass tissue slides in pathology laboratories
is becoming increasingly more common, making histopathol-
ogy images amenable to computer-aided diagnostic (CAD)
support tools. An expert consensus panel consisting of 24
international members from various digital pathology societies
on artificial intelligence (AI) in diagnostic pathology agreed
that by 2030, the integration of AI will take over certain tasks,
including quantitative assessment of diagnostic features, and
lead to greater diagnostic accuracy.1 The use of AI tools will
bring more objectivity to certain diagnoses with high inter-
observer variability and generally bring more standardization,
increased quality, and completeness to diagnostic reports.
They identified targets for CAD solutions by 2030 and antici-
pated the adoption of AI tools for increasingly precise auto-
matic measurements (eg, tumor area estimation) to be
routinely used by 2030.

The desired increased accuracy provided by CAD tools is likely
linked with the rise of precision medicine and personalized
therapy approaches. With oncology patients, these approaches
often require molecular analysis of their solid tumors to identify
mutational profiles used to select the corresponding treatment
strategy.2-4 However, if the minimum number of tumor cells
required for a molecular test is not present, the test may yield
incorrect results. Hence, before testing, the fraction of tumor cells
present in the samples (ie, tumor cell fraction [TCF]) must be
precisely assessed by pathologists to ensure accurate downstream
analysis and optimal patient care.5

Unfortunately, TCF estimation has already been shown to be a
task suffering from a high interobserver variability.6-9 In a study
by Smits et al,6 pathologists were asked to evaluate 47 samples of
lung tumors and to record the TCF in 1 of 11 possible categories
(0%-5%, 6%-10%, 11%-20%, …, 91%-100%).6 The corresponding
ground truth (GT) was obtained by laboriously manually count-
ing individual cells. In more than 33% of samples, the range of
estimates deviated by at least 3 categories and in some instances,
by up to 6 categories. In contradiction with the GT, 38% of sam-
ples were discarded by pathologists as containing too few tumor
cells for downstream molecular testing, potentially impacting
patient care. This discordance is likely due to the challenging
nature of this task due to: (1) lack of clear guidelines and training
sessions on how to assess the TCF; (2) heterogeneity of
neoplastic cell presentation, morphology, and size; and (3) the
presence of nonneoplastic cells in the tumor regions confound-
ing visual qualitative assessments.7,8,10

In this study, we evaluate the potential impact of a CAD
solution on the reliability and reproducibility of TCF estimation.
On the occasion of a Swiss national “Slide Seminar” for pa-
thologists, a survey was conducted by the Swiss Digital
Pathology Consortium whereby respondents were asked to
score 10 hematoxylin and eosin (H&E) digital images and
2

evaluate the TCF before and after receiving the support of a
CAD tool termed tumor cell fraction computer-aided diagnostic
(TCFCAD). Additionally, they reported their level of confidence
in CAD solutions in general, as well as their level of confidence
in their individual TCF scores. Before and after the survey,
questions about the use of AI and CAD systems in medical
settings were asked to observe their changing openness to
adopting such tools in their clinical practice.
Methods

Tumor Cell Fraction

Our study followed the consensus recommendations estab-
lished by a European Delphi survey.10 TCF content (ie, neoplastic
cell percentage) was defined as the count of neoplastic cells
divided by the total amount of cells in a predefined area, resulting
in the percentage of tumor cells present in the area. Because
manual counting of individual cells is too time consuming to be
performed routinely in clinical practice, TCF estimation is instead
performed by pathologists via visual assessment of the percentage
of neoplastic cells vs all nonneoplastic cells in a defined region.
Notably, this estimation is differentiated from tumor area per-
centage as tumor cells may be much larger in size than the sur-
rounding nonneoplastic cells, potentially leading to an
overestimation of TCF.
Data Set

The data set consisted of 10 regions of interest (ROIs) of 1000�
1000 pixels (250 � 250 mm) from H&E-stained colorectal cancer
cases scanned at 40� (0.25 mm/pixels) using a P1000 slide scanner
(3DHistech, Budapest, Hungary). These ROIs were chosen to
exhibit a variety of tumor-to-stroma cellularity levels. ROIs were
also selected to contain varying levels of necrosis, immune in-
filtrates, desmoplastic stroma, and stain variation. Taken together,
these confounders are likely tomake TCF estimationmore difficult
and, thus, a potential source of interobserver variability.8 Necrosis
regions were regarded as nontumor.

For each ROI, a cell-by-cell manual GT count was obtained
(R.O.) under the supervision of highly experienced gastrointestinal
(GI) pathologists (A.L. and H.D.). This process involved the labo-
rious centroid annotation for each individual cell present in the
images using QuPath.11 R.O. was first trained by H.D. for identifi-
cation of neoplastic cells in the ROIs. All the annotations were then
reviewed by A.L..

No patient information was used in this study. ROIs were
selected from completely anonymized whole slide images (WSI)
that cannot be traced back to patients.
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Tumor Cell Fraction Computer-Aided Diagnostic Tool Description

TCFCAD consisted of merging the output of 2 algorithms. To
obtain cell centroid coordinates, ROIs were segmented using a
pretrained Stardist model.12 Next, tumor tissue was retrieved us-
ing the U-Net model, which was trained for this specific seg-
mentation task. U-Net architecture is composed of a contracting
path to capture image features followed by an expanding path to
generate the corresponding segmentation map.13,14 U-Net was
first presented for semantic segmentation for biomedical image
analysis and has shown great performances for other tasks such as
road detection from satellite images and is now widely used for a
multitude of segmentation tasks in different fields, including
histopathology.15-17 Cells were classified as tumor cells if their
centroid’s coordinates were inside the tumor tissue segmentation
result. All cells outside the tumor mask were considered non-
tumor cells (see Fig. 1). Lastly, TCF was computed as the number of
predicted tumor cells divided by the total number of cells detected
in the ROI, resulting in a TCF score percentage.

Some groups have already proposed digital solutions to esti-
mate TCF in the lung, breast, and colon tissue. Many approaches
were based on immunohistochemistry to specifically stain tumor
cells,18 limiting their applicability to typical clinical workflows
that focus on H&E. Approaches for H&E images were either
semiautomated methods9,19 or if fully automated, the code was
not publicly available,20-22 necessitating the usage of our previ-
ously validated pipeline for fully automated generation of TCF
estimates from H&E ROIs. We believe that our approach most
closelymirrors a real-world clinically deployed tool, where images
would be automatically processed to generate TCF estimations. A
fully automated pipeline prevents potential human biases found
in semiautomated methods while reducing processing time.

It is also important to note that the goal of the study was not
the validation of the TCFCAD model but to observe the impact of
presenting pathologists with TCF predictions on their scoring.
Swiss Digital Pathology Consortium Tumor Cell Fraction Estimation
Survey Setup

Our survey was conducted on April 30, 2022, during an
online Swiss Slide Seminar from the Swiss Society of Pathology
Figure 1.
Illustration of the tumor cell fraction (TCF) computer-aided diagnostic prediction model.
input. Cell segmentation and tumor tissue segmentation are performed in parallel on the in
to compute the TCF. Cells inside the tumor tissue are highlighted as red dots and classi
nontumor cells and highlighted as yellow dots. The classified cells are overlaid on the input
divided by the total amount of cells in the ROI.
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hosted by the Swiss Digital Pathology Consortium. The ques-
tionnaire was created using SurveyMonkey, and the link to the
survey was shared with attending participants. Prior to starting
the experiment, the questionnaire was introduced to the par-
ticipants during a short oral presentation with clear explana-
tions and guidelines (see Supplementary Fig. S1). Before
evaluating the ROIs, participants were asked a series of ques-
tions related to their current position (resident or attending
pathologist), years of experience, and their domain of sub-
specialization. Moreover, they were asked to denote their fa-
miliarity with AI (ranging from “not familiar at all” to “very
familiar”) and their feelings toward the use of AI as a support
for medical practice. The survey questionnaire can be found in
Supplementary Figure S1.

The image review component took place in 2 stages: unaided
and aided.

In the unaided stage, participants were sequentially shown the
ROIs and asked to enter their TCF estimates as a percentage.
Additionally, they reported how confident they felt about their
score on a scale of 5d(1) very confident, (2) somewhat confident,
(3) neither confident nor unconfident, (4) not so confident, and (5)
not confident at all.

In the aided stage, participants were presented with the same
H&E ROIs again along with the corresponding TCFCAD predicted
percentage and an overlay highlighting the cells classified as
tumor and nontumor (Supplementary Fig. S1). Participants were
again asked to enter their estimation, along with their confi-
dence regarding the score, as well as a rating on how useful the
TCFCAD prediction was to their final assigned value. This was on
a 5-level scoringd(1) very helpful, (2) somewhat helpful, (3)
neither helpful nor not helpful, (4) not so helpful, and (5) not
helpful at all.

Throughout these 2 stages, participants were also provided
with links to access the high-resolution version of each ROI as
these had to be compressed to fulfill SurveyMonkey requirements.
This process attempted to mirror clinical practice and the level of
information available to pathologists during routine estimation.
For each question of the survey, values could not be modified once
inputted, and previous pages of the survey could not be navigated
back to after values were saved.

At the end of the experiment, participants were asked to
provide feedback to determine which TCFCAD output was most
A hematoxylin and eosin (H&E) region of interest (ROI) at 0.25 mm/pixel is given as
put ROI. The cell segmentation results are merged with the tissue tumor segmentation
fied as tumor cells, whereas cells outside the tumor segmentation are classified as
H&E ROI for visualization, and the TCF score is computed as the amount of tumor cells
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helpful (score, overlay, and else), whether TCFCAD is useful (yes
or no), and if they would be willing to use TCFCAD if it existed
(yes or no). Lastly, 2 open-ended questions asked the patholo-
gists how TCFCAD could be improved and for comments and
suggestions about the survey.

Collected data were cleaned and quality-controlled to remove
incomplete or erroneous answers (eg, participants entering the
same TCF score for each image). This resulted in a set of 69
complete responses that formed the data set for analysis in this
study.
Statistical Analysis

Descriptive statistics (ie, minimum, maximum, mean, SDs, and
variance) were computed for the distribution of all TCF estimation
scores for each ROI. Discordance between GT values and partici-
pants’ estimates, as well as between individual unaided and aided
scores, was analyzed. Under the assumption of paired non-
normally distributed samples, Wilcoxon signed-rank test was
applied to test differences in means and SDs. When testing con-
fidence levels (categorical variables), Spearman rank test was
applied. For unpaired samples, the Mann-Whitney U test was
used. These tests were conducted using Python’s SciPy library.23

The interclass correlation coefficients (ICCs) were used to deter-
mine the intraobserver variability using the intraclass correlation
function from Python’s pingouin library.24
Results

Interobserver Variability and Statistics

The 10 H&E ROIs included in the survey, along with the
TCFCAD predictions, annotation overlays, and GT annotations can
be found in Figure 2 and Supplementary Figure S2.

A complete set of scores was available for 69 participants,
with the descriptive statistics summarized in the Table. Marked
variability in the scores attributed to an individual ROI was
observed. For example, ROI 1 was assigned TCF scores as low as
20% and as high as 90% by some respondents, with an average
TCF of 55%.

Overall, without CAD support, the average difference in the
range of values across all 10 ROIs was 52% ± 12.1%, which
decreased significantly to 28% ± 8.4% after use of TCFCAD,
indicating a convergence of scores toward the mean. Moreover,
the scores also significantly converged toward the GT, reflected
by a decrease of the SD of estimated TCF to the GT from 9.9% ±
1.4% without CAD to 5.8% ± 1.7% with CAD (for all TCF scores
over the 10 ROIs, P ¼ 3.8 � 10�20), and the average mean
moved from 5.5% to 4.1% toward the GT. Across all ROIs, on
average, 69% (477/690) of the scores were changed (99.4% (474/
477) were changed by at least 5%) when using TCFCAD, and of
these, 71% (341/477), on average, were closer to the GT with
assistance. The ICC increased from 0.8 to 0.93 (95% CI, 0.65-0.93
vs 0.86-0.98), reflecting an improved interobserver agreement.
These results are further highlighted in Figure 3, which depicts
the distribution of the TCF estimates for each ROI with and
without TCFCAD together with the corresponding TCFCAD
predictions and GT values.

Despite the strong interobserver variability of individual
scores, the mean values of TCF with and without TCFCAD (P ¼
.8748) and the values with and without TCFCAD vs the GT
values (P ¼ .6219 and P ¼ .7415, respectively) were not
4

statistically different. However, the mean TCF values do not
reflect the score variability since the positive and negative
deviations balance each other out. Over the 10 ROIs, the posi-
tive and negative deviations to the GT without TCFCAD were
7.5% ± 5% and 9% ± 5.5% and with TCFCAD were 3.7% ± 1.9% and
5.9% ± 3.7%, respectively. Strong linear correlations between
average GT TCF scores with (r2 ¼ 0.978) and without TCFCAD
(r2 ¼ 0.912) were observed.
Impact of Imprecise Tumor Cell Fraction Computer-Aided
Diagnostic Predictions

We can observe that TCFCAD predictions were less than or
equal to the corresponding GT in all cases. This is likely due to the
observation that the Stardist model employed for cell segmenta-
tion occasionally oversegments elongated cells, such as fibroblast,
into more than 1 cell. This yields a slight overestimation of stroma
cellularity and, thus, a lower TCF prediction (see Fig. 4). However,
between the 10 ROIs, the average variance between TCFCAD pre-
dictions and GT was only 4.1% ± 3.1%, suggesting that the TCFCAD
predictions were overall very accurate and did not suffer from this
potential oversegmentation.

In some ROIs, for example, ROIs 2 and 9, the TCFCAD pre-
dictions were >6% different than the GT. Here, the tumor seg-
mentation algorithm appears to have missed parts of the tissue,
with an observable overdetection of cells in the stroma (see
Supplementary Fig. S3). On these ROIs, the mean TCF score
from pathologists was slightly closer to the GT before using
TCFCAD (1.1% decrease in mean to GT for both ROIs, see the
Table), suggesting an imprecise TCFCAD value negatively im-
pacts accuracy. That said, the average SD of the scores still
significantly converged to the GT after using TCFCAD (P ¼
1.42 � 10�6 and P ¼ .0083 for ROIs 2 and 9, respectively),
suggesting that even with this muted performance, the overall
value of using TCFCAD remained strong. In short, pathologists
aided by TCFCAD were more concordant than TCFCAD alone or
pathologists alone. This highlights the benefit of “collaboration”
between pathologists and CAD tools even when CAD pre-
dictions may be imprecise.
Confidence in Results Before and After Computer-Aided Diagnostic
Support

Figure 5 shows the self-evaluated confidence in the TCF scoring
for all 10 ROIs without and with TCFCAD. In the unaided stage of
the study, the participants felt “somewhat confident” in 60% of the
cases (413/690). After TCFCAD support was given, the pathologists
claimed feeling more confident in 80% of the assessments (551/
690), where they stated feeling “very more confident” in 51% of
the cases (281/551) and “somewhat more confident” in 49% (270/
551). Moreover, when pathologists stated feeling less confident
during the first stage, their scoring confidence increased with the
TCFCAD support. Supplementary Table S1 depicts the distribution
of confidence level after TCFCAD for cases where pathologists felt
unconfident during the unaided stage. Of these 74 assessments, 15
were rated as very more confident, 53 were rated as somewhat
more confident, 6 were rated as neither more confident nor less
confident, and none were rated as less confident when being
provided with TCFCAD support. An increase in accuracy accom-
panied this increase in confidence. With TCFCAD support, pa-
thologists were significantly closer in their estimations to the GT
(P ¼ .0014, Supplementary Figure S4). This indicates that TCFCAD



Figure 2.
Example hematoxylin and eosin crops with tumor cell fraction computer-aided diagnostic (TCFCAD) predictions and ground truth annotations. The first column shows 3 of the
10 hematoxylin and eosin digital colorectal cancer regions of interest (ROIs) that were scored during the survey, the second column shows the corresponding overlayed TCFCAD
predictions, and the third column shows the ground truth. Red dots corresponds to tumor cells and yellow dots nontumor cells. All regions of interest, corresponding predictions,
and ground truth images can be found in the Supplementary Figure S2.

Ana Leni Frei et al. / Mod Pathol 36 (2023) 100335
helped to increase pathologists’ confidence in their assessments
while shifting the scores toward the GT.
Perceptions in Clinical Adoption of Artificial Intelligence Before and
After the Survey

To explore changes in the perception of CAD systems before
and after the experiment, the study survey began by asking
participants about their familiarity with AI and their confidence
in AI algorithms for clinical adoption. These results were then
5

contrasted after the survey, by asking participants whether they
found TCFCAD useful and whether they would use such a tool if
available (Fig. 6). The majority of respondents reported being
not at all or not very familiar (38/69; 50.88%) with AI, while 22%
(15/69) reported that they were somewhat familiar, and only
2.94% (2/69) were very familiar with AI. In terms of confidence
in AI for clinical adoption, 17.39% (12/69) felt very confident and
42% (29/69) felt somewhat confident, while 13.04% (9/69) and
2.94% (2/69) felt not very and not at all confident, respectively.
The association between familiarity with AI and confidence in
its clinical adoption was statistically significant (P ¼ .045).



Table
Description of the tumor cell fraction scoring with and without tumor cell fraction computer-aided diagnostic support

Scoring regimen ROIs Average

1 2 3 4 5 6 7 8 9 10

Pathologists without TCFCAD Mean (%) 55.0 41.3 49.0 43.5 36.2 67.5 21.3 14.7 75.8 45.2

SD to mean 13.1 10.3 11.5 11.2 15.1 10.9 7.5 6.5 10.2 12.4 10.8 ± 2.4

SD to GT 12.4 10.6 11.5 9.2 11.9 8.4 8.4 8.4 8.6 9.8 9.9 ± 1.4

Min (%) 20 20 20 15 10 35 5 5 50 20

Max (%) 90 75 80 70 70 90 40 35 90 80

Variance (max
to min) (%)

70 55 60 55 60 55 35 30 40 60 52 ± 12.1

Pathologists with TCFCAD Mean (%) 58.9 40.2 49.1 37.7 29.5 70.6 23.9 16.9 69.1 40.4

SD to mean 6.0 5.1 5.4 6.2 6.7 4.9 4.8 3.5 6.1 5.9 5.5 ± 1.1

SD to GT 5.4 9.5 8.3 4.8 4.9 3.0 5.1 5.1 5.9 6.4 5.8 ± 1.7

Min (%) 40 20 30 20 15 60 10 10 50 20

Max (%) 80 50 60 50 50 80 30 20 85 50

Variance (max
to min) (%)

40 30 30 30 35 20 20 10 35 30 28 ± 8.4

GT % 63
(4439/7060)

49
(3663/7458)

57
(4164/7319)

39
(3242/8286)

31
(2822/9044)

71
(4793/6727)

28
(1486/5222)

22
(1332/5941)

73
(5397/7497)

44
(2437/5499)

TCFCAD prediction % 62 39 54 34 25 71 27 18 65 42

SD to GT 1 10 4 5 6 0 1 4 8 2 4.1 ± 3.1

For each region of interest, the mean (%), minimum (%), andmaximum (%) of the scores were reported. The variance (%) together with the SD of the scores regarding themean and the ground truth were computed. The tumor
cell fraction computer-aided diagnostic predictions and the ground truth values are also reported.
GT, ground truth; Max, maximum; Min, minimum; ROI, region of interest; TCFCAD, tumor cell fraction computer-aided diagnostic.
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Figure 3.
Tumor cell fraction estimation distribution with and without tumor cell fraction computer-aided diagnostic (TCFCAD) support. Top violin plot shows the scoring distribution by
pathologists for the 10 regions of interest (ROIs) with and without TCFCAD assistance (blue and red, respectively). Yellow dots represent the TCFCAD score that was given to the
pathologists and green dots corresponds to the tumor cell fraction ground truth (GT). Bottom bar plots represent the mean variance across the 10 ROIs to the GT value. Upon
TCFCAD assistance, the mean variance to GT decreased from 9.9% to 5.8%.
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The overwhelming majority of respondents (65/68; 95.6%)
answered “yes” when asked whether TCFCAD was useful, and
63/69 (91.3%) said that they would use this tool if available.
Interestingly, of the 11 respondents who answered that they
were not at all or not so confident in the clinical adoption of AI
before the survey, 8 would use the TCFCAD if made available
(P ¼ .0047). This indicates the importance of training and
educational sessions with pathologists to familiarize them with
CAD systems in order to increase motivation regarding adoption
of clinical CAD tools.
Tumor Cell Fraction Computer-Aided Diagnostic Scored as Not
Helpful

Interestingly, in most cases where pathologists rated TCFCAD
as not helpful at all or not so helpful, they entered a different score
from their first evaluation (23/32; 72%). Indeed, a significant
convergence of the scores toward the GT (P ¼ 0.028) was
observed. The SD from the GT was 9.4% without TCFCAD vs 6.6%
with TCFCAD. This suggests that TCFCAD also helped in cases even
when participants thought the support was not helpful. The
7

details of score variations for each image can be seen in the
Supplementary Figure S5.
Role of Specialty and Years of Experience

Respondents’ field of diagnostic specialty and years of experi-
ence are reported in Supplementary Figure S6. These 2 charac-
teristics represent possible biases in our results and are thus
investigated below.

No significant difference was observed when comparing
scoring distribution to GT from GI pathologists and non-GI
pathologists without and with TCFCAD assistance (P ¼ .26
and P ¼ .39, respectively). Also, GI pathologists did not report
feeling significantly more confident in their assessments than
non-GI pathologists (P ¼ .19), with the score variation without
and with TCFCAD support between GI and non-GI pathologists
showing no statistical difference (P ¼ .13). This suggests that
pathologists benefited from the CAD tool independent of their
field of diagnostic specialty.

When looking at the impact of years of experience on TCF
scoring estimates, no significant difference between the



Figure 4.
Stardist oversegmentation of elongated cell. Two regions from region of interest 9, highlighted by the green boxes, were extracted for comparison between Stardist segmentation
and ground truth annotations. Cells segmented by Stardist are highlighted by a yellow dot on their centroid in the Stardist prediction panels. The ground truth panels also show
the manual annotations for the same regions as yellow dots. Green arrows indicate elongated single cells that were segmented as more than on cell by Stardist.
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different experience categories (all P > .05) was observed (see
Supplementary Figure S6). Furthermore, the score changes
when provided TCFCAD support also showed no significant
difference between experience categories (all P > .05). This
might result from the lack of training and feedback of pathol-
ogists when performing TCF estimations in clinical routine, as
showed by Mikubo et al.7 However, pathologists with more
than 20 years of experience felt significantly more confident in
their scoring (P ¼ .00022). This suggests that increased years of
experience appear to increase reported confidence. Regardless,
all pathologists appear to have benefited from TCFCAD support,
regardless of their experience level, which is in line with the
results from the study by Kazdal et al.9
Feedbacks of the Participants

One major concern outlined by participants was the ability to
compare the initial TCF scores (without TCFCAD) to the TCFCAD
predictions. Indeed, during the second stage of the survey, pa-
thologists were not shown their previous scores. Some re-
spondents stated they would feel more confident in employing
TCFCAD if their scores were similar to their initial estimate.
Moreover, by comparing the scores, they would be able to observe
8

their own subjectivity and receive immediate personalized
feedback.

Another comment concerned the overlay, suggesting the
transparency of the dots, their colors, and size could be improved
for visualization. Highlighting the tumor boundary with lines,
tumor infiltrates, empty spaces, and blood-filled vessels were also
mentioned as useful possible improvements. The combination of
scores and overlays was appreciated to reduce the decision-
energy cost of assigning a score while increasing TCFCAD trust
by seeing the actual cell-level prediction. Importantly, these
feedbacks are all presently feasible for implementation.
Discussion

TCF is an important parameter for both diagnostics and
research and, therefore, was selected as a use case for our survey.
In molecular pathology diagnostics, the proportion of tumor cells
within a sample has an influence on the identification of muta-
tions and the clinical interpretation of next-generation
sequencing results.25 Unfortunately, these TCF estimates are only
available by pathologist visual assessment of glass slides, sub-
jecting them to intraobserver and interobserver variability. As a
result, if the TCF is overestimated, an inconclusive and yet
expensive, tissue-destructive, molecular test may be performed



Figure 5.
Confidence level in scoring and tumor cell fraction computer-aided diagnostic (TCFCAD) support. Left bar plot: confidence scores assigned by pathologists during the first stage of
the study, when assessing tumor cell fraction without the computer-aided diagnostic support. Middle bar plot: increase or decrease in scoring confidence upon TCFCAD
assistance during the second stage of the study. Right bar plot: scoring of the level of helpfulness of the TCFCAD support. ROI, region of interest.
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leading to potential false negative results and mutations might be
missed.6 Correct TCF scores could further help to improve un-
derstanding of intratumoral heterogeneity and subclonal pop-
ulations to get a better evaluation of driver vs passenger
mutations and optimal patient care.10

In this national survey on the use of CAD for TCF evaluation,
our findings indicate that CAD solutions can have a marked
impact on reducing interobserver variability between patholo-
gists and encourage convergence of the TCF estimates toward a
laboriously manually established GT. No significant difference in
TCF means was observed with and without the TCFCAD support
tool. This was expected considering that the scores close to the
average were not anticipated to exhibit notable variations.
Conversely, severely deviating scores were expected to converge
toward the average, leading to increased scoring agreement, as
shown by the increase in ICC. That said, we cannot exclude that
by increasing the number of participants, the change in means
might become significant when looking at means differences
smaller or equal to 1%. However, we have to keep in mind that a
minor change in average TCF score is not the focus point of this
work; the primary clinical benefit of using a TCFCAD support tool
would be to rectify scores exhibiting large variance, thereby
guiding them to converge toward the mean and increase inter-
observer agreement.

The use of CAD tools has been shown to benefit pathologists for
other tasks as well, such as the analysis of HER2 by immunohis-
tochemistry and fluorescence in situ hybridization,26 Ki-67
scoring in breast27 and pancreatic neuroendocrine tumors,28 as
9

well as prostate cancer detection and Gleason grading.29 Recently,
Sakamoto et al30 studied the benefits of a collaborative workflow
between pathologists and CAD for the TCF estimation in lung
adenocarcinoma. Consistent with our observations, the adjusted
scores with the CAD support were more accurate. Such TCFCAD
tools could be further expanded to other clinical settings, such as
estimating the number of vital tumor cells for fluorescence in situ
hybridization analysis or tumor fraction scoring in the context of
neoadjuvant treatments.

Our results are in line with these findings. We also observed
that although TCFCAD was not always 100% concordant with GT
counts, respondents still asserted that TCFCAD was helpful in
their scoring decisions and their scores accordingly still
converged toward the GT. Importantly, the estimations by pa-
thologists aided by the TCFCAD tool were more accurate than
those of pathologists alone or TCFCAD alone. These collabora-
tions between pathologists and TCFCAD improved performance,
and a large majority of the participants felt more confident in
their scoring when aided. This gain in confidence resulted from
the TCFCAD, presenting a TCF score together with cell-level
prediction overlays that were reported by pathologists to
reduce the decision-energy cost when performing quantitative
assessments, as stated by participants’ feedbacks. At the end of
the survey, almost all participants would be willing to use such a
tool for clinical practice. Interestingly, the confidence in the use
of CAD before and after the survey was significantly different, in
line with the idea that education or training with CAD increases
the confidence in its adoption.



Figure 6.
Familiarity and confidence in using tumor cell fraction computer-aided diagnostic (TCFCAD) systems in medical practice. Pathologists’ responses when answering to (A) “How
familiar are you with artificial intelligence (AI)?” and (B) “In general, how do you feel about using AI help in medical practice?.” (C) The correlation between familiarity (“Yes”
represents “very familiar,” “somewhat familiar,” and “neither familiar nor unfamiliar,” and “No” represents “not so familiar” and “not familiar at all”) and confidence level of using
AI in medical practice. Pathologists’ answers for the questions (D) “Do you think such an AI model for tumor cell fraction prediction could be useful?,” (E) “Would you be willing
to use such an AI help if it existed?,” and (F) “What AI output did you find more helpful?.” (G) Heat map of the correlation between confidence level in AI for medical use (see
panel B) and willingness to use TCFCAD (panel E). (H) Heat map of the correlation between pathologists who did not feel confident in the adoption of medical computer-aided
diagnostic (CAD) tools and their willingness to use TCFCAD.
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Our study benefits from a large number of respondents, which
we believe accurately reflects the current experience of patholo-
gists with CAD solutions in Switzerland.31 There are, however,
some limitations to our survey. One limitation is the absence of a
wash-out period between the 2 stages. Although pathologists first
scored the 10 ROIs unaided, the recall of their previous scores may
have influenced their reported TCFCAD-aided values. Despite this,
the intraobserver differences between the first and second stages
are large, as seen by the increased ICCs, and thus, it is unlikely that
this had a large impact on our study. Another limitation was that
due to time restrictions, the TCF assessments took place at an ROI
level as opposed to a WSI level. However, the ROI-based obser-
vations made in this study likely represent an idealized lower-
bound discordance as compared to assessments at the WSI level,
where nonuniform region selection will further increase disparity
10
between readers. Finally, ROIs scored only originated from colo-
rectal cancer cases, imparting potential experiential bias, but no
statistical confounding for specialty or years of experience was
witnessed. To further analyze experiential bias, one could record
howoften participants assess TCF in their daily clinical routine and
how the TCFCAD impacts their assessments, which should be
explored in future work. Although this study was not aimed at
validating the TCFCAD model performance but was aimed at
evaluating the impact of a CAD support tool on pathologists, the
TCFCAD predictions were accurate and reflected a life-like sce-
nario by presenting pathologists’ predictions occasionally slightly
deviating from the GT. Future assessment studies should measure
potential efficiency improvements in unaided vs aided scoring,
which were not feasible here given the nature of the slide seminar
organization.
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To conclude, CAD solutions seem to have a positive impact not
only on reducing interobserver and intraobserver variability but
also on the level of confidence that pathologists may have in their
scores and to reduce the decision-energy cost of quantitative as-
sessments. Employing CAD sees scores converging toward the GT
TCF, a benefit in terms of reliability and reproducibility, eventually
likely leading to improved patient care. When the CAD slightly
diverged from the GT, the rescoring by assisted pathologists was
better than pathologists alone or CAD alone, highlighting the
benefits of collaboration between pathologists and AI. The par-
ticipants further demonstrated, however, that if this synergy is
desired, additional targeted training with CAD systems is needed
in order to increase pathologists’ trust in CAD solutions.
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