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Résumé 
Chaque personne adopte un pattern de course unique et spontané qui est un système global et dynamique avec 
plusieurs paramètres biomécaniques interconnectés. Ainsi, il est d’intérêt majeur d’utiliser des méthodes multi-
composantes pour comprendre les différences individuelles dans la biomécanique de course à pied. De ce fait, 
cette thèse a investigué l’évaluation objective du pattern de course spontané et sa relation en termes de 
classification des coureurs au laboratoire et en perspective sur le terrain. Pour cela, cette thèse contient deux sous-
buts. Premièrement, cette thèse a étendu les connaissances sur le duty factor (DF ; la proportion du temps passé 
au contact avec le sol pendant une foulée) et la fréquence de foulée (SF), deux variables globales et objectives qui 
permettent d’évaluer le pattern de course spontané. Cette thèse a montré que la variable locale qui définit le type 
de pose de pied et le DF ne représentent pas la même information du pattern du course spontané quand ces 
variables sont investiguées au niveau individuel et que le DF doit être préféré au type de pose de pied quand on 
souhaite évaluer le pattern de course global du coureur. De plus, cette thèse a apporté des preuves supplémentaires 
et renforcé les déclarations précédentes selon lesquelles les coureurs à faible DF reposent davantage sur 
l’optimisation du modèle masse-ressort (stockage et restitution de l’énergie élastique) que les coureurs à haut DF. 
Deuxièmement, cette thèse a développé des algorithmes permettant de mesurer précisément le temps de contact 
(!!), le temps de vol (!"), le DF, la SF et le pic de force de réaction au sol vertical ("#,%&') en l’absence de la 
méthode de référence (basée sur la mesure des forces de réaction au sol) mais en utilisant une centrale inertielle 
(IMU) attachée au sacrum. Cela permettrait ensuite d’effectuer des mesures sur le terrain. Cette thèse supporte 
l’utilisation des algorithmes basés sur l’accélération verticale enregistrée par l’IMU attaché au sacrum pour 
estimer "#,%&', !!, !", DF et SF pour des courses sur tapis roulant à des vitesses faibles. De plus, cette thèse a 
montré que l’application de l’intelligence artificielle (des modèles de régression linéaire dans ce cas spécifique) a 
permis d’améliorer la précision des estimations de !!, !" et DF. En conclusion, avoir des estimations précises de 
"#,%&', !!, !", DF et SF obtenues à l’aide d’une IMU peuvent être très pratique pour les entraîneurs et les 
professionnels de la santé car une IMU a l’avantage d’être très peu couteuse et portative. Ces estimations précises 
peuvent être bénéfique lors de la surveillance des facteurs de risque de blessures liés à la course à pied sur le 
terrain.  
 
Mots-clés : analyse du pattern ; analyse du mouvement ; appareil portable ; senseur ; centrale inertielle ; 
accéléromètre ; plateforme de force. 

Abstract 
Everyone adopts a unique spontaneous running pattern, which is a global and dynamic system with several 
interconnected biomechanical parameters. It is therefore of major interest to use multicomponent methods to 
understand individual differences in running biomechanics. Hence, this thesis investigated the objective 
evaluation of the spontaneous running pattern and its relationship in terms of runners’ classification in the 
laboratory and towards the field. To do so, the thesis contains two sub-goals. First, this thesis extended about the 
knowledge of duty factor (DF; the proportion of time spent in contact with the ground during a running stride) 
and step frequency (SF) as global objective variables to assess spontaneous running patterns. This thesis showed 
that “local” foot-strike pattern and DF do not represent similar running pattern information when investigated at 
the individual level and DF should be preferred to foot-strike pattern when evaluating the global running pattern 
of a runner. Moreover, this thesis brought further evidence and reinforce previous statements that low DF runners 
rely more on the optimization of the spring-mass model (better storage and re-use of elastic energy) than high DF 
runners. Second, this thesis developed algorithms allowing to accurately measure ground contact time (!!), flight 
time (!"), DF, SF, and peak vertical ground reaction force ("#,%&') in absence of the gold standard method (ground 
reaction force data) but using an inertial measurement unit (IMU) attached to the sacrum. This would latter allow 
to perform these measurements in the field. This thesis supports the use of algorithms based on the vertical 
acceleration recorded by a sacral-mounted IMU to estimate "#,%&', !!, !", DF, and SF for level treadmill runs at 
endurance running speeds. In addition, this thesis showed that further applying machine learning (linear regression 
models in this specific case) allowed us to improve the accuracy of the estimations of !!, !", and DF. To conclude, 
having accurate IMU-based estimations of "#,%&', !!, !", DF, and SF might be very practical for coaches and 
healthcare professionals, especially because an IMU has the advantage to be low-cost and portable and therefore 
those accurate estimations might be beneficial when monitoring running-related injury risk factors in real-word 
settings.  
 
Keywords: gait analysis; motion analysis; wearable; sensor; inertial measurement unit; accelerometer; force plate. 
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I never lose. 

I either win or learn. 
–– Nelson Mandela –– 
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Amongst all endurance sports, running is probably the most popular one with the most 

adherents. In the United States, around 36 million people (~10% of the population) are yearly 

practicing this activity [1]. In Switzerland, 27% of the population is running and 10% considers 

running as their main physical activity [2]. 

 

While running offers many health benefits, 19 to 79% of recreational runners are yearly 

contracting a running related injury [3, 4]. Therefore, the incidence of these injuries is high. 

One of the main reasons of the occurrence of these injuries is that the loading of the 

musculoskeletal system exceeds the load bearing capacities [5]. For instance, as every running 

step is associated with an impact shock, in the order of 1.5 to 2.5 body weights (BW) at 

moderate endurance running speed (11-13 km/h) for the active peak [6], approximately one 

million of active peaks have to be absorbed by the human body for an average weekly mileage 

of 20 km during a one year period [7].  

 

To develop a safe and economical running gait, each runner spontaneously and subconsciously 

adopts a self-optimized running pattern [8-11]. Therefore, the understanding of the individual 

running patterns might be important for preventing running-related injuries, improving 

performance, and optimizing training.  

 

This individually unique running pattern is challenging to describe using a single variable [12]. 

It is therefore of major interest to use multicomponent methods to understand individual 

differences in running biomechanics. As early as 1985, the running pattern was viewed as a 

global system with several interconnected variables such as foot placement, arm swing, body 

angle, rear leg lift, and stride length [13]. More recently, the synthetic review of van Oeveren 

et al. [14] proposed that the full spectrum of running patterns could be described objectively 

by combining two temporal variables: step frequency (SF) and duty factor (DF), where DF 

reflects the relative contribution of the ground contact time ($,) to the stride duration [12, 15]. 

According to van Oeveren et al. [14], knowing DF and SF allows to categorize each running 

pattern in one of five distinct categories, namely “stick”, “bounce”, “push”, “hop”, and “sit”, 

but still reminding that there is a continuum of running patterns (see Fig. 1 in subsection 2.1.4). 

 

Although a force plate is the gold standard method (GSM) to measure DF and SF, it could not 

always be available and used [16, 17]. In such case, alternatives would be to use a motion 

capture system [18, 19] or a light-based optical technology [20]. Nevertheless, even though 
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these systems can be used outside the laboratory [21-23], they suffer from a lack of portability 

and are restricted to a specific and small capture volume. To overcome such limitation, 

techniques were developed to estimate DF and SF using portable tools such as inertial 

measurement units (IMUs), which are low-cost and practical to use in a coaching environment 

[24].  

 

Hence, the main purpose of this thesis was to investigate the objective evaluation of the 

spontaneous running pattern and its relationship in terms of runners’ classification in the 

laboratory and towards the field. To do so, the thesis contains two sub-goals. First, this thesis 

extended about the knowledge of DF and SF as global objective variables to assess spontaneous 

running patterns. Second, this thesis developed algorithms allowing to accurately measure $,, 
flight time ($.), DF, SF, and peak vertical ground reaction force (!!,#$%) in absence of GSM 

but using a sacral-mounted IMU. This would later allow performing these measurements in the 

field.  

 

This thesis was written following a project performed in collaboration with the Volodalen 

Swiss Sportlab company. This project entitled “V3: a personalized and adapted ‘inertial’ 

package to identify origin of running injuries and treat them” was supported by Innosuisse 

(grant no. 35793.1 IP-LS). The goal of this project was to establish standards of validity in 

laboratory conditions of key stride variables using a sacral-mounted IMU to latter consider 

field monitoring. The target customers being potentially injured recreational runners, the 

developed algorithms based on IMU data were expected to accurately assess their spontaneous 

running pattern on a treadmill and at their preferred running speed, i.e., around 10-12 km/h.  
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2.1 From local to global assessment of spontaneous running patterns 
  

2.1.1 The local assessment of spontaneous running patterns 

 

The spring–mass model represents running as a “bouncing” gait modeled using a mass 

connected to a massless spring [25]. In this model, the supporting leg behaves like a spring 

during stance and each stance is separated by a $., i.e., a period where the limbs are not in 

contact with the ground. The presence of this flight phase constitutes one criterion to 

distinguish running from walking [26]. The other criteria are 1) a vertical ground reaction force 

pattern showing a maximum situated around mid-stance, 2) a maximal bent knee around mid-

stance, and 3) in-phase fluctuations of kinetic and gravitational potential energy [26]. These 

four criteria in general coincide. 

 

Even though each runner adopts a unique spontaneous running pattern, runners are typically 

classified in one of three discrete categories depending on their preferred foot-strike pattern 

(FSP). A runner is either categorized as a: (1) rearfoot striker (RFS) when the initial contact of 

the foot with the ground is made on the heel or rear third part of the sole; (2) midfoot striker 

(MFS) when the heel and toes contact the ground simultaneously; or (3) forefoot striker (FFS) 

when the initial contact of the foot with the ground is made on the forefoot or front half of the 

sole [27]. This classification can be obtained using the foot-strike angle (FSA) following the 

procedure proposed by Altman and Davis [28].  

 

These FSPs involve different neuromuscular activation patterns [29] and impact attenuation 

strategies [30-33]. The latter pattern has been shown to induce different loads on the lower 

limb and different three-dimensional (3D) stress patterns in the ankle, knee, and hip joints [34-

37], as well as different sagittal plane joint angles during stance [36, 38]. However, Knorz et 

al. [34] showed that there are no global advantages of one FSP over another in terms of joint 

stresses. Indeed, no statistically significant difference in the injury rate between RFS, MFS, 

and FFS has been reported in a large-scale epidemiological study [39]. The likelihood of certain 

type of running-related injuries was shown to depend on FSP [40-42], with hip and knee 

injuries more common in RFS, and ankle and foot injuries more common in MFS and FFS. 

The change in the relative risk of running-related injuries can be associated to the redistribution 

of loads based on FSP [43-46]. Besides, no differences in running economy have been reported 
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among different FSAs [47] or FSPs [48-50], and changing FSPs is no longer recommended for 

RFS [36, 49, 51]. 

 

FSP, though important, only represents a single specific event of the overall running pattern 

and is given by a single segment (the foot) of the overall human body. Therefore, the 

spontaneous running pattern should not be reduced to its FSP but should be considered as a 

whole, i.e., as a global and dynamic system with several interconnected biomechanical 

parameters [52]. As typical extreme examples, Arendse et al. [53] and Dreyer and Dreyer [54] 

investigated “Pose” and “Chi” running, respectively, characterized by mid- to forefoot striking, 

short $, and step length, and less knee flexion during stance. On the other hand, McMahon et 

al. [55] tested the “Groucho” running, a running pattern with excessive knee flexion and 

associated with increased $, and step length together with decreased $. and vertical oscillation 

of the body. A similar running pattern is given by the “Grounded” running, which is used at 

slow running speed and has the particularity to alternate single and double stance with no flight 

phase [56, 57]. A flight phase is sometimes lacking when people run slowly [58]. According 

to the first mentioned distinction, this grounded locomotion pattern should be classified as 

walking but not as running. However, running without a flight phase seems to behave as a 

spring-mass model, i.e., very different from the typical walking inverted pendulum motion 

[58]. Similar observations were reported for quails, ostriches, and gibbons [59-61]. On this 

basis, Vereecke et al. [59] suggested that the presence of a flight phase should not be used to 

distinguish between walking and running. Hence, the term grounded running was employed in 

animal literature for such locomotion, but this term is also valid for human locomotion. 

Therefore, these examples show that it is of major interest to use multi-component methods 

instead of single-parameter analyses.  

 

This consideration should lead to a better understanding of the global running pattern, which 

is nowadays an emergent area of research. For example, Hoerzer et al. [62] applied a machine 

learning (ML) algorithm on global biomechanical parameters obtained from a cohort of 88 

runners and identified eight functional groups with distinct running patterns that differed 

mostly in age or gender. Similarly, two different functional groups were deciphered when using 

hierarchical cluster analysis on 121 runners, with the main differences being observed on the 

frontal and sagittal plane knee angles [63]. Both studies reported different running gait 
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strategies within a large population of runners, due to different anthropometric characteristics 

in the first study and different intrinsic ways to run in the second study.  

 

2.1.2 The global subjective assessment of spontaneous running patterns 

 

Instead of using an automatic pattern recognition approach, other researchers categorized 

runners in two groups termed terrestrial (TER) and aerial (AER) runners, based on a subjective 

evaluation of their spontaneous running pattern [64]. Runners were scored by running coaches 

with several years of experience using the Volodalen® method. Coaches paid attention to five 

key elements: vertical oscillation of the head, antero-posterior motion of the elbows, pelvis 

position at ground contact, foot position at ground contact, and FSP. Each element was scored 

from one to five, leading to a global subjective score (V®score) that represents the global 

running pattern of participants. This score ultimately allows the classification of runners into 

the two different categories (i.e., AER if V®score greater than 15 and TER otherwise). The 

V®score was shown to be a reliable method to assess running pattern [65]. This categorization 

revealed kinematic differences but a similar running economy [22, 64, 66, 67]. To minimize 

the metabolic cost, AER runners favor a long $. together with a more fore-FSP and a larger leg 

stiffness (kleg) than TER runners for whom a long $, associated with a more rear-FSP was 

favored [67]. These findings demonstrate the presence of a holistic running system which 

seems to be subconsciously driven, reinforcing the theory of self-optimization, which is central 

in the development of an economical running gait [8, 10, 11, 68, 69].  

 

2.1.3 The duty factor as a global objective assessment of spontaneous running patterns 

 

This previous classification of runners requires a coach to be familiar with the usage of the 

subjective evaluation of the running pattern, which might sometimes prove to be inconvenient. 

Moreover, outcomes might also be biased because of the experimenter. 

 

Another way to categorize runners is based on DF [18, 19], i.e., the ratio of $, to stride time [$, 
+ swing time ($/)], with a higher DF reflecting a greater relative contribution of $, to the 

running step [12, 15]. Considering both $, and $/ simultaneously provides a better 

understanding of the global running pattern compared with when these temporal variables are 

considered separately [18, 19]. The authors observed that the 20 subjects with highest DF 
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values and 20 subjects with lowest DF values (among a cohort of 54 participants) used different 

running strategies but had a similar running economy, showing that these two strategies are 

energetically equivalent at endurance running speeds [18]. A more symmetrical running pattern 

between braking and propulsion phases in terms of time and vertical center of mass (COM) 

displacement, anterior FSP (MFS and FFS), and extended lower limb during $, at the hip, knee, 

and ankle joints were observed for low than for high DF runners [18, 19]. On the contrary, high 

DF runners exhibited greater lower limb flexion during $, at the hip, knee, and ankle joints, a 

more RFS, and less vertical oscillation of the whole-body COM to promote forward propulsion 

than low DF runners [18, 19]. This would suggest that the two DF groups may optimize 

differently the elastic property of the linear lower limb spring (i.e., the leg stiffness: &2+3, 

defined as the ratio of the peak ground reaction force over the change in leg length during 

stance [70]) for reducing the metabolic cost of running. Hence, high and low DF runners 

reflected different FSPs [18, 19], most likely because $, is related to FSP [27, 71]. Nonetheless, 

DF was thought to not only be directly related to the angle at the initial ground contact (via $,) 
as is FSP but to also be functionally representative of a more global running behavior because 

it takes both the duration of force production ($,) and the cycle frequency of running into 

account [18, 19, 72]. For this reason, although FSA and DF values should be different among 

DF (high, mid, and low DF runners) and FSP (RFS, MFS, FFS) groups, respectively, FSP and 

DF groups should not necessarily be constituted by the same runners. This would confirm that 

DF should be preferred to FSP/FSA when evaluating the global running pattern of a runner. 

Nonetheless, to the best of our knowledge, the relationship between the groups created using 

FSA and DF values has not yet been considered. 

 

Hence, this thesis (study 1) compared these two different classification methods in analyzing 

running gait at several running speeds. We hypothesized that i) FSP groups should have 

significantly different DF values, ii) DF groups should have significantly different FSA values, 

and iii) weak correlations should be obtained between FSA and DF values. 

 

2.1.4 Combining the duty factor and step frequency to globally assess spontaneous running 

patterns 

 

Recently, the synthetic review of van Oeveren et al. [14] proposed that the full spectrum of 

running patterns could be described combining two temporal variables: SF and DF. According 
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to these authors [14], knowing DF and SF allows to categorize running patterns in one of five 

distinct categories, namely “stick”, “bounce”, “push”, “hop”, and “sit”, but keeping in mind 

that running patterns operate along a continuum (Fig. 1). Individuals spontaneously and 

subconsciously adopt their own running pattern, a choice shown to be self-optimized and 

central in the development of an economical and safe running gait [8-11]. The understanding 

of the individual running patterns might be important for improving performance, optimizing 

training, and preventing running-related injuries. 

 

 
Figure 1. Visualization of the duty factor (DF) and step frequency (SF) axes that describe a continuous spectrum 
of running patterns with on the extremes “Stick”, “Bounce”, “Hop”, and “Push”, as well as “Sit” in the center. 
Adapted from van Oeveren et al. [14]. 
 

The importance of DF and SF in determining running patterns [14] corroborates previous 

findings. On the one hand, DF has been used to categorize runners with distinct running 

patterns [18, 19]. On the other hand, SF can reveal individual muscle recruitment patterns of 

runners and strategies to increase running speed [73] or achieve top-end running speeds [74]. 

Even in subgroups of individuals with similar sprint velocities, a range of SF and step length 

combinations are present [75]. 
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Running speed affects DF and SF, with an increase in running speed decreasing DF [14, 15, 

18] and increasing SF [14, 73, 76]. These changes are likely related to changes in their 

subcomponent variables $, and $.. Indeed, $, decreases with an increase in running speed, 

whereas $. increases [14, 18, 76, 77]. Given the speed-dependency of these variables, van 

Oeveren et al. [14] suggested using an absolute speed to define running patterns as stick, 

bounce, push, hop, and sit. 

 

Worth noting is the large interindividual variations in temporal variables (DF, $,, $., and SF) 

reported at absolute running speeds [18, 76] and the large interindividual variations in the 

individual strategies adopted to adapt to changes in running speeds [21, 47, 74]. For instance, 

a curve-clustering approach on the FSA of runners across speeds revealed three subgroups: 

those that maintained a rear-FSP, those that maintained a fore- or mid-FSP, and those that 

transitioned from a rear-FSP to a less rear-RFS with increasing speed [47]. Therefore, the 

running pattern of an individual could also change with speed if the relationship between or 

changes in the underlying temporal variables are inconsistent across running speeds. Such 

understanding would then allow us assessing if the evaluation of running patterns could be 

generalized across speeds and studies. 

 

Hence, this thesis (study 2 – aim 1) assessed if running patterns are consistent across running 

speeds by examining the consistency in four temporal variables (DF, SF, $,, and $.). For 

instance, we investigated whether a runner with a high DF (with respect to the group median) 

at a slow running speed also exhibits a high DF at a faster running speed. We hypothesized that 

consistency would be greater when differences in running speeds were smaller, as previously 

observed for FSA [47].  

 

Besides, this thesis (study 2 – aim 2) assessed the consistency across the four temporal 

variables at an absolute running speed. Given that DF and SF are proposed to be two 

independent key running pattern determinants [14], the association between these two variables 

should be low. Hence, we hypothesized that consistency would be low between DF and SF. 

On the other hand, we anticipated greater consistency between DF and its subcomponent 

variables ($, and $.) as well as between SF and $, and $.. 
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2.1.5 Using topological methodology to investigate the association of duty factor and step 

frequency on running biomechanics 

 

The previous studies that investigated the association of DF or SF on running biomechanics 

used summary metrics, i.e., specific temporal focus like foot-strike (FS) or toe-off (TO) events, 

of signals such as the whole-body COM trajectory or the lower limb angles during $, [18, 19]. 

This reduction to summary-metric space is not strictly necessary because statistical hypothesis 

testing can also be conducted in a continuous manner [78]. Indeed, one-dimensional 

biomechanical curves such as the ground reaction force signals are registrable and their 

fluctuations can be described and then, compared expressing them as a function of the 

normalized stance phase duration [79, 80]. In this case, statistical analysis can be conducted on 

the original registered curves using the state-of-the-art topological methodology called 

statistical parametric mapping (SPM) [81], which was recently applied to the field of 

biomechanics [82]. SPM has the advantages to consider the signal as a whole and presents the 

results directly in the original sampling space. For this reason, the spatiotemporal 

biomechanical context is immediately apparent, and allows direct visualization of where do 

significant differences occur during $, [78].  

 

Therefore, this thesis (study 3 – aim 1) investigated the association of DF and SF on the 

vertical and fore-aft ground reaction force signals for treadmill runs at several endurance 

running speeds (9, 11 and 13 km/h) using SPM. In addition, this thesis (study 3 – aim 2) 

investigated the association of DF and SF on the spring-mass characteristics of the lower limb.  

 

We hypothesized that i) a lower DF should be associated to higher vertical and fore-aft ground 

reaction force fluctuations, and that a lower SF should be associated to higher vertical and fore-

aft ground reaction force fluctuations but to a lower extent than for DF [83]. Besides, as higher 

DF runners demonstrated a more rear-FSP [18, 19] but should show lower vertical force than 

lower DF runners, we hypothesized that ii) the linearity of the force-length relationship should 

decrease with increasing DF, due to the higher chance to observe an impact peak when 

increasing DF (high DF runners are more RFS than low DF runners). Furthermore, we 

hypothesized that iii) a higher SF should correspond to a smaller leg compression, as previously 

observed [70, 84, 85]. 
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2.2 From the laboratory towards field measurement of spontaneous running 

patterns 
 

2.2.1 The accurate measurement of contact and flight times without a force plate: using a 

motion capture system 

 

As previously mentioned, DF depends on both $, and $., which are usually obtained from FS 

and TO events. Therefore, $, and $. rely on the accuracy of these event detections, for which 

the use of a force plate is considered as the GSM. However, force plates could not always be 

available and used [16, 17]. In these cases, using kinematic algorithms (KA), which are for 

instance based on the outcome of a motion capture system [18, 19], may be a useful and 

alternative solution. Nevertheless, these FS and TO detection must be sufficiently accurate.  

 

The first algorithms detecting gait events were developed for walking [86-89]. However, their 

direct application to running can be problematic due to kinematic differences between walking 

and running [90]. Therefore, several algorithms were developed specifically for running and 

compared to GSM [16, 90-95] or to a footswitch device [96], but they did not all offer the same 

accuracy. Moreover, previous datasets were limited to less than 30 runners [92, 96], which may 

be too small to allow generalizing the algorithm to every runner. In addition, not only the gait 

type but also FSP might impact the accuracy of the algorithm. Indeed, Smith et al. [93] reported 

relatively different errors (up to 30 ms) for both FS and TO between RFS, MFS, and FFS for 

five KA. Similarly, Leitch et al. [92] depicted that the most accurate algorithm detecting FS 

was dependent on FSP but not the one detecting TO. These previous algorithms were based on 

heel kinematics, which differ based on FSPs. Indeed, Milner and Paquette [95] and Smith et 

al. [93] reported larger errors for non-RFS than for RFS when using these heel-based 

algorithms. 

 

It also seems necessary to compare $, computed from FS and TO based on GSM and KA, due 

to its biomechanical importance [68]. For instance, a larger error in $, was observed for an 

algorithm that was more precise in FS and TO detection than for those that were less precise 

[93], due to accumulation of errors in FS and TO detection.  
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Hence, this thesis (study 4) proposed a novel KA to detect FS and TO and compared it to GSM 

at several treadmill endurance running speeds (9, 11, and 13 km/h) and across FSAs. In 

addition, FS and TO were used to estimate $, which was then compared to that based on GSM. 

This algorithm uses a combination of heel and toe kinematics to detect FS. We hypothesized 

that i) no systematic bias would be reported between GSM and KA for FS and TO at any of 

the speeds examined and ii) no systematic bias, significant difference between $, derived from 

GSM and KA, or effect of FSA would be obtained. 

 

2.2.2 The accurate measurement of peak vertical ground reaction force without a force plate: 

using a motion capture system 

 

In addition to $, and $., !!,#$% is also an important biomechanical parameter. Indeed, even 

though running can offer many health benefits, the incidence of running related injuries 

remains high [5]. These injuries often occur when the loading of the musculoskeletal system 

exceeds its load bearing capacities. This loading corresponds to the repetitive shocks associated 

with every step that the human body must absorb by adopting a specific running biomechanics. 

Although the magnitude of these shocks are relatively insubstantial, their quantity can be 

significant [6].  

The internal forces contribute most to the experienced loading [97, 98]. However, the external 

forces are often used as substitute measures to estimate the loading of the musculoskeletal 

system [98-101]. For instance, moderate correlation was observed between the active peak 

force and peak axial tibial compressive force [99]. It was also suggested that the peak tibial 

bone loading occurs during mid-stance at !!,#$% [98, 101] and that !!,#$% is representative of 

the magnitude of external bone loading during the stance running phase [98]. For these reasons, 

!!,#$% proved to be one important biomechanical parameter to accurately measure, though this 

variable alone should not be used to assess running related injuries [102].  

The measurement of !!,#$% is usually performed using force plates, i.e., the GSM. However, 

an instrumented treadmill would be required to conduct such measurement in the laboratory, 

which could not always be affordable or at hand [16, 17]. In such case, alternatives would be 

to use a sacral-mounted IMU [103-106] or a motion capture system [18, 19]. The former is 

low-cost and practical to use in a coaching environment [24] while the latter, though more 
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expensive, allows an in-depth assessment of running kinematics and is the alternative 

employed herein. 

Using Newton’s second law, which states that the sum of the forces applied to the human body 

is given by the body mass multiplied by the acceleration of its COM, vertical ground reaction 

force can easily be recovered when assuming no air resistance. The acceleration of the COM 

can be provided by the outcome of the motion capture system. Indeed, based on the 3D 

kinematics of the entire body, the COM trajectory is computed as a weighted sum of the COM 

of each body segments (segmental analysis) [107], which ultimately allows obtaining the 

whole-body COM acceleration by computing the second derivative of the COM trajectory. 

Although the segmental analysis is quite widespread, it is not a perfect estimation. For instance, 

it is subject to soft tissue artefact [108] and relies on accurate markers placement [109]. 

Moreover, this methods is time-consuming due to the large number of markers required to 

approximate each segment as a rigid body, where the choice of each rigid body, i.e., the 

schematic model of each body segment, is essential to correctly estimate the whole-body COM 

[110]. Furthermore, body segments need to be assigned inertial properties and COM locations 

based on their shape [111], and attributed relative mass based on standard regression equations 

[112], which add extra approximations. For these reasons, Napier et al. [113] approximated the 

whole-body COM trajectory by the trajectory of a single marker placed on the sacrum at the 

midpoint of the posterior superior iliac spines. These authors demonstrated that this very simple 

alternative was a valid proxy for the COM trajectory in vertical and fore-aft directions at 

specific events of the running cycle [113]. However, to the best of our knowledge, using the 

vertical acceleration of a single sacral marker to estimate !4,#$% has never been investigated 

while using the whole-body vertical COM acceleration has already been attempted but using a 

single participant [114]. 

 

Alternatively, sacral acceleration directly recorded using sacral-mounted IMU were used to 

estimate !!,#$% [103-106]. For instance, Alcantara et al. [104] predicted !!,#$% using ML and 

reported a root mean square error (RMSE) of 0.15 BW. Moreover, weak to moderate 

correlations were obtained between !!,#$% measured using GSM and estimated using IMU data 

[103]. These authors observed an effect of the low-pass cut-off frequency used for the IMU 

data, where a better correlation was depicted for a 10 than a 5 or 30 Hz cut-off frequency.  

 



Introduction 

17  

The previous findings suggest that the choice of the cut-off frequency proved to be important. 

Indeed, a substantial filtering method is required to avoid unrealistic peaks in the acceleration 

signal [107]. However, the effect of the cut-off frequency was not investigated when estimating 

!!,#$% from whole-body COM [114]. Hence, this thesis (study 5 – aim 1) estimated !!,#$% 

based on whole-body COM (COM method; COM-M) and sacral marker (sacral marker 

method: SACR-M) accelerations filtered using several cut-off frequencies (between 2 and 20 

Hz). In addition, this thesis (study 5 – aim 2) compared these estimations against GSM at 

several treadmill endurance running speeds (9, 11, and 13 km/h). We hypothesized that i) a 

single cut-off frequency should minimize RMSE and that this cut-off frequency should be 

different for each method and ii) a similar RMSE than in Alcantara et al. [104] should be 

obtained, i.e., ~0.15 BW.  

 

2.2.3 The accurate measurement of contact and flight times and peak vertical ground reaction 

force without a force plate: using an inertial measurement unit 

 

Using a motion capture system [18, 19] or a light-based optical technology [20] were shown to 

provide useful alternatives to force plates. Nevertheless, even though these systems can be used 

outside the laboratory [21-23], they suffer from a lack of portability and are restricted to a 

specific and small capture volume. To overcome such limitation, techniques to identify gait 

events were developed using portative tools such as IMUs, which are low-cost and practical to 

use in a coaching environment [24].  

 

!!,#$% was previously estimated using the vertical acceleration signal recorded by a sacral-

mounted IMU [103, 104]. For instance, an RMSE of 0.15 BW was reported when using a ML 

algorithm that used data filtered using a 10 Hz 8th order low-pass Butterworth filter [104]. 

Another method calculated the COM and sacral marker vertical accelerations from their 

corresponding 3D kinematic trajectories and reported an RMSE smaller than or equal to 0.17 

BW when estimating !!,#$% from these acceleration signals [115]. The whole-body COM 

acceleration calculated from the kinematic trajectories was also used by Pavei et al. [114] to 

estimate !!,#$% but for a single participant and by Verheul et al. [116] to estimate the resultant 

ground reaction force impact peak (within the first 30% of the stance). Pavei et al. [114] 

reported an RMSE ~0.15 BW for running speeds ranging from 7 to 20 km/h while an error of 

~0.20 BW was reported by Verheul et al. [116] for speeds between 7 and 18 km/h. 
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$, and $., calculated from FS and TO, can themselves be identified using different available 

techniques that used IMU data [103, 104, 117-127]. When using a sacral-mounted IMU, which 

is a natural choice as it approximates the location of the COM [113], either the forward [119] 

or the vertical acceleration [103, 104] were used to estimate $, and $.. On the one hand, Lee et 

al. [119] detected specific spikes in their unfiltered forward acceleration signals sampled at 100 

Hz to identify FS and TO. On the other hand, the vertical ground rection force was estimated 

from the vertical acceleration signal recorded by the IMU (using Newton’s second law), which 

allowed detecting FS and TO using a 0 N threshold [103, 104]. A 5 Hz low-pass Butterworth 

filter (8th order) was shown to result in the best correlation between $, obtained from GSM and 

IMU data (sampled at 500 Hz) [103] while a ML algorithm that used data filtered using a 10 

Hz 8th order low-pass Butterworth filter resulted in a RMSE of 11 ms for $, [104]. The vertical 

acceleration (sampled at 208 Hz) was also used to estimate the effective contact ($,-) and flight 

($.-) times [127], two variables that allow deciphering the on-off ground asymmetry of running 

[128, 129]. The authors estimated these effective timings by using a BW threshold instead of 

a 0 N threshold, which allowed detecting effective FS (eFS) and effective TO (eTO) events 

and thus estimating $,- and $.-. Moreover, the vertical acceleration was filtered using a Fourier 

series truncated to 5 Hz instead of the usual low-pass Butterworth filter. The authors reported 

an RMSE smaller than or equal to 22 ms for both $,- and $.-. 

 

As previously stated, more research investigating the effect of different filtering methods are 

needed when estimating biomechanical variables such as !!,#$% and $, [103], especially 

because the low-pass cut-off frequency could affect the estimation of biomechanical variables 

[130, 131]. For this reason, this thesis (study 6 – aim 1) estimated !!,#$% using a Fourier series 

truncated to 5 Hz to filter the acceleration signal recorded by a sacral-mounted IMU (IMU 

method: IMUM). Moreover, this thesis (study 6 – aim 2) estimated $, and $. using the same 

filtered acceleration signal. This filter was previously used by Patoz et al. [127] to estimate 

both $,- and $.- but has never been used, to the best of the authors knowledge, to estimate 

!!,#$%, $,, and $.. Herein, $, and $. were estimated from FS and TO, themselves detected by 

modifying the BW threshold previously used by Patoz et al. [127]. We hypothesized that i) an 

RMSE smaller than or equal to the 0.15 BW reported in Alcantara et al. [104] should be 

obtained for !!,#$%, even if the IMUM is a simple method which does not rely on ML, as was 

the 3D kinematic method [115], and ii) $, and $. should have an RMSE smaller than or equal 

to that reported in Patoz et al. [127] (i.e., 0.22 ms). 
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2.2.4 The accurate measurement of effective contact and flight times without a force plate: 

using an inertial measurement unit  

 

Back in 1988, Cavagna et al. [132] defined two key running parameters denoted as $,- and $.-. 

They differ from the usual $, and $. by the fact that $,- and $.- correspond to the amount of 

time where the vertical ground reaction force is above and below BW, respectively, rather than 

where the foot is in contact with the ground or not [133]. These effective timings were proven 

to be appropriate to decipher the on-off ground (a)symmetry of running [128, 129]. 

 

These two variables are usually obtained from eFS and eTO. To obtain these effective timings 

outside the laboratory, the previously mentioned IMUM could be slightly modified. For this 

reason, this thesis (study 7) estimated $,- and $.- using the Fourier series truncated to 5 Hz to 

filter the sacral-mounted IMU data (IMUM) and compared these estimations to those from 

GSM.  

 

2.2.5 Enhancing sacral acceleration-based estimations of running stride temporal variables 

and peak vertical ground reaction force using machine learning 

 

!!,#$%, $,, and DF were shown to play a role in running-related injury development [98-101, 

134-136]. $. might also play a role as it takes both the vertical ground reaction force and its 

time of production into account. 

 

$,, $., and !!,#$% were previously estimated using a single sacral-mounted IMU [137]. 

Compared to gold standard values (force plate), RMSEs of 20 ms were obtained for $, and $. 

and 0.15 BW for !!,#$%. Applying advanced analysis methods such as ML on top of these 

estimations may provide more accurate predictions. ML was used to explain the differences of 

gait patterns between high and low-mileage runners [138] as well as to estimate biomechanical 

variables based on IMU data [104, 139-141]. ML has the advantage to provide an analytical 

model which is trained and tested using different subsets of the dataset [142] and built from 

physics-based variables, i.e., variables that demonstrated to provide changes in running 

biomechanics [104]. The modeling of the relationships between clinical outcomes and 

biomechanical measures was attempted using ML models like linear regressions (LRs), support 

vector machines, and artificial neural networks (NNs) [142, 143]. Though limited to linear 



Introduction 

20  

relationships, LRs are widely used because the regression coefficients are useful for model 

interpretability [144]. On the other hand, support vector machines and NNs are used to model 

non-linear relationships. Although they usually provide better accuracies than LRs, their 

coefficients are difficult to interpret because of their large numbers [142]. Therefore, using 

both basic and complex ML models might illustrate the tradeoff between interpretability and 

accuracy and give the option to prioritize between the former and the latter. 

 

Hence, this thesis (study 8) applied ML to predict $,, $., DF, and !!,#$% from their respective 

IMU-based estimations. We hypothesized that further applying ML to these IMU-based 

estimations should provide predictions with higher accuracies than those previously reported 

for the estimations [137]. The comparison among the predictions of several ML models would 

allow defining which model has the best tradeoff between interpretability and accuracy. 
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The main purpose of this thesis was to investigate the objective evaluation of the spontaneous 

running pattern and its relationship in terms of runners’ classification in the laboratory and 

towards the field. To do so, the thesis contains two sub-goals.  

 

First, this thesis extended about the knowledge of DF and SF as global objective variables to 

assess spontaneous running patterns (first 3 studies).  

 

The first of these three studies (study 1) aimed to compare FSP and DF classification methods 

in analyzing running gait at several endurance running speeds (9, 11, and 13 km/h). The second 

study (study 2) aimed to assess the consistency of running patterns across running speeds (10, 

12, 14, 16, and 18 km/h) by examining the consistency in four temporal variables (DF, SF, $,, 
and $.) as well as the consistency across the four temporal variables at an absolute running 

speed. The third study (study 3) aimed to investigate the association of DF and SF on the 

vertical and fore-aft ground reaction force signals using SPM as well as on the spring-mass 

characteristics of the lower limb for treadmill runs at several endurance running speeds (9, 11, 

and 13 km/h). 

 

We hypothesized that:  

• Study 1 – 1. FSP groups should have significantly different DF values.  

• Study 1 – 2. DF groups should have significantly different FSA values. 

• Study 1 – 3. Weak correlations should be obtained between FSA and DF values. 

• Study 2 – 1. Consistency should be greater when differences in running speeds were 

smaller.  

• Study 2 – 2. Consistency should be low between DF and SF and we anticipated greater 

consistency between DF and its subcomponent variables ($, and $.) as well as between 

SF and $, and $.. 

• Study 3 – 1. A lower DF should be associated to higher vertical and fore-aft ground 

reaction force fluctuations, and a lower SF should be associated to higher vertical and 

fore-aft ground reaction force fluctuations but to a lower extent than for DF. 

• Study 3 – 2. The linearity of the force-length relationship should decrease with 

increasing DF.  

• Study 3 – 3 A higher SF should correspond to a smaller leg compression. 

 



Aim of the thesis 

24  

Second, this thesis developed algorithms allowing to accurately measure $,, $., DF, SF, and 

!!,#$% in absence of the GSM but using a sacral marker and a motion capture system or a sacral-

mounted IMU. This would later allow performing these measurements in the field (next 5 

studies). 

 

The first of these five studies (study 4) aimed to develop a novel KA to detect FS and TO and 

to compare it to GSM at several treadmill endurance running speeds (9, 11, and 13 km/h) and 

across FSAs. In addition, FS and TO were used to estimate $, which was then compared to that 

based on GSM. The second study (study 5) aimed to estimate !!,#$% based on whole-body 

COM and sacral marker accelerations filtered using several cut-off frequencies, and to compare 

these estimations against GSM at several treadmill endurance running speeds (9, 11, and 13 

km/h). The third study (study 6) aimed to estimate !!,#$% as well as $, and $. using a Fourier 

series truncated to 5 Hz to filter the acceleration signal recorded by a sacral-mounted IMU. The 

fourth study (study 7) aimed to estimate $,- and $.- using the same Fourier series to filter the 

sacral-mounted IMU data. The fifth study (study 8) aimed to apply ML to predict $,, $., DF, 

and !!,#$% from their respective IMU-based estimations.  

 
We hypothesized that:  

• Study 4 – 1. No systematic bias should be reported between GSM and KA for FS and 

TO at any of the speeds examined  

• Study 4 – 2. No systematic bias, significant difference between $, derived from GSM 

and KA, or effect of FSA should be obtained. 

• Study 5 – 1. A single cut-off frequency should minimize RMSE and that this cut-off 

frequency should be different for each method  

• Study 5 – 2. A similar RMSE than in Alcantara et al. [104] should be obtained, i.e., 

~0.15 BW.  

• Study 6 – 1. An RMSE smaller than or equal to the 0.15 BW reported in Alcantara et 

al. [104] should be obtained for !!,#$%. 

• Study 6 – 2. $, and $. should have an RMSE smaller than or equal to that reported in 

Patoz et al. [127] (i.e., 0.22 ms). 

• Study 7 – 1. Exploratory study. 

• Study 8 – 1. Further applying ML to the IMU-based estimations should provide 

predictions with higher accuracies than those previously reported for the estimations. 
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4.1 Participant characteristics 
 
For all except the second study, the experimentation, consisting of a single visit to the 

laboratory, was conducted over two months between September and October 2020. This 

permitted to recruit and test 115 recreational runners including 87 males (age: 30 ± 8 yr, height: 

180 ± 6 cm, leg length: 86 ± 4 cm, body mass: 70 ± 7 kg, weekly running distance: 38 ± 24 

km, and running experience: 10 ± 8 yr) and 28 females (age: 30 ± 7 yr, height: 169 ± 5 cm, leg 

length: 82 ± 4 cm, body mass: 61 ± 6 kg, weekly running distance: 22 ± 16 km, and running 

experience: 11 ± 8 yr). These data were collected to conduct the Innosuisse project (grant no. 

35793.1 IP-LS) for which the goal was to establish standards of validity in laboratory 

conditions of key stride variables using a sacral-mounted IMU to later consider field 

monitoring. This thesis is constituted of a series of secondary analyses of these data (studies 1 

and 3-8). The third and fifth studies considered the entire dataset, while studies 1 and 4, 6 and 

8, and 7 considered different subsets of 100 participants who were randomly selected from the 

entire dataset. The different datasets employed in the studies allow us to have heterogeneity in 

the data. For study inclusion, participants were required to be in good self-reported general 

health, to not have current or recent lower-extremity injury (≤ 1 month), to run at least once a 

week, and to have an estimated maximal aerobic speed greater than or equal to 14 km/h. The 

study protocol was approved by the Ethics Committee (CER-VD 2020-00334) and adhered to 

the latest Declaration of Helsinki of the World Medical Association. 

As for the second study, 52 runners out of an existing database of 54 participants were 

considered [18], which included 32 men (age: 32 ± 9 yr, mass: 66 ± 11 kg, height: 175 ± 7 cm, 

running distance: 53 ± 21 km/week, running experience: 8 ± 8 yr, and best half-marathon time: 

92 ± 10 min) and 20 women (age: 32 ± 9 yr, mass: 52 ± 6 kg, height: 162 ± 4 cm, running 

distance: 50 ± 22 km/week, running experience: 7 ± 4yr, and best half-marathon time: 102 ± 

12min). Two runners were removed from the database because they had no data at the 18 km/h 

running condition (see Section 4.2 for further information about the experimental procedure) 

and we did not want to deal with missing data. These data were collected in Malaysia to study 

running biomechanics between high and low DF runners. The hypotheses were that 1) high DF 

runners should have a larger forward COM displacement during $, and a smaller vertical COM 

displacement during $. compared to low DF runners for a given running speed and 2) low DF 

runners should have a greater symmetry within $, and $. compared to high DF runners. This 

thesis is constituted of a secondary analysis of these data (study 2). For study inclusion, 
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participants were required to be in good self-reported general health with no current or recent 

(< 3 months) musculoskeletal injuries and to meet a certain level of running performance. More 

specifically, in the last year, runners were required to have competed in a road race with 

finishing times smaller than or equal to 50 min for 10 km or smaller than or equal to 2 h for 

21.1 km. Each participant completed one experimental laboratory session. The ethical 

committee of the National Sports Institute of Malaysia approved the study protocol prior to 

participant recruitment (ISNRP: 26/2015), which adhered to the latest version of the 

Declaration of Helsinki of the World Medical Association.  

4.2 Experimental procedure 
 

After providing written informed consent, retroreflective markers were positioned on 

participants (see below). As for all but study 2, an IMU (Movesense sensor, Suunto, Vantaa, 

Finland) was attached to the sacrum at the midpoint between the posterior superior iliac spinae 

using an elastic strap belt (Movesense Belt, Suunto, Vantaa, Finland). As for each participant, 

first, a standing static trial using a standard anatomical position was recorded on an 

instrumented treadmill (Arsalis T150 – FMT-MED, Louvain-la-Neuve, Belgium; studies 1 

and 3-8) or on a regular treadmill (h/p/cosmos mercury®, h/p/cosmos sports & medical gmbh, 

Nussdorf-Traunstein, Germany; study 2) for calibration purposes. Then, a warm-up run was 

performed on the same treadmill to ensure stabilization of shoe stiffness properties [145] and 

to promote treadmill familiarization [146, 147]. This was followed, after a short break (< 5 

min), by three 1-min runs (9, 11, and 13km/h) performed in a randomized order (studies 1 and 

3-8) or by 5x 30-s runs at 10, 12, 14, 16, and 18km/h (study 2), with 1-min recovery periods 

between each run, to collect 3D data during the first 10 strides following the 30-s mark of 

running trials (studies 1 and 3-8) or during the last 10-s segment of the runs, resulting in at 

least 20 steps being analyzed [148]. All participants were familiar with running on a treadmill 

as part of their usual training program and wore their habitual running shoes during testing. 

 

4.3 Data collection 
 

Whole-body 3D kinematic data were collected at 200 Hz using motion capture and Vicon 

Nexus software v2.9.3 (Vicon, Oxford, UK; studies 1 and 3-8) or Qualisys Track Manager 

software version 2.1.1 build 2902 together with the Project Automation Framework Running 
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package version 4.4 (Qualisys AB, Göteborg, Sweden; study 2). The laboratory coordinate 

system was oriented such that x-, y-, and z-axis denoted medio-lateral (pointing towards the 

right side of the body), posterior-anterior, and inferior-superior axis, respectively. Studies 1 

and 3-8 used forty-three and 39 retro-reflective markers of 12.5 mm diameter for static 

calibration and running trials, respectively, while study 2 used 35 retro-reflective markers of 

12 mm in diameter for both static calibration and running trials (Fig. 2). They were affixed to 

skin and shoes of individuals over anatomical landmarks using double-sided tape following 

standard guidelines [149]. Synchronized 3D kinetic data (1000 Hz) were collected using the 

force plate embedded into the treadmill (studies 1 and 3-8). IMU data were collected at 208 

Hz (saturation range: ± 8 g) using an iPhone SE (Apple, Cupertino, CA, USA) and a home-

made iOS application that communicated with the IMU via Bluetooth.  

 

The 3D marker and ground reaction force (analog signal) data were exported in .c3d format 

and processed in Visual3D Professional software v6.01.12 (C-Motion Inc., Germantown, MD, 

USA). 3D marker data were interpolated using a third-order polynomial least-square fit 

algorithm (using three frames of data before and after the “gap” to calculate the coefficients of 

the polynomial), allowing a maximum of 20 frames for gap filling, and subsequently low-pass 

filtered at 20 Hz using a fourth-order Butterworth filter. 3D ground reaction force signal was 

filtered using the same filter and downsampled to 200 Hz to match the sampling frequency of 

marker data. 

 

 



General methodology 

30  

 
Figure 2. Retro-reflective markers placed on anatomical landmarks of participants for biomechanical data 
collection for A) studies 1 and 3-8 (N = 43) and B) study 2 (N = 35). R and L at the start of the acronyms denote 
right and left, respectively. 
 

A full-body biomechanical model with six degrees of freedom and 15 rigid segments was 

constructed from the marker set (Fig. 3). The segments included the head, upper arms, lower 

arms, hands, thorax, pelvis, thighs, shanks, and feet. In Visual3D, the segments were treated as 

geometric objects, assigned inertial properties and COM locations based on their shape [111], 

and attributed relative masses based on standard regression equations [112]. 
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Figure 3. Geometric model of the human body consisting of 15 rigid segments. 
 

The foot segment was obtained using five markers which were placed at the apex of both the 

lateral and medial malleolus, foot calcaneus (aspect of the Achilles tendon insertion), and head 

of the first and fifth metatarsals. The foot segment angle was defined as the angle of the foot 

segment relative to the laboratory coordinate system and computed using an x–y–z Cardan 

sequence. The x-component of the foot segment angle (the angle in the sagittal plan) at FS was 

used to determine FSP following the procedure proposed by Altman and Davis [28]. In brief, 

the average foot segment angle of the standing static trial was subtracted from that of running 

trials such that 0° corresponded to a foot parallel to the ground. Then, the angle at FS, i.e., FSA, 

was computed using the x-component of the rescaled foot segment angle (negative and positive 

angle values represented plantar flexion and dorsiflexion, respectively).  

 

The whole-body COM location was calculated from the parameters of all 15 segments (the 

whole-body COM was directly provided by Visual3D). A sacral marker was reconstructed 

(virtual marker) at the midpoint between the two markers affixed to the posterior superior iliac 

spines [113]. Noteworthy, similar results would have been obtained by using a real marker at 
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this same location because marker placement error and soft tissue movement artefact are 

expected to be low in this region (prominence of bony landmarks and lack of soft tissue) [113].  

The acceleration of the COM and sacral marker trajectories were calculated by computing their 

second derivative and were subsequently low-pass filtered using a fourth-order Butterworth 

filter. Several cut-off frequencies have been tested: 20, 10, 5, 4, 3, and 2 Hz. This choice of 

cut-off frequencies follows from the fact that any frequency above 20 Hz should arise due to 

vibration [7] while 3 Hz spike is considered to be reflective of step frequencies (vertical 

sinusoidal pelvic motion) [150]. For each low-pass filtered acceleration of both COM and 

sacral marker, the vertical ground reaction force was reconstructed using Newton’s second law. 

 

For all biomechanical measures, the values extracted from the data collection for each 

participant, including both right and left steps, were averaged for subsequent statistical 

analyses. 

 

4.4 Event detection 
 

4.4.1 Gold standard method 

 

For each running trial, FS and TO as well as eFS and eTO (Fig. 5) were identified within 

Visual3D. These events were detected by applying a 20 N [93] and BW [132] threshold to the 

previously filtered and down sampled vertical ground reaction force, respectively.  

 

4.4.2 Kinematic algorithm 

 

The KA was implemented within Visual3D to detect FS and TO from kinematic data. A mid-

toe landmark was created midway between markers placed at the head of the first and fifth 

metatarsals. The mid-toe landmark position was rescaled by subtracting its respective global 

minimum (within the 10 strides) to overcome bias due to shoe height. Heel and mid-toe 

accelerations were calculated as the second derivative (second order central method) of the 

heel marker (foot calcaneus: aspect of the Achilles tendon insertion) and rescaled mid-toe 

landmark positions, respectively. Following visual observations of heel and mid-toe z-

acceleration curves, an approach similar to that of Hreljac and Stergiou [91], was followed. 

The KA was constructed such that FS was detected within a time window of 120 ms centered 
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around the instant when the mid-toe z-position reached 3.5 cm on descent. FS was defined as 

the first occurring maximum between the maxima of the heel marker and mid-toe landmark on 

z-acceleration curves within this time window. TO was detected at the instance when the mid-

toe z-position reached 3.5cm on ascent after the preceding FS, following a similar approach to 

that of Alvim et al. [96]. If such a threshold did not exist, 4 and 4.5 cm thresholds were used 

instead. The distance between the mid-toe landmark and the end part of the shoe (on the toe-

side) being close to 5.5 cm, the global minimum of the mid-toe landmark being close to 2 cm, 

and the foot angle at TO being close to 90° justified the 3.5 cm threshold. The KA requires 

three markers per foot to detect FS and TO but whole-body motion capture was used because 

a whole-body biomechanical model was needed to construct foot segment angles to obtain 

FSA, which permitted to validate the KA across FSAs. 

 

4.4.3 Inertial measurement unit method 

 

A home-made c++ code [151] was used to process IMU data. First, the z-axis of IMU was 

aligned with z-axis of the local coordinate system (LCS) using a truncated Fourier series to 0.5 

Hz in each dimension, allowing to remove any acceleration due to movement of the IMU 

(vibrations and body motion) [103]. Indeed, a truncated Fourier series allows removing any 

frequency component within the original signal that are above the requested cut-off. 

Noteworthy, the number of terms to include in the truncated Fourier series is given by ' =
)	!/,, where ) is the number of IMU data points, ! is the requested truncation frequency, and 

, is the IMU sampling frequency. Then, the median of each component of the filtered 3D signal 

was computed. Knowing that the average acceleration should be equal to g in the z-axis of LCS 

and 0 in the other two axes, the average angle between the z-axis of IMU and LCS could be 

calculated based on the previously computed medians. This average angle corresponds to the 

average tilt of the IMU with respect to the z-axis of LCS. Therefore, the IMU can be reoriented 

using this average angle so that its z-axis is, in average, aligned with the one of LCS. However, 

it was assumed that the rotational motion of the sensor around any of the three axes was 

negligible so that no complicated reorientation of the IMU had to be performed at each 

timestamp, which would anyway require several approximations (see for instance Falbriard et 

al. [123] for foot-worn IMU). This reorientation process is usually not considered when using 

sacral-mounted IMU and signals from sacral-mounted IMU are usually analyzed along the 

IMU’s coordinate system and compared to ground reaction forces analyzed in LCS [103, 104, 
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119]. Then, aligned raw acceleration data were filtered using a truncated Fourier series to 5 Hz. 

This cut-off frequency was chosen because it led to the best estimation of $, in Day et al. [103]. 

The vertical ground reaction force was approximated by the filtered vertical acceleration signal 

multiplied by body mass and used to detect FS and TO using a 20 N threshold and eFS and 

eTO using a BW threshold.  

 

4.5 Biomechanical variables 
 
4.5.1 Temporal variables 

 

$,, $., and $/ were defined as the time from FS to TO of the same foot (Fig. 4), from TO of one 

foot to FS of the contralateral foot, and from TO to FS of the same foot, respectively, while $,- 

was given by the time between eFS and eTO (Fig. 4), and $.- by the time between eTO and 

eFS. DF was calculated as DF	 = $,/($, + $/) [15] while SF was defined as the inverse of the 

sum of $, and $., i.e., SF = 1/($, + $.). Furthermore, as for the third study, SF was normalized 

by 34/55 [14, 152], where g is the gravitational constant and L0 the leg length, calculated as 

the distance between hip and ankle joint center using the static calibration.  

 

4.5.2 Peak vertical ground reaction force variable 

 

Fz,max was defined by the maximum of the vertical ground reaction force between FS and TO 

(Fig. 4) [153]. Fz,max was normalized by BW. 

 

4.5.3 Stiffness related variables 

 

The spring-mass characteristics of the lower limb were assessed by computing the force-length 

relationship [154], i.e., the force vector projected along the leg as function of the leg 

compression/decompression during stance (Fig. 5). Following the definition of the spring-mass 

model, i.e., a massless spring attached to a point mass located at the whole-body COM [25], 

the leg length was represented by the magnitude of a 3D leg vector defined from the whole-

body COM to the center of pressure of the foot. The center of pressure being subject to large 

fluctuations for low vertical force values, a 200 N vertical threshold was used for FS and TO 

in this specific case.  
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Figure 4. Example of a vertical ground reaction force signal (Fz) in body weights (BW) during stance, for a 
representative participant and at 11 km/h. The maximum between foot-strike (FS) and toe-off (TO) events defines 
the peak vertical ground reaction force (Fz,max). Effective FS and effective TO events are denoted by eFS and eTO, 
respectively. These events allow deciphering the on-off ground asymmetry of running. Ground contact time (!!) 
is defined by the time from FS to TO while effective ground contact time (!!() is given by the time between eFS 
and eTO.  
 

 
Figure 5. Example of a force-length relationship, i.e., ground reaction force projected along the leg (Fleg) in body 
weights (BW) as function of the leg compression/decompression during stance, for a representative participant 
and at 11 km/h. 
 

4.5.4 Predicted variables obtained using machine learning models 

 

As for study 7, three ML models: LR, support vector regression (SVR) – the regression analog 

of support vector machine – with the radial basis function kernel, and two-layers NN (NN2), 
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were constructed to predict $,, $., DF, and !!,#$% using a train/test method (80%–20% split; 

80% and 20% runners in the training and testing set, respectively). All the running trials from 

one subject were included in only one set to prevent overfitting and to ensure that the models 

generalize well to new data. Additionally, a similar distribution of male (72.5%) and female 

(27.5%) was maintained in both subsets to avoid introducing bias in the model during training 

[142]. For each variable predicted by the three models, four features were used as predictors: 

running speed, runner's body mass, SF, and corresponding IMU-based estimation. This choice 

follows from their relationship with changes in running biomechanics [104, 155, 156] and to 

keep the models relatively simple. The SF included in the features was the IMU-based 

estimation. The training features were standardized by removing the mean and by scaling to 

unit variance. The different models were trained using a 5-fold cross validation approach for 

hyperparameter optimization. Hyperparameters are given in Table 1. The trained models were 

used to make predictions on the testing set. The testing data were previously standardized based 

on the mean and standard deviation of the training data. 

 
Table 1. Hyperparameters optimized during the 5-fold cross validation for the three machine learning models 
employed. 

 

  

Machine learning model Hyperparameter Values 

Linear regression Intercept in the model True and False 

Support vector 
regression 

C 
(inversely proportional to the strength of the 

regularization) 

20 points 
(logarithmic scale between  

0.001 and 10000) 

Epsilon 
(specifies the epsilon-tube within which no 

penalty is associated in the training loss 
function with points predicted within a 
distance epsilon from the actual value) 

20 points 
(logarithmic scale between  

0.001 and 100) 

Two-layers neural 
network 

Activation function of the first layer relu, tanh, sigmoid, and softmax 

Dimensionality of the inner layer 8, 16, 32, and 64 

Batch size 2, 4, 8, and 16 

Loss function mean absolute error and mean 
squared error 
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4.5.5 Runners’ classification 

 

As for study 1, high (DFhigh), mid (DFmid), and low (DFlow) DF groups were created at each 

speed using the terciles of the main group. Runners were also classified as RFS, MFS, and FFS 

at each speed if FSA values were greater than or equal to 8°, smaller than 8° but greater than 

or equal to -1.6°, and smaller than -1.6°, respectively [28], which was also used in study 4. 

 

4.6 Data analysis and statistical analysis 
 

A more detailed version of both the data analysis and statistical analysis of each study is 

presented in its respective article given in the List of publications section because each study 

has its own analysis. Briefly, linear mixed models were used in studies 1, 3, and 4 while 

repeated measures ANOVA were used in studies 5-8. Additionally, Pearson’s correlation 

coefficients (r) were computed in studies 1-3, SPM was used in study 4 and Bland-Altman 

plots [157, 158] were constructed to examine the presence of systematic bias in studies 4-8. 

The choice of the statistical analyses used in the different studies was dependent on when the 

manuscript was sent to review in each scientific journal and on feedbacks received from the 

reviewers. As for a repeated measures ANOVA based on two groups and three repeated 

measures, which is a common statistical analysis used in the present thesis, the sample size 

calculation led to the requirement of 82 participants when assuming a small effect size of 0.2 

[159], an α error of 0.05, a statistical power of 0.8, and no correlation among the repeated 

measures. As for Pearson’s correlations, still assuming an α error of 0.05 and a statistical power 

of 0.8, as well as an expected correlation coefficient of at least 0.3, the sample size calculation 

led to the requirement of 84 participants. These sample sizes are smaller than the 100 or 115 

participants used in the different studies presented in this thesis, which allowed to increase the 

statistical power [160]. Sample size calculations were performed using G*Power (v3.1.9, 

available at https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-

arbeitspsychologie/gpower). Data analysis was performed using Python (v3.7.4, available at 

http://www.python.org). Statistical analysis was performed using Jamovi (v1.6.23, available at 

https://www.jamovi.org) with a level of significance set at P ≤ 0.05. 
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The main purpose of this thesis was to investigate the objective evaluation of the spontaneous 

running pattern and its relationship in terms of runners’ classification in the laboratory and 

towards the field. To do so, first, this thesis extended about the knowledge of DF and SF as 

global objective variables to assess spontaneous running patterns (studies 1-3). Second, this 

thesis developed algorithms allowing to accurately measure $,, $., DF, SF, as well as !!,#$% in 

absence of the GSM but using a sacral marker and a motion capture system or a sacral-mounted 

IMU (studies 4-8). This would later allow performing these measurements in the field. 

 

The main findings and discussion of the studies included in this thesis are presented in this 

section. A more detailed version of the results and discussion of each study is presented in its 

respective article given in the List of publications section. 
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5.1 Duty factor and foot-strike pattern do not represent similar running 

pattern at the individual level (study 1) 
 

5.1.1 Results 

 

The linear mixed model revealed a significant FSP group effect on DF (P < 0.001). The Holm 

post hoc tests indicated a significantly higher DF for RFS than for MFS and FFS (P ≤ 0.005), 

and for MFS than for FFS (P = 0.001). A significant effect of speed was reported on DF (P < 

0.001). A significantly smaller DF was obtained at a faster speed, as shown by the Holm post 

hoc tests (P < 0.001). There was no FSP group x speed interaction (P < 0.66). Data are 

represented in Fig. 6A. 

 

 

Figure 6. Boxplots of (A) the duty factor (DF) for the different foot-strike pattern (FSP) groups, i.e., rearfoot 
(RFS), midfoot (MFS), and forefoot (FFS) strikers, and (B) the foot-strike angle (FSA) for the different DF groups, 
i.e., high (DFhigh), mid (DFmid), and low (DFlow) DF runners, at 9, 11, and 13 km/h (see paragraph “4.5.5 Runners’ 
classification” for more methodological details about the constitution of DF and FSA groups). The box extends 
from the lower to upper quartile values of the data, with a line at the median. The whiskers extend from the box 
to show the range of the data while flier points (black empty circles) are those past the end of the whiskers. The 
upper whisker extends to the last data less than Q3 + 1.5 (Q3 – Q1), where Q1 and Q3 are the first and third 
quartile. Similarly, the lower whisker extends to the first data greater than Q1 – 1.5 (Q3 – Q1). The small gray 
empty circles denote the data of each participant.  
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The linear mixed model revealed a significant DF group effect on FSA (P < 0.001). The Holm 

post hoc tests indicated a significantly higher FSA for DFhigh than for DFmid and DFlow (P < 

0.001), and for DFmid than for DFlow (P = 0.005). A significant effect of speed was reported on 

FSA (P < 0.001). A significantly higher FSA was obtained at a faster speed, as reported by the 

Holm post hoc tests (P ≤ 0.01). There was no DF group x speed interaction (P < 0.42). Data 

are represented in Fig. 6B. 

 

When considering all groups together, a significant group x running speed interaction effect 

was reported by the linear mixed models for both DF and FSA values (P ≤ 0.01). Pairwise post 

hoc comparisons between the three group pairs (RFS and DFhigh, MFS and DFmid, FFS and 

DFlow) at each running speed revealed no significant differences for DF and FSA values (P ≥ 

0.16). 

 

Figure 7. Duty factor (DF) and foot-strike angle (FSA) values of runners attributed to (A) a DF group but not 
being classified in the supposedly corresponding foot-strike pattern (FSP) group and (B) a FSP group but not 
being classified in the supposedly corresponding DF group at each tested running speed (see paragraph “4.5.5 
Runners’ classification” for more methodological details about the constitution of DF and FSA groups). Mean 
DF and FSA value (filled circle) and range of values (whiskers) for each DF and FSP group, i.e., high DF runners 
and rearfoot strikers (RFS; red), mid DF runners and midfoot strikers (MFS; green), and low DF runners and 
forefoot strikers (FFS; blue). The upper whisker extends to the maximum while the lower whisker extends to the 
minimum value. Empty circles denote the runners attributed to a DF or FSP group but not being classified in the 
supposedly corresponding FSP or DF group, respectively, e.g., high DF runners but classified as MFS or FFS 
(green and blue empty circles within the red whiskers of the high DF runners) in (A) and RFS but classified as 
mid or low DF runners (green and blue empty circles within the red whiskers of RFS) in (B). 
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The DF and FSA values of runners attributed to a DF group but not being classified in the 

supposedly corresponding FSP group, for instance DFhigh runners but classified as MFS and 

FFS, are given in Fig. 7A. Similarly, Fig. 7B depicts FSA and DF values of runners attributed 

to a FSP group but not being classified in the supposedly corresponding DF group, for instance 

RFS but classified as DFmid or DFlow. 

 

The correlations between FSA and DF, $,, and SF, together with their 95% confidence 

intervals, are given in Table 2. For DF and $,, the correlation was weak (low) but statistically 

significant (r ≤ 0.50; P < 0.001) for all speeds, while the correlation between DF and SF was 

negligible and not statistically significant (|r| ≤ 0.14; P ≥ 0.18). 

 
Table 2. Pearson’s correlation coefficients (r) and the corresponding 95% confidence intervals (lower, upper) and 
P-values for the relationships between the foot-strike angle and duty factor (DF), contact time (!!), and stride 
frequency (SF) for three tested speeds. 
 
 

 

 

 

 

 

 

 

Note. Statistically significant correlations (P ≤ 0.05) are in bold font. 
 
 

5.1.2 Discussion 

 

A significantly higher DF was obtained for RFS than for MFS and FFS and for MFS than for 

FFS, supporting the first hypothesis. Moreover, a significantly higher FSA was reported for 

DFhigh than for DFmid and DFlow and for DFmid than for DFlow, supporting the second hypothesis. 

Although the three group pairs (RFS and DFhigh, MFS and DFmid, FFS and DFlow) did not report 

Variable Running speed (km/h) r P 

DF 

 

 

9 

11 

13 

0.39 (0.21, 0.55) 

0.42 (0.24, 0.57) 

0.48 (0.31, 0.62) 

<0.001 

<0.001 

<0.001 

$, 		
 

 

9 

11 

13 

0.43 (0.26, 0.58) 

0.47 (0.30, 0.61) 

0.50 (0.34, 0.63) 

<0.001 

<0.001 

<0.001 

SF 

 

 

9 

11 

13 

-0.13 (-0.32, 0.06) 

-0.14 (-0.28, 0.11) 

-0.11 (-0.30, 0.09) 

0.18 

0.36 

0.29 
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any significant difference in DF and FSA values at each tested speed, weak correlations were 

obtained between FSA and DF values, supporting the third hypothesis. 

 

DF was significantly lower for FFS than for RFS and MFS and for MFS than for RFS (Fig. 

6A). These results confirm previous observations that there should be a trend towards a more 

fore-FSP with a decreasing DF value [18, 19]. Similarly, FSA was significantly lower for DFlow 

than for DFhigh and DFmid and for DFmid than for DFhigh (Fig. 6B). Besides, the DF values of 

runners attributed to a DF group but not being classified in the supposedly corresponding FSP 

group mostly span the entire range of DF values of this DF group (Fig. 7A). A similar 

observation is made for FSA values of runners attributed to a FSP group but not being classified 

in the supposedly corresponding DF group (Fig. 7B). Thereby, these results suggest that “local” 

FSP/FSA and DF do not represent similar running pattern information when investigated at the 

individual level.  

 

Weak but significant correlations were observed between DF and FSA at all speeds (r ≤ 0.48 

and P < 0.001; Table 2). Nonetheless, FSA was only able to explain ~20% of the variance of 

DF. The angle of the lower limb at initial ground contact relative to the vertical axis [161] can 

be estimated using $, and therefore DF (indirectly). In addition, according to the observations 

of Breine et al. [162] which showed that RFS have a less vertical leg at the point of contact 

than do runners landing further forward on their foot (MFS and FFS), FSP is indirectly related 

to the lower limb angle at initial contact. As RFS position their foot to be much more forward 

than their pelvis to strike the ground with their heel, these runners have a higher lower limb 

angle at initial contact than do FFS. Therefore, the lower limb angle at initial contact may be 

indirectly related to FSA. Hence, there is an indirect relationship between FSA and DF which 

is supported by the indirect relationship between the lower limb angle at initial contact and 

both DF and FSA. Besides, DF is computed from $, 	and SF, which makes it to be functionally 

representative of a more global biomechanical behavior [18, 19, 72]. For instance, DF has been 

shown to represent the trade-off between muscle contractile mechanics and energetics in 

running as a valid estimate of the muscle force-length-velocity related to mechanical work, 

total active muscle volume, and energy expenditure in running [72].  

 

Correlation coefficients between DF and FSA increased with increasing running speed (+20% 

from 9 to 13 km/h; Table 2), depicting that FSA was more strongly correlated with DF with 

increasing speed. These results suggest that FSA and DF should be more similar at faster 
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speeds. This might partly be attributed to the smaller ranges of DF and FSA values with 

increasing speed. Nevertheless, the relation between FSP and DF groups as well as FSA and 

DF values at faster running speeds should be further investigated. 

 

The correlations between $, and FSA were weak but statistically significant and slightly 

stronger than those between DF and FSA (+4%; Table 2). Nonetheless, FSA was only able to 

explain up to 25% of the variance of $,, confirming that $, (as DF) does not only represent 

what happens at initial contact with the ground as does FSP. The weaker correlation between 

DF and FSA than that between $, and FSA can be explained by the negligible correlations 

between SF and FSA (|r| ≤ 0.14; Table 2) coupled to the fact that DF is given by the product 

between $, and SF. 

 

An unexpected high proportion of runners were classified as FFS, indicating that the study 

population may not be representative of the general population. Moreover, participants wore 

their own running shoes during testing, which could be confounding our results. Given that 

differences in footwear characteristics can underpin differences in running biomechanics [163], 

using a standardized shoe might have led to different study outcomes in terms of FSA and DF. 

However, recreational runners are more comfortable wearing their own shoes [164], and show 

individual responses to novel footwear [164, 165] and cushioning properties [166]. 

Furthermore, the speeds were limited to endurance speeds, and running trials were only 

performed on a treadmill. As very few studies on DF exist, it is therefore difficult to determine 

how DF may be affected by confounding variables such as footwear or the running surface. 

Therefore, future studies should focus on the relation between DF and FSP under additional 

conditions (i.e., faster speeds, different types of ground, and different shoes). Nonetheless, the 

presented results suggest that at an individual level, “local” FSP/FSA and DF do not represent 

similar running pattern and DF should be preferred to FSP/FSA when evaluating the global 

running pattern of a runner. 
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5.2 Examination of running pattern consistency across speeds (study 2) 
 

5.2.1 Results 

 

Correlations for each one of the four relative temporal variables were high to very high for each 

pair of running speeds when changes were 2-4 km/h (P < 0.001, Table 3), except for the 

correlation between 10-14 km/h for $, being moderate. Correlations were moderate to high for 

each pair of running speeds when changes were 6-8 km/h for the four relative temporal 

variables (P < 0.001; Table 3). 

 
Table 3. Pearson’s correlation coefficients (r) and corresponding 95% confidence intervals [lower, upper] and P-
values for the relationships of the relative values for pair of running speeds among five different speeds (10, 12, 
14, 16, and 18 km/h) and for four temporal variables (duty factor, contact time, flight time, and step frequency). 

 
Note. Statistically significant correlations (P ≤ 0.05) are in bold font. Correlations were considered very high, 
high, moderate, low, and negligible when absolute r values were between 0.90-1.00, 0.70-0.89, 0.50-0.69, 0.30-
0.49, and 0.00-0.29, respectively [167]. Cells were colored according to the intensity of the correlations, i.e., the 
larger the correlation, the darker the shaded area. 
 

Running speed 
pair (km/h) Statistics Duty factor Contact time Flight time Step frequency 

10 - 12 r 
P 

0.86 [0.76, 0.92] 
<0.001 

0.83 [0.73, 0.90] 
<0.001 

0.89 [0.81, 0.93] 
<0.001 

0.98 [0.96, 0.99] 
<0.001 

10 - 14 r 
P 

0.72 [0.56, 0.83] 
<0.001 

0.69 [0.51, 0.81] 
<0.001 

0.78 [0.64, 0.87] 
<0.001 

0.93 [0.88, 0.96] 
<0.001 

10 - 16 r 
P 

0.64 [0.45, 0.78] 
<0.001 

0.63 [0.44, 0.77] 
<0.001 

0.73 [0.56, 0.83] 
<0.001 

0.86 [0.77, 0.92] 
<0.001 

10 - 18 r 
P 

0.58 [0.37, 0.74] 
<0.001 

0.54 [0.32, 0.71] 
<0.001 

0.66 [0.47, 0.79] 
<0.001 

0.77 [0.63, 0.86] 
<0.001 

12 - 14 r 
P 

0.91 [0.84, 0.95] 
<0.001 

0.90 [0.83, 0.94] 
<0.001 

0.93 [0.88, 0.96] 
<0.001 

0.97 [0.94, 0.98] 
<0.001 

12 - 16 r 
P 

0.79 [0.66, 0.88] 
<0.001 

0.83 [0.72, 0.90] 
<0.001 

0.83 [0.73, 0.90] 
<0.001 

0.92 [0.87, 0.96] 
<0.001 

12 - 18 r 
P 

0.68 [0.51, 0.81] 
<0.001 

0.71 [0.54, 0.82] 
<0.001 

0.73 [0.57, 0.84] 
<0.001 

0.83 [0.71, 0.90] 
<0.001 

14 - 16 r 
P 

0.86 [0.77, 0.92] 
<0.001 

0.90 [0.83, 0.94] 
<0.001 

0.90 [0.83, 0.94] 
<0.001 

0.97 [0.95, 0.98] 
<0.001 

14 - 18 r 
P 

0.73 [0.57, 0.83] 
<0.001 

0.82 [0.70, 0.89] 
<0.001 

0.77 [0.63, 0.86] 
<0.001 

0.88 [0.80, 0.93] 
<0.001 

16 - 18 r 
P 

0.86 [0.77, 0.92] 
<0.001 

0.91 [0.85, 0.95] 
<0.001 

0.90 [0.83, 0.94] 
<0.001  

0.93 [0.88, 0.96] 
<0.001 
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Figure 8. Relative (deviations from the median) duty factor (DF) values for all participants and five running 
speeds. Runners were relatively positioned according to their relative DF values at 10 km/h. The star symbols 
depict four participants with distinct behaviors. * participant with a DF much higher than the median at 10 km/h, 
but a decreasing DF with increasing speed resulting in a DF closer to the median at 18 km/h. ** participant with 
a DF higher than the median at all tested speeds. *** participant with a DF lower than the median at 10 km/h, but 
an increasing DF with increasing speed resulting in a DF closer to the median at 18 km/h. **** participant with 
a DF much lower than the median at all tested speeds. 
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The relative DF values for all participants and each running speed are depicted in Fig. 8. 

According to the correlations reported in Table 3, similar figures and corresponding 

interpretations would result using the three other variables ($,, $., and SF). 

 

Correlations were low between relative DF and SF at all tested speeds (P ≤ 0.02; Table 4). 

Correlations were very high between relative DF and $. at all tested speeds (P < 0.001); and 

high between relative DF and $, at 10 and 12 km/h (P < 0.001), but moderate at 14, 16, and 18 

km/h (P < 0.001; Table 4). Correlations between relative SF and $. were moderate at all speeds 

(P < 0.001), except for being high at 18 km/h (P < 0.001). Correlations were low between 

relative SF and $, at 10, 12, and 14 km/h (P ≤ 0.03), and moderate at 16 and 18 km/h (P < 

0.001; Table 4). Correlations between relative $, and $. were moderate at 10 km/h (P < 0.001), 

low at 12, 14, and 16 km/h (P ≤ 0.04), and negligible at 18 km/h (P = 0.21; Table 4) 

 
Table 4. Pearson’s correlation coefficients (r) and corresponding 95% confidence intervals [lower, upper] and P-
values for the relationships of the relative values for pair of temporal variables among duty factor (DF), contact 
time (!!), flight time (!"), and step frequency (SF), for five running speeds. 

 
Note. Statistically significant correlations (P ≤ 0.05) are in bold font. Correlations were considered very high, 
high, moderate, low, and negligible when absolute r values were between 0.90-1.00, 0.70-0.89, 0.50-0.69, 0.30-
0.49, and 0.00-0.29, respectively [167]. Cells were colored according to the intensity of the correlations, i.e., the 
closer to one the correlation, the darker the red shaded area and the closer to minus one the correlation, the 
darker the blue shaded area. 
 

The relative temporal variables are depicted in Fig. 9 for all participants running at 10 km/h. 

According to the correlations reported in Table 4, similar figures and corresponding 

interpretations would result using the four other running speeds (12, 14, 16, and 18 km/h). 

 

Variable pair Statistics 10 km/h 12 km/h 14 km/h 16 km/h 18 km/h 

DF - SF r 
P 

0.38 [0.11, 0.59] 
0.006 

0.38 [0.13, 0.60] 
0.005 

0.34 [0.07, 0.56] 
0.01 

0.32 [0.05, 0.55] 
0.02 

0.41 [0.16, 0.62] 
0.002 

DF – !!   r 
P 

-0.98 [-0.99, -0.97] 
<0.001 

-0.96 [-0.98, -0.93] 
<0.001 

-0.94 [-0.96, -0.89] 
<0.001 

-0.91 [-0.95, -0.85] 
<0.001 

-0.91 [-0.95, -0.85] 
<0.001 

DF – !"  r 
P 

0.77 [0.63, 0.86] 
<0.001 

0.71 [0.54, 0.82] 
<0.001 

0.67 [0.48, 0.80] 
<0.001 

0.65 [0.46, 0.79] 
<0.001 

0.57 [0.35, 0.73] 
<0.001 

SF – !!    r 
P 

-0.53 [-0.70, -0.30] 
<0.001 

-0.62 [-0.76, -0.41] 
<0.001 

-0.64 [-0.78, -0.44] 
<0.001 

-0.67 [-0.80, -0.49] 
<0.001 

-0.74 [-0.85, -0.59] 
<0.001 

SF – !"  r 
P 

-0.30 [-0.53, -0.03] 
0.03 

-0.38 [-0.59, -0.12] 
0.006 

-0.47 [-0.66, -0.23] 
<0.001 

-0.50 [-0.68, -0.27] 
<0.001 

-0.51 [-0.69, -0.28] 
<0.001 

!" – !! r 
P 

-0.65 [-0.79, -0.46] 
<0.001 

-0.49 [-0.67, -0.25] 
<0.001 

-0.37 [-0.58, -0.11] 
0.007 

-0.29 [-0.52, -0.02] 
0.04 

-0.18 [-0.43, 0.10] 
0.21 
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Figure 9. Relative (deviations from the median) duty factor (DF), contact time (!!), flight time (!"), and step 
frequency (SF) values for all participants at 10 km/h. Runners were relatively positioned according to their relative 
DF values at 10 km/h. The relative !" values are almost the exact opposite to the relative DF values (Pearson 
correlation coefficient: -0.98). One participant representing each of the five running pattern categories proposed 
by van Oeveren et al. [14] based on the combination of DF and SF (Fig. 1) is identified, namely bounce (low DF 
and median SF), push (low SF and median DF), sit (median DF and SF), hop (high SF and median DF), and stick 
(high DF and median SF). 
 

5.2.2 Discussion 

In agreement with the first hypothesis, smaller differences between two running speeds were 

associated with greater consistency in running patterns, i.e., greater consistency in the four 

temporal variables examined (DF, SF, $,, and $.). Correlations of the relative values were high 

to very high for 2-4 km/h speed differences, whereas moderate to high for 6-8 km/h differences. 

In agreement with the second hypothesis, the consistency between DF and SF variables was 

low at each tested speed, and greater between DF and both its subcomponents as well as 

between SF and both its subcomponents than between DF and SF variables. Across speeds, 

correlations were low between relative DF and SF, very high between relative DF and $., and 

low to high between relative DF and $,, SF and $,, and SF and $..  

The stronger correlations of the relative temporal variables (DF, SF, $,, and $.) for 2-4 km/h 

than 6-8 km/h speed differences (Table 3) indicate greater consistency in variables when 

changes in running speeds are smaller. In other words, the running pattern is less consistent 

when measured over a larger speed range (Fig. 8). This result supports that the running pattern 

should be defined at a given speed [14]. Moreover, large interindividual variations in the 

consistency in running patterns across running speeds was observed (Fig. 8). For instance, there 

were runners with a DF higher than the median at 10 km/h, but a decreasing DF with increasing 

speed resulting in a DF closer to the median at 18 km/h; runners with a DF higher than the 
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median at all tested speeds; runners with a DF lower than the median at 10 km/h, but an 

increasing DF with increasing speed resulting in a DF closer to the median at 18 km/h; and 

runners with a DF much lower than the median at all tested speeds. This agrees with previous 

observations that individuals adapt to running speeds differently [21, 47, 74], which might be 

linked to differences in anthropometric characteristics, age, and running training [168]. 

Performing a more detailed analysis that incorporates clustering approaches might reveal 

subgroups that respond similarly to changes in running speeds. As absolute running speeds 

were used rather than relative speeds (based on the level of participants), it would not be 

possible to identify whether sudden changes in DF and/or SF take place at given relative 

intensities. Overall, coaches should evaluate the running pattern of their athletes using a range 

of speeds or at a specific speed. 

 

As indicates the low correlations between relative DF and SF values at all tested speeds (Table 

4), the consistency between these two variables was low. Similarly, Fig. 9 depicts how runners 

with a low/high DF can present with either a low/high SF. These results again reflect previous 

ones wherein SF does not necessarily encapsulate the same running pattern information than 

DF, and that combining DF and SF information should allow to describe the full running 

pattern spectrum [14]. As depicted in Fig. 9, each of the five categories proposed by van 

Oeveren et al. [14] were represented herein. Specifically, there were stick (high DF and median 

SF), bounce (low DF and median SF), hop (high SF and median DF), push (low SF and median 

DF), and sit (median DF and SF) runners. Moreover, there were runners in between these 

categories, which also confirms that running patterns operate along a spectrum (Fig. 9) [14].  

 

Given that the risk of injury was shown greater in runners using softer shoes and with a lower 

DF [136], quantifying DF might be informative for lower-limb injury prevention. The present 

study found very high correlations between relative DF and $. values at all tested speed (Table 

4 and Fig. 9), suggesting that the relative $. is equivalent to the relative DF. In other words, 

individual variations in $. are equivalent to variations in DF. The interrelatedness of DF and $. 

and their importance in running are further highlighted by their established correlations to 

ground reaction force metrics. Indeed, DF and $. are related to the average vertical ground 

reaction force during $, [72] and effective vertical impulse during $, [73], respectively. Both 

the average vertical ground reaction force during $, and effective vertical impulse during $, are 

proportional to the peak vertical ground reaction force, as supports the sine wave model of the 
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vertical ground reaction force [169] and experimental data [83]. The present study reported 

lower association between relative $, and DF values (correlations were moderate to high; Table 

4 and Fig. 9) than relative $. to DF values. This result is primarily driven by the midrange DF 

runners (Fig. 9). Altogether, these observations indicate that runners with a relatively long $. 

(or short $,) are runners with a relatively low DF within a group of runners, i.e., DF is mainly 

controlled by $. and less by $,. Overall, the kinematic differences previously observed between 

high and low DF runners [18, 19] should generalize well to runners with short and long $., but 

might not generalize as well to runners with long and short $,. Among these three variables 

(DF, $., and $,), one might be easier to evaluate subjectively, which would be ideal for track 

and field running coaches, athletes, and practitioners seeking to describe running patterns along 

a spectrum. Indeed, running coaches could then subjectively evaluate their runners and identify 

the low DF runners using either DF, $., or $, . Nevertheless, further studies comparing 

subjective and objective evaluations of runners using DF, $., and $, would be needed to assess 

if one of these variables is easier to subjectively evaluate than the others. 

 

The moderate to high correlations between relative SF and $. values and low to moderate 

correlations between relative SF and $, values (Table 4 and Fig. 9) follow the same trend than 

those between relative DF and $. or $,, i.e., correlations were larger with $. than with $,. Hence, 

$. also determines more of the variation of SF than $,. To better understand the correlations 

reported among relative DF, $., $,, and SF for each running speed, further analyses concerning 

the relationships within these variables might be needed. 

 

From a practical perspective, the lower consistency in running patterns observed as speed 

differences increased suggests that running patterns should be assessed at a range of speeds or 

at a specific speed. In other words, the generalization of running patterns across speeds may 

not be valid. Noteworthy is the considerable interindividual differences observed in terms of 

the evolution of the relative variables with changes in speed, with some runners demonstrating 

similar running patterns across speeds and others changing running patterns. The low 

consistency between DF and SF at a given running speed corroborates previous findings that 

SF does not necessarily encapsulate the same running pattern information than DF. As 

proposed by van Oeveren et al. [14], the full spectrum of running patterns can be described 

using both DF and SF (Fig. 1). Individuals spontaneously and subconsciously adopt their own 

running pattern. This spontaneous choice was shown to be self-optimized, which is a central 
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element in the development of an economical and safe running gait [8-11]. Hence, being able 

to analyze the full spectrum of running patterns may be important to interpret measurements, 

to design and test specific coaching interventions, and to conduct research to answer questions 

regarding performance, running economy, and injury risk. 
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5.3 Using statistical parametric mapping to assess the association of duty 

factor and step frequency on running kinetic (study 3) 
 

5.3.1 Results 

 

The vertical ground reaction force signal was significantly negatively related to DF at all tested 

speeds (stance range: 0 and 15-100% at 9 and 11 km/h, and 0 and 14-100% at 13 km/h; Fig. 

10). Similar findings were obtained for SF but to a lower extent (stance range: 60-99% at 9 

km/h, 59-99% at 11 km/h, and 67-83% at 13 km/h; Fig. 11). 

 

 
Figure 10. Statistical parametric mapping (SPM) analysis, i.e., t-statistics (SPM{t}), of the linear relationship 
between the vertical ground reaction force (Fz) and the duty factor (DF) along the running stance phase at (A) 9 
km/h, (B) 11 km/h, and (C) 13 km/h. In the upper panels, Fz, expressed in body weight (BW), is depicted for each 
participant (the color depends on the DF value) and for the mean (black line) ± standard deviation (dashed black 
line) over all participants. In the lower panels, the black dashed horizontal lines represent the critical (parametric) 
threshold while the portion of the running stance phase which is statistically significant (P ≤ 0.017; Bonferroni 
correction was applied to take into the three tested speeds) is given by the gray shaded area. 
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Figure 11. Statistical parametric mapping (SPM) analysis, i.e., t-statistics (SPM{t}), of the linear relationship 
between the vertical ground reaction force (Fz) and the step frequency (SF) normalized by #$/&), where g is the 
gravitational constant and L0 the leg length, along the running stance phase at (A) 9 km/h, (B) 11 km/h, and (C) 
13 km/h. In the upper panels, Fz, expressed in body weight (BW), is depicted for each participant (the color 
depends on the DF value) and for the mean (black line) ± standard deviation (dashed black line) over all 
participants. In the lower panels, the black dashed horizontal lines represent the critical (parametric) threshold 
while the portion of the running stance phase which is statistically significant (P ≤ 0.017; Bonferroni correction 
was applied to take into the three tested speeds) is given by the gray shaded area. 
 

The fore-aft ground reaction force signal was significantly positively related to both DF and 

SF in the first 50% of the stance (negative fore-aft force) and negatively related to both DF and 

SF in the last 50% of the stance at all tested speeds (stance range for DF: 5-11, 27-34, and 69-

100% at 9 km/h, 7-12, 29-35, and 71-100% at 11 km/h, and 6-13 and 68-100% at 13 km/h; Fig. 

12; stance range for SF: 15-33 and 68-95% at 9 km/h, 14, 19-35, 47-52, and 70-98% at 11 

km/h, and 14-28 and 71-89% at 13 km/h; Fig. 13). 
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Figure 12. Statistical parametric mapping (SPM) analysis, i.e., t-statistics (SPM{t}), of the linear relationship 
between the fore-aft ground reaction force (Fy) and the duty factor (DF) along the running stance phase at (A) 9 
km/h, (B) 11 km/h, and (C) 13 km/h. In the upper panels, Fy, expressed in body weight (BW), is depicted for each 
participant (the color depends on the DF value) and for the mean (black line) ± standard deviation (dashed black 
line) over all participants. In the lower panels, the black dashed horizontal lines represent the critical (parametric) 
threshold while the portion of the running stance phase which is statistically significant (P ≤ 0.017; Bonferroni 
correction was applied to take into the three tested speeds) is given by the gray shaded area. 
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Figure 13. Statistical parametric mapping (SPM) analysis, i.e., t-statistics (SPM{t}), of the linear relationship 
between the fore-aft ground reaction force (Fy) and the step frequency (SF) normalized by #$/&), where g is the 
gravitational constant and L0 the leg length, along the running stance phase at (A) 9 km/h, (B) 11 km/h, and (C) 
13 km/h. In the upper panels, Fy, expressed in body weight (BW), is depicted for each participant (the color 
depends on the DF value) and for the mean (black line) ± standard deviation (dashed black line) over all 
participants. In the lower panels, the black dashed horizontal lines represent the critical (parametric) threshold 
while the portion of the running stance phase which is statistically significant (P ≤ 0.017; Bonferroni correction 
was applied to take into the three tested speeds) is given by the gray shaded area. 
 

The force-length relationships of all participants, colored according to their DF and SF, are 

depicted in Figs. 14 and 15, respectively, for each tested speeds and separately for the 

compression and decompression phases. The coefficient of determination during leg 

compression (#&'#() ) significantly decreased with increasing DF or running speed and 

increased with increasing SF (P ≤ 0.007; Table 5), while the coefficient of determination during 

leg decompression (#*+&'#() ) did not change with DF, SF, and running speed.  
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Figure 14. Force-length relationship, i.e., ground reaction force projected along the leg (Fleg) as function of the 
leg compression/decompression, for each participant [the color depends on the duty factor (DF) value] and for the 
mean (black line) over all participants during the running stance phase, at three running speeds, and expressed 
using (A) SI units and (B) normalized units, i.e., body weight (BW) for Fleg and percentage of runners' height for 
leg compression. As ∆L was set to zero at foot-strike (the beginning of the leg compression), ∆L was smaller than 
zero at toe-off (the end of the leg decompression), leading to a non-zero force for a null ∆L during the leg 
decompression.  
 

 
Figure 15. Force-length relationship, i.e., ground reaction force projected along the leg (Fleg) as function of the 
leg compression/decompression, for each participant [the color depends on the step frequency (SF) value; SF was 
normalized by #$/&), where g is the gravitational constant and L0 the leg length] and for the mean (black line) 
over all participants during the running stance phase, at three running speeds, and expressed using (A) SI units 
and (B) normalized units, i.e., body weight (BW) for Fleg and percentage of runners' height for leg compression. 
As ∆L was set to zero at foot-strike (the beginning of the leg compression), ∆L was smaller than zero at toe-off 
(the end of the leg decompression), leading to a non-zero force for a null ∆L during the leg decompression. 
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Table 5. Linearity of the force-length relationship during leg compression ('*+%,- ) and decompression ('./*+%,- ). 
Significant differences (P ≤ 0.05) identified by linear mixed effects modeling are indicated in bold. 
 

 

 

 

 

 

 

 
Note. Values are presented as mean ± standard deviation. DF: duty factor, SF: step frequency, SF covariate was 
normalized by #$/&), where g is the gravitational constant and L0 the leg length. Up (↑) and down (↓) arrows 
indicate positive and negative effects of the covariate, respectively. * Significantly different from the value at 11 
km/h. † and ‡ Significantly different from the value at 13 km/h. 
 

5.3.2 Discussion 

 

According to the first hypothesis, lower DF and lower SF were associated to higher vertical 

and fore-aft ground reaction force fluctuations, but SF to a lower extent than DF. The linearity 

of the force-length relationship during the leg compression decreased with increasing DF but 

did not change during the leg decompression, partly refuting the second hypothesis. According 

to the third hypothesis, a higher SF was associated to a smaller leg compression.  

 

DF was previously analytically shown to be inversely proportional to the maximum of an 

estimated vertical ground reaction force signal [169] via a sine-wave model [72]. The present 

study extends to the fact that a lower DF results in a larger vertical ground reaction force during 

most of the stance but after the 15% temporal window representative of the “impact” phase 

[170] (~15-100%; Fig. 10). Therefore, the SPM analysis additionally revealed that the 

association between DF and the vertical ground reaction force signal is not only given at Fz,max 

but through almost the entire stance (after the impact phase; ≥ 15%). Moreover, the shape of 

the vertical ground reaction force during the impact phase is not affected by the DF. This result 

might be attributed to the fact that the vertical ground reaction force signal is given by the force 

contributions of two discrete body mass components, i.e., a distal mass composed of the foot 

and shank and the remaining mass [171, 172]. Hence, the impact phase, represented by the 

distal mass in this model, might not be affected by the DF. 

Running speed (km/h)   76789:  7;<6789:  
9 0.95 ± 0.06*,† 0.99 ± 0.02 

11 0.93 ± 0.08‡ 0.99 ± 0.01 

13 0.90 ± 0.10 0.99 ± 0.01 

Running speed effect (P) < 0.001 0.14 

DF covariate effect (P) ↓	< 0.001  0.06 

SF covariate effect (P) ↑ 0.007 0.85 
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Similarly, a lower SF resulted in a larger vertical ground reaction force, but only at the end of 

the stance (~65-95%; Fig. 11). This was likely related to the longer step length for running at 

the same speed. In fact, it has previously been shown that a larger vertical ground reaction force 

(i.e., support force) produces a larger step length [73, 173]. Our SPM analysis demonstrated 

that this larger support force was located only at the end of the stance. Nonetheless, the reason 

why this larger support force was located at the end of the stance could not readily be explained. 

 

The fore-aft ground reaction force signal was positively related to DF around ~5-10% of the 

stance and to both DF and SF around ~25-35% (positively) and ~70-90% (negatively; Figs. 12 

and 13). The positive association of DF on the fore-aft ground reaction force signal reported 

by the SPM analysis around ~5-10% of the stance can be explained by the FSP. Indeed, forefoot 

strikers were shown to have a negative spike on the fore-aft ground reaction force signal around 

~5-10% of the stance [174] and DF was related to the FSP [18, 19]. However, the association 

of DF on the fore-aft force signal around ~5-10% of the stance in the fore-aft force signal was 

not accompanied by an association of DF on the vertical force signal at the same percentage of 

the stance. This suggests that the effect of DF during the impact phase was more important in 

the fore-aft than vertical force signal. The other two significant regions are around the braking 

and propulsive peaks. These results partly corroborate previous observations, which showed 

that the peak braking force was correlated to DF but not to SF [83]. Moreover, they confirm 

that larger ground reaction forces during propulsion are needed to lift and accelerate the body 

during stance to generate longer step lengths [175]. As previously suggested [14], combining 

vertical and horizontal ground reaction forces into a single vector could be useful to properly 

characterize their orientations and actions and carefully describe the relationship of this single 

vector with DF and SF, especially at the end of the stance. The present results corroborate that 

DF and SF can be viewed as two variables that complement each other and that should be used 

together to describe the full spectrum of running patterns [14]. 

 

The linearity of the force-length relationship was higher for lower DF and SF than for higher 

DF and SF runners during the leg compression but there was no difference during the leg 

decompression (Table 5). This means that higher DF and SF values were associated to more 

variations of the instantaneous compressive stiffness, i.e., the slope for each pair of point during 

the leg compression. However, the decompressive stiffness during the leg decompression was 

independent of DF and SF (Table 5). This result corroborates the choice made by several 
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authors to use the decompression phase instead of the compression one to calculate the vertical 

stiffness [132, 176].  

 

The deviation from linearity of the force-length relationship among individuals was also 

reported by Gill et al. [154]. Indeed, these authors reported that the linearity of the force-length 

curve was foot-strike index dependent and thus FSP dependent and that this curve should be 

investigated before using the spring-mass model. Furthermore, these authors suggested that for 

#) < 0.95, it may be more appropriate to segment the stance phase and to individually 

investigate the different subphases. Hence, the deviation from linearity observed herein during 

the leg compression for higher than lower DF and SF runners suggests that the stiffness should 

be split into several phases during the leg compression and thus invalidate the usage of the 

compressive leg stiffness for these runners.  

 

The higher linearity of the force-length relationship for low than high DF runners during the 

compression phase was accompanied with a larger vertical force and smaller $,. These results 

suggest a more vertical compression for low than high DF runners and that high DF runners 

could be characterized by a slow stretch-shortening cycle (runners with $, longer than 250 ms) 

while low DF runners by a fast one [177]. These findings bring further evidence and reinforce 

previous statements that low DF runners rely more on the optimization of the spring-mass 

model (better storage and re-use of elastic energy) than high DF runners [18, 19]. 
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5.4 A novel kinematic detection of foot-strike and toe-off events during non-

instrumented treadmill running to estimate contact time (study 4) 
 

5.4.1 Results 

 

Systematic biases were obtained for both FS and TO at all speeds (Table 6) and were ≤ 5 ms 

(≤ 1 frame), except for TO at 11 km/h (no bias; the zero line is between the 95% confidence 

interval). 

 
 Table 6. Systematic bias, lower limit of agreement (lloa), and upper limit of agreement (uloa) for foot-strike and 
toe-off detected using ground reaction force and the kinematic algorithm at three running speeds. 95% confidence 
intervals are given in square brackets [lower, upper]. 

 
Note. For systematic bias, positive and negative values indicate that the kinematic algorithm overestimated and 
underestimated gait events, respectively. 
 

Systematic biases were reported for $, at all speeds (< 8 ms), and the corresponding RMSE 

was ≤ 14 ms (≤ 5%; Table 7). FFS, MFS, and RFS had RMSEs for $, (averaged over speed) of 

8.6 ± 3.6 ms (3.5 ± 1.4%), 13.0 ± 6.2 ms (5.1 ± 2.3%), and 13.9 ± 5.3 ms (5.4 ± 1.9%), 

respectively. 

 

The linear mixed model depicted significant effects of method, speed, FSA, and method x 

speed interaction (P ≤ 0.004). $, was significantly overestimated by the KA, decreased with 

increasing speed, and increased with increasing FSA. Holm post hoc tests yielded significantly 

higher $, when calculated by the KA than by the GSM at all speeds (P ≤ 0.01; Table 7). 

 

 

 

 

 

Event 

9 km/h 11 km/h 13 km/h 

bias 
(ms) 

lloa 
(ms) 

uloa 
(ms) 

bias 
(ms) 

lloa 
(ms) 

uloa 
(ms) 

bias 
(ms) 

lloa 
(ms) 

uloa 
(ms) 

Foot-strike -4.4 
[-4.8, -4.0] 

-20.8 
[-21.4, -20.2] 

12.0 
[11.3, 12.6] 

-4.8 
[-5.2, -4.5] 

-20.1 
[-20.7, -19.6] 

10.5 
[9.9, 11.0] 

-4.6 
[-5.0, -4.3] 

-19.1 
[-19.7, -18.6] 

9.9 
[9.3, 10.4] 

Toe-off 3.5 
[3.1, 3.9] 

-13.9 
[-14.6, -13.2] 

20.9 
[20.2, 21.6] 

0.2 
[-0.1, 0.5] 

-13.6 
[-14.1 -13.1] 

14.1 
[13.5, 14.6] 

-1.8 
[-2.1, -1.5] 

-15.9 
[-16.4 -15.4] 

12.3 
[11.7, 12.8] 
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Table 7. Contact time (!!) calculated based on foot-strike and toe-off detected using ground reaction force (gold 
standard method - GSM) and the kinematic algorithm together with systematic bias, 95% confidence intervals (in 
square brackets [lower, upper]), and root mean square error [RMSE; both in absolute (ms) and relative (%) units]. 
Data are presented for three running speeds. The linear mixed model revealed a significant method (kinematic 
algorithm vs. GSM) x speed interaction effect (P = 0.004). * Significant difference (P ≤ 0.01) between !! 
calculated based on GSM and that calculated based on the kinematic algorithm, as determined by Holm post hoc 
tests. 
 

 

 

 

 

 
 
Note. Values are presented as mean ± standard deviation. For systematic bias, positive and negative values 
indicate that the kinematic algorithm overestimated and underestimated !!, respectively. 

 

5.4.2 Discussion 

 

Systematic biases were reported for FS and TO at all speeds, refuting the first hypothesis. 

Systematic biases, as well as significant differences, were reported for $, at all speeds and the 

RMSE for $, increased with increasing FSA, thus refuting the second hypothesis. Nonetheless, 

smaller errors than those obtained by existing methods were obtained for FS, TO, and $,. 
Therefore, this novel KA can be applied to accurately estimate FS, TO, and $, from kinematic 

data obtained during non-instrumented treadmill running, independently of FSA. 

 

The biases for FS were smaller than or equal to 5 ms at all speeds (Table 6). These errors were 

smaller than those obtained with existing algorithms [90, 92, 93, 95, 96]. Milner and Paquette 

[95] showed that algorithms based solely on heel kinematics (position, velocity, or 

acceleration) were less accurate in FS detection for MFS or FFS than for RFS because heel 

kinematics around FS differ according to FSP, i.e., a non-RFS does not initiate contact with 

the ground using the heel. In addition, the heel-based algorithm reported in Smith et al. [93] 

had poorer FS detection abilities in non-RFS than in RFS (RMSE: 22 to 6 ms). Their results 

are opposed to those of this study, most likely because Smith et al. [93] used a heel-based 

algorithm. Leitch et al. [92] demonstrated that heel-based and mid-foot-based algorithms were 

best suited for RFS and FFS, respectively. Therefore, the novel KA proposed here, which 

Variable 9 km/h 11 km/h 13 km/h 

$! (ms) 

$! GSM (ms) 

bias (ms) 

RMSE (ms) 

RMSE (%) 

286.6 ± 27.5* 

278.6 ± 24.9 

7.9 [7.3, 8.5] 

13.7 ± 7.0 

4.9 ± 2.5 

255.4 ± 23.7* 

250.3 ± 20.7 

5.1 [4.6, 5.6] 

11.2 ± 4.8 

4.5 ± 1.9 

230.7 ± 20.5* 

227.9 ± 18.4 

2.8 [2.4, 3.3] 

9.9 ± 3.9 

4.4 ± 1.7 
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accounts for this recommendation and combines heel and toe kinematic data to detect FS, 

proved to be useful and showed a smaller error than existing methods. 

 

The algorithm proposed by Milner and Paquette [95] was based on the velocity of the COM of 

the pelvis and had a 15 ms offset for FS. Similarly, the algorithm of Dingwell et al. [89], 

originally designed for walking gait and based on knee extension spikes and used by Smith et 

al. [93], depicted a 28 ms RMSE for FS. These algorithms performed worse than the KA 

proposed herein for FS detection (RMSE ≤ 8 ms or |bias| ≤ 5 ms). One reason could be that 

these algorithms used more proximal segments, which might be temporally shifted compared 

to what is happening directly at the foot. 

 

TO necessarily occurs based on the toes moving away from the ground, suggesting that a toe-

based algorithm should accurately detect TO. The error for TO was similar to the error of RFS 

given by the algorithm proposed by Smith et al. [93] but slightly higher than the modified 

version of the algorithm of Alton et al. [87]. However, the error obtained herein was smaller 

than that obtained for FFS (17 [93] or 12 ms [87]). Therefore, TO detection with the novel KA 

showed similar or better accuracy than existing methods. 

 

Small systematic biases, as well as significant differences, were reported for $, at all speeds 

(Table 7). Even though the novel KA yielded smaller errors for FS than the algorithm of Smith 

et al. [93], those authors did not report significant differences in $, between methods. This 

discrepancy might be due to a combination of under- and over-estimations in FS and TO. 

Moreover, a high speed (20 km/h) was used in Smith et al. [93], which makes $, smaller than 

that observed in this study, implicitly reducing observed differences and affecting the outcomes 

of statistical tests. In this study, the RMSE decreased with increasing speed [13.7–9.9 ms (5–

4.5%) for 9–13 km/h] and was smaller than that in Smith et al. [93] [18.4 ms (11%) at 20 km/h]. 

Hence, this previous algorithm [93] could be less effective at slower speeds because the time 

scale of kinematic trajectories might be slower, thus resulting in larger errors (i.e., greater 

differences in the number of frames) than in this study at similar speeds. 

 

This study proposed a novel KA that uses a combination of heel and toe kinematics (three 

markers per foot) to detect FS and TO. In conclusion, our findings showed that our novel KA 
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can be applied to accurately estimate FS, TO, and $, from kinematic data obtained during non-

instrumented treadmill running, independently of FSA. 
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5.5 Both a single sacral marker and the whole-body center of mass 

accurately estimate peak vertical ground reaction force in running (study 5) 
 

5.5.1 Results 

 

RMSE of the estimation of !!,#$% with respect to GSM using either COM-M or SACR-M as 

function of the cut-off frequency of the fourth-order Butterworth filter is depicted in Fig. 16 

for three running speeds. The filter frequencies which minimized RMSE were 5 and 4 Hz for 

COM-M and SACR-M, respectively, for the three speeds. RMSE for COM-M with a 5 Hz cut-

off frequency at 9, 11, and 13 km/h were 0.06, 0.07, and 0.08 BW, respectively, while RMSE 

for SACR-M with a 4 Hz cut-off frequency at 9, 11, and 13 km/h were 0.14, 0.13, and 0.17 

BW, respectively. !!,#$% estimated by COM-M and SACR-M using these best frequencies 

were kept for the following analyses. 

 

 
 
Figure 16. Root mean square error [RMSE; in body weight (BW)] of the estimation of the peak vertical ground 
reaction force with respect to the gold standard method using (A) the center of mass method (COM-M) and (B) 
the sacral marker method (SACR-M), as function of the cut-off frequency of the fourth-order Butterworth low-
pass filter and for three running speeds. Noteworthy, a log-scale was used on the x-axis to improve readability 
and vertical force was filtered at 20 Hz. 
 

No systematic bias was reported for !!,#$% at 11 km/h for both COM-M and SACR-M 

compared to GSM (the bias lied within the 95% CI) while small biases were obtained at 9 and 

13 km/h [≤0.09 BW (≤ 61.8 N for a 70 kg person); Table 8]. RMSE was smaller than or equal 

to 0.06 BW (≤ 2.6%) and 0.17 BW (≤ 6.5%) for the comparison between GSM and COM-M 

and between GSM and SACR-M, respectively (Table 8).  
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Table 8. Systematic bias, lower limit of agreement (lloa), upper limit of agreement (uloa), and root mean square 
error [RMSE; both in absolute (body weight; BW) and relative (%) units] between peak vertical ground reaction 
force ("#,%&') obtained using center of mass (COM-M) and gold standard (GSM) method as well as using sacral 
marker method (SACR-M) and GSM at three running speeds. 95% confidence intervals are given in square 
brackets.  

 
Note. For systematic bias, positive and negative values indicate the COM-M and SACR-M methods overestimated 
and underestimated "#,012, respectively. COM and sacral marker data were filtered at 5 and 4 Hz, respectively, 
while vertical force was filtered at 20 Hz. 
 

Repeated measures ANOVA depicted significant effects for both running speed and method of 

calculation x running speed interaction (P < 0.001; Table 9) but there was no effect of the 

method of calculation (P = 0.41; Table 9). Holm post hoc tests yielded significant differences 

between !!,#$% obtained using pair of methods at 9 and 13 km/h (P ≤ 0.003) but not at 11 km/h 

(P ≥ 0.23). The other pairwise post hoc comparisons were all statistically significant (P ≤ 0.03) 

except the pair GSM at 11 km/h and SACR-M at 13 km/h (P = 0.23).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Method pair 

 

Running speed 

(km/h) 

Systematic bias 

(BW) 

Lloa 

(BW) 

Uloa 

(BW) 

RMSE 

(BW) 

COM-M vs. GSM 

9 0.02 [0.01, 0.03] -0.09 [-0.11, -0.07] 0.13 [0.11, 0.15] 0.06 (2.6%) 

11 -0.01 [-0.02, 0.01] -0.14 [-0.16, -0.12] 0.12 [0.10, 0.15] 0.07 (2.7%) 

13 -0.04 [-0.05, -0.03] -0.18 [-0.21, -0.16] 0.10 [0.08, 0.13] 0.08 (3.2%) 

SACR-M vs. GSM 

9 0.08 [0.06, 0.10] -0.14 [-0.18, -0.11] 0.31 [0.27, 0.34] 0.14 (6.0%) 

11 0.01 [-0.01, 0.03] -0.25 [-0.29, -0.21] 0.27 [0.23, 0.31] 0.13 (5.3%) 

13 -0.09 [-0.11, -0.06] -0.37 [-0.42, -0.33] 0.20 [0.15, 0.24] 0.17 (6.5%) 
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Table 9. Peak vertical ground reaction force ["#,%&'; in body weight (BW)] obtained using gold standard (GSM), 
center of mass (COM-M), and sacral marker (SACR-M) methods for three running speeds. Significant (P ≤ 0.05) 
method of calculation, running speed, and interaction effect, as determined by repeated measures ANOVA, are 
reported in bold font. *, †, and ‡ depict significant differences between "#,%&' obtained using GSM and COM-M, 
GSM and SACR-M, and COM-M and SACR-M, respectively, at a given running speed and as determined by 
Holm post hoc tests. Noteworthy, the other pairwise post hoc comparisons were all statistically significant (P ≤ 
0.03) except the pair GSM at 11 km/h and SACR-M at 13 km/h (P = 0.23) but not represented by a symbol in the 
table.  
 
 

 

 

 

 

 

 

 

Note. Values are presented as mean ± standard deviation. COM and sacral marker data were filtered at 5 and 4 
Hz, respectively, while vertical force was filtered at 20Hz. 
 

5.5.2 Discussion 

 

According to the first hypothesis, a single cut-off frequency minimized RMSE and was 

different for each method. Indeed, the most accurate estimations of !!,#$% were obtained using 

a 5 and 4 Hz cut-off frequency for the fourth order Butterworth low-pass filtering of COM and 

sacral marker accelerations, respectively. Besides, according to the second hypothesis, RMSE 

close to 0.15 BW were obtained for both COM-M and SACR-M at each tested speed (RMSE 

≤ 0.17 BW). Conventional statistical approaches demonstrated no systematic bias and no 

significant difference of !!,#$% between GSM, COM-M, and SACR-M at 11 km/h. However, 

systematic biases and significant differences were obtained at 9 and 13 km/h, though COM-M 

gave systematic biases three times smaller than SACR-M as well as two times smaller RMSE. 

Nonetheless, systematic biases at 9 and 13 km/h were small (≤ 0.09 BW) and accompanied 

with an RMSE ≤ 6.5%. 

 

COM-M and SACR-M depicted the smallest RMSE for a cut-off frequency of 5 and 4 Hz, 

respectively (Fig. 16). As the body segments were not considered in the sacral acceleration, 

this might not attenuate and “smooth” the signal compared to COM acceleration (the whole-

body COM trajectory being a weighted sum of all body segments, its overall shape should be 

Variable Running Speed (km/h) GSM COM-M SACR-M 

-3,456 
(BW) 

9 

11 

13 

2.25 ± 0.28*,† 

2.39 ± 0.30 

2.50 ± 0.31*,† 

2.27 ± 0.28‡ 

2.38 ± 0.29 

2.46 ± 0.30‡ 

2.33 ± 0.29 

2.40 ± 0.30 

2.41 ± 0.30 

Method of calculation effect 

Running speed effect 

Interaction effect 

P = 0.41 

P < 0.001 

P < 0.001 
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smoother than the sacral marker trajectory). This suggests that the vertical peaks in the 

unfiltered sacral acceleration signal were slightly higher than in COM acceleration. Therefore, 

a smaller cut-off frequency was required to filter the sacral than COM acceleration to decrease 

the magnitude of the vertical peaks and to make them match with the ones of GSM. 

Nonetheless, as the sacral marker should be close to COM location [113], the corresponding 

acceleration signals should be similar, i.e., the noise in the sacral acceleration was not 

drastically larger than in the COM one, justifying the small difference of 1 Hz in optimal cut-

off frequencies. 

 

Different RMSE between speeds were reported at lower than optimal cut-off frequencies while 

similar RMSE were obtained at larger than optimal cut-off frequencies (Fig. 16). In other 

words, the effect of speed on RMSE increased as cut-off frequency decreased. This might be 

explained by the fact that the 2-4 Hz cut-off frequencies were close to the oscillatory behavior 

of COM or sacral marker. Indeed, 3 Hz is considered as the frequency corresponding to the 

vertical sinusoidal pelvic motion, reflective of step frequencies [150]. Besides, the higher the 

speed, the higher the step rate, and thus the even more likely to be close to the oscillatory 

behavior of the COM or sacral marker, further explaining the higher RMSE reported at 13 km/h 

than at 11 and 9 km/h at lower than optimal cut-off frequencies.  

 

A previous study evaluating the effect of the cut-off frequency to filter sacral-mounted IMU 

data to estimate !!,#$% reported that the smallest RMSE was obtained using a 10 Hz cut-off 

[103]. The present study reported optimal cut-off frequencies that were two times smaller (4 

and 5 Hz). The discrepancy might be explained by the fact that the authors were directly 

measuring the sacral acceleration, which might be more prone to high frequency noise [103]. 

Furthermore, ground reaction force was filtered at 30 Hz whereas a 20 Hz cut-off was used in 

this study. In addition, the authors recorded treadmill runs from 13.7 to 19.4 km/h, which is 

faster than the endurance speeds used in the present study. Therefore, as the present study 

slightly overestimated and underestimated !!,#$% at 9 and 13 km/h, respectively, this suggests 

that a larger cut-off frequency should be used at a faster speed and a smaller one at a slower 

speed, which goes in the direction of the previous findings [103]. Indeed, increasing/decreasing 

the cut-off frequency increases/decreases the magnitude of the filtered signal [103]. Moreover, 

a significant effect of running speed was observed (Table 9). Therefore, a speed-dependent cut-

off frequency would probably provide better results. However, future studies should focus on 
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testing several slower and faster running speeds to further decipher the running speed effect. 

Besides, a more complicated model could be constructed to better estimate !!,#$%, for instance 

following recent research [104, 178, 179], which uses artificial intelligence to estimate the 

vertical ground reaction force. Then, in practice, a systematic addition of the bias 

corresponding to the given speed could be applied when estimating !!,#$%. 

 

The differences between GSM and COM-M or SACR-M obtained in this study reported the 

same level of accuracy than in the study based on a single participant [114] [≤ 100 N (≤ 0.15 

BW for a 70 kg person) at 7-20 km/h]. Moreover, !!,#$% estimated using sacral-mounted 

inertial sensors reported similar differences [103] [≤ 20N (≤ 0.03 BW for a 70 kg person) at 

14-19 km/h] and RMSE [104] (0.15 BW at 13.5-19.5 km/h) with respect to GSM than COM-

M and SACR-M used in the present study. In addition, a 6% error on !!,#$% (6-21 km/h) was 

reported using an inertial sensor placed on the leg along the tibial axis [180] while a 3% error 

(10-14 km/h) was achieved using three IMUs (two on lower legs and one on pelvis) and two 

artificial neural networks [141]. Thus, estimated !!,#$% depicted a similar error (~5%) to 

previous estimations which used whole-body COM trajectory or inertial sensors. Nonetheless, 

the present study only tested running speeds ranging between 9 and 13 km/h, thus not 

permitting to generalize on the accuracy of COM-M and SACR-M at faster running speeds, 

especially because a significant effect of running speed was observed (Table 9).   

 

No systematic bias or significant differences were reported for both COM-M and SACR-M at 

11 km/h (Tables 8 and 9). However, systematic but small biases were reported at 9 and 13 km/h 

(Table 8), which were accompanied by significant differences (Table 9). The systematic bias 

of SACR-M was almost three times larger than the one of COM-M at 9 and 13 km/h while 

RMSE was two times larger (Table 8). Besides, a less important linear increase in !!,#$% with 

increasing speed was reported for SACR-M than for GSM and COM-M (Table 9). These 

results could be explained by the fact that the speed-dependence of the cut-off frequency might 

be more important for SACR-M than COM-M, which is depicted by the larger range of RMSE 

over the three running speeds at a given cut-off frequency for SACR-M than COM-M (Fig. 

16). Therefore, SACR-M might require a more pronounced variation of the cut-off frequency 

with running speed than COM-M, i.e., the cut-off frequency for SACR-M might need to vary 

(even if < 1 Hz) when speed changes by 2 km/h while the one of COM-M might not. This 

might allow obtaining a similar linear increase of !!,#$% with increasing speed for SACR-M 
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than for GSM and COM-M. Nonetheless, further studies should be conducted to validate this 

assumption. 

 

No significant difference was reported between COM-M and SACR-M at 11km/h but were at 

9 and 13 km/h (Table 9), which follows the differences between GSM and both COM-M and 

SACR-M. However, SACR-M depicted larger deviations around the mean than COM-M, as 

reported by the larger lower and upper limit of agreements and 95% CI (Table 8). These larger 

deviations could be explained by the fact that the whole-body COM trajectory is a weighted 

sum of all body segments while the sacral marker trajectory is not (see above). These findings 

showed that COM-M is more consistent amongst participants than SACR-M and might be a 

preferred choice but is not reflected by the statistical analysis. Therefore, we suggest 

researchers with access to a motion capture system but not to a force plate to use COM-M or 

SACR-M with data filtered at 5 and 4 Hz, respectively, to estimate !!,#$%. Furthermore, similar 

methods but employing a sacral-mounted IMU might be used to estimate !!,#$% overground, 

as long as an optimal cut-off frequency has been determined [103].  

 

To conclude, there were no systematic bias and no significant difference between each pair of 

methods that estimated !!,#$% at 11 km/h but there were systematic but small biases and 

significant differences at 9 and 13 km/h. Nonetheless, estimated !!,#$% showed similar error 

(~5%) to previous estimations which used whole-body COM trajectory or inertial sensors. 

Hence, the findings of this study support the use of either COM-M or SACR-M to estimate 

!!,#$% during level treadmill runs, and especially at 11 km/h. 
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5.6 A single sacral-mounted inertial measurement unit to estimate peak 

vertical ground reaction force, contact time, flight time, effective contact 

time, and effective flight time in running (studies 6 and 7) 
 

5.6.1 Results 

 

Systematic biases (average over running speeds) were obtained for !!,#$% (0.07 BW) and $, 
and $. (13 ms), and 11 km/h gave the smallest absolute bias, followed by 9 km/h and 13 km/h 

(Table 10). The three variables reported a significant negative proportional bias at all speeds 

and the proportional bias of $. was larger than that of $, (Table 10). 

 
Table 10. Systematic bias, lower limit of agreement (lloa), upper limit of agreement (uloa), and proportional bias 
± residual random error together with its corresponding P-value between peak vertical ground reaction force 
("#,%&'), contact time (!!), and flight time (!") obtained using inertial measurement unit method and gold standard 
method at three running speeds. Confidence intervals of 95% are given in square brackets [lower, upper]. 
Significant (P ≤ 0.05) proportional biases are reported in bold font. 

 
Note. For systematic biases, positive and negative values indicate the inertial measurement unit method 
overestimated and underestimated "#,012, !!, and !", respectively. 
 

$,- and $.- depicted small systematic biases (≤ 20 ms) at all speeds. The smallest absolute bias 

was given for 9 km/h, followed by 11 km/h and 13 km/h (Table 11). Both effective timings 

reported a significant negative proportional bias at all speeds but were accompanied with small 

coefficients of determination (R2; Table 11). 
 

Variable Speed (km/h) Systematic bias lloa uloa Proportional bias (P) 

%",$%& (BW) 

9 0.05 [0.04, 0.05] -0.21 [-0.22, -0.20] 0.30 [0.29, 0.31] -0.28 ± 0.02 (< 0.001) 

11 -0.04 [-0.04, -0.03] -0.31 [-0.32, -0.30] 0.23 [0.22, 0.24] -0.41 ± 0.02 (< 0.001) 

13 -0.13 [-0.13, -0.12] -0.45 [-0.46, -0.43] 0.19 [0.18, 0.20] -0.51 ± 0.02 (< 0.001) 

$! (ms)  

9 -9.9 [-10.6, -9.1] -43.7 [-45.0, -42.4] 23.9 [22.6, 25.2] -0.38 ± 0.02 (< 0.001) 

11 7.3 [6.5, 8.0] -24.6 [-25.8, -23.4] 39.1 [37.9, 40.3] -0.37 ± 0.02 (< 0.001) 

13 20.2 [19.5, 20.9] -10.1 [-11.3, -9.0] 50.6 [49.4, 51.7] -0.29 ± 0.02 (< 0.001) 

$' (ms) 

9 9.9 [9.1, 10.7] -23.8 [-25.0, -22.5] 43.5 [42.3, 44.8] -0.79 ± 0.02 (< 0.001) 

11 -7.4 [-8.1, -6.6] -39.2 [-40.5, -38.0] 24.5 [23.3, 25.8] -0.86 ± 0.02 (< 0.001) 

13 -20.4 [-21.1, -19.7] -50.8 [-52.0, -49.7] 10.0 [8.9, 11.2] -0.91 ± 0.02 (< 0.001) 
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Table 11. Systematic bias, lower limit of agreement (lloa), upper limit of agreement (uloa), proportional bias ± 
residual random error together with its corresponding P-value, and coefficient of determination (R2) between 
effective contact (!!() and flight (!"() times obtained using inertial measurement unit method and gold standard 
method at three running speeds. 95% confidence intervals are given in square brackets. Significant (P ≤ 0.05) 
proportional bias are reported in bold font.  

 
Note. For systematic bias, positive and negative values indicate the inertial measurement unit method 
overestimated and underestimated !!( and !"(, respectively. 
 
 

Repeated measures ANOVA depicted significant effects for both methods and running speed, 

as well as an interaction effect for !!,#$%, $,, and $. (P ≤ 0.002; Table 12). Holm post hoc tests 

yielded significant differences between !!,#$%, $,, and $. obtained using the GSM and IMUM 

at all speeds (P ≤ 0.006). The average RMSE over running speed was 0.15 BW for !!,#$% (6%), 

while it was 20 ms for $, and $., corresponding to 8% and 18%, respectively (Table 12).  

 

Significant effects for both method of calculation and running speed as well as an interaction 

effect were depicted by repeated measures ANOVA for $,- and $.- (P < 0.001; Table 13). 

Significant differences between GSM and IMUM for $,- and $.- at all speeds (P < 0.001) were 

reported by Holm post hoc tests. RMSE was ≤ 22 ms (≤ 14%) for $,- and $.- (Table 13). 

 
 
  

Variable Speed (km/h) Systematic bias lloa uloa Proportional bias (P) R2 

!!( (ms)  

9 9.0 [8.4, 9.5] -15.8 [-16.7, -14.9] 33.7 [32.8, 34.7] -0.64 ± 0.02 (< 0.001) 0.30 

11 14.5 [13.9, 15.0] -10.0 [-10.9, -9.0] 38.9 [38.0, 39.8] -0.60 ± 0.02 (< 0.001) 0.25 

13 18.8 [18.3, 19.3] -4.1 [-5.0, -3.2] 41.7 [40.8, 42.5] -0.50 ± 0.03 (< 0.001) 0.15 

!"( (ms) 

9 -8.9 [-9.4, -8.3] -34.6 [-35.6, -33.6] 16.9 [15.9, 17.9] -0.35 ± 0.02 (< 0.001) 0.10 

11 -14.5 [-15.0, -13.9] -39.9 [-40.9, -39.0] 11.0 [10.0, 12.0] -0.51 ± 0.02 (< 0.001) 0.18 

13 -18.9 [-19.4, -18.3] -43.0 [-43.9, -42.1] 5.3 [4.3, 6.2] -0.50 ± 0.02 (< 0.001) 0.19 
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Table 12. Peak vertical ground reaction force ("#,%&'), contact time (!!), and flight time (!") obtained using the 
gold standard method (GSM) and inertial measurement unit method (IMUM) together with the root mean square 
error [RMSE; both in absolute (ms or BW) and relative (%) units] for three running speeds. Significant (P ≤ 0.05) 
method of calculation, running speed, and interaction effect, as determined by repeated measures ANOVA, are 
reported in bold font. * Significant difference between "#,%&', !!, and !" obtained using the GSM and IMUM at a 
given running speed, as determined by Holm post hoc tests. 
 

 

Note. Values are presented as mean ± standard deviation. 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Running speed (km/h) Variable &(,)*+ (BW) ', (ms) '- (ms) 

9 

GSM 

IMUM 

RMSE (absolute) 

RMSE (%) 

2.37 ± 0.19* 

2.42 ± 0.14 

0.13 

5.3 

278.3 ± 22.2* 

268.4 ± 15.5 

18.5 

6.7 

92.8 ± 22.4* 

102.7 ± 10.8 

18.6 

20.1 

11 

GMS 

IMUM 

RMSE (absolute) 

RMSE (%) 

2.51 ± 0.19* 

2.47 ± 0.13 

0.13 

5.1 

249.7 ± 19.2* 

256.9 ± 13.9 

16.4 

6.6 

111.5 ± 19.7* 

104.1 ± 9.1 

16.5 

14.8 

13 

GSM 

IMUM 

RMSE (absolute) 

RMSE (%) 

2.62 ± 0.20* 

2.49 ± 0.11 

0.19  

7.4 

227.6 ± 16.5* 

247.8 ± 12.8 

24.4 

10.7 

122.8 ± 17.5* 

102.4 ± 8.0 

24.5 

20.0 

Method of calculation effect 

Running speed effect 

Interaction effect   

P = 0.002 

P < 0.001 

P < 0.001 

P < 0.001 

P < 0.001 

P < 0.001 

P < 0.001 

P < 0.001 

P < 0.001 
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Table 13. Effective contact (!!() and flight (!"() times obtained using gold standard method (GSM) and inertial 
measurement unit method (IMUM) together with root mean square error [RMSE; both in absolute (ms or N) and 
relative (%) units] for three running speeds. Significant (P ≤ 0.05) method of calculation, running speed, and 
interaction effect, as determined by repeated measures ANOVA, are reported in bold font. *Significant difference 
between !!( and !"( obtained using GSM and IMUM, as determined by Holm post hoc tests. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Note. Values are presented as mean ± standard deviation. 
 

5.6.2 Discussion 

 

According to the first hypothesis, an RMSE equal to 0.15 BW was reported for !!,#$%. 

Moreover, according to the second hypothesis, an RMSE equal to 20 ms was obtained for $, 
and $.. Our findings demonstrated systematic and proportional biases, as well as significant 

differences between gold standard and estimated !!,#$%, $,, $., $,-, and $.- at each speed 

employed. Nonetheless, systematic biases averaged over running speeds were small (0.07 BW 

and 20 ms) suggesting the use of IMUM to estimate !!,#$%, $,, $., $,-, and $.- for level treadmill 

runs at endurance running speeds. 

 

A systematic bias of 0.07 BW and an RMSE of 0.15 BW (6%) were reported for !!,#$% (Tables 

10 and 12). These errors seemed to be comparable to those obtained using a 10 Hz low-pass 

Running speed (km/h) Variable ',. (ms) '-. (ms) 

9 

GSM 

IMUM 

RMSE (ms) 

RMSE (%) 

172.2 ± 14.4* 

181.2 ± 8.0 

14.7 

8.5 

198.6 ± 14.3* 

189.8 ± 10.3 

14.8 

7.4 

11 

GMS 

IMUM 

RMSE (ms) 

RMSE (%) 

162.5 ± 13.6* 

177.0 ± 8.1 

18.5 

11.4 

198.7 ± 13.8* 

184.2 ± 8.4 

18.6 

9.4 

13 

GSM 

IMUM 

RMSE (ms) 

RMSE (%) 

152.7 ± 12.0* 

171.5 ± 7.9 

21.6 

14.2 

197.3 ± 13.3* 

178.4 ± 8.0 

21.7 

11.0 

Method of calculation effect 

Running speed effect 

Interaction effect   

P < 0.001 

P < 0.001 

P < 0.001 

P < 0.001 

P < 0.001 

P < 0.001 
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cut-off frequency [103], though the bias and RMSE were not explicitly reported [~0.15 BW by 

visual inspection of their Fig. 4 (14-19 km/h)]. In addition, the RMSE found for !!,#$% in the 

present study was equal to the RMSE obtained using two different ML algorithms (LR and 

quantile regression forest) [104]. This result suggests that combining IMU data with ML 

algorithms seems to not necessarily be advantageous to estimate !!,#$%. Using inertial sensors 

placed on the legs along the tibial axis, Charry et al. [180] obtained a 6% error on !!,#$% (6-

21km/h) while Wouda et al. [141] achieved a 3% error (10-14 km/h), but using three IMUs 

(two on lower legs and one on pelvis) and two artificial NNs. Besides, an RMSE smaller than 

or equal to 0.17 BW was reported when estimating !!,#$% using 3D kinematic data of the COM 

or sacral marker trajectory [115]. An RMSE ~0.15 BW was reported by Pavei et al. [114] when 

the whole-body COM acceleration, obtained using kinematic data to estimate !!,#$% for 

running speeds ranging from 7 to 20 km/h, was used for a single participant. Thus, the errors 

reported for !!,#$% in the present study were comparable to those obtained using previously 

published methods [103, 104, 114, 115, 141, 180].  

 

The IMUM reported a systematic bias of 13 ms and an RMSE of 20 ms (8%) for $, (Tables 10 

and 12). These errors seemed to be smaller than those obtained using a 5 Hz low-pass cut-off 

frequency [103], though the bias and RMSE were not explicitly reported [~30 ms by visual 

inspection of their Fig. 5 (14-19 km/h)]. The IMUM employed in the present study might be 

advantageous compared to that previously used [103] because the present IMUM utilized a 

single low-pass cut-off frequency (5Hz) to estimate both !!,#$% and $, while the previous 

method required two different cut-off frequencies (10 Hz for !!,#$% and 5 Hz for $,). However, 

the present errors were much higher than those reported by Lee et al. [119] (0 ms). These 

authors used specific spikes in an unfiltered forward acceleration signal recorded by a sacral-

mounted IMU sampled at 100 Hz to detect FS and TO events which were not present in most 

of the data recorded in the present study. One possible explanation could be that the 10 national 

level runners recruited by these authors shared a very similar running pattern with specific 

acceleration spikes that were not always observed in the present study. As a side note, the 

anterior-posterior acceleration signal recorded by the IMU was quite different from that 

depicted in Lee et al. [119] and both anterior-posterior IMU signals were different from that 

assessed using the gold standard anterior-posterior ground reaction force signal [181]. This was 

also previously observed when reconstructing the anterior-posterior acceleration signal using 

3D kinematic trajectories [114]. Besides, the 20 ms RMSE obtained in our study is almost two 
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times larger than the 10 ms RMSE reported by Alcantara et al. [104]. Such difference might be 

explained by the fact that these authors predicted $, using two different ML algorithms (LR 

and quantile regression forest) while the present study estimates $, directly from the post-

processing of the vertical acceleration signal recorded by the sacral-mounted IMU. Moreover, 

such difference suggests that combining IMU data with a ML algorithm may improve the 

estimations of $, and $. compared to those obtained using IMU data alone. However, the 

robustness of the ML algorithms employed by these authors might be questioned as these 

algorithms were trained on 28 runners and tested on 9 runners, which is below the median value 

of 40 participants used for this kind of research question [142]. Nonetheless, further studies 

would be required to evaluate if applying a ML algorithm on our IMU data, which contains 

100 participants, would be more accurate in estimating $, and $.. As for foot-worn inertial 

sensors, a systematic bias on $, of ~10 ms (10-20 km/h) [121] and RMSE of ~10 ms (11 km/h) 

[126] were reported, which placed IMUM at a similar level of accuracy. In addition, Falbriard 

et al. [121] depicted a proportional bias for $,, as in this study for both $, and $,-. 

 

IMUM reported systematic biases smaller than or equal to 20 ms and RMSE smaller than or 

equal to 22 ms (≤ 14%) for $,- (Tables 11 and 13). Errors in $,- and $.- could not directly be 

compared to the actual literature because, to the best of our knowledge, no study comparing 

several methods to calculate these effective timings was conducted so far. Indeed, we are only 

aware of the comparison between $,- and $.- obtained using Myotest® and $, and $. obtained 

from photocell- and optical-based systems [118], which makes this comparison useless as 

different outcomes ($,- vs. $, and $.- vs. $.) were actually being compared. Nevertheless, the 

authors were aware of this limitation and clearly stated this limitation [118]. Comparing $,- 

and $.- to $, and $. led to the fact that, similarly to $,, the error in $,- reported in this study 

seemed to be smaller than or similar to the ones previously reported for $, 	[103, 104, 121, 126]. 

The error reported for the IMUM when estimating $, was comparable to the error obtained 

using an optoelectronic system [93], but was much larger than the error obtained using a 

photoelectric system [182]. However, even though these two systems can be used outside the 

laboratory [21, 22], they suffer from a lack of portability and do not allow continuous data 

collection. For this reason, using a single IMU was advantageous by its portability, and was 

shown to be quite accurate to estimate $,, and therefore $. and similarly for $,- and $.-. Indeed, 

when the error is calculated for many running steps, as $, and $. ($,- and $.-) are based on the 
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same TO (eTO) events, the bias of $. ($.-) is the negative of the bias of $, ($,-) and the RMSEs 

for $, and $. ($,- and $.-) are mostly the same in absolute (ms) units.  

 

A significant effect of running speed was observed for !!,#$%, $,, and $., $,-, and $.- (Tables 

10 and 12). Moreover, the most accurate estimation was given at 11 km/h for !!,#$%, $,, and $. 

(Tables 10 and 12) and at 9 km/h for  $,-, and $.- (Tables 11 and 13). These findings could not 

readily be explained. However, further studies should focus on testing several slower and faster 

running speeds to further decipher the running speed effect. Then, future studies could focus 

on constructing a more sophisticated model considering the running speed to try to improve 

the estimations of !!,#$%, $,, and $.. 

 

Due to the inexact synchronization between kinetic and IMU data, FS, TO, eFS, and eTO could 

not be compared between GSM and IMUM. However, we suspect that even under perfect 

synchronization, FS, TO, eFS, and eTO from GSM and IMUM would not exactly coincide as 

vertical force used in IMUM approximates ground truth vertical force recorded by the force 

plate. Nonetheless, further studies involving synchronized kinetic and IMU data would prove 

useful, especially if one is interested in assessing metrics at specific FS, TO, eFS, and eTO, for 

instance using additional IMUs [183] themselves synchronized with the sacral-mounted one 

which would provide FS, TO, eFS, and eTO.  

 

A single cut-off frequency was used to filter the vertical ground reaction force, i.e., 20 Hz. 

Though this choice of cut-off frequency is quite widespread [130, 184], other cut-off 

frequencies (e.g., 30 or 80 Hz) are also used in the literature [104, 162]. In this case, the error 

of IMUM might increase because the cut-off frequency affects the magnitude of the vertical 

ground reaction force and thus the time at which FS, TO, eFS, and eTO occur. Hence, it would 

also be useful to explore the effect of the cut-off frequency of the truncated Fourier series on 

the accuracy of IMUM, as already explored by Day et al. [103] for a low-pass filter. 

Additionally, the effect of the filter itself (e.g., truncated Fourier series, 4th order low-pass 

Butterworth filter, 8th order low-pass Butterworth filter, etc.) might also be worth exploring. 

Therefore, further studies investigating the effect of the cut-off frequency of both the gold 

standard and IMU signals as well as the kind of filter should be conducted. Furthermore, the 

significant effect of running speed suggests that the cut-off frequency that estimates best !!,#$%, 
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$,, $., $,-, and $.- might be speed dependent and reinforce the need to further explore the effect 

of the cut-off frequency of both GSM and IMUM, and to explore slower and faster speeds.  

 

To conclude, the comparison between the GSM and IMUM showed an RMSE of 0.15 BW for 

!!,#$%, and ≤ 22 ms for $,, $., $,-, and $.- together with systematic but small biases (0.07 BW 

for !!,#$% and ≤ 20 ms for $,, $., $,-, and $.-). These errors were comparable to those obtained 

using previously published methods. Therefore, the findings of this study support the use of 

the IMUM to estimate !!,#$%, $,, $., $,-, and $.- for level treadmill runs at endurance running 

speeds (9-13 km/h), especially because an IMU has the advantage to be low-cost and portable, 

and therefore seems very practical for coaches and healthcare professionals.  
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5.7 Comparison of different machine learning models to enhance sacral 

acceleration-based estimations of running stride temporal variables and 

peak vertical ground reaction force (study 8) 
 

5.7.1 Results 

 

The SF obtained from the IMU-based estimation (included in the features) was almost identical 

to the gold standard SF (Fig. 17). 

 
Figure 17. Gold standard (obtained using force plate data) step frequency (SF) as function of estimated SF 
(obtained using inertial measurement unit data, no machine learning) for the entire set of data and corresponding 
Pearson correlation coeffcient (r), root mean square error (RMSE), and mean absolute percentage error (MAPE). 
Each point represents the value for a given combination of participant and running speed. Colors represent 
different participants while the three symbols represent different running speeds (o: 9 km/h, ⊳: 11 km/h, ⊲: 13 
km/h). 
 

The ML models predicted $, with an r of 0.89 ± 0.01, RMSE of 12.2 ± 0.2 ms, and mean 

absolute percentage error (MAPE) of 3.6 ± 0.1% (mean ± standard deviation for the three 

models). As for $., the r, RMSE, and MAPE were 0.86 ± 0.01, 11.7 ± 0.4 ms, and 9.3 ± 0.4%. 

DF was predicted with an r of 0.84 ± 0.03, RMSE of 1.7 ± 0.1%, and MAPE of 3.6 ± 0.2%. As 

for !!,#$%, the r, RMSE, and MAPE were 0.77 ± 0.01, 0.13 ± 0.01 BW, and 3.8 ± 0.1% (Fig. 

18).  
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A significant model effect was reported for the MAPE of $,, $., and DF (P ≤ 0.001) but not of 

!!,#$% (P = 0.37). Post hoc tests revealed that the MAPEs obtained using the three ML models 

were significantly smaller than the MAPE obtained without ML for $,, $., and DF (P ≤ 0.003; 

Fig. 18). However, there was no significant difference among the MAPEs obtained using the 

three ML models for these three variables (P ≥ 0.80). 

 

Using ML allowed increasing r by 28 ± 1%, 59 ± 2%, 65 ± 5%, and 15 ± 1%, for $,, $., DF, 

and !!,#$%, respectively, compared to those obtained from IMU-based estimations. As for the 

RMSEs, they decreased by 37 ± 1%, 39 ± 2%, 37 ± 4%, and 16 ± 4% for $,, $., DF, and !!,#$%, 

respectively, while the MAPEs decreased by 40 ± 1%, 40 ± 3%, 41 ± 3%, and 9 ± 1% (Table 

14).  

 
Table 14. Percentage difference of the Pearson correlation coefficients (r), root mean square error (RMSE), and 
mean absolute percentage error (MAPE) between those obtained using estimations based on inertial-measurement 
unit data and those obtained using a machine learning model among linear regression, support vector regression 
with the radial basis function kernel, and two-layers neural network, for four predicted variables, i.e., contact time, 
flight time, duty factor, and peak vertical ground reaction force. 

Variable Statistics 
Linear 

regression 
(%) 

Support vector 
regression 

(%) 

Two-layers 
neural network 

(%) 

Contact time 
r 29 27 27 

RMSE -38 -36 -36 

MAPE -40 -42 -40 

Flight time 
r 59 61 57 

RMSE -39 -41 -37 

MAPE -38 -43 -38 

Duty factor 
r 67 59 69 

RMSE -40 -32 -40 

MAPE -42 -37 -43 

Peak vertical ground reaction force 
r 16 15 13 

RMSE -20 -13 -13 

MAPE -11 -9 -8 



Main results and discussion 

82  

 
Figure 18. Gold standard (obtained using force plate data) as function of predicted (obtained using three different 
machine learning models) and estimated (obtained using inertial measurement unit data, no machine learning) (A) 
contact time, (B) flight time, (C) duty factor, and (D) peak vertical ground reaction force for the testing set and 
corresponding Pearson correlation coefficient (r), root mean square error (RMSE), and mean absolute percentage 
error (MAPE). The one-way repeated measures ANOVA revealed a significant model effect (no model vs linear 
regression vs support vector regression with the radial basis function kernel vs two-layers neural network) for 
contact time, flight time, and duty factor when comparing the MAPE among the models. *Significant difference 
(P ≤ 0.003) between the MAPE of the predictions obtained using a given machine learning model and the MAPE 
of the estimations obtained using inertial measurement unit data, as determined by Holm post hoc tests. Each 
point represents the value for a given participant-running speed combination (60 points: three running speeds x 
20 runners). Colors represent different participants while the three symbols represent different running speeds (o: 
9km/h, ⊳: 11km/h, ⊲: 13km/h).  
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r = 0.78
RMSE = 0.12BW

MAPE = 3.7±3.0%

2.5 3.0
Predicted values

r = 0.77
RMSE = 0.13BW

MAPE = 3.8±3.1%

2.5 3.0
Predicted values

r = 0.76
RMSE = 0.13BW

MAPE = 3.8±3.2%

2.5 3.0
Estimated values

r = 0.67
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5.7.2 Discussion 

 

According to the hypothesis, further applying ML to IMU-based estimations of $,, $., DF, and 

!!,#$% increased the accuracy of their predictions. However, the enhancement was not 

significant for !!,#$%. The simplest ML model (LR) was characterized by a similar prediction 

accuracy than more complicated models (SVR and NN2). Therefore, LR should be used to 

improve the accuracy of the estimations of $,, $., and DF obtained using a sacral-mounted IMU 

across a range of running speeds. These improvements may be beneficial when monitoring 

running-related injury risk factors in real-word settings. 

 

ML was able to improve the prediction accuracy, as reported by the higher r and lower RMSE 

and MAPE compared to those of the IMU-based estimations (Fig. 18 and Table 14). 

Nonetheless, the enhancement reported for !!,#$% was not significant. Using more complicated 

ML models (SVR and NN2) did not further improve the prediction accuracy compared to the 

simple LR (Fig. 18 and Table 14). These results corroborate previous findings which observed 

similar errors for LR and quantile regression forest when predicting $,, !!,#$%, and vertical 

impulse with an accelerometer [104]. Moreover, the present RMSE and MAPE of $, and !!,#$% 

were similar to those previously obtained ($,: ~10 ms and ~4% and !!,#$%: ~0.14 BW and ~4%) 

using a different algorithm to estimate $, and !!,#$% from IMU data [104]. Nonetheless, these 

previous results might suffer from generalization due to the small sample size (N=37). Using 

three inertial sensors placed on the lower limb (two on lower leg and one on pelvis), Wouda et 

al. [141] achieved a 3% error with a NN (10-14 km/h), which is similar to the present accuracy 

(MAPE ~4%, Fig. 18). Despite their low prediction error, their results were harder to interpret 

because of the experimental setup (three IMUs instead of one) and more complicated ML 

model than the model employed herein. Practically, the improvements reported for our study 

may be beneficial for practitioners seeking to monitor running-related injury risk factors in 

real-word settings, though keeping in mind that there exists only limited evidence for most 

running-related injury-specific risk factors [185]. 

 

Previously, ML was also used to predict the vertical impulse from its IMU-based estimation as 

well as body mass, running speed, and SF [104]. The authors reported an almost perfect 

correlation between gold standard and predicted vertical impulse values (r = 0.995) and 

obtained that the intercept and SF of the LR were the only significant predictors of the vertical 
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impulse. However, this was not necessarily needed. Indeed, as the integral of the vertical 

external forces during a running step is null (Eq. 1): 

< !!($)=$
=7

5
−?4	($, + $.) = 0, (1) 

we get 

$01+( = ∫ ?8(=)B=97
:

CD = E8
CD, (2) 

where $01+( = $, + $. and "! represent the step time and vertical impulse, respectively. 

Therefore, according to Eq. 2, SF, i.e., the inverse of $01+(, is given by the inverse of the vertical 

impulse expressed in BW units. Hence, the model created by Alcantara et al. [104] to predict 

the vertical impulse was redundant and not necessarily needed. First, the vertical impulse is 

directly given by $01+( and thus by the inverse of SF (Eq. 2). Second, they assumed that SF 

estimated using IMU data is a valid surrogate to its gold standard counterpart (they used SF 

estimated using IMU data as a predictor for the vertical impulse, $,, and !!,#$%). Thus, they 

already indirectly assumed that the estimated vertical impulse, i.e., $01+( (the inverse of SF), is 

equivalent to its gold standard counterpart. In the present study, gold standard and estimated 

SF were shown to be equivalent (r = 0.998; Fig. 17), which corroborates what has been 

explained above. Indeed, $01+( could be approximated by half of the stride time because small 

symmetry indices smaller than or equal to 4% were previously reported for $01+( of competitive, 

recreational, and novice runners at running speeds ranging from 8 to 12 km/h [186]. 

 

As expected, as gold standard and estimated SF were equivalent (r = 0.998; Fig. 17), similar 

MAPEs were reported between $, and DF (~4%; Fig. 18). Thus, the DF prediction is almost 

only dependent on the $, prediction.  

 

The “large” dataset employed (N = 100) might allow better generalization of the results than 

those previously obtained with the smaller cohorts of 37 runners [104], though the 

generalization might not apply to populations not represented in the training data. Hence, 

further studies should include a broader population, i.e., further increase N, to make the trained 

ML models more and more generalizable. Furthermore, running trials were performed only at 

level, endurance speeds, and on a treadmill. However, predictions obtained using ML might 

also perform well overground because spatiotemporal parameters between treadmill and 

overground running are largely comparable [187]. Nonetheless, further studies should focus on 
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improving the predictions by using additional conditions (i.e., faster speeds, positive and 

negative slopes, and different types of ground) when training the ML models. Finally, the 

simple ML model, i.e., the LR, was calculated using three different running speeds for each 

participant. This omits the intra-individual component, which might be problematic because 

the observations made on a given participant might not be independent and the slope of the LR 

might be different at the different running speeds. 
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The main aim of this thesis was to investigate the objective evaluation of the spontaneous 

running pattern and its relationship in terms of runners’ classification in the laboratory and 

towards the field.  

 

First, this thesis aimed to extend the knowledge of DF and SF as global objective variables to 

assess spontaneous running patterns. This thesis revealed that “local” FSP/FSA and DF do not 

represent similar running pattern information when investigated at an individual level. DF 

should be preferred to FSP/FSA when evaluating the global running pattern of a runner because 

DF is functionally representative of a more global biomechanical behavior than FSA. 

Moreover, this thesis revealed that the consistency in running patterns decreased as speed 

differences increased. Therefore, running patterns should be assessed using a range of speeds 

or at a specific speed. Moreover, there were large interindividual differences across the relative 

temporal variables examined (DF, SF, $,, and $.), highlighting individualized strategies to 

adapt in running speed changes. Finally, this thesis brought further evidence and reinforce 

previous statements that low DF runners rely more on the optimization of the spring-mass 

model (better storage and re-use of elastic energy) than high DF runners. These results 

corroborate that DF and SF encapsulate different information on running patterns. 

 

Second, this thesis aimed to develop algorithms allowing to accurately measure $,, $., DF, SF, 

and !!,#$% in absence of the GSM but using a sacral marker and a motion capture system or a 

sacral-mounted IMU. This would later allow performing these measurements in the field. This 

thesis proposed a novel KA that uses a combination of heel and toe kinematics (three markers 

per foot) to detect FS and TO and to estimate $,. Small systematic biases were reported for FS, 

TO, and $, at all speeds, and this novel KA yielded smaller errors than existing methods for 

FS, TO, and $,. Therefore, it can be applied to accurately estimate FS, TO, and $, from 

kinematic data obtained during treadmill running, independent of FSA. This thesis also 

proposed to estimate !!,#$% by reconstructing the vertical ground reaction force from either the 

whole-body COM or sacral marker accelerations, themselves obtained by double 

differentiations of their respective trajectories (motion capture) and further low-pass filtered 

using a fourth-order Butterworth filter. The most accurate estimations of !!,#$% were obtained 

using a 5 and 4 Hz cut-off frequency for the filtering of COM and sacral marker accelerations, 

respectively. The findings of this thesis support the use of either COM-M or SACR-M using 

data filtered at 5 and 4 Hz, respectively, to estimate !!,#$% during level treadmill runs at 
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endurance speeds. Additionally, this thesis estimated !!,#$%, $,, $., $,-, $.-, DF, and SF using 

the vertical acceleration signal recorded by a single sacral-mounted IMU, which was filtered 

using a truncated Fourier series to 5 Hz. The comparison between the GSM and IMUM showed 

errors comparable to those obtained using previously published methods [103, 104, 121, 126]. 

Therefore, the findings of this thesis support the use of the IMUM to estimate !!,#$%, $,, $., 

$,-, $.-, DF, and SF for level treadmill runs at endurance running speeds. Further applying ML 

to IMU-based estimations of $,, $., DF, and !!,#$% increased the accuracy of their predictions, 

though the enhancement was not significant for !!,#$%. The simplest ML model (LR) was 

characterized by a similar prediction accuracy to more complicated models (SVR and NN2). 

Therefore, LR should be used to improve the accuracy of the estimations of $,, $., and DF 

obtained using a sacral-mounted IMU across a range of running speeds. To conclude, having 

accurate IMU-based estimations of !!,#$%, $,, $., $,-, $.-, DF, and SF might be very practical 

for coaches and healthcare professionals, especially because an IMU has the advantage to be 

low-cost and portable. Therefore, those accurate estimations might be beneficial when 

monitoring running-related injury risk factors in real-word settings. 

 

A few limitations to the present thesis exist. Seven out of 8 studies are based on the same 

dataset. Although heterogeneity was increased in studies 1, 4, and 6-8 by randomly selecting 

100 participants from the entire dataset composed of 115 participants, an important weight is 

given in this thesis to the quality of these data and to the characteristics of the participants. 

Hence, further studies should be conducted to confirm the present results. Furthermore, no sex 

distinction was considered in the present thesis. Although the large sample size might have 

allowed us to separate out men and women, we preferred to not do such separation to increase 

the statistical power. Additionally, in all except the second study, the running speeds were 

limited to endurance speeds (9-13 km/h) representative of the running speeds employed by 

recreational runners during endurance running training [188]. Moreover, the experimental trials 

were performed on a treadmill. Similar results might also be obtained using overground 

running trials because spatiotemporal parameters between motorized treadmill and overground 

running are largely comparable [187]. However, it was also concluded that participants 

behaved differently when attempting to achieve faster speeds overground than on a treadmill 

[189]. Therefore, further studies should investigate the objective evaluation of the spontaneous 

running pattern and its relationship in terms of runners’ classification in the laboratory and 
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towards the field using additional conditions (i.e., faster speeds, positive and negative slopes, 

and different types of ground) and considering the sex differences.  
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Duty factor and foot‑strike pattern 
do not represent similar running 
pattern at the individual level
Aurélien Patoz 1,2*, Thibault Lussiana 2,3,4, Bastiaan Breine 2,5, Cyrille Gindre2,3 & 
Davide Malatesta 1

Runners were classified using their duty factor (DF) and using their foot‑strike pattern (FSP; rearfoot, 
midfoot, or forefoot strikers), determined from their foot‑strike angle (FSA). High and low DF runners 
showed different FSPs but DF was assumed to not only reflect what happens at initial contact with the 
ground (more global than FSP/FSA). Hence, FSP and DF groups should not necessarily be constituted 
by the same runners. However, the relation between FSP and DF groups has never been investigated, 
leading to the aim of this study. One hundred runners ran at 9, 11, and 13 km/h. Force data (1000 Hz) 
and whole‑body kinematics (200 Hz) were acquired by an instrumented treadmill and optoelectronic 
system and were used to classify runners according to their FSA and DF. Weak correlations were 
obtained between FSA and DF values and a sensitivity of 50% was reported between FSP and DF 
groups, i.e., only one in two runners was attributed to the DF group supposedly corresponding to the 
FSP group. Therefore, ‘local’ FSP/FSA and DF do not represent similar running pattern information 
when investigated at the individual level and DF should be preferred to FSP/FSA when evaluating the 
global running pattern of a runner.

Runners are usually classi!ed into one of three discrete categories depending on their preferred foot-strike pattern 
(FSP). A runner is categorized as a (1) rearfoot striker (RFS) when the foot initially contacts the ground with the 
heel or rear third of the sole, (2) a midfoot striker (MFS) when the heel and toes contact the ground simultane-
ously, or (3) a forefoot striker (FFS) when the foot initially contacts the ground with the forefoot or front half of 
the  sole1. "is classi!cation can be obtained using the foot-strike angle (FSA) following the procedure proposed 
by Altman and  Davis2. "ese FSPs involve di#erent neuromuscular activation  patterns3 and impact attenuation 
 strategies4–7. "ey were also shown to induce di#erent loads on the lower limb and di#erent three-dimensional 
(3D) stress patterns in the ankle, knee, and hip  joints8–11, as well as di#erent sagittal plane joint angles during 
 stance10,12. Moreover, no di#erences in running economy have been reported among di#erent FSAs 13 or  FSPs14–16, 
and changing FSPs is not necessarily recommended for  RFS10,15,17,18.

More recently, runners have been categorized using the duty factor (DF)19,20, i.e., the ratio of ground con-
tact time ( tc ) to stride time [ tc + swing time ( ts) ], with a higher DF re$ecting a greater relative contribution of 
tc to the running  stride21,22. Considering both tc and ts simultaneously provides a better understanding of the 
global running pattern compared with when these temporal variables are considered  separately19,20. "e authors 
observed that the 20 subjects with highest DF values and 20 subjects with lowest DF values (among a cohort of 
54 participants) used di#erent running strategies but had a similar running economy, showing that these two 
strategies are energetically equivalent at endurance running  speeds19. A more symmetrical running pattern 
between braking and propulsion phases in terms of time and vertical center of mass displacement, anterior FSP 
(MFS and FFS), and extended lower limb during tc at the hip, knee, and ankle joints were observed for low than 
for high DF runners 19,20. On the contrary, high DF runners exhibited greater lower limb $exion during tc at the 
hip, knee, and ankle joints, more RFS, and less work against gravity to generate forward propulsion than low 
DF  runners19,20. Hence, high and low DF runners re$ected di#erent  FSPs19,20, most likely because tc is related 
to  FSP1,23. Nonetheless, DF was thought to not only be directly related to the angle at the initial ground contact 
(via tc ) as is FSP but to also be functionally representative of a more global running behavior because it takes 
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both the duration of force production ( tc ) and the cycle frequency of running into  account19,20,24. For this reason, 
although FSA and DF values should be di#erent among DF (high, mid, and low DF runners) and FSP (RFS, 
MFS, FFS) groups, respectively, FSP and DF groups should not necessarily be constituted by the same runners. 
"is would con!rm that DF should be preferred to FSP/FSA when evaluating the global running pattern of a 
runner. Nonetheless, to the best of our knowledge, the relationship between the groups created using FSA and 
DF values has not yet been considered.

Hence, the purpose of the present study was to compare these two di#erent classi!cation methods in analyzing 
running gait at several running speeds. We hypothesized that (i) FSP groups should have signi!cantly di#erent 
DF values; (ii) DF groups should have signi!cantly di#erent FSA values; and (iii) FSP and DF groups should not 
be constituted by the same runners because of weak correlations between FSA and DF values and, thus, leading 
to weak agreement in the classi!cation of runners between FSP and DF groups.

Materials and methods
Participants. One hundred recreational runners, 75 males (age: 31 ± 8  years, height: 180 ± 6  cm, body 
mass: 70 ± 7 kg, weekly running sessions: 3 ± 2, and weekly running distance: 37 ± 24 km) and 25 females (age: 
30 ± 7 years, height: 169 ± 5 cm, body mass: 61 ± 6 kg, weekly running sessions: 3 ± 1, and weekly running distance: 
20 ± 14 km), were randomly selected from an existing database consisting of 115  participants25 for the purpose 
of this study. Participants voluntarily participated in the present study, and to be included, they were required to 
be in good self-reported general health with no current or recent lower-extremity injuries (≤ 1 month), to run at 
least once a week, and to have an estimated maximal aerobic speed ≥ 14 km/h. "e study protocol was approved 
by the ethics committee of the Vaud canton (commission cantonale d’éthique de la recherche sur l’être humain 
CER-VD 2020–00334) and adhered to the latest version of the Declaration of Helsinki of the World Medical 
Association.

Experimental procedure. A(er the participants provided written informed consent, retrore$ective mark-
ers were positioned on the participants (described in Subsec. Data Collection) to record their running biome-
chanics. For each participant, a 5-s static trial was !rst recording while he or she stood in a standard anatomical 
position on an instrumented treadmill (Arsalis T150 – FMT-MED, Louvain-la-Neuve, Belgium) for calibration 
purposes. "en, a 7-min warm-up run was performed on the same treadmill. "e speed was set to 9 km/h for 
the !rst 3 min and was then increased by 0.5 km/h every 30 s. "en, a(er a short break (< 5 min), three 1-min 
runs (9, 11, 13 km/h) were performed in a randomized order (1-min recovery between each run where runners 
just stand). 3D kinematic and kinetic data were collected during the static trial and the !rst 10 strides following 
the 30-s mark of the running trials. All participants were familiar with running on a treadmill, as it was part of 
their usual training program, and they wore their habitual running shoes during testing (shoe mass: 257 ± 49 g 
and shoe heel-to-toe drop: 7 ± 3 mm).

Data collection. Whole-body 3D kinematic data were collected at 200 Hz using motion capture (8 cameras) 
and Vicon Nexus so(ware v2.9.3 (Vicon, Oxford, UK). "e laboratory coordinate system was oriented such that 
the x-, y-, and z-axes denoted the mediolateral (pointing towards the right side of the body), posterior-anterior, 
and inferior-superior axes, respectively. Forty-three and 39 retrore$ective markers of 12.5 mm diameter were 
used for the static and running trials, respectively. "ey were a)xed to the skin and shoes of the individuals 
on anatomical landmarks using double-sided tape following standard  guidelines26. Synchronized kinetic data 
(1000 Hz) were also collected using the force plate embedded into the treadmill.

"e 3D marker and ground reaction force data (analog signal) were exported in the .c3d format and processed 
in Visual3D Professional so(ware v6.01.12 (C-Motion Inc., Germantown, MD, USA). "e 3D marker data were 
interpolated using a third-order polynomial least-square !t algorithm (using three frames of data before and 
a(er the “gap” to calculate the coe)cients of the polynomial), allowing a maximum of 20 frames for gap !lling, 
and were subsequently low-pass !ltered at 20 Hz using a fourth-order Butterworth !lter. "e 3D ground reaction 
force signal was !ltered using the same  !lter27 and down sampled to 200 Hz to match the sampling frequency 
of the marker data.

Data analysis. For each running trial, the foot-strike (FS) and toe-o# (TO) events were identi!ed with 
Visual3D. "ese events were detected by applying a 20 N threshold to the z-component of the ground reaction 
 force28. More explicitly, FS was detected as the !rst data point greater than or equal to 20 N within a running step, 
while TO was detected at the last data point greater than or equal to 20 N within the same running step. tc and 
ts were de!ned as the times from FS to TO and from TO to FS of the same foot, respectively. DF was calculated 
as  follows21:

where SF denotes the stride frequency. In addition, a full-body biomechanical model with six degrees of freedom 
and 15 rigid segments was constructed from the marker set. "e segments included the head, upper arms, lower 
arms, hands, thorax, pelvis, thighs, shanks, and feet. In Visual3D, the segments were treated as geometric objects, 
assigned inertial properties and center of mass locations based on their  shape29, and attributed relative masses 
based on standard regression  equations30. "e foot segment angle was de!ned as the angle of the foot segment 
relative to the laboratory coordinate system and computed using an x–y–z Cardan sequence. "e foot segment 
was obtained using !ve markers which were placed at the apex of both the lateral and medial malleolus, foot 

(1)DF =
tc

tc + ts
= tc SF,
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calcaneus (aspect of the Achilles tendon insertion), and head of the !rst and !(h metatarsals. "e x-component 
of the foot segment angle at FS was used to determine FSP following the procedure proposed by Altman and 
 Davis2. In brief, the average foot segment angle of the standing static trial was subtracted from that of running 
trials such that 0° corresponded to a foot parallel to the ground. "en, the angle at FS, i.e., FSA, was computed 
using the x-component of the rescaled foot segment angle (negative and positive angle values represented plantar 
$exion and dorsi$exion, respectively).

For all biomechanical measures, the values extracted from the 10 strides for each participant were averaged 
for subsequent analyses. Data analysis was performed using Python (v3.7.4, available at http:// www. python. org).

Runners’ classification. High  (DFhigh), mid  (DFmid), and low  (DFlow) DF groups were created using the 
terciles of the group (i.e., the 33 highest, 33 middle, and 34 lowest DF values at each speed). Of note,  DFlow group 
was composed of one extra runner but attributing this extra runner to  DFmid or  DFhigh group or removing their 
data from the study would not have had an impact on the results. In addition, runners were classi!ed as RFS, 
MFS, and FFS if FSA values were ≥ 8°, < 8° but ≥  − 1.6°, and <  − 1.6°, respectively, at each  speed2. A similar analy-
sis was also performed using FSP groups created based on an absolute classi!cation of runners, i.e., RFS, MFS, 
and FFS being represented by the 33 highest, 33 middle, and 34 lowest FSA values at each speed, and is presented 
in section S1 of supplementary materials. "e  relative2 and absolute classi!cations to create FSP groups led to 
similar results because both classi!cations classi!ed most of the runners in the same group. Indeed, on average, 
1 participant (4%) was attributed to a di#erent FSP group when using the absolute rather than the relative clas-
si!cation.

Statistical analysis. All data are presented as the mean ± standard deviation. A chi-squared test was used 
to compare the foot-strike distribution at the di#erent speeds.

"en, a(er the residual plots were inspected, and no obvious deviations from homoscedasticity or normality 
were observed, a linear mixed model !tted by restricted maximum likelihood was used to compare DF values 
for the di#erent FSP groups and speeds. "e within-subject nature was controlled for by including random 
e#ects for participants. Pairwise post hoc comparisons were performed using Holm corrections. "e di#erences 
between groups were quanti!ed using Cohen’s d e#ect  size31. "e e#ect sizes were interpreted as very small, small, 
moderate, or large when |d| values were close to 0.01, 0.2, 0.5, or 0.8,  respectively31.

A similar linear mixed model was used to compare FSA values for the di#erent DF groups and speeds. Linear 
mixed models were also used to compare DF and FSA values among DF and FSP groups (considering all groups 
together) and speeds. "ese tests were used to investigate the di#erence in DF and FSA values between the 
three group pairs (RFS and  DFhigh, MFS and  DFmid, FFS and  DFlow). "erefore, only the group x running speed 
interaction e#ect was investigated, and, if signi!cant, the pairwise comparisons between these three group pairs 
at each running speed were reported.

Agreement between FSP and DF groups as well as sensitivity and speci!city of the agreement were calcu-
lated for the three  speeds32. As participants were classi!ed in three FSP and DF groups, agreement, sensitivity, 
and speci!city were obtained for each of the three group pairs by collapsing to three 2 × 2 classi!cations, i.e., 
RFS and  DFhigh vs non-RFS and non-DFhigh, MFS and  DFmid vs non-MFS and non-DFmid, and FFS and  DFlow vs 
non-FFS and non-DFlow. Agreement was de!ned as the sum of the number of runners in a DF group that were 
attributed to the corresponding FSP group and the number of runners in the corresponding non-DF group that 
were attributed to the non-FSP group over the total number of runners, e.g., the sum of  DFhigh runners in RFS 
and non-DFhigh runners in non-RFS over all runners. Sensitivity was de!ned as the number of runners in a DF 
group that were attributed to the corresponding FSP group over the total number of runners in the corresponding 
FSP group, e.g.,  DFhigh runners among RFS. Speci!city was de!ned as the number of runners in a non-DF group 
that were attributed to the corresponding non-FSP group over the total number of runners in the correspond-
ing non-FSP group, e.g., non-DFhigh runners among non-RFS. "e 95% con!dence intervals (lower, upper) of 
the agreement between FSP and DF groups and of the sensitivity and speci!city values, were estimated using 
binomial exact calculation.

"e Pearson’s correlation coe)cient (r) and its corresponding 95% con!dence interval (lower, upper) and 
P-values were computed for the relation between FSA and DF, as well as tc and SR, i.e., the variables constituting 
DF, for the three speeds. In addition, correlations among shoe mass, shoe heel-to-toe drop, DF, and FSA were 
computed to investigate if footwear could a#ect DF and FSA. Very high, high, moderate, low, and negligible 
correlations were given by |r| values of 0.90–1.00, 0.70–0.90, 0.50–0.70, 0.30–0.50, and 0.00–0.30,  respectively33.

Statistical analysis was performed using Jamovi (v1.2, retrieved from https:// www. jamovi. org) with a level 
of signi!cance set at P ≤ 0.05.

Results
Distribution of runners within foot‑strike pattern groups. "e number of RFS, MFS, and FFS 
together with their corresponding FSAs at all speeds examined are given in Table 1. "e chi-squared test showed 
no di#erences in the foot-strike distribution at the di#erent speeds employed ( χ2 = 4.6 , P = 0.34), revealing 
homogeneity among groups at all speeds. On average, 2 participants per group (7%) changed their FSP group 
with running speed while 4 participants per group (12%) changed their DF group. "e complete analysis is pro-
vided in section S2 of supplementary materials.

Duty factor values within foot‑strike pattern groups. "e linear mixed model revealed a signi!cant 
FSP group e#ect on DF (P < 0.001). "e Holm post hoc tests indicated a signi!cantly higher DF for RFS than 
for MFS and FFS (P ≤ 0.005), and for MFS than for FFS (P = 0.001). A signi!cant e#ect of speed was reported 

http://www.python.org
https://www.jamovi.org
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on DF (P < 0.001). A signi!cantly smaller DF was obtained at a faster speed, as depicted by the Holm post hoc 
tests (P < 0.001). "ere was no FSP group x speed interaction (P < 0.66). "e Cohen’s d e#ect sizes were moder-
ate (|d|≤ 0.66), except for those corresponding to the RFS-FFS pairs, which were large at all speeds (|d|≥ 0.96).

Foot‑strike angle values within duty factor groups. "e DF ranges for  DFlow,  DFmid, and  DFhigh groups 
were [31.6%, 36.3%], [36.4%, 38.4%], and [38.6%, 45.3%] at 9 km/h, [28.5%, 33.4%], [33.4%, 35.7%], and [35.8%, 
40.2%] at 11 km/h, and [27.0%, 31.4%], [31.5%, 33.5%], and [33.5%, 37.6%] at 13 km/h, respectively. "e linear 
mixed model revealed a signi!cant DF group e#ect on FSA (P < 0.001). "e Holm post hoc tests indicated a 
signi!cantly higher FSA for  DFhigh than for  DFmid and  DFlow (P < 0.001), and for  DFmid than for  DFlow (P = 0.005). 
A signi!cant e#ect of speed was reported on FSA (P < 0.001). A signi!cantly higher FSA was obtained at a faster 
speed, as reported by the Holm post hoc tests (P ≤ 0.01). "ere was no DF group x speed interaction (P < 0.42). 
"e Cohen’s d e#ect sizes were moderate (|d| ≤ 0.68), except for those corresponding to the  DFhigh-DFlow pairs, 
which were large at all speeds (|d| ≥ 0.86).

Duty factor and foot‑strike angle values within all (duty factor and foot‑strike pattern) groups 
together. When considering all groups together, a signi!cant group x running speed interaction e#ect was 
reported by the linear mixed models for both DF and FSA values (P ≤ 0.013). Pairwise post hoc comparisons 
between the three group pairs (RFS and  DFhigh, MFS and  DFmid, FFS and  DFlow) at each running speed revealed 
no signi!cant di#erences for DF and FSA values (P ≥ 0.16).

Agreement between foot‑strike pattern and duty factor groups. "e number of runners in FSP 
and DF groups as well as the agreement, sensitivity, and speci!city between FSP and DF groups are given in 
Table 2. "e average (over speed and group) agreement, sensitivity, and speci!city were 73, 49, and 75%, respec-
tively.

Table 1.  Number of rearfoot (RFS), midfoot (MFS), and forefoot (FFS) strikers observed in the cohort of 
participants (N = 100) and their corresponding foot-strike angles at three running speeds. "e values are 
presented as the mean ± standard deviation.

RFS MFS FFS
Running speed (km/h) Count Angle (°) Count Angle (°) Count Angle (°)
9 27 13.3 ± 2.9 34 4.3 ± 4.2 39 − 6.7 ± 4.7
11 31 13.2 ± 2.8 33 3.4 ± 2.7 36 − 7.7 ± 3.3
13 38 11.7 ± 4.1 23 1.4 ± 4.1 39 − 5.9 ± 5.6

Table 2.  Number of runners in foot-strike pattern (FSP) [rearfoot (RFS), midfoot (MFS), and forefoot (FFS) 
strikers] and duty factor (DF) [high  (DFhigh), mid  (DFmid), and low  (DFlow) DF runners] groups, as well as the 
agreement, sensitivity, and speci!city between FSP and DF groups together with their 95% con!dence intervals 
in parentheses (lower, upper) at three running speeds.

Running speed (km/h) DFhigh DFmid DFlow

9

RFS 15 8 4
MFS 11 12 11
FFS 7 13 19
Agreement (%) 70 (61, 79) 76 (68, 84) 65 (56, 74)
Sensitivity (%) 56 (37, 74) 35 (19, 51) 49 (33, 64)
Speci!city (%) 75 (65, 85) 68 (57, 79) 75 (65, 86)

11

RFS 18 8 5
MFS 9 14 10
FFS 6 11 19
Agreement (%) 72 (63, 81) 81 (73, 89) 68 (59, 77)
Sensitivity (%) 58 (41, 75) 42 (26, 59) 53 (36, 69)
Speci!city (%) 78 (69, 88) 72 (61, 82) 77 (66, 87)

13

RFS 21 9 8
MFS 5 11 7
FFS 7 13 19
Agreement (%) 71 (62, 80) 85 (78, 92) 65 (56, 74)
Sensitivity (%) 55 (39, 71) 48 (27, 68) 49 (33, 64)
Speci!city (%) 81 (71, 90) 71 (61, 82) 75 (65, 86)
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"e DF and FSA values of runners attributed to a DF group but not being classi!ed in the supposedly cor-
responding FSP group, for instance  DFhigh runners but classi!ed as MFS and FFS, are given in Fig. 2A. Similarly, 
Fig. 2B depicts FSA and DF values of runners attributed to a FSP group but not being classi!ed in the supposedly 
corresponding DF group, for instance RFS but classi!ed as  DFmid or  DFlow.

Relationships between foot‑strike angle and duty factor, contact time, and stride fre‑
quency. "e correlations between FSA and DF, tc , and SF, together with their 95% con!dence intervals, are 
given in Table 3. For DF and tc , the correlation was weak (low) but statistically signi!cant (r ≤ 0.50; P < 0.001) 
for all speeds, while the correlation between DF and SF was negligible and not statistically signi!cant (|r|≤ 0.14; 
P ≥ 0.18).

Relationships between shoe mass, shoe heel‑to‑toe drop, foot‑strike angle, and duty fac‑
tor. "e correlation between shoe mass and shoe heel-to-toe drop was low but signi!cant [r = 0.52 (0.37, 
0.65); P < 0.001]. However, the correlations between shoe mass and DF, shoe heel-to-toe drop and DF, shoe mass 
and FSA, and shoe heel-to-toe drop and FSA were negligible and not statistically signi!cant (|r| ≤ 0.18; P ≥ 0.08; 
Table 4) except between DF and shoe mass at 13 km/h (r = 0.20; P = 0.04) and between FSA and shoe heel-to-toe 
drop at 9 km/h (r = 0.21; P = 0.04) which were signi!cant.

Discussion
"e purpose of the present study was to compare two di#erent classi!cation methods (either based on DF or 
FSA) in analyzing running gait at several running speeds. In the present study, a signi!cantly higher DF was 
obtained for RFS than for MFS and FFS and for MFS than for FFS, supporting our !rst hypothesis. Moreover, 
a signi!cantly higher FSA was reported for  DFhigh than for  DFmid and  DFlow and for  DFmid than for  DFlow, sup-
porting our second hypothesis. Furthermore, the three group pairs (RFS and  DFhigh, MFS and  DFmid, FFS and 
 DFlow) did not report any signi!cant di#erence in DF and FSA values at each tested speed. However, although 
weak correlations were obtained between FSA and DF values, the agreement between FSP and DF groups was 
73%, which did not fully support our third hypotheses. Nonetheless, the sensitivity between FSP and DF groups 
was 50%, meaning that only one in two runners was attributed to the DF group supposedly corresponding to 
the FSP group. "erefore, although DF and FSA values were not statistically di#erent between each of the three 
group pairs (at a group level), the runners constituting these groups were not the same in 50% of the cases and 
DF should be preferred to FSP/FSA when evaluating the global running pattern of a runner.

Table 3.  Pearson’s correlation coe)cients (r) and the corresponding 95% con!dence intervals (lower, upper) 
and P-values for the relationships between the foot-strike angle and duty factor (DF), contact time ( tc ), and 
stride frequency (SF) for three tested speeds. "e statistically signi!cant correlations (P ≤ 0.05) are indicated in 
bold font.

Running Speed (km/h) r P

DF
9 0.39 (0.21, 0.55)  < 0.001

11 0.42 (0.24, 0.57)  < 0.001
13 0.48 (0.31, 0.62)  < 0.001

tc

9 0.43 (0.26, 0.58)  < 0.001
11 0.47 (0.30, 0.61)  < 0.001
13 0.50 (0.34, 0.63)  < 0.001

SF
9  − 0.13 (− 0.32, 0.06) 0.18

11  − 0.14 (− 0.28, 0.11) 0.36
13  − 0.11 (− 0.30, 0.09) 0.29

Table 4.  Pearson’s correlation coe)cients (r) and the corresponding 95% con!dence intervals (lower, upper) 
and P-values for the relationships among shoe mass, shoe heel-to-toe drop, foot-strike angle (FSA), and duty 
factor (DF) for three tested speeds. "e statistically signi!cant correlations (P ≤ 0.05) are indicated in bold font.

Variables Running speed (km/h)
Shoe mass Shoe heel-to-toe drop
r P R P

DF
9 0.13 (− 0.07, 0.32) 0.21 0.14 (− 0.06, 0.33) 0.16

11 0.13 (− 0.07, 0.32) 0.2 0.14 (− 0.06, 0.33) 0.16
13 0.20 (0.01, 0.38) 0.04 0.11 (− 0.09, 0.30) 0.26

FSA
9 0.18 (− 0.02, 0.36) 0.08 0.21 (0.01, 0.39) 0.04

11 0.15 (− 0.05, 0.34) 0.14 0.16 (− 0.03, 0.35) 0.1
13 0.18 (− 0.02, 0.36) 0.08 0.16 (− 0.04, 0.34) 0.12
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Homogeneous foot‑strike pattern distribution. "e groups created based on FSP were homogeneous 
at all speeds, although FSP was not a criterion for recruiting participants. Larson, et al.34 reported that ~ 90% 
of recreational runners in a road race were RFS, which makes the FSP distribution of ~ 33% observed for each 
group surprising and unexpected (Table 1). One possible explanation is that the participants of this study fol-
lowed the popular advice given by coaches over the past decade promoting a more mid- to forefoot pattern 
than a rearfoot strike  pattern35–37. Although recent  reviews15,18 concluded that there is no scienti!c foundation 
to recommend non-injured rearfoot strikers to change their RFS. Another explanation is the young age of the 
participants of this study (30 ± 7 years). In fact, older people were shown to run with a more rearfoot strike pat-
tern than younger  people38,39. Finally, though shoe mass and shoe heel-to-toe drop were not associated to DF and 
FSA (Table 4), other footwear characteristics not assessed as part of this study could impact DF or FSA values, 
such as midsole cushioning and/or the longitudinal bending  sti#ness40. Nevertheless, the homogeneity of the 
FSP groups made the results of this study more robust when comparing FSP groups due to similar group sizes.

Duty factor and foot‑strike pattern differ at the individual level. DF was signi!cantly lower for 
FFS than for RFS and MFS and for MFS than for RFS, with a moderate to large e#ect size (Fig. 1). "ese results 
con!rm previous observations that there should be a trend towards a more forefoot strike pattern with a decreas-
ing DF  value19,20. Similarly, FSA was signi!cantly lower for  DFlow than for  DFhigh and  DFmid and for  DFmid than 
for  DFhigh, with also a moderate to large e#ect size (Fig. 1). Moreover, no signi!cant di#erence was revealed 
between the three group pairs at each tested speed. However, the sensitivity between DF and FSP groups was 
50%, re$ecting that only one in two runners in a DF group (50%) were classi!ed in the supposedly correspond-
ing FSP group, although there was a slightly greater chance of matching among RFS (56%) and FFS (50%) than 
among MFS (42%).

"is might be explained by the fact that the DF range corresponding to  DFmid runners and FSA range cor-
responding to MFS are smaller than the DF ranges corresponding to  DFhigh and  DFlow runners and FSA ranges 
corresponding to RFS and FFS. Besides, the DF values of runners attributed to a DF group but not being classi!ed 
in the supposedly corresponding FSP group mostly span the entire range of DF values of this DF group (Fig. 2A). 
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Figure 1.  Boxplots of (A) the duty factor (DF) for the di#erent foot-strike pattern (FSP) groups, i.e., rearfoot 
(RFS), midfoot (MFS), and forefoot (FFS) strikers, and (B) the foot-strike angle (FSA) for the di#erent DF 
groups, i.e., high  (DFhigh), mid  (DFmid), and low  (DFlow) DF runners, at 9, 11, and 13 km/h. "e box extends 
from the lower to upper quartile values of the data, with a line at the median. "e whiskers extend from the box 
to show the range of the data while $ier points (black empty circles) are those past the end of the whiskers. "e 
upper whisker extends to the last data less than Q3 + 1.5 (Q3 – Q1), where Q1 and Q3 are the !rst and third 
quartile. Similarly, the lower whisker extends to the !rst data greater than Q1 – 1.5 (Q3 – Q1). "e small gray 
empty circles denote the data of each participant.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13061  |  https://doi.org/10.1038/s41598-022-17274-0

www.nature.com/scientificreports/

A similar observation is made for FSA values of runners attributed to a FSP group but not being classi!ed in the 
supposedly corresponding DF group (Fig. 2B). "ereby, these results suggest that ‘local’ FSP/FSA and DF do not 
represent similar running pattern information when investigated at the individual level.

Weak association between duty factor and foot‑strike angle. Weak but signi!cant correlations 
were observed between DF and FSA at all speeds (r ≤ 0.48 and P < 0.001; Table 3). Nonetheless, FSA was only 
able to explain ~ 20% of the variance of DF. "e angle of the lower limb at initial ground contact relative to the 
vertical  axis41 can be estimated using tc and therefore DF (indirectly). In addition, according to the observations 
of Breine et al.42 which showed that RFS have a less vertical leg at the point of contact than do runners landing 
further forward on their foot (MFS and FFS), FSP is indirectly related to the lower limb angle at initial contact. 
As RFS position their foot to be much more forward than their pelvis to strike the ground with their heel, these 
runners have a higher lower limb angle at initial contact than do FFS. "erefore, the lower limb angle at initial 
contact may be indirectly related to FSA. Hence, there is an indirect relationship between FSA and DF which 
is supported by the indirect relationship between the lower limb angle at initial contact and both DF and FSA. 
Besides, the 50% sensitivity reported between FSP and DF groups can be partly explained by the weak correla-
tions between DF and FSA, which also corroborate that FSP represents only a portion of DF. Indeed, DF is com-
puted from tc and SF (Eq. 1), which makes it to be functionally representative of a more global biomechanical 
 behavior19,20,24. For instance, DF has been shown to represent the trade-o# between muscle contractile mechan-
ics and energetics in running as a valid estimate of the muscle force–length-velocity related to mechanical work, 
total active muscle volume, and energy expenditure in  running24.

Correlation coe)cients between DF and FSA increased with increasing running speed (+ 20% from 9 to 
13 km/h; Table 3), depicting that FSA was more strongly correlated with DF with increasing speed. "ese results 
suggest that FSA and DF should be more similar at faster speeds. "is might partly be attributed to the smaller 
ranges of DF and FSA values with increasing speed. Nonetheless, the present study did not report an increase in 
sensitivity with increasing speed except for  DFmid runners (Table 2). "e increase in sensitivity for  DFmid runners 
could partly be explained by the fact the DF range of  DFmid runners relatively increased compared to the DF 
ranges of  DFhigh and  DFlow runners with increasing speed. Nevertheless, the relation between FSP and DF groups 
as well as FSA and DF values at faster running speeds should further be investigated.

"e correlations between tc and FSA were weak but statistically signi!cant and slightly stronger than those 
between DF and FSA (+ 4%; Table 3). Nonetheless, FSA was only able to explain up to 25% of the variance of tc , 
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Figure 2.  Duty factor (DF) and foot-strike angle (FSA) values of runners attributed to (A) a DF group but 
not being classi!ed in the supposedly corresponding foot-strike pattern (FSP) group and (B) a FSP group 
but not being classi!ed in the supposedly corresponding DF group at each tested running speed. Mean DF 
and FSA value (!lled circle) and range of values (whiskers) for each DF and FSP group, i.e., high DF runners 
and rearfoot strikers (RFS; red), mid DF runners and midfoot strikers (MFS; green), and low DF runners and 
forefoot strikers (FFS; blue). "e upper whisker extends to the maximum while the lower whisker extends to the 
minimum value. Empty circles denote the runners attributed to a DF or FSP group but not being classi!ed in 
the supposedly corresponding FSP or DF group, respectively, e.g., high DF runners but classi!ed as MFS or FFS 
(green and blue empty circles within the red whiskers of the high DF runners) in (A) and RFS but classi!ed as 
mid or low DF runners (green and blue empty circles within the red whiskers of RFS) in (B).
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con!rming that tc (as DF) does not only represent what happens at initial contact with the ground as does FSP. 
"e weaker correlation between DF and FSA than that between tc and FSA can be explained by the negligible 
correlations between SF and FSA (|r|≤ 0.14; Table 3) coupled to the fact that DF is given by the product between 
tc and SF (Eq. 1).

Limitations. A few limitations of the present study exist. An unexpected high proportion of runners were 
classi!ed as FFS, indicating that the study population may not be representative of the general population. "e 
speeds were limited to endurance speeds, and running trials were only performed on a treadmill. Furthermore, 
participants wore their own running shoes during testing, which could be confounding our results. Given that 
di#erences in footwear characteristics can underpin di#erences in running  biomechanics43, using a standardized 
shoe might have led to di#erent study outcomes in terms of FSA and DF. Noteworthy, however, is that there were 
no signi!cant correlations between shoe mass and DF and FSA and between shoe heel-to-toe drop and DF and 
FSA. Recreational runners are more comfortable wearing their own  shoes44, and show individual responses to 
novel  footwear44,45 and cushioning  properties46. Nevertheless, it is possible that other footwear characteristics 
not assessed as part of this study correlate to DF or FSA, such as midsole cushioning and/or the longitudinal 
bending  sti#ness40. Moreover, very few studies on DF exist. "erefore, it is di)cult to determine how DF may be 
a#ected by confounding variables such as footwear or the running surface. "erefore, future studies should focus 
on the relation between DF and FSP under additional conditions (i.e., faster speeds, di#erent types of ground, 
and di#erent shoes). Nonetheless, the presented results are strong due to the use of a large dataset.

Conclusion
"is study revealed that RFS depict higher DF than MFS and FFS and similarly for MFS than FFS. Moreover, 
 DFhigh showed higher FSA than  DFmid and  DFlow and similarly for  DFmid than  DFlow. However, weak correlations 
were obtained between FSA and DF values as well as a sensitivity of 50% between FSP and DF groups, meaning 
that only one in two runners was attributed to the DF group supposedly corresponding to the FSP group. "ere-
fore, though DF and FSA values were not statistically di#erent between each of the three group pairs (at a group 
level), these results suggest that the runners constituting these groups were not the same. In other words, ‘local’ 
FSP/FSA and DF do not represent similar running pattern information when investigated at an individual level 
and DF should be preferred to FSP/FSA when evaluating the global running pattern of a runner.

Data availability
"e datasets supporting this article are available upon request by the corresponding author.
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Supplementary Materials for: 
Duty factor and foot-strike pattern do not represent similar running pattern at the 
individual level 

 
S1. Absolute classification of runners to create foot-strike pattern groups 
 
Runners were classified as rearfoot (RFS), midfoot (MFS), and forefoot (FFS) strikers using 
the 33 highest, 33 middle, and 34 lowest foot-strike angle (FSA) values at each speed. 
Noteworthy, FFS group was composed of one extra runner but attributing this extra runner to 
MFS or RFS group or removing him from the study would not have had an impact on the 
results.  
 
Both relative and absolute classifications classified most of the runners in the same foot-strike 
pattern (FSP) group. On average, 1 participant (4%) was attributed to a different FSP group 
when using the absolute rather than the relative classification reported in the manuscript. The 
complete analysis of the number of runners that were attributed to a different FSP group 
between the relative and absolute classifications at the different running speeds is provided in 
Table S1. 
 
Table S1. Number and percentage (in parentheses) of runners that were attributed to a different 
foot-strike pattern (FSP) group, i.e., rearfoot (RFS), midfoot (MFS), or forefoot (FFS) group, 
between the relative and absolute classifications at the different running speeds. 
 

Relative classification Absolute classification 9 km/h 11 km/h 13 km/h 
FFS MFS 5 (15%) 2 (6%) 5 (15%) 
MFS FFS 0 (0%) 0 (0%) 0 (0%) 
MFS RFS 6 (18%) 2 (6%) 0 (0%) 
RFS MFS 0 (0%) 0 (0%) 5 (15%) 
FFS RFS 0 (0%) 0 (0%) 0 (0%) 
RFS FFS 0 (0%) 0 (0%) 0 (0%) 

 
The FSA ranges for FFS, MFS, and RFS groups were [-16.9°, -2.7°], [-2.5°, 5.5°], and [6.0°, 
19.3°] at 9km/h, [-16.9°, -3.5°], [-2.9°, 7.7°], and [7.8°, 19.2°] at 11km/h, and [-15.3°, -3.0°], 
[-2.9°, 9.7°], and [9.9°, 20.5°] at 13km/h, respectively. The linear mixed model revealed a 
significant FSP group effect on duty factor (DF) (P < 0.001). The Holm post hoc tests indicated 
a significantly higher DF for RFS than for MFS and FFS (P ≤ 0.001), and for MFS than for 
FFS (P = 0.004). A significant effect of speed was reported on DF (P < 0.001). A significantly 
smaller DF was obtained at a faster speed, as depicted by the Holm post hoc tests (P < 0.001). 
There was no FSP group x speed interaction (P < 0.81). The Cohen’s d effect sizes were 
moderate (|d| ≤ 0.62), except for those corresponding to the RFS-FFS pairs, which were large 
at all speeds (|d| ≥ 0.92).  
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When considering all groups together, a significant group x running speed interaction effect 
was reported by the linear mixed models for both DF and FSA values (P ≤ 0.018). Pairwise 
post hoc comparisons between the three group pairs at each running speed revealed no 
significant differences for DF and FSA values (P ≥ 0.18). 
 
The number of runners in FSP and DF groups as well as the agreement, sensitivity, and 
specificity between FSP and DF groups are given in Table S2. The average (over speed and 
group) agreement, sensitivity, and specificity were 72, 50, and 75%, respectively. 
 

 
 
Figure S1. Boxplots of the duty factor (DF) for the different foot-strike pattern groups, i.e., 
rearfoot (RFS), midfoot (MFS), and forefoot (FFS) strikers, at 9, 11, and 13 km/h. The box 
extends from the lower to upper quartile values of the data, with a line at the median. The 
whiskers (black empty circles) extend from the box to show the range of the data while flier 
points are those past the end of the whiskers. The upper whisker extends to the last data less 
than Q3 + 1.5 (Q3 – Q1), where Q1 and Q3 are the first and third quartile. Similarly, the lower 
whisker extends to the first data greater than Q1 – 1.5 (Q3 – Q1). The small gray empty circles 
denote the data of each participant. 
 
The DF and FSA values of runners attributed to a DF group but not being classified in the 
supposedly corresponding FSP group, for instance DFhigh runners but classified as MFS and 
FFS, are given in Fig. S2A. Similarly, Fig. S2B depicts FSA and DF values of runners 
attributed to a FSP group but not being classified in the supposedly corresponding DF group, 
for instance RFS but classified as DFmid or DFlow. 
 
On average, 2 participants (6%) changed their FSP group with running speed. The complete 
analysis of the number of runners that switched group between the different running speeds is 
provided in Table S3. 
 
 
 
 
 

RFS MFS FFS

30

40

D
F

(%
)

9 km/h

RFS MFS FFS

11 km/h

RFS MFS FFS

13 km/h
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Table S2. Number of runners in foot-strike pattern (FSP) [rearfoot (RFS), midfoot (MFS), and 
forefoot (FFS) strikers] and duty factor (DF) [high (DFhigh), mid (DFmid), and low (DFlow) DF 
runners] groups, as well as the agreement, sensitivity, and specificity between FSP and DF 
groups together with their 95% confidence intervals in parenthesis at three running speeds. 
 

 
 
Table S3. Number and percentage (in parentheses) of runners that changed from one foot-
strike pattern (FSP) group, i.e., rearfoot (RFS), midfoot (MFS), or forefoot (FFS) group, to 
another FSP group with changing running speed. 
 

 9 to 11 km/h 11 to 13 km/h 9 to 13 km/h 
FFS  to MFS 1 (3%) 5 (15%) 3 (9%) 
MFS to FFS 3 (9%) 3 (9%) 3 (9%) 
MFS to RFS 2 (6%) 3 (9%) 2 (6%) 
RFS  to MFS 4 (12%) 1 (3%) 2 (6%) 
FFS  to RFS 1 (3%) 0 (0%) 0 (0%) 
RFS  to FFS 0 (0%) 2 (6%) 1 (3%) 

 
 
 
 
 
 

Running Speed (km/h)  DFhigh DFmid DFlow 
9 RFS 17 10 6 
 MFS 10 12 11 

 

FFS 
Agreement (%) 
Sensitivity (%) 
Specificity (%) 

6 
68 (59, 77) 
52 (34, 69) 
76 (66, 86) 

11 
75 (67, 83) 
36 (20, 53) 
69 (58, 80) 

17 
66 (57, 75) 
50 (33, 67) 
74 (64, 85) 

11 RFS 18 8 77 
 MFS 10 14 9 

 

FFS 
Agreement (%) 
Sensitivity (%) 
Specificity (%) 

5 
70 (61, 79) 
55 (38, 72) 
78 (68, 88) 

11 
80 (72, 88) 
42 (26, 59) 
72 (61, 82) 

18 
68 (59, 77) 
53 (36, 70) 
76 (65, 86) 

13 RFS 19 7 7 
 MFS 8 16 9 

 

FFS  
Agreement (%) 
Sensitivity (%) 
Specificity (%) 

6 
72 (63, 81) 
58 (41, 74) 
79 (69, 89) 

10 
84 (77, 91) 
48 (31, 66) 
75 (64, 85) 

18 
68 (59, 77) 
53 (36, 70) 
76 (65, 86) 
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Figure S2. Duty factor (DF) and foot-strike angle (FSA) values of runners attributed to (A) a 
DF group but not being classified in the supposedly corresponding foot-strike pattern (FSP) 
group and (B) a FSP group but not being classified in the supposedly corresponding DF group 
at each tested running speed. Mean DF and FSA value (filled circle) and range of values 
(whiskers) for each DF and FSP group, i.e., high DF runners and rearfoot strikers (RFS; red), 
mid DF runners and midfoot strikers (MFS; green), and low DF runners and forefoot strikers 
(FFS; blue). The upper whisker extends to the maximum while the lower whisker extends to 
the minimum value. Empty circles denote the runners attributed to a DF or FSP group but not 
being classified in the supposedly corresponding FSP or DF group, respectively, e.g., high DF 
runners but classified as MFS or FFS (green and blue empty circles within the red whiskers of 
the high DF runners) in (A) and RFS but classified as mid or low DF runners (green and blue 
empty circles within the red whiskers of RFS) in (B). 
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S2. Runners attributed to a different foot-strike pattern and duty factor group depending 
on the running speed 
 
Table S4. Number and percentage (in parentheses) of runners that changed from one foot-
strike pattern (FSP) group, i.e., rearfoot (RFS), midfoot (MFS), or forefoot (FFS) group, to 
another FSP group with changing running speed. 
 

 9 to 11 km/h 11 to 13 km/h 9 to 13 km/h 
FFS  to MFS 4 (10%) 2 (5%) 3 (8%) 
MFS to FFS 1 (3%) 4 (12%) 2 (6%) 
MFS to RFS 5 (15%) 8 (24%) 12 (35%) 
RFS  to MFS 1 (4%) 0 (0%) 0 (0%) 
FFS  to RFS 0 (0%) 0 (0%) 0 (0%) 
RFS  to FFS 0 (0%) 1 (4%) 1 (4%) 

 
 
Table S5. Number and percentage (in parentheses) of runners that changed from one duty 
factor (DF) group, i.e., high (DFhigh), mid (DFmid), or low (DFlow) DF, to another DF group with 
changing running speed. 
 

 9 to 11 km/h 11 to 13 km/h 9 to 13 km/h 
DFlow  to DFmid 6 (18%) 6 (18%) 6 (18%) 
DFmid  to DFlow 6 (18%) 5 (15%) 6 (18%) 
DFmid  to DFhigh 5 (15%) 5 (15%) 7 (21%) 
DFhigh to DFmid 5 (15%) 4 (12%) 7 (21%) 
DFlow  to DFhigh 0 (0%) 0 (0%) 1 (3%) 
DFhigh to DFlow 0 (0%) 1 (3%) 1 (3%) 
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ABSTRACT
Duty factor (DF) and step frequency (SF) are key running pattern 
determinants. However, running patterns may change with speed if 
DF and SF changes are inconsistent across speeds. We examined 
whether the relative positioning of runners was consistent: 1) across 
!ve running speeds (10–18 km/h) for four temporal variables [DF, 
SF, and their subcomponents: contact (tc) and "ight (tc) time]; and 2) 
across these four temporal variables at these !ve speeds. Three- 
dimensional whole-body kinematics were acquired from 52 run-
ners, and deviations from the median for each variable (normalised 
to minimum-maximum values) were extracted. Across speeds for all 
variables, correlations on the relative positioning of individuals 
were high to very high for 2–4 km/h speed di#erences, and moder-
ate to high for 6–8 km/h di#erences. Across variables for all speeds, 
correlations were low between DF-SF, very high between DF-tc, and 
low to high between DF-tc, SF-tc, and SF-tc. Hence, the consistency in 
running patterns decreased as speed di#erences increased, sug-
gesting that running patterns be assessed using a range of speeds. 
Consistency in running patterns at a given speed was low between 
DF and SF, corroborating suggestions that using both variables can 
encapsulate the full running pattern spectrum.

ARTICLE HISTORY 
Received 23 November 2021  
Accepted 22 June 2022 

KEYWORDS 
Gait analysis; motion 
analysis; biomechanics; 
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positioning

Introduction

The spring–mass model represents running as a ‘bouncing’ gait modelled using a mass 
connected to a massless spring (Blickhan, 1989). In this model, the supporting leg 
behaves like a spring during stance and each stance is separated by a flight time (tf ), 
i.e., a period where the limbs are not in contact with the ground. The presence of this 
flight phase distinguishes running from walking (Novacheck, 1998).

Each runner adopts a unique and natural running pattern that is challenging to 
describe using a single variable (Folland et al., 2017). As early as 1985, the running 
pattern was viewed as a global system with several interconnected variables (Subotnick, 
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1985). More recently, the synthetic review of van Oeveren et al. (2021) proposed that 
the full spectrum of running patterns could be described combining two temporal 
variables: step frequency (SF) and duty factor (DF), where DF reflects the relative 
contribution of the ground contact time (tc) to the running stride (Folland et al., 2017; 
Minetti, 1998). According to van Oeveren et al. (2021), knowing DF and SF allows to 
categorise running patterns in one of five distinct categories, namely ‘stick’, ‘bounce’, 
‘push’, ‘hop’, and ‘sit’, but keeping in mind that running patterns operate along 
a continuum. Individuals spontaneously and subconsciously adopt their own running 
pattern, a choice shown to be self-optimised and central in the development of an 
economical and safe running gait (Cavanagh & Williams, 1982; Moore et al., 2016; 
Moore, 2016; Williams & Cavanagh, 1987). The understanding of the individual 
running patterns might be important for improving performance, optimising training, 
and preventing running-related injuries.

The importance of DF and SF in determining running patterns (van Oeveren et al., 
2021) corroborates previous findings. On the one hand, DF has been used to categorise 
runners with distinct running patterns (Lussiana et al., 2019; Patoz et al., 2020). Runners 
with a low DF exhibit a more symmetrical stance phase (similar brake and push times), 
anterior (midfoot and forefoot) strike pattern, and extended lower limb during tc than 
runners with a high DF. In contrast, runners with a high DF exhibit greater lower limb 
flexion during tc, a more rearfoot strike pattern, and lesser work against gravity to 
generate forward propulsion (Lussiana et al., 2019; Patoz et al., 2020). Despite these 
biomechanical differences, the running economy of runners within these two DF groups 
are similar (Lussiana et al., 2019), suggesting two energetically equivalent strategies at 
endurance running speeds. On the other hand, SF can reveal individual muscle recruit-
ment patterns of runners and strategies to increase running speed (Dorn et al., 2012) or 
achieve top-end running speeds (Salo et al., 2011). Even in subgroups of individuals with 
similar sprint velocities, a range of SF and step length combinations are present (Hunter 
et al., 2004).

Running speed affects DF and SF, with an increase in running speed decreasing DF 
(Lussiana et al., 2019; Minetti, 1998; van Oeveren et al., 2021) and increasing SF (Dorn 
et al., 2012; Ogueta-Alday et al., 2014; van Oeveren et al., 2021). These changes are likely 
related to changes in their subcomponent variables tc and tf . Indeed, tc decreases with an 
increase in running speed, whereas tc increases (da Rosa et al., 2019; Lussiana et al., 2019; 
Ogueta-Alday et al., 2014; van Oeveren et al., 2021). Given the speed-dependency of these 
variables, van Oeveren et al. (2021) suggested using an absolute speed to define running 
patterns as stick, bounce, push, hop, and sit.

Worth noting is the large interindividual variations in temporal variables (DF, tc, tf , 
and SF) reported at absolute running speeds (Lussiana et al., 2019; Ogueta-Alday et al., 
2014) and the large interindividual variations in the individual strategies adopted to 
adapt to changes in running speeds (Forrester & Townend, 2015; Hébert-Losier et al., 
2015; Salo et al., 2011). For instance, a curve-clustering approach on the footstrike angle 
of runners across speeds revealed three subgroups: those that maintained a rearfoot strike 
pattern, those that maintained a forefoot or midfoot strike pattern, and those that 
transitioned from a rearfoot to a less rearfoot strike pattern with increasing speed 
(Forrester & Townend, 2015). Therefore, the running pattern of an individual could 
also change with speed if the relationship between or changes in the underlying temporal 
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variables are inconsistent across running speeds. Such understanding would then allow 
us assessing if the evaluation of running patterns could be generalised across speeds and 
studies.

Hence, our first aim was to assess if running patterns are consistent across running 
speeds by examining the consistency in four temporal variables (DF, SF, tc, and tf ). For 
instance, we investigated whether a runner with a high DF (with respect to the group 
median) at a slow running speed also exhibits a high DF at a faster running speed. We 
hypothesised that consistency would be greater when differences in running speeds were 
smaller, as previously observed for footstrike angle (Forrester & Townend, 2015).

Our second aim was to assess the consistency across the four temporal variables at an 
absolute running speed. Given that DF and SF are proposed to be two independent key 
running pattern determinants (van Oeveren et al., 2021), the association between these 
two variables should be low. Hence, we hypothesised that consistency would be low 
between DF and SF. On the other hand, we anticipated greater consistency between DF 
and its subcomponent variables (tc and tf ) as well as between SF and tc and tf .

Material and methods

Participants

Fifty-two runners, 32 men (age: 32 ± 9 yr, mass: 66 ± 11 kg, height: 175 ± 7 cm, running 
distance: 53 ± 21 km/week, running experience: 8 ± 8 yr, and best half-marathon time: 92  
± 10 min) and 20 women (age: 32 ± 9 yr, mass: 52 ± 6 kg, height: 162 ± 4 cm, running 
distance: 50 ± 22 km/week, running experience: 7 ± 4 yr, and best half-marathon time: 
102 ± 12 min) participated in this study. For study inclusion, participants were required 
to be in good self-reported general health with no current or recent (<3 months) 
musculoskeletal injuries and to meet a certain level of running performance. More 
specifically, in the last year, runners were required to have competed in a road race 
with finishing times of ≤50 min for 10 km or ≤2 h for 21.1 km. The ethical committee 
of the

National Sports Institute of Malaysia approved the study protocol prior to participant 
recruitment (ISNRP: 26/2015, which adhered to the latest version of the Declaration of 
Helsinki of the World Medical Association.

Experimental procedure

Each participant completed one experimental laboratory session. After providing written 
informed consent, participants ran 16 min (4 min at 9 km/h, 10 km/h, 12 km/h, and 14  
km/h in that order) on a treadmill (h/p/cosmos mercury®, h/p/cosmos sports & medical 
gmbh, Nussdorf-Traunstein, Germany) as a warm-up ensuring stabilisation of shoe 
stiffness properties (Divert et al., 2005) and promoting treadmill familiarisation 
(Arnold et al., 2019; Lindorfer et al., 2020). Then, retro-reflective markers were posi-
tioned on individuals (described in Data Collection section) to assess running kinematics. 
For each participant, a 1-s static calibration trial was recorded, which was followed by 5 ×  
30-s runs at 10, 12, 14, 16, and 18 km/h (with 1-min recovery periods between each runs) 
to collect three-dimensional (3D) kinematic data in the last 10-s segment of these runs 
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(30 ± 2 running steps), resulting in at least 20 steps being analysed (Riazati et al., 2019). 
All participants were familiar with running on a treadmill as part of their usual training 
programs and wore their habitual running shoes during testing (shoe mass: 226 ± 37 g, 
stack height: 25 ± 3 mm, and heel-to-toe drop: 7 ± 3 mm).

Data collection

3D kinematic data were collected at 200 Hz using seven infrared Oqus cameras (five Oqus 
300+, one Oqus 310+, and one Oqus 311+) and Qualisys Track Manager software version 
2.1.1 build 2902 together with the Project Automation Framework Running package 
version 4.4 (Qualisys AB, Göteborg, Sweden). Thirty-five retro-reflective markers of 12  
mm in diameter were used for static calibration and running trials, and were affixed to 
the skin and shoes of individuals over anatomical landmarks using double-sided tape 
following standard guidelines from the Project Automation Framework Running pack-
age (Tranberg et al., 2011) as already reported elsewhere (Lussiana et al., 2019). The 3D 
marker data were exported in .c3d format and processed in Visual3D Professional 
software version 5.02.25 (C-Motion Inc., Germantown, MD, USA). More explicitly, the 
3D marker data were interpolated using a third-order polynomial least-square fit algo-
rithm, allowing a maximum of 20 frames for gap filling, and subsequently low-pass 
filtered at 20 Hz using a fourth-order Butterworth filter.

Temporal variables

Running events were derived from the trajectories of the 3D marker data using similar 
procedures to those previously reported (Lussiana et al., 2019; Maiwald et al., 2009). 
More explicitly, a mid-foot landmark was generated midway between the heel and toe 
markers. Footstrike was defined as the instance when the mid-foot landmark reached 
a local minimal vertical velocity prior to it reaching a peak vertical velocity reflecting the 
start of swing. Toe-off was defined as the instance when the toe marker attained a peak 
vertical acceleration before reaching a 7 cm vertical position. All events were verified to 
ensure correct identification and were manually adjusted when required.

tc was defined as the time from footstrike to toe-off of the same foot while tf was 
defined as the time from toe-off of one foot to footstrike of the contralateral foot. SF was 
calculated as SF à 1=Ötc á tf Ü, and DF as DF à tcSF=2. For all temporal variables, the 
values extracted from the 10-s data collection for each participant were averaged. To 
express the temporal variables as relative, each variable was normalised using the min- 
max scaler approach, i.e., x� xminÖ Ü=Öxmax � xminÜ where x represents the value for 
a given participant and xmin=max the minimum/maximum among all participants at 
a given speed. The normalised variables were used in subsequent statistical analyses.

Statistical analysis

Descriptive statistics are presented using mean ± standard deviation. The consistency in 
running patterns across running speeds was evaluated by examining the relative posi-
tioning of runners for each temporal variable and tested speed. The relative positioning 
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was obtained by calculating the deviations from the median of the temporal values. These 
datasets were normally distributed based on Kolmogorov–Smirnov tests (P ≥ 0.34). 
Pearson’s correlation coefficients (r) on the relative values together with corresponding 
95% CI [lower, upper] and P-values were extracted to explore the consistency between 
each pair of running speeds for each of the four temporal variables. The same statistical 
approach was used to explore the consistency between each pair of temporal variables for 
each of the five running speeds. Correlations were considered very high, high, moderate, 
low, and negligible when absolute r values were between 0.90 - 1.00, 0.70–0.89, 0.50–0.69, 
0.30–0.49, and 0.00–0.29, respectively (Hinkle et al., 2002). Statistical analyses were 
performed using Jamovi (version 1.6, https://www.jamovi.org) with a level of significance 
set at P ≤ 0.05 for all analyses.

Results

As speed increased from 10 to 18 km/h, DF and tc decreased by 8.5 ± 2.8% and 87 ± 20  
ms, while tf and SF increased by 42 ± 20 ms and 0.42 ± 0.16 Hz, respectively (Table 1 and 
Figure 1). The relative DF, SF, tc, and tf values for all participants and each running speed 
are depicted in Figure 2.

Consistency across running speeds for each temporal variable

Correlations for each one of the four relative temporal variables were high to very high for 
each pair of running speeds when changes were 2–4 km/h (P < 0.001, Table 2), except for 
the correlation between 10 and 14 km/h for tc being moderate. Correlations were 
moderate to high for each pair of running speeds when changes were 6–8 km/h for the 
four relative temporal variables (P < 0.001; Table 2).

The relative DF values for all participants and each running speed are depicted in 
Figure 3. According to the correlations reported in Table 2, similar figures and corre-
sponding interpretations would result using the three other variables (tc, tf , and SF).

Consistency across temporal variables for each running speed

Correlations were low between relative DF and SF at all tested speeds (P ≤ 0.02; Table 3). 
Correlations were very high between relative DF and tf at all tested speeds (P < 0.001); 
and high between relative DF and tc at 10 and 12 km/h (P < 0.001), but moderate at 14, 16, 
and 18 km/h (P < 0.001; Table 3).

Table 1. Duty factor, contact time, flight time, and step frequency at five running speeds.

Running speed (km/h)
Duty factor  

(%)
Contact time  

(ms)
Flight time  

(ms)
Step frequency  

(Hz)
10 38.6 ± 3.4 274 ± 24 81 ± 27 2.83 ± 0.16
12 35.1 ± 2.8 242 ± 19 103 ± 23 2.91 ± 0.18
14 33.2 ± 1.5 220 ± 18 112 ± 21 3.02 ± 0.19
16 31.2 ± 2.4 201 ± 17 121 ± 20 3.12 ± 0.21
18 30.1 ± 2.3 186 ± 15 124 ± 20 3.24 ± 0.24

Values are means ± standard deviations.
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Figure 1. a) Duty factor (DF), b) step frequency (SF), c) contact time (tc), and d) flight time (tf ) at five 
running speeds. Circles and error bars represent means and standard deviations, respectively.

Figure 2. Relative (deviations from the median) a) duty factor (DF), b) step frequency (SF), c) contact 
time (tc), and d) flight time (tf ) values at five running speeds for all participants. Circles and error bars 
represent means and standard deviations, respectively. The combination of a colour and symbol 
represents a given participant and allows to observe the interindividual differences across both 
running speeds and temporal variables.
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Correlations between relative SF and tf were moderate at all speeds (P < 0.001), except 
for being high at 18 km/h (P < 0.001). Correlations were low between relative SF and tc at 
10, 12, and 14 km/h (P ≤ 0.03), and moderate at 16 and 18 km/h (P < 0.001; Table 3).

Correlations between relative tc and tf were moderate at 10 km/h (P < 0.001), low at 12, 
14, and 16 km/h (P ≤ 0.04). Correlations were negligible at 18 km/h (P = 0.21; Table 3)

The relative temporal variables are depicted in Figure 4 for all participants running at 
10 km/h. According to the correlations reported in Table 3, similar figures and corre-
sponding interpretations would result using the four other running speeds (12, 14, 16, 
and 18 km/h).

Discussion and implications

In agreement with our first hypothesis, smaller differences between two running speeds 
were associated with greater consistency in running patterns, i.e., greater consistency in 
the four temporal variables examined (DF, SF, tc, and tf ). Correlations of the relative 
values were high to very high for 2–4 km/h speed differences, whereas moderate to high 
for 6–8 km/h differences. In agreement with our second hypothesis, the consistency 
between DF and SF variables was low at each tested speed, and greater between DF 

Table 2. Pearson’s correlation coefficients (r) and corresponding 95% confidence intervals [lower, 
upper] and P-values for the relationships of the relative values for pair of running speeds among five 
different speeds (10, 12, 14, 16, and 18 km/h) and for four temporal variables (duty factor, contact 
time, flight time, and step frequency).

Running speed 
pair (km/h) 

Statistics Duty factor Contact time Flight time Step frequency 

10 - 12 
r 
P

0.86 [0.76, 0.92] 
<0.001

0.83 [0.73, 0.90] 
<0.001 

0.89 [0.81, 0.93] 
<0.001 

0.98 [0.96, 0.99] 
<0.001 

10 - 14 
r 
P

0.72 [0.56, 0.83] 
<0.001

0.69 [0.51, 0.81] 
<0.001

0.78 [0.64, 0.87] 
<0.001 

0.93 [0.88, 0.96] 
<0.001 

10 - 16 
r 
P 

0.64 [0.45, 0.78] 
<0.001

0.63 [0.44, 0.77] 
<0.001

0.73 [0.56, 0.83] 
<0.001

0.86 [0.77, 0.92] 
<0.001

10 - 18 
r 
P 

0.58 [0.37, 0.74] 
<0.001

0.54 [0.32, 0.71] 
<0.001

0.66 [0.47, 0.79] 
<0.001

0.77 [0.63, 0.86] 
<0.001 

12 - 14 
r 
P 

0.91 [0.84, 0.95] 
<0.001

0.90 [0.83, 0.94] 
<0.001

0.93 [0.88, 0.96] 
<0.001

0.97 [0.94, 0.98] 
<0.001 

12 - 16 
r 
P 

0.79 [0.66, 0.88] 
<0.001

0.83 [0.72, 0.90] 
<0.001

0.83 [0.73, 0.90] 
<0.001

0.92 [0.87, 0.96] 
<0.001

12 - 18 
r 
P 

0.68 [0.51, 0.81] 
<0.001

0.71 [0.54, 0.82] 
<0.001

0.73 [0.57, 0.84] 
<0.001

0.83 [0.71, 0.90] 
<0.001

14 - 16 
r 
P 

0.86 [0.77, 0.92] 
<0.001

0.90 [0.83, 0.94] 
<0.001

0.90 [0.83, 0.94] 
<0.001

0.97 [0.95, 0.98] 
<0.001

14 - 18 
r 
P 

0.73 [0.57, 0.83] 
<0.001

0.82 [0.70, 0.89] 
<0.001

0.77 [0.63, 0.86] 
<0.001

0.88 [0.80, 0.93] 
<0.001

16 - 18 
r 
P 

0.86 [0.77, 0.92] 
<0.001

0.91 [0.85, 0.95] 
<0.001

0.90 [0.83, 0.94] 
<0.001 

0.93 [0.88, 0.96] 
<0.001

Statistically significant correlations (P ≤ 0.05) are in bold font. Correlations were considered very high, high, moderate, low, 
and negligible when absolute r values were between 0.90–1.00, 0.70–0.89, 0.50–0.69, 0.30–0.49, and 0.00–0.29, 
respectively (Hinkle et al., 2002). Cells were coloured according to the intensity of the correlations, i.e., the larger the 
correlation, the darker the shaded area.
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and both its subcomponents as well as between SF and both its subcomponents than 
between DF and SF variables. Across speeds, correlations were low between relative DF 
and SF, very high between relative DF and tf , and low to high between relative DF and tc, 
SF and tf , and SF and tf . From a practical perspective, the lower consistency in running 
patterns observed as speed differences increased suggests that running patterns should be 

Figure 3. Relative (deviations from the median) duty factor (DF) values for all participants and five 
running speeds. Runners were relatively positioned according to their relative DF values at 10 km/h. 
The star symbols depict four participants with distinct behaviours. * participant with a DF much higher 
than the median at 10 km/h, but a decreasing DF with increasing speed resulting in a DF closer to the 
median at 18 km/h. ** participant with a DF higher than the median at all tested speeds. *** 
participant with a DF lower than the median at 10 km/h, but an increasing DF with increasing 
speed resulting in a DF closer to the median at 18 km/h. **** participant with a DF much lower 
than the median at all tested speeds.
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assessed at a range of speeds or at a specific speed. In other words, the generalisation of 
running patterns across speeds may not be valid. Noteworthy is the considerable inter-
individual differences observed in terms of the evolution of the relative variables with 
changes in speed, with some runners demonstrating similar running patterns across 
speeds and others changing running patterns. The low consistency between DF and SF at 
a given running speed corroborates previous findings that SF does not necessarily 
encapsulate the same running pattern information than DF. As proposed by van 
Oeveren et al. (2021), the full spectrum of running patterns can be described using 
both DF and SF. Individuals spontaneously and subconsciously adopt their own running 
pattern. This spontaneous choice was shown to be self-optimised, which is a central 
element in the development of an economical and safe running gait (Cavanagh & 
Williams, 1982; Moore et al., 2016; Moore, 2016; Williams & Cavanagh, 1987). Hence, 
being able to analyse the full spectrum of running patterns may be important to interpret 
measurements, to design and test specific coaching interventions, and to conduct 
research to answer questions regarding performance, running economy, and injury risk.

The stronger correlations of the relative temporal variables (DF, SF, tc, and tf ) for 2–4  
km/h than 6–8 km/h speed differences (Table 2) indicate greater consistency in variables 
when changes in running speeds are smaller. In other words, the running pattern is less 
consistent when measured over a larger speed range (Figures 2 and 3). This result 
supports that the running pattern should be defined at a given speed (van Oeveren 
et al., 2021). Moreover, large interindividual variations in the consistency in running 
patterns across running speeds were observed (Figure 3). For instance, there were 
runners with a DF higher than the median at 10 km/h, but a decreasing DF with 
increasing speed resulting in a DF closer to the median at 18 km/h; runners with a DF 
higher than the median at all tested speeds; runners with a DF lower than the median at 
10 km/h, but an increasing DF with increasing speed resulting in a DF closer to the 
median at 18 km/h; and runners with a DF much lower than the median at all tested 

Table 3. Pearson’s correlation coefficients (r) and corresponding 95% confidence intervals [lower, 
upper] and P-values for the relationships of the relative values for pair of temporal variables among 
duty factor (DF), contact time (tc), flight time (tf ), and step frequency (SF), and for five running speeds.

Variable pair Statistics 10 km/h 12 km/h 14 km/h 16 km/h 18 km/h 

DF – SF
r 
P

0.38 [0.11, 0.59] 
0.006 

0.38 [0.13, 0.60] 
0.005 

0.34 [0.07, 0.56] 
0.01 

0.32 [0.05, 0.55] 
0.02 

0.41 [0.16, 0.62] 
0.002 

DF – 
r 
P

-0.98 [-0.99, -0.97] 
<0.001 

-0.96 [-0.98, -0.93] 
<0.001 

-0.94 [-0.96, -0.89] 
<0.001 

-0.91 [-0.95, -0.85] 
<0.001

-0.91 [-0.95, -0.85] 
<0.001

DF – 
r 
P

0.77 [0.63, 0.86] 
<0.001

0.71 [0.54, 0.82] 
<0.001 

0.67 [0.48, 0.80] 
<0.001 

0.65 [0.46, 0.79] 
<0.001 

0.57 [0.35, 0.73] 
<0.001 

SF – r 
P 

-0.53 [-0.70, -0.30] 
<0.001

-0.62 [-0.76, -0.41] 
<0.001

-0.64 [-0.78, -0.44] 
<0.001 

-0.67 [-0.80, -0.49] 
<0.001 

-0.74 [-0.85, -0.59] 
<0.001

SF – 
r 
P 

-0.30 [-0.53, -0.03] 
0.03

-0.38 [-0.59, -0.12] 
0.006

-0.47 [-0.66, -0.23] 
<0.001

-0.50 [-0.68, -0.27] 
<0.001

-0.51 [-0.69, -0.28] 
<0.001

 – 
r 
P 

-0.65 [-0.79, -0.46] 
<0.001 

-0.49 [-0.67, -0.25] 
<0.001

-0.37 [-0.58, -0.11] 
0.007

-0.29 [-0.52, -0.02] 
0.04

-0.18 [-0.43, 0.10] 
0.21 

Statistically significant correlations (P ≤ 0.05) are in bold font. Correlations were considered very high, high, moderate, low, 
and negligible when absolute r values were between 0.90–1.00, 0.70–0.89, 0.50–0.69, 0.30–0.49, and 0.00–0.29, 
respectively (Hinkle et al., 2002). Cells were coloured according to the intensity of the correlations, i.e., the closer to 
one the correlation, the darker the red shaded area and the closer to minus one the correlation, the darker the blue 
shaded area.
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speeds. This agrees with previous observations that individuals adapt to running speeds 
differently (Forrester & Townend, 2015; Hébert-Losier et al., 2015; Salo et al., 2011), 
which might be linked to differences in anthropometric characteristics, age, and running 
training (van Oeveren et al., 2019). Performing a more detailed analysis that incorporates 
clustering approaches might reveal subgroups that respond similarly to changes in 
running speeds. As absolute running speeds were used rather than relative speeds 
(based on the level of participants), it would not be possible to identify whether sudden 
changes in DF and/or SF take place at given relative intensities. Overall, coaches should 
evaluate the running pattern of their athletes using a range of speeds or at a specific speed.

As indicates the low correlations between relative DF and SF values at all tested speeds 
(Table 3), the consistency between these two variables was low. Similarly, Figure 4 depicts 
how runners with a low/high DF can present with either a low/high SF. These results 
again reflect previous ones wherein SF does not necessarily encapsulate the same running 
pattern information than DF, and that combining DF and SF information should allow to 
describe the full running pattern spectrum (van Oeveren et al., 2021). As depicted in 
Figure 4, each of the five categories proposed by van Oeveren et al. (2021) were 
represented herein. Specifically, there were stick (high DF and median SF), bounce 
(low DF and median SF), hop (high SF and median DF), push (low SF and median 
DF), and sit (median DF and SF) runners. Moreover, there were runners in between these 
categories, which also confirms that running patterns operate along a spectrum (Figure 4) 
(van Oeveren et al., 2021).

Given that the risk of injury was shown greater in runners with a lower DF, especially 
in softer shoes (Malisoux et al., 2022), quantifying DF might be informative for lower- 
limb injury prevention. The present study found very high correlations between relative 
DF and tf values at all tested speed (Table 3 and Figure 4), suggesting that the relative tf is 
equivalent to the relative DF. In other words, individual variations in tf are equivalent to 
variations in DF. The interrelatedness of DF and tf and their importance in running are 

Figure 4. Relative (deviations from the median) duty factor (DF), contact time (tc), flight time (tf ), and 
step frequency (SF) values for all participants at 10 km/h. Runners were relatively positioned according 
to their relative DF values at 10 km/h. The relative tf values are almost the exact opposite to the 
relative DF values (Pearson correlation coefficient: −0.98). One participant representing each of the 
five running pattern categories proposed by van Oeveren et al. (2021) based on the combination of DF 
and SF is identified, namely bounce (low DF and median SF), push (low SF and median DF), sit (median 
DF and SF), hop (high SF and median DF), and stick (high DF and median SF).
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further highlighted by their established correlations to ground reaction force metrics. 
Indeed, DF and tf are related to the average vertical ground reaction force during tf (Beck 
et al., 2020) and effective vertical impulse during tf (Dorn et al., 2012), respectively. Both 
the average vertical ground reaction force during tf and effective vertical impulse during 
tf are proportional to the peak vertical ground reaction force, as supports the sine wave 
model of the vertical ground reaction force (Morin et al., 2005) and experimental data 
(Bonnaerens et al., 2021). The present study reported lower association between relative 
tc and DF values (correlations were moderate to high; Table 3 and Figure 4) than relative 
tc to DF values. This result is primarily driven by the midrange DF runners (Figure 4). 
Altogether, these observations indicate that runners with a relatively long tf (or short tc) 
are runners with a relatively low DF within a group of runners, i.e., DF is mainly 
controlled by tf and less by tc. Overall, the kinematic differences previously observed 
between high and low DF runners (Lussiana et al., 2019; Patoz et al., 2020) should 
generalise well to runners with short and long tf , but might not generalise as well to 
runners with long and short tc. Among these three variables (DF, tc, and tf ), one might be 
easier to evaluate subjectively, which would be ideal for track and field running coaches, 
athletes, and practitioners seeking to describe running patterns along a spectrum. Indeed, 
running coaches could then subjectively evaluate their runners and identify the low DF 
runners using either DF, tf , or tc Nevertheless, further studies comparing subjective and 
objective evaluations of runners using DF, tf , and tc would be needed to assess if one of 
these variables is easier to subjectively evaluate than the others.

The moderate to high correlations between relative SF and tf values and low to 
moderate correlations between relative SF and tc values (Table 3 and Figure 4) follow 
the same trend than those between relative DF and tf or tc, i.e., correlations were 
larger with tf than with tc. Hence, tf also determines more of the variation of SF 
than tc.

Bear in mind that the running trials were performed on a treadmill, hence general-
isation to overground running is not guaranteed (Bailey et al., 2017). Nevertheless, as 
temporal variables between treadmill and overground running are largely comparable 
(Van Hooren et al., 2020), our results may still apply to overground running. In 
addition, absolute running speeds were used, which enables generalisability with 
findings from other studies using absolute speeds. However, future studies might 
seek to examine the consistency in running patterns based on DF and SF variables 
across relative speeds [i.e., percent of maximal aerobic speed or maximal oxygen 
uptake, or percent of maximal lactate steady state to avoid influencing motor unit 
recruitment strategy (Burnley & Jones, 2018; Fletcher et al., 2009)] to establish whether 
sudden changes in DF and/or SF could take place at given relative intensities. 
Moreover, the eligibility criteria about the level of running performance was indepen-
dent of the sex of the runners, implying that women were of a higher relative standard 
than men. Furthermore, no sex distinction was considered in the present study. 
Although a relatively large sample size was employed (n = 52), which would have 
allowed us to separate out men (n = 32) and women (n = 20), we preferred to not do 
such separation to increase the statistical power as well as to keep the method as simple 
as possible to have an easy-to-read manuscript. Besides, even though correlations are 
known to be affected by the range of the sample (a large range could lead to very high 
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correlations), the present study reported only a 13 ± 12% larger range for men than 
women when considering the four temporal variables at all tested speeds. The larger 
range reported for men than women could not be explained by the difference in 
relative performance standard between men and women. Indeed, even though 
women reported a   10% slower best half-marathon racing time than men, their 
range of best racing time was 20% larger than men, which is opposed to the 10% 
smaller range obtained for the temporal variables compared to men. Nevertheless, 
future work should focus on the impact of sex when examining the running pattern 
consistency across running speeds.

Conclusion

This study revealed that the consistency in running patterns decreased as speed 
differences increased. Therefore, running patterns should be assessed using a range 
of speeds or at a specific speed. Moreover, there were large interindividual differences 
across the relative temporal variables examined (DF, SF, tc, and tf ), highlighting 
individualised strategies to adapt in running speed changes. In accordance with 
a previously proposed running pattern model, relative DF and SF were weakly 
related, indicating that both variables encapsulate different information on running 
patterns.
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Duty factor (DF) and step frequency (SF) were previously defined as the key
running pattern determinants. Hence, this study aimed to investigate the
association of DF and SF on 1) the vertical and fore-aft ground reaction
force signals using statistical parametric mapping; 2) the force related
variables (peaks, loading rates, impulses); and 3) the spring-mass
characteristics of the lower limb, assessed by computing the force-length
relationship and leg stiffness, for treadmill runs at several endurance running
speeds. One hundred and fifteen runners ran at 9, 11, and 13 km/h. Force data
(1000 Hz) and whole-body three-dimensional kinematics (200 Hz) were
acquired by an instrumented treadmill and optoelectronic system,
respectively. Both lower DF and SF led to larger vertical and fore-aft ground
reaction force fluctuations, but to a lower extent for SF than for DF. Besides, the
linearity of the force-length relationship during the leg compression decreased
with increasing DF or with decreasing SF but did not change during the leg
decompression. These findings showed that the lower theDF and the higher the
SF, the more the runner relies on the optimization of the spring-mass model,
whereas the higher the DF and the lower the SF, the more the runner promotes
forward propulsion.

KEYWORDS

biomechanics, running pattern, spring-mass model, leg stiffness, ground reaction
force
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Introduction

The running pattern was defined to be multifactorial and as
being the product of overall action of human body as early as
1985 (Subotnick, 1985). Indeed, foot placement, arm swing, body
angle, rear leg lift, and stride length were suggested to be
considered together (Subotnick, 1985). The running pattern
was also described as a global and dynamic system (Gindre
et al., 2016). For this reason, the running pattern has been
analyzed globally by some researchers. For instance,
McMahon et al. (1987) defined running with increased knee
flexion and long ground contact time (tc) as Groucho running
while Arendse et al. (2004) defined running with aligned
acromion, greater trochanter, and lateral malleolus as well as
short tc as Pose running. As another example, running with either
a midfoot or forefoot strike pattern, short stride length, and with
the body slightly leaning forward has been named Chi running
(Dreyer and Dreyer, 2009).

More recently, the synthetic review of van Oeveren et al.
(2021) proposed that the full spectrum of running patterns could
be described by combining two temporal variables: step
frequency (SF) and duty factor (DF). The DF variable
represents the product of tc and stride frequency, where stride
frequency is equivalent to approximately half of SF, with less than
4% differences in step times between right and left sides seen in
competitive, recreational, and novice runners between 8 and
12 km/h (Mo et al., 2020). Hence, DF reflects the relative
contribution of tc to the running stride (Minetti, 1998;
Folland et al., 2017). According to van Oeveren et al. (2021),
knowing DF and SF allows to categorize running patterns in one
of five distinct categories, namely “stick”, “bounce”, “push”,
“hop”, and “sit”, but keeping in mind that running patterns
operate along a continuum.

The importance of DF and SF in determining running
patterns corroborates previous findings. For instance, Beck
et al. (2020) showed that DF is functionally representative of
global biomechanical behavior, considering the duration of force
production (which takes place during tc) and its cycle frequency
(stride frequency). Moreover, DF was used to categorize runners
with distinct running patterns (Lussiana et al., 2019; Patoz et al.,
2019; Patoz et al., 2020). High and low DF runners were shown to
use different running strategies (Lussiana et al., 2019; Patoz et al.,
2020). Indeed, low DF runners exhibited a more symmetrical
running step, anterior (midfoot and forefoot) strike pattern, and
extended lower limb during tc than high DF runners, whereas the
latter exhibited greater lower limb flexion during tc, more
rearfoot strike pattern, and less vertical oscillation of the
whole-body center of mass (COM) to promote forward
propulsion than low DF runners (Lussiana et al., 2019; Patoz
et al., 2020). Despite these spatiotemporal and kinematic
differences, the two DF groups demonstrated similar running
economy, indicating the two strategies are energetically
equivalent at endurance running speeds (Lussiana et al.,

2019). This would suggest that the two DF groups may
optimize differently their running pattern, i.e., high DF
runners promotes forward propulsion (pulley system) whereas
low DF runners optimized the spring-mass model (Lussiana
et al., 2019). This statement was further explored by
investigating the relationships between DF and force-length
relationship and leg stiffness (kleg).

In relation to SF, this variable can reveal individual strategies
to increase running speed (Dorn et al., 2012) or achieve top-end
running speeds (Salo et al., 2011). Indeed, the consistency in SF
was shown to decrease as speed differences increased (tested
running speeds: 10–18 km/h) (Patoz et al., 2022) and each runner
was shown to self-optimize his step length over SF ratio (Hunter
et al., 2017; van Oeveren et al., 2021). Even in subgroups of
individuals with similar sprint velocities, a range of SF and step
length combinations are present (Hunter et al., 2004). In
addition, SF was shown to be more variable in novice than
expert runners, independently of the running speed (10 and
15 km/h) (Fadillioglu et al., 2022). Furthermore, Bonnaerens
et al. (2021) demonstrated that external forces were lower in
recreational runners that run with higher DF and SF values
(although non-significant for SF).

These previous studies investigated the association of DF
or SF on running biomechanics using summary metrics,
i.e., specific temporal focus like foot-strike, mid-stance, or
toe-off, of signals such as the whole-body COM trajectory or
the lower limb angles during tc (Lussiana et al., 2019; Patoz
et al., 2020). This reduction to summary-metric space is not
strictly necessary because statistical hypothesis testing can
also be conducted in a continuous manner (Pataky, 2012).
Indeed, one-dimensional biomechanical curves such as the
ground reaction force signals are registrable and their
fluctuations can be described and, then, compared
expressing them as a function of the normalized stance
phase duration (Cavanagh and Lafortune, 1980; Sadeghi
et al., 2003). In this case, statistical analysis can be
conducted on the original registered curves using statistical
parametric mapping (SPM) (Friston et al., 2007), which was
recently applied to the field of biomechanics (Pataky, 2010).
SPM has the advantages to consider the signal as a whole and
presents the results directly in the original sampling space. For
this reason, the spatiotemporal biomechanical context is
immediately apparent, and allows direct visualization of
where do significant differences occur during tc (Pataky,
2012).

Therefore, the first purpose of the present study was to
investigate the association of DF and SF on the vertical and
fore-aft ground reaction force signals for treadmill runs at several
endurance running speeds using SPM. The second purpose of
this study was to investigate the association of DF and SF on
variables derived from the vertical and fore-aft ground reaction
force signals, i.e., impact (Fz,impact), active (Fz,max), braking
(Fbrake,min), and propulsive (Fprop,max) peaks (Luo et al., 2019).
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Besides, force related variables that additionally consider the
temporal aspect of the running step were also considered because
the latter can vary with DF and SF. The third purpose of the
present study was to investigate the association of DF and SF on
the force-length relationship (Gill et al., 2020) and kleg (Liew
et al., 2017).

We hypothesized that 1) a lower DF should be associated to
higher vertical and fore-aft ground reaction force fluctuations,
and that a lower SF should be associated to higher vertical and
fore-aft ground reaction force fluctuations but to a lower extent
than for DF (Bonnaerens et al., 2021). Moreover, we
hypothesized that 2) both a lower DF and lower SF should be
associated to higher peak forces (Fz,impact, Fz,max, Fbrake,min,
Fprop,max). Besides, higher DF runners demonstrated a more
rearfoot strike pattern (Lussiana et al., 2019; Patoz et al.,
2020) but should show lower vertical force than lower DF
runners. Hence, we hypothesized that 3) the linearity of the
force-length relationship should decrease with increasing DF,
due to the higher chance to observe an impact peak when
increasing DF, and that a higher DF should be associated to a
lower kleg. Furthermore, we hypothesized that 4) a higher SF
should correspond to a greater kleg and smaller leg compression,
as previously observed (Morin et al., 2007; Coleman et al., 2012;
Hobara et al., 2020).

Materials and methods

Participant characteristics

An existing database of 115 recreational runners (Patoz et al.,
2021) including 87 males (age: 30 ± 8y, height: 180 ± 6 cm, leg
length, measured from motion capture: 86 ± 4 cm, body mass:
70 ± 7 kg, weekly running distance: 38 ± 24 km, and running
experience: 10 ± 8y) and 28 females (age: 30 ± 7 years, height:
169 ± 5 cm, leg length: 82 ± 4 cm, body mass: 61 ± 6 kg, weekly
running distance: 22 ± 16 km, and running experience: 11 ± 8y)
was used in this study. For study inclusion, participants were
required to not have current or recent lower-extremity injury
(≤1 month), to run at least once a week, and to have an estimated
maximal aerobic speed ≥14 km/h (individual estimation). The
study protocol was approved by the local Ethics Committee
(CER-VD 2020–00334).

Experimental procedure

After the participants provided written informed consent,
retroreflective markers were positioned on the participants
(described in Subsec. Data Collection) to record their running
biomechanics. For each participant, a 1-s static trial was first
recorded while he or she stood in a standard anatomical position
on an instrumented treadmill (Arsalis T150–FMT-MED,

Louvain-la-Neuve, Belgium) for calibration purposes. Then, a
7-min warm-up run was performed on the same treadmill
(9–13 km/h). After a short break (<5min), three 1-min runs
(9, 11, and 13 km/h) were performed in a randomized order (1-
min recovery between each run). Three-dimensional (3D)
kinematic and kinetic data were collected during the static
trial and the last 30s of the running trials (83 ± 5 running
steps), resulting in more than 20 steps being analyzed (Riazati
et al., 2019). All participants were familiar with running on a
treadmill, as it was part of their usual training program, and they
wore their habitual running shoes (shoe mass: 256 ± 48 g and
shoe heel-to-toe drop: 7 ± 3 mm).

Data collection

Whole-body 3D kinematic data were collected at 200 Hz
using motion capture (8 cameras) and Vicon Nexus software
v2.9.3 (Vicon, Oxford, United Kingdom). The laboratory
coordinate system was oriented such that the x-, y-, and
z-axes denoted the mediolateral (pointing towards the right
side of the body), posterior-anterior, and inferior-superior
axes, respectively. Forty-three and 39 retroreflective markers
of 12.5 mm diameter were used for the static and running
trials, respectively. They were affixed to the skin and shoes of
individuals on anatomical landmarks using double-sided tape
following standard guidelines (Tranberg et al., 2011).
Synchronized kinetic data (1000 Hz) were also collected using
the force plate embedded into the treadmill.

The 3D marker and ground reaction force data (analog
signal) were exported in the. c3d format and processed in
Visual3D Professional software v6.01.12 (C-Motion Inc.,
Germantown, MD, United States). The 3D marker data were
interpolated using a third-order polynomial least-square fit
algorithm, allowing a maximum of 20 frames for gap filling,
and were subsequently low-pass filtered at 20 Hz using a fourth-
order Butterworth filter. The 3D ground reaction force signal was
filtered using the same filter, and down sampled to 200 Hz to
match the sampling frequency of the marker data.

A full-body biomechanical model with six degrees of freedom
and 15 rigid segments was constructed from the marker set. The
segments included the head, upper arms, lower arms, hands,
thorax, pelvis, thighs, shanks, and feet. In Visual3D, the segments
were treated as geometric objects, assigned inertial properties and
COM locations based on their shape (Hanavan, 1964), and
attributed relative masses based on standard regression
equations (Dempster, 1955). The whole-body COM location
was calculated from the parameters of all 15 segments (the
whole-body COM was directly provided by Visual3D).

For all biomechanical measures, the values extracted from
the 30-s data collection for each participant, including both
right and left steps, were averaged for subsequent statistical
analyses.
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Event detection

For each running trial, foot-strike, toe-off, and mid-stance
events were identified with Visual3D. Foot-strike and toe-off
were detected by applying a 20N threshold to the vertical ground
reaction force (Smith et al., 2015). Mid-stance was placed at the
instant where the fore-aft ground reaction force changed from
negative to positive, which permitted to separate the stance phase
in a braking and propulsive phase.

Temporal Variables tc, flight time (tf), and swing time (ts)
were defined as the time from foot-strike to toe-off of the same
foot, from toe-off of one foot to foot-strike of the contralateral
foot, and from toe-off to foot-strike of the same foot,
respectively.

DF was calculated as DF ! tc/(tc + ts), where 1/(tc + ts)
represents the stride frequency (Minetti, 1998). SF was defined
as the inverse of the sum of tc and tf, i.e., SF ! 1/(tc + tf).
Furthermore, SF was normalized by

!!!!
g/L0

√
(Lieberman et al.,

2015; van Oeveren et al., 2021), where g is the gravitational
constant and L0 the leg length, calculated as the distance between
hip and ankle joint center using the static (calibration) trial.

Braking (tbrake) and propulsive (tprop) times were given as the
time from foot-strike to mid-stance and mid-stance to toe-off of
the same foot, respectively.

Compression (tcomp) and decompression (tdecomp) times were
given as the time from foot-strike to the time where the vertical
position of the whole-body COM is at its minimum, i.e., where
the vertical ground reaction force is maximum, and from the time
where the vertical position of the whole-body COM is at its
minimum to toe-off, respectively.

Ground reaction force variables

Fz,impact and Fz,max were obtained from the vertical ground
reaction force signal (Luo et al., 2019). Noteworthy, an impact
peak was not always observed, Fz,impact was quantified in 80% of
the running trials. Besides, Fbrake,min and Fprop,max were given by
the minimum and maximum values of the fore-aft ground
reaction force signal (Luo et al., 2019).

The instantaneous vertical loading rate (LRz) was calculated
as the largest slope of the vertical ground reaction force signal
between 20 and 80% of the first 15% of the stance phase (Willson
et al., 2014). The 15% limit was chosen because an impact peak
was not always identified and so that the loading rate of every
runner was in the same relative temporal window (Willson et al.,
2014). The braking (LRbrake) and propulsive (LRprop) loading
rates, because of their relation to running-related injuries (Daoud
et al., 2012; Willson et al., 2014; Davis et al., 2016; Johnson et al.,
2020), were calculated as the largest slopes of the fore-aft ground
reaction force signal between foot-strike and the instant of
Fbrake,min and between mid-stance and the instant of Fprop,max,
respectively.

The braking (Ibrake) and propulsive (Iprop) impulses were
calculated as the integral of the fore-aft ground reaction force
signal from foot-strike to mid-stance and frommid-stance to toe-
off, respectively (Gottschall and Kram, 2005).

Force variables were all normalized by BW.

Stiffness related variables

The spring-mass characteristics of the lower limb were
assessed by computing the force-length relationship (Gill
et al., 2020), i.e., the force vector projected along the leg as
function of the leg compression/decompression during stance,
and kleg (Liew et al., 2017), calculated using both the compression
and decompression of the human body (Gill et al., 2020) and
adapted from Liew et al. (2017). More explicitly, compressive
(kleg, comp) and decompressive (kleg, decomp) leg stiffnesses were
given by the maximum of the force vector projected along the leg
(Fleg,max) divided by the maximum leg compression (∆Lcomp) and
decompression (∆Ldecomp) during stance, respectively. Following
the definition of the spring-mass model, i.e., a massless spring
attached to a point mass located at the whole-body COM
(Blickhan, 1989), the leg length was represented by the
magnitude of a 3D leg vector defined from the whole-body
COM to the center of pressure of the foot. The center of
pressure being subject to large fluctuations for low vertical
force values, a 200N vertical threshold was used for foot-strike
and toe-off events in this specific case (see supplementary
materials). ∆Lcomp and ∆Ldecomp were given by the difference
between the leg length at foot-strike and the minimum value of
the leg length and by the difference between the leg length at toe-
off and the minimum value of the leg length, respectively. A leg
angle (θleg) was calculated as the angle between the leg vector and
anterior-posterior axis, and evaluated at foot-strike (θleg,FS) and
toe-off (θleg,TO) (Coleman et al., 2012).

Fleg,max was normalized by BW, ∆Lcomp and ∆Ldecomp were
expressed in absolute and relative (as a percentage of
participant’s height) units and similarly for kleg, comp and kleg,
decomp.

Statistical analysis

All data are presented as the mean ± standard deviation.
Pearson correlation coefficient (r) between DF and SF together
with corresponding 95% confidence interval (lower, upper) were
computed at the three running speeds separately. Correlations
were considered very high, high, moderate, low, and negligible
when absolute r values were between 0.90–1.00, 0.70–0.89,
0.50–0.69, 0.30–0.49, and 0.00–0.29, respectively (Hinkle et al.,
2002). In this study, collinearity between DF and SF was
prevented because r was smaller than 0.7 (Table 1) (Van
Oeveren et al., 2019). The association of DF and SF on the
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vertical and fore-aft ground reaction force signals (along the
entire stance phase) was examined using SPM and linear
regression for each tested speed. Bonferroni correction was
employed to consider that three running speeds were tested.
To compare participants, the stance phase was normalized and
therefore expressed in percentage. Besides, residual plots were
inspected and no obvious deviations from homoscedasticity or
normality were observed. Hence, the association of DF and SF
(covariates) and running speed on temporal, ground reaction
force, and stiffness related variables was evaluated using a linear
mixed effects model fitted by restricted maximum likelihood. The
within-subject nature was controlled for by including random
effects for participants (individual differences in the intercept of
the model). The fixed effects included running speed (categorical
variable) and DF and SF (continuous variables). The linearity of
the force-length relationship was quantified using the coefficient
of determination (R2) during both leg compression (R2

comp) and
decompression (R2

decomp). However, the calculation of R2 was
modified so that R2

comp and R2
decomp values were computed by

comparing the compression and decompression force-length
relationships to the perfectly elastic compression and
decompression lines, i.e., linear relations obtained using slopes
equal to kleg, comp and kleg, decomp, respectively (Gill et al., 2020). In
other words, R2 evaluates how far the force-length relationship is
from a linear model obtained using kleg. Statistical analysis was
performed using spm1D (v0.4.6, https://spm1d.org) (Pataky,

2012), Python (v3.7.4, http://www.python.org), and Jamovi
(v1.6.23, https://www.jamovi.org) with a level of significance
set at p ≤ 0.05.

Results

The increase of the running speed from 9 to 13 km/h was
accompanied with a decrease of DF of 13.3 ± 3.8% and an
increase of SF of 5.9 ± 3.1%. The correlation between DF and SF
was low but significant at all tested speeds (r ≤ 0.32; p < 0.001;
Table 1).

tc, tbrake, tprop, tcomp, and tdecomp significantly increased with
increasing DF while tf decreased (p < 0.001; Table 2). These six
variables significantly decreased with increasing SF (p < 0.001;
Table 2). Besides, tc and tdecomp decreased with increasing speed
while tf increased with increasing speed (p ≤ 0.02; Table 2).

The vertical ground reaction force signal was significantly
negatively related to DF at all tested speeds (stance range: 0 and
15–100% at 9 and 11 km/h, and 0 and 14–100% at 13 km/h;
Figure 1). Similar findings were obtained for SF but to a lower
extent (stance range: 60–99% at 9 km/h, 59–99% at 11 km/h, and
67–83% at 13 km/h; Figure 2).

The fore-aft ground reaction force signal was significantly
positively related to both DF and SF in the first 50% of the stance
(negative fore-aft force) and negatively related to both DF and SF

TABLE 1 Duty factor (DF) and step frequency (SF), as well as their Pearson’s correlation coefficient (r) together with their 95% confidence interval
(lower, upper) and statistical significance (P ≤ 0.05), indicated in bold, for three tested speeds.

Running speed (km/h) DF (%) SF (-) r P

9 37.7 ± 3.1 0.80 ± 0.04 0.32 (0.14, 0.47) <0.001

11 34.7 ± 2.5 0.82 ± 0.04 0.33 (0.15, 0.48) <0.001

13 32.6 ± 2.2 0.84 ± 0.04 0.32 (0.14, 0.47) <0.001

Note: values are presented as mean ± standard deviation. SF was normalized by
!!!!
g/L0

√
, where g is the gravitational constant and L0 the leg length.

TABLE 2 Temporal variables for runners at endurance running speeds. Significant differences (P ≤ 0.05) identified by linearmixed effects modeling are
indicated in bold. Note: values are presented as mean ± standard deviation. DF: duty factor, SF: step frequency, tc: contact time, tbrake: brake time,
tprop: propulsion time, tcomp: compression time, tdecomp: decompression time, and tf : flight time. SF covariate was normalized by

!!!!!
g/L0

√
, where g is the

gravitational constant and L0 the leg length. Up (↑) and down (↓) arrows indicate positive and negative effects of the covariate, respectively. † and ‡
Significantly different from the value at 13 km/h.

Running speed
(km/h)

tc (ms) tbrake (ms) tprop (ms) tcomp (ms) tdecomp (ms) tf (ms)

9 279 ± 24 139 ± 13 140 ± 14 113 ± 12 166 ± 18 92 ± 24†

11 250 ± 19 126 ± 11 124 ± 10 104 ± 11 146 ± 13 111 ± 20‡

13 228 ± 17 116 ± 10 112 ± 9 96 ± 10 132 ± 12 122 ± 18

Running speed effect (P) <0.001 0.33 0.39 0.26 0.02 <0.001

DF covariate effect (P) ↑ <0.001 ↑ <0.001 ↑ <0.001 ↑ <0.001 ↑ <0.001 ↓ <0.001

SF covariate effect (P) ↓ <0.001 ↓ <0.001 ↓ <0.001 ↓ <0.001 ↓ <0.001 ↓ <0.001
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in the last 50% of the stance at all tested speeds (stance range for
DF: 5–11, 27–34, and 69–100% at 9 km/h, 7–12, 29–35, and
71–100% at 11 km/h, and 6–13 and 68–100% at 13 km/h;
Figure 3; stance range for SF: 15–33 and 68–95% at 9 km/h,
14, 19–35, 47–52, and 70–98% at 11 km/h, and 14–28 and
71–89% at 13 km/h; Figure 4).

Fz,max, Fz,impact, Fprop,max, LRprop, and Ibrake significantly
decreased with increasing DF while Fbrake,min, LRbrake, and
Iprop significantly increased (p ≤ 0.01; Table 3). Fz,impact,
Fbrake,min, LRprop, and Ibrake significantly increased with
increasing SF while, Fprop,max and Iprop significantly decreased
(p ≤ 0.02; Table 3). Considering absolute values, all the ground
reaction force variables significantly increased with increasing
speed (p ≤ 0.005; Table 3).

The force-length relationships of all participants, colored
according to their DF and SF, are depicted in Figures 5, 6,
respectively, for each tested speeds and separately for the
compression and decompression phases. R2

comp significantly

decreased with increasing DF or running speed, and increased
with increasing SF (p ≤ 0.007; Table 4), while there was no change
of R2

decomp with DF, SF, and speed.
Fz,max, ∆Lcomp, kleg, comp, and kleg, decomp significantly

decreased with increasing DF while ∆Ldecomp and θleg,TO
significantly increased (p ≤ 0.03; Table 5). ∆Lcomp, ∆Ldecomp,
and θleg,TO significantly decreased with increasing SF while kleg,
comp, and kleg, decomp significantly increased (p < 0.001; Table 5).
Fleg,max, ∆Ldecomp, kleg, decomp, |θleg,FS |, and θleg,TO significantly
increased with increasing speed (p ≤ 0.005; Table 5).

Discussion

According to the first hypothesis, lower DF and lower SF
were associated to higher vertical and fore-aft ground reaction
force fluctuations, but SF to a lower extent than DF. Besides,
according to the second hypothesis, larger Fz,max, Fz,impact, |

FIGURE 1
Statistical parametric mapping (SPM) analysis, i.e., t-statistics (SPM{t}), of the linear relationship between the vertical ground reaction force (Fz)
and the duty factor (DF) along the running stance phase at (A) 9 km/h, (B) 11 km/h, and (C) 13 km/h. In the upper panels, Fz, expressed in body weight
(BW), is depicted for each participant (the color depends on theDF value) and for themean (black line) ± standard deviation (dashed black line) over all
participants. In the lower panels, the black dashed horizontal lines represent the critical (parametric) threshold while the portion of the running
stance phase which is statistically significant (p ≤ 0.017; Bonferroni correction was applied to take into the three tested speeds) is given by the gray
shaded area.
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Fbrake,min|, and Fprop,max were reported for lower DF values as well
as larger |Fbrake,min|, and Fprop,max for lower SF values. However,
there was no association between SF and Fz,max and a larger
Fz,impact was reported for higher SF values, which partly refuted
the second hypothesis. The linearity of the force-length
relationship during the leg compression decreased with
increasing DF but did not change during the leg
decompression, partly refuting the third hypothesis. According
to the fourth hypothesis, a higher SF was associated to a larger kleg
and a smaller leg compression.

DF was previously analytically shown to be inversely
proportional to the maximum of an approximated, based on a
sine-wave model (Beck et al., 2020), vertical ground reaction
force signal (Morin et al., 2005). This previous knowledge is
further expanded by the present results which showed that Fz,max

is significantly negatively related to DF (Table 3), and
corroborates previous findings which showed that DF was
negatively correlated to Fz,max (Bonnaerens et al., 2021). This

suggests that DF should be inversely related to Fz,max without
using a sine-wave model to approximate the vertical ground
reaction force. Moreover, the present study extends to the fact
that a lower DF results in a larger vertical ground reaction force
during most of the stance (~15–100%; Figure 1) but after the 15%
temporal window representative of the “impact” phase (Willson
et al., 2014). Therefore, the SPM analysis additionally revealed
that the association between DF and the vertical ground reaction
force signal is not only given at Fz,max but through almost the
entire stance (after the impact phase; ≥15%). This result suggests
that the shape of the vertical ground reaction force during the
impact phase is not affected by the DF. This result might be
attributed to the fact that the vertical ground reaction force signal
is given by the force contributions of two discrete body mass
components, i.e., a distal mass composed of the foot and shank
and the remaining mass (Clark et al., 2017; Udofa et al., 2019).
Hence, the impact phase, represented by the distal mass in this
model, might not be affected by the DF. This study also showed

FIGURE 2
Statistical parametric mapping (SPM) analysis, i.e., t-statistics (SPM{t}), of the linear relationship between the vertical ground reaction force (Fz)
and the step frequency (SF) normalized by

!!!!
g/L0

√
, where g is the gravitational constant and L0 the leg length, along the running stance phase at (A)

9 km/h, (B) 11 km/h, and (C) 13 km/h. In the upper panels, Fz, expressed in body weight (BW), is depicted for each participant (the color depends on
the DF value) and for the mean (black line) ± standard deviation (dashed black line) over all participants. In the lower panels, the black dashed
horizontal lines represent the critical (parametric) threshold while the portion of the running stance phase which is statistically significant (p ≤ 0.017;
Bonferroni correction was applied to take into the three tested speeds) is given by the gray shaded area.
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that for the runners having a visible Fz,impact, this Fz,impact was
significantly larger for lower than higher DF values (Table 3).
This discrepancy could be explained by fact that the impact peak
might be happening at a different instant of the running stance
phase (within the first 15%) depending on individuals.

Similarly, a lower SF resulted in a larger vertical ground
reaction force, but only at the end of the stance (~65–95%;
Figure 2). This was likely related to the longer step length for
running at the same speed. In fact, it has previously been
shown that a larger vertical ground reaction force (i.e., support
force) produces a larger step length (Weyand et al., 2000; Dorn
et al., 2012). Our SPM analysis demonstrated that this larger
support force was located only at the end of the stance. Indeed,
Fz,max was not related to SF (Table 3). Non-etheless, the reason
why this larger support force was located at the end of the
stance could not readily be explained. Besides, Fz,impact

significantly increased with increasing SF (Table 3). This
result contradicts previous findings which observed a

decrease of the impact peak with increasing SF (Lieberman
et al., 2015). However, these findings were obtained when
asking individuals to voluntarily increase their SF. Hence, this
could lead to a different running pattern than the spontaneous
running pattern of runners with a naturally high SF.

The present study reported no association of DF and SF on
LRz (Table 3). This could partly follow from the fact that the SPM
analysis did not report any significant association between DF
and SF and the vertical ground reaction force during the impact
phase (the first 15% of the stance). This result corroborates the
absence of correlation between LRz and both DF and SF at slow
running speeds, as reported by Bonnaerens et al. (2021).
However, assuming that DF is partly related to foot-strike
pattern, i.e., the higher the DF, the more likely that this
runner is a rearfoot striker (Lussiana et al., 2019; Patoz et al.,
2020), this result contradicts the result of a meta-analysis which
reported higher LRz for rearfoot than non-rearfoot strikers
(Almeida et al., 2015).

FIGURE 3
Statistical parametric mapping (SPM) analysis, i.e., t-statistics (SPM{t}), of the linear relationship between the fore-aft ground reaction force (Fy)
and the duty factor (DF) along the running stance phase at (A) 9 km/h, (B) 11 km/h, and (C) 13 km/h. In the upper panels, Fy, expressed in body weight
(BW), is depicted for each participant (the color depends on theDF value) and for themean (black line) ± standard deviation (dashed black line) over all
participants. In the lower panels, the black dashed horizontal lines represent the critical (parametric) threshold while the portion of the running
stance phase which is statistically significant (p ≤ 0.017; Bonferroni correction was applied to take into the three tested speeds) is given by the gray
shaded area.
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The fore-aft ground reaction force signal was positively
related to DF around ~5–10% of the stance and to both DF
and SF around ~25–35% (positively) and ~70–90% (negatively;
Figures 3, 4). The positive association of DF on the fore-aft
ground reaction force signal reported by the SPM analysis
around ~5–10% of the stance can be explained by the foot-
strike pattern. Indeed, fore-foot strikers were shown to have a
negative spike on the fore-aft ground reaction force signal around
~5–10% of the stance (Nordin et al., 2017) and DF was related to
the footstrike pattern (Lussiana et al., 2019; Patoz et al., 2020).
However, the association of DF on the fore-aft force signal
around ~5–10% of the stance was not accompanied by an
association of DF on the vertical force signal at the same
percentage of the stance. This suggests that the effect of DF
during the impact phase was more important in the fore-aft than
vertical force signal. The other two significant regions are around
the braking and propulsive peaks (Fbrake,min and Fprop,max), which
were also significantly related to DF and SF (Table 3). These

results partly corroborate previous observations, which showed
that the peak braking force was correlated to DF but not to SF
(Bonnaerens et al., 2021). Moreover, they confirm that larger
ground reaction forces during propulsion are needed to lift and
accelerate the body during stance to generate longer step lengths
(Schache et al., 2014). As previously suggested (van Oeveren
et al., 2021), combining vertical and horizontal ground reaction
forces into a single vector could be useful to properly characterize
their orientations and actions and carefully describe the
relationship of this single vector with DF and SF, especially at
the end of the stance.

The linearity of the force-length relationship was higher for
lower DF and SF than for higher DF and SF runners during the
leg compression but there was no difference during the leg
decompression (Table 4). This means that higher DF and SF
values were associated to more variations of the instantaneous
compressive stiffness, i.e., the slope for each pair of point during
the leg compression. However, the decompressive stiffness

FIGURE 4
Statistical parametric mapping (SPM) analysis, i.e., t-statistics (SPM{t}), of the linear relationship between the fore-aft ground reaction force (Fy)
and the step frequency (SF) normalized by

!!!!
g/L0

√
, where g is the gravitational constant and L0 the leg length, along the running stance phase at (A)

9 km/h, (B) 11 km/h, and (C) 13 km/h. In the upper panels, Fy, expressed in body weight (BW), is depicted for each participant (the color depends on
the DF value) and for the mean (black line) ± standard deviation (dashed black line) over all participants. In the lower panels, the black dashed
horizontal lines represent the critical (parametric) threshold while the portion of the running stance phase which is statistically significant (p ≤ 0.017;
Bonferroni correction was applied to take into the three tested speeds) is given by the gray shaded area.
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during the leg decompression was independent of DF and SF
(Table 4). This result corroborates the choice made by several
authors to use the decompression phase instead of the
compression one to calculate the vertical stiffness (Cavagna
et al., 1988; Schepens et al., 1998). Deviation from linearity of
the force-length relationship among individuals was also

reported by Gill et al. (2020). Indeed, these authors reported
that the linearity of the force-length curve was foot-strike index
(foot-strike pattern) dependent and that this curve should be
investigated before using the spring-mass model. Furthermore,
these authors suggested that for R2 < 0.95, it may be more
appropriate to segment the stance phase and to individually

TABLE 3 Ground reaction force variables for runners at endurance running speeds. Significant differences (P ≤ 0.05) identified by linear mixed effects
modeling are indicated in bold.

Running
speed
(km/h)

Fz,max
(BW)

Fz,impact
(BW)

Fbrake,min
(BW)

Fprop,max
(BW)

LRz
(BW/s)

LRbrake
(BW/s)

LRprop
(BW/s)

Ibrake
(BW · s)

Iprop
(BW · s)

9 2.36 ± 0.19a,b 1.53 ± 0.28a,b -0.24 ± 0.03a,b 0.21 ± 0.03a,b 49.0 ±
11.9a,b

-13.4 ± 2.7a,b 5.7 ± 0.8a,b -0.016 ±
0.002a,b

0.017 ±
0.002a,b

11 2.50 ± 0.19 1.63 ± 0.30 -0.29 ± 0.03b 0.26 ± 0.03b 58.7 ± 13.4b -16.2 ± 3.1b 7.5 ± 1.0b -0.018 ± 0.002‡ 0.019 ± 0.002b

13 2.62 ± 0.19 1.81 ± 0.32 -0.34 ± 0.03 0.31 ± 0.03 68.4 ± 15.2 -18.1 ± 3.4 9.7 ± 1.4 -0.019 ± 0.002 0.021 ± 0.002

Running speed effect (P) 0.005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

DF covariate effect (P) ↓ <0.001 ↓ <0.001 ↑ 0.01 ↓ <0.001 0.34 ↑ <0.001 ↓ <0.001 ↓ 0.004 ↑ <0.001

SF covariate effect (P) 0.33 ↑ <0.001 ↑ <0.001 ↓ <0.001 0.11 0.17 ↑ 0.02 ↑ <0.001 ↓ <0.001

Note: values are presented as mean ± standard deviation. DF: duty factor, SF: step frequency, Fz,max and Fz,impact: active and impact peaks, Fbrake,min: minimum braking force, Fprop,max:
maximum propulsive force, LRz: instantaneous vertical loading rate, LRbrake: instantaneous braking loading rate, LRprop: instantaneous propulsive loading rate, and Ibrake and Iprop: braking
and propulsive impulses. Ground reaction force variables were normalized by body weight (BW) and SF covariate was normalized by

!!!!
g/L0

√
, where g is the gravitational constant and L0 the

leg length. Up (↑) and down (↓) arrows indicate positive and negative effects of the covariate, respectively.
aSignificantly different from the value at 11 km/h.
bSignificantly different from the value at 13 km/h.

FIGURE 5
Force-length relationship, i.e., ground reaction force projected along the leg (Fleg) as function of the leg compression/decompression, for each
participant [the color depends on the duty factor (DF) value] and for the mean (black line) over all participants during the running stance phase, at
three running speeds, and expressed using (A) SI units and (B) normalized units, i.e., body weight (BW) for Fleg and percentage of runners’ height for
leg compression.
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investigate the different subphases. Hence, the deviation from
linearity observed herein during the leg compression for higher
than lower DF and SF runners suggest that the stiffness should be
split into several phases during the leg compression and thus
invalidate the usage of kleg, comp for these runners. However, the
linearity observed during leg decompression for all participants
suggest that kleg, decomp could be used.

This study reported that kleg, decomp and Fleg,max significantly
increased with decreasing DF while ∆Ldecomp decreased (Table 5).

Hence, the elastic energy (Eel), which could be calculated as Eel !
F2
leg,maxkleg,decomp

2 using the definition of the spring-mass model,
increased with decreasing DF. Furthermore, the compression
was more vertical and tc was shorter for lower than higher DF
runners. High DF runners could be characterized by a slow
stretch-shortening cycle (runners with tc longer than 250 m)
while low DF runners by a fast one (Vogt and Hoppeler, 2014).
These results, together with the higher linearity of the force-
length curve during the compression phase observed for lower
than higher DF runners suggest that a lower DF runner better
optimizes the spring-mass model than a higher DF runner. On
the contrary, θleg,TO significantly increased with increasing DF
(Table 5). These results suggest that the higher the DF, the higher
the promotion of forward propulsion of the body. This
compensates for the lower utilization of the spring-mass
model of higher than lower DF runners and corroborates
previous findings (Lussiana et al., 2019; Patoz et al., 2020).
These findings bring further evidence and reinforce previous
statements that low DF runners rely more on the optimization of
the spring-mass model whereas high DF runners promotes
forward propulsion (pulley system) (Lussiana et al., 2019;
Patoz et al., 2020).

This study further revealed that the higher the SF, the larger
kleg, decomp and the smaller ∆Ldecomp (Table 5), which
corroborates previous findings (Coleman et al., 2012; Hobara
et al., 2020). Moreover, θleg,TO significantly decreased with
increasing SF (Table 5). These results suggest that higher SF

FIGURE 6
Force-length relationship, i.e., ground reaction force projected along the leg (Fleg) as function of the leg compression/decompression, for each
participant [the color depends on the step frequency (SF) value; SF was normalized by

!!!!
g/L0

√
, where g is the gravitational constant and L0 the leg

length] and for the mean (black line) over all participants during the running stance phase, at three running speeds, and expressed using (A) SI units
and (B) normalized units, i.e., body weight (BW) for Fleg and percentage of runners’ height for leg compression.

TABLE 4 Linearity of the force-length relationship during leg
compression (R2

comp) and decompression (R2
decomp). Significant

differences (p ≤ 0.05) identified by linear mixed effects modeling are
indicated in bold.

Running speed (km/h) R2
comp R2

decomp

9 0.95 ± 0.06a,b 0.99 ± 0.02

11 0.93 ± 0.08b 0.99 ± 0.01

13 0.90 ± 0.10 0.99 ± 0.01

Running speed effect (P) <0.001 0.14

DF covariate effect (P) ↓ <0.001 0.06

SF covariate effect (P) ↑ 0.007 0.85

Note: values are presented as mean ± standard deviation. DF: duty factor, SF: step
frequency, SF covariate was normalized by

!!!!
g/L0

√
, where g is the gravitational constant

and L0 the leg length. Up (↑) and down (↓) arrows indicate negative effects of the
covariate.
aSignificantly different from the value at 11 km/h.
bSignificantly different from the value at 13 km/h.
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runners better optimize the spring-mass model than lower SF
runners, confirming that SF seems to be an indirect factor
influencing kleg through its effect on tc (Morin et al., 2007).

Most of the variables studied herein reported an opposite
association of DF and SF covariates (Tables 3-5). In other words,
for most of the variables, if DF had a positive association on a given
variable, then SF had a negative association on the same variable,
and vice versa. This observation sounds counter-intuitive because SF
is analytically associated to DF, i.e., DF ! 0.5 tc SF. However,
though significant, correlations between DF and SF were low at
all tested speeds (Table 1). Hence, the direct association of SF
covariate on a given variable is more important than the indirect
association caused by the relationship between SF and DF. Besides,
the low correlations between SF and DF tend to reduce the direct
association of a covariate on a given variable. Noteworthy,
correlations between DF and tc were high (r ≥ 0.78) and
significant (p < 0.001) and correlations between DF and tf were
very high (r ≥ 0.95) and significant (p < 0.001). Hence, these results
corroborate that DF and SF can be viewed as two variables that
complement each other and that should be used together to describe
the full spectrum of running patterns (van Oeveren et al., 2021).

A few limitations to the present study exist. Few findings of this
study were obtained using the spring-mass model, which include
many assumptions and limitations (Blickhan, 1989; McMahon and
Cheng, 1990; Farley and González, 1996) that may restrict our
conclusion on the underlying mechanisms. However, due to the
methodological challenges associated to in vivomeasurements under
dynamic conditions to understand the role of muscle-tendon unit
during running, the use of spring-loaded inverted pendulum model

seems rational and relevant. In addition, the running speeds were
limited to endurance speeds representative of the running speeds
employed by recreational runners during endurance running
training (Selinger et al., 2022) and experimental trials were
performed on a treadmill. Similar results might also be obtained
using overground running trials because spatiotemporal parameters
between motorized treadmill and overground running are largely
comparable (Van Hooren et al., 2020). However, it was also
concluded that participants behaved differently when attempting
to achieve faster speeds overground than on a treadmill (Bailey et al.,
2017). Therefore, further studies should investigate the association of
DF and SF on running kinetic using additional conditions, i.e., faster
speeds, positive and negative slopes, and different types of ground.

To conclude, this study revealed that the lower the DF and
the higher the SF, the more the runner relies on the optimization
of the spring-mass model, whereas the higher the DF and the
lower the SF, the more the runner promotes forward propulsion.
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TABLE 5 Stiffness variables for runners at endurance running speeds. Significant differences (P ≤ 0.05) identified by linear mixed effects modeling are
indicated in bold.

Running
speed
(km/h)

Fleg,max
(BW)

∆Lcomp
(cm)

∆Ldecomp
(cm)

∆Lcomp
(%)

∆Ldecomp
(%)

kleg,
comp
(kN/
m)

kleg,
decomp
(kN/m)

kleg,
comp
(BW/
%)

kleg,
decomp
(BW/%)

θleg,FS
(deg)

θleg,TO
(deg)

9 2.36 ±
0.19a,b

6.5 ± 1.1 10.0 ± 1.0a,b 3.7 ± 0.6 5.7 ± 0.6a,b 24.6 ±
4.5

15.8 ±
2.4a,b

0.66 ±
0.11

0.42 ±
0.06a,b

-8.1 ±
2.6a,b

13.4 ±
1.6a,b

11 2.50 ± 0.19 6.5 ± 1.1 10.4 ± 1.1b 3.7 ± 0.6 5.9 ± 0.6b 26.3 ±
5.0

16.2 ± 2.4b 0.70 ±
0.13

0.43 ±
0.06b

-9.2 ± 2.5b 15.0 ± 1.5b

13 2.62 ± 0.19 6.4 ± 1.1 10.7 ± 1.1 3.6 ± 0.6 6.1 ± 0.6 27.8 ±
5.3

16.3 ± 2.3 0.74 ±
0.13

0.44 ± 0.06 -10.2 ±
2.4

16.5 ± 1.5

Running speed
effect (P)

0.005 0.38 <0.001 0.39 <0.001 0.30 <0.001 0.13 <0.001 <0.001 <0.001

DF covariate
effect (P)

↓ <0.001 ↓ 0.02 ↑ 0.03 ↓ 0.01 ↑ 0.01 ↓ <0.001 ↓ <0.001 ↓ <0.001 ↓ <0.001 0.59 ↑ <0.001

SF covariate
effect (P)

0.36 ↓ <0.001 ↓ <0.001 ↓ <0.001 ↓ <0.001 ↑ <0.001 ↑ <0.001 ↑ <0.001 ↑ <0.001 0.83 ↓ <0.001

Note: values are presented as mean ± standard deviation. DF: duty factor, SF: step frequency, Fleg,max: maximum of the force vector projected along the leg, ∆Lcomp and ∆Ldecomp: maximum
leg compression and decompression during stance, kleg, comp and kleg, decomp: compressive and decompressive leg stiffnesses, θleg,FS and θleg,TO: leg angle at foot-strike and toe-off. Fleg,max was
normalized by body weight (BW). ∆Lcomp and ∆Ldecomp were expressed in absolute and relative (as a percentage of participant’s height) units and similarly for kleg, comp and kleg, decomp. SF
covariate was normalized by

!!!!
g/L0

√
, where g is the gravitational constant and L0 the leg length. Up (↑) and down (↓) arrows indicate positive and negative effects of the covariate,

respectively.
aSignificantly different from the value at 11 km/h.
bSignificantly different from the value at 13 km/h.

Frontiers in Physiology frontiersin.org12

Patoz et al. 10.3389/fphys.2022.1044363

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1044363


The patients/participants provided their written informed
consent to participate in this study.

Author contributions

Conceptualization, AP, TL, CG, and DM; methodology, AP,
TL, CG, and DM; investigation, AP, TL, BB, EP, and JG; formal
analysis, AP and BB; writing—original draft preparation, AP and
BB; writing—review and editing, AP, TL, BB, CG, and DM;
supervision, AP, TL, CG, and DM.

Funding

This study was supported by Innosuisse grant no. 35793.1 IP-LS.
This studywas supported by theUniversity of Lausanne (Switzerland).

Acknowledgments

The authors warmly thank the participants for their time and
cooperation.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their
affiliated organizations, or those of the publisher, the
editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2022.1044363/full#supplementary-material

References

Almeida, M. O., Davis, I. S., and Lopes, A. D. (2015). Biomechanical
differences of foot-strike patterns during running: A systematic review with
meta-analysis. J. Orthop. Sports Phys. Ther. 45, 738–755. doi:10.2519/jospt.
2015.6019

Arendse, R. E., Noakes, T. D., Azevedo, L. B., Romanov, N., Schwellnus, M. P., and
Fletcher, G. (2004). Reduced eccentric loading of the knee with the pose running
method. Med. Sci. Sports Exerc. 36, 272–277. doi:10.1249/01.MSS.0000113684.
61351.B0

Bailey, J. P., Mata, T., and Mercer, J. D. (2017). Is the relationship between stride
length, frequency, and velocity influenced by running on a treadmill or overground?
Int. J. Exerc. Sci. 10, 1067–1075.

Beck, O. N., Gosyne, J., Franz, J. R., and Sawicki, G. S. (2020). Cyclically producing
the same average muscle-tendon force with a smaller duty increases metabolic rate.
Proc. Biol. Sci. 287, 20200431. doi:10.1098/rspb.2020.0431

Blickhan, R. (1989). The spring-mass model for running and hopping. J. Biomech.
22, 1217–1227. doi:10.1016/0021-9290(89)90224-8

Bonnaerens, S., Fiers, P., Galle, S., Derie, R., Aerts, P., Frederick, E., et al. (2021).
Relationship between duty factor and external forces in slow recreational runners.
BMJ Open Sport Exerc. Med. 7, e000996. doi:10.1136/bmjsem-2020-000996

Cavagna, G. A., Franzetti, P., Heglund, N. C., and Willems, P. (1988). The
determinants of the step frequency in running, trotting and hopping in man and
other vertebrates. J. Physiol. 399, 81–92. doi:10.1113/jphysiol.1988.sp017069

Cavanagh, P. R., and Lafortune, M. A. (1980). Ground reaction forces in distance
running. J. Biomech. 13, 397–406. doi:10.1016/0021-9290(80)90033-0

Clark, K. P., Ryan, L. J., and Weyand, P. G. (2017). A general relationship links
gait mechanics and running ground reaction forces. J. Exp. Biol. 220, 247–258.
doi:10.1242/jeb.138057

Coleman, D. R., Cannavan, D., Horne, S., and Blazevich, A. J. (2012). Leg stiffness
in human running: Comparison of estimates derived from previously published
models to direct kinematic–kinetic measures. J. Biomech. 45, 1987–1991. doi:10.
1016/j.jbiomech.2012.05.010

Daoud, A. I., Geissler, G. J., Wang, F., Saretsky, J., Daoud, Y. A., and Lieberman,
D. E. (2012). Foot strike and injury rates in endurance runners: A retrospective
study. Med. Sci. Sports Exerc. 44, 1325–1334. doi:10.1249/MSS.0b013e3182465115

Davis, I. S., Bowser, B. J., and Mullineaux, D. R. (2016). Greater vertical impact
loading in female runners with medically diagnosed injuries: A prospective
investigation. Br. J. Sports Med. 50, 887–892. doi:10.1136/bjsports-2015-094579

Dempster, W. T. (1955). Space requirements of the seated operator: Geometrical,
kinematic, and mechanical aspects of the body with special reference to the limbs.
Ohio: Wright-Patterson Air Force BaseWright Air Development Center.

Dorn, T. W., Schache, A. G., and Pandy, M. G. (2012). Muscular strategy shift in
human running: Dependence of running speed on hip and ankle muscle
performance. J. Exp. Biol. 215, 1944–1956. doi:10.1242/jeb.064527

Dreyer, D., and Dreyer, K. (2009). ChiRunning: A revolutionary approach to
effortless, injury-free running. Revised and fully. Updated ed. New York, USA:
Simon & Schuster.

Fadillioglu, C., Möhler, F., Reuter, M., and Stein, T. (2022). Changes in key
biomechanical parameters according to the expertise level in runners at different
running speeds. Bioengineering 9, 616. doi:10.3390/bioengineering9110616

Farley, C. T., and González, O. (1996). Leg stiffness and stride frequency in
human running. J. Biomech. 29, 181–186. doi:10.1016/0021-9290(95)00029-1

Folland, J. P., Allen, S. J., Black, M. I., Handsaker, J. C., and Forrester, S. E. (2017).
Running technique is an important component of running economy and performance.
Med. Sci. Sports Exerc. 49, 1412–1423. doi:10.1249/MSS.0000000000001245

Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E., and Penny, W. D.
(2007). Statistical parametric mapping: The analysis of functional brain images.
Amsterdam: Elsevier Academic Press.

Gill, N., Preece, S. J., and Baker, R. (2020). Using the spring-mass model for
running: Force-length curves and foot-strike patterns. Gait Posture 80, 318–323.
doi:10.1016/j.gaitpost.2020.06.023

Gindre, C., Lussiana, T., Hébert-Losier, K., and Mourot, L. (2016). Aerial and
terrestrial patterns: A novel approach to analyzing human running. Int. J. Sports
Med. 37, 25–29. doi:10.1055/s-0035-1555931

Gottschall, J. S., and Kram, R. (2005). Ground reaction forces during downhill
and uphill running. J. Biomech. 38, 445–452. doi:10.1016/j.jbiomech.2004.04.023

Hanavan, E. (1964). A mathematical model of the human body. AMRL-TR.
Aerosp. Med. Res. Laboratories 1, 1–149.

Frontiers in Physiology frontiersin.org13

Patoz et al. 10.3389/fphys.2022.1044363

https://www.frontiersin.org/articles/10.3389/fphys.2022.1044363/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2022.1044363/full#supplementary-material
https://doi.org/10.2519/jospt.2015.6019
https://doi.org/10.2519/jospt.2015.6019
https://doi.org/10.1249/01.MSS.0000113684.61351.B0
https://doi.org/10.1249/01.MSS.0000113684.61351.B0
https://doi.org/10.1098/rspb.2020.0431
https://doi.org/10.1016/0021-9290(89)90224-8
https://doi.org/10.1136/bmjsem-2020-000996
https://doi.org/10.1113/jphysiol.1988.sp017069
https://doi.org/10.1016/0021-9290(80)90033-0
https://doi.org/10.1242/jeb.138057
https://doi.org/10.1016/j.jbiomech.2012.05.010
https://doi.org/10.1016/j.jbiomech.2012.05.010
https://doi.org/10.1249/MSS.0b013e3182465115
https://doi.org/10.1136/bjsports-2015-094579
https://doi.org/10.1242/jeb.064527
https://doi.org/10.3390/bioengineering9110616
https://doi.org/10.1016/0021-9290(95)00029-1
https://doi.org/10.1249/MSS.0000000000001245
https://doi.org/10.1016/j.gaitpost.2020.06.023
https://doi.org/10.1055/s-0035-1555931
https://doi.org/10.1016/j.jbiomech.2004.04.023
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1044363


Hinkle, D. E., Wiersma, W., and Jurs, S. G. (2002). Applied statistics for the
behavioral sciences. Boston: Houghton Mifflin.

Hobara, H., Sakata, H., Namiki, Y., Hisano, G., Hashizume, S., and Usui, F.
(2020). Effect of step frequency on leg stiffness during running in unilateral
transfemoral amputees. Sci. Rep. 10, 5965. doi:10.1038/s41598-020-62964-2

Hunter, I., Lee, K., Ward, J., and Tracy, J. (2017). Self-optimization of stride
length Among experienced and inexperienced runners. Int. J. Exerc. Sci. 10,
446–453.

Hunter, J. P., Marshall, R. N., and Mcnair, P. J. (2004). Interaction of step length
and step rate during sprint running. Med. Sci. Sports Exerc. 36, 261–271. doi:10.
1249/01.MSS.0000113664.15777.53

Johnson, C. D., Tenforde, A. S., Outerleys, J., Reilly, J., and Davis, I. S. (2020).
Impact-related ground reaction forces are more strongly associated with some
running injuries than others. Am. J. Sports Med. 48, 3072–3080. doi:10.1177/
0363546520950731

Lieberman, D. E., Warrener, A. G., Wang, J., and Castillo, E. R. (2015). Effects of
stride frequency and foot position at landing on braking force, hip torque, impact
peak force and the metabolic cost of running in humans. J. Exp. Biol. 218,
3406–3414. doi:10.1242/jeb.125500

Liew, B. X. W., Morris, S., Masters, A., and Netto, K. (2017). A comparison and
update of direct kinematic-kinetic models of leg stiffness in human running.
J. Biomech. 64, 253–257. doi:10.1016/j.jbiomech.2017.09.028

Luo, Z., Zhang, X., Wang, J., Yang, Y., Xu, Y., and Fu, W. (2019). Changes in
ground reaction forces, joint mechanics, and stiffness during treadmill running to
fatigue. Appl. Sci. 9, 5493. doi:10.3390/app9245493

Lussiana, T., Patoz, A., Gindre, C., Mourot, L., and Hébert-Losier, K. (2019). The
implications of time on the ground on running economy: Less is not always better.
J. Exp. Biol. 222, jeb192047. doi:10.1242/jeb.192047

Mcmahon, T. A., and Cheng, G. C. (1990). The mechanics of running: How does
stiffness couple with speed? J. Biomech. 23, 65–78. doi:10.1016/0021-9290(90)
90042-2

Mcmahon, T. A., Valiant, G., and Frederick, E. C. (1987)., 62. Bethesda, Md,
2326–2337. doi:10.1152/jappl.1987.62.6.2326Groucho runningJ. Appl. Physiol.

Minetti, A. E. (1998). A model equation for the prediction of mechanical internal
work of terrestrial locomotion. J. Biomech. 31, 463–468. doi:10.1016/s0021-
9290(98)00038-4

Mo, S., Lau, F. O. Y., Lok, A. K. Y., Chan, Z. Y. S., Zhang, J. H., Shum, G., et al.
(2020). Bilateral asymmetry of running gait in competitive, recreational and novice
runners at different speeds. Hum. Mov. Sci. 71, 102600. doi:10.1016/j.humov.2020.
102600

Morin, J.-B., Dalleau, G., Kyröläinen, H., Jeannin, T., and Belli, A. (2005). A
simple method for measuring stiffness during running. J. Appl. Biomech. 21,
167–180. doi:10.1123/jab.21.2.167

Morin, J. B., Samozino, P., Zameziati, K., and Belli, A. (2007). Effects of altered
stride frequency and contact time on leg-spring behavior in human running.
J. Biomech. 40, 3341–3348. doi:10.1016/j.jbiomech.2007.05.001

Nordin, A. D., Dufek, J. S., and Mercer, J. A. (2017). Three-dimensional impact
kinetics with foot-strike manipulations during running. J. Sport Health Sci. 6,
489–497. doi:10.1016/j.jshs.2015.11.003

Pataky, T. C. (2010). Generalized n-dimensional biomechanical field analysis
using statistical parametric mapping. J. Biomech. 43, 1976–1982. doi:10.1016/j.
jbiomech.2010.03.008

Pataky, T. C. (2012). One-dimensional statistical parametric mapping in Python.
Comput. Methods Biomech. Biomed. Engin. 15, 295–301. doi:10.1080/10255842.
2010.527837

Patoz, A., Gindre, C., Thouvenot, A., Mourot, L., Hébert-Losier, K., and Lussiana,
T. (2019). Duty factor is a viable measure to classify spontaneous running forms.
Sports 7, 233. doi:10.3390/sports7110233

Patoz, A., Lussiana, T., Breine, B., Gindre, C., and Malatesta, D. (2021). Both a
single sacral marker and the whole-body center of mass accurately estimate peak

vertical ground reaction force in running. Gait Posture 89, 186–192. doi:10.1016/j.
gaitpost.2021.07.013

Patoz, A., Lussiana, T., Breine, B., Gindre, C., Malatesta, D., and Hébert-Losier, K.
(2022). Examination of running pattern consistency across speeds. Sports Biomech.,
1–15. doi:10.1080/14763141.2022.2094825

Patoz, A., Lussiana, T., Thouvenot, A., Mourot, L., and Gindre, C. (2020). Duty
factor reflects lower limb kinematics of running. Appl. Sci. 10, 8818. doi:10.3390/
app10248818

Riazati, S., Caplan, N., and Hayes, P. R. (2019). The number of strides required for
treadmill running gait analysis is unaffected by either speed or run duration.
J. Biomech. 97, 109366. doi:10.1016/j.jbiomech.2019.109366

Sadeghi, H., Mathieu, P. A., Sadeghi, S., and Labelle, H. (2003). Continuous curve
registration as an intertrial gait variability reduction technique. IEEE Trans. Neural
Syst. Rehabil. Eng. 11, 24–30. doi:10.1109/TNSRE.2003.810428

Salo, A. I. T., Bezodis, I. N., Batterham, A. M., and Kerwin, D. G. (2011). Elite
sprinting: Are athletes individually step-frequency or step-length reliant? Med. Sci.
Sports Exerc. 43, 1055–1062. doi:10.1249/MSS.0b013e318201f6f8

Schache, A. G., Dorn, T. W., Williams, G. P., Brown, N. a. T., and Pandy, M. G.
(2014). Lower-limb muscular strategies for increasing running speed.
J. Orthop. Sports Phys. Ther. 44, 813–824. doi:10.2519/jospt.2014.5433

Schepens, B., Willems, P. A., and Cavagna, G. A. (1998). The mechanics of
running in children. J. Physiol. 509, 927–940. doi:10.1111/j.1469-7793.1998.
927bm.x

Selinger, J. C., Hicks, J. L., Jackson, R. W., Wall-Scheffler, C. M., Chang, D., and
Delp, S. L. (2022). Running in the wild: Energetics explain ecological running
speeds. Curr. Biol. 32, 2309–2315.e3. doi:10.1016/j.cub.2022.03.076

Smith, L., Preece, S., Mason, D., and Bramah, C. (2015). A comparison of
kinematic algorithms to estimate gait events during overground running. Gait
Posture 41, 39–43. doi:10.1016/j.gaitpost.2014.08.009

Subotnick, S. I. (1985). The biomechanics of running. Implications for the
prevention of foot injuries. Sports Med. 2, 144–153. doi:10.2165/00007256-
198502020-00006

Tranberg, R., Saari, T., Zügner, R., and Kärrholm, J. (2011). Simultaneous
measurements of knee motion using an optical tracking system and
radiostereometric analysis (RSA). Acta Orthop. 82, 171–176. doi:10.3109/
17453674.2011.570675

Udofa, A. B., Clark, K. P., Ryan, L. J., and Weyand, P. G. (2019)., 126. Bethesda,
Md, 1315–1325. doi:10.1152/japplphysiol.00925.2018Running ground reaction
forces across footwear conditions are predicted from the motion of two body
mass componentsJ. Appl. Physiol.

Van Hooren, B., Fuller, J. T., Buckley, J. D., Miller, J. R., Sewell, K., Rao, G., et al.
(2020). Is motorized treadmill running biomechanically comparable to overground
running? A systematic review and meta-analysis of cross-over studies. Sports Med.
50, 785–813. doi:10.1007/s40279-019-01237-z

Van Oeveren, B. T., De Ruiter, C. J., Beek, P. J., and Van Dieën, J. H. (2021). The
biomechanics of running and running styles: A synthesis. Sports Biomech., 1–39.
doi:10.1080/14763141.2021.1873411

Van Oeveren, B. T., De Ruiter, C. J., Hoozemans, M. J. M., Beek, P. J., and Van
Dieën, J. H. (2019). Inter-individual differences in stride frequencies during running
obtained from wearable data. J. Sports Sci. 37, 1996–2006. doi:10.1080/02640414.
2019.1614137

Vogt, M., and Hoppeler, H. H. (2014). Eccentric exercise: Mechanisms and effects
when used as training regime or training adjunct. J. Appl. Physiol. 116, 1446–1454.
doi:10.1152/japplphysiol.00146.2013

Weyand, P. G., Sternlight, D. B., Bellizzi, M. J., and Wright, S. (2000). Faster top
running speeds are achieved with greater ground forces not more rapid leg
movements. J. Appl. Physiol. 89, 1991–1999. doi:10.1152/jappl.2000.89.5.1991

Willson, J. D., Bjorhus, J. S., Williams, D. S., 3rd, Butler, R. J., Porcari, J. P., and
Kernozek, T. W. (2014). Short-term changes in running mechanics and foot strike
pattern after introduction to minimalistic footwear. Phys. Med. Rehabilitation J. 6,
34–43. doi:10.1016/j.pmrj.2013.08.602

Frontiers in Physiology frontiersin.org14

Patoz et al. 10.3389/fphys.2022.1044363

https://doi.org/10.1038/s41598-020-62964-2
https://doi.org/10.1249/01.MSS.0000113664.15777.53
https://doi.org/10.1249/01.MSS.0000113664.15777.53
https://doi.org/10.1177/0363546520950731
https://doi.org/10.1177/0363546520950731
https://doi.org/10.1242/jeb.125500
https://doi.org/10.1016/j.jbiomech.2017.09.028
https://doi.org/10.3390/app9245493
https://doi.org/10.1242/jeb.192047
https://doi.org/10.1016/0021-9290(90)90042-2
https://doi.org/10.1016/0021-9290(90)90042-2
https://doi.org/10.1152/jappl.1987.62.6.2326
https://doi.org/10.1016/s0021-9290(98)00038-4
https://doi.org/10.1016/s0021-9290(98)00038-4
https://doi.org/10.1016/j.humov.2020.102600
https://doi.org/10.1016/j.humov.2020.102600
https://doi.org/10.1123/jab.21.2.167
https://doi.org/10.1016/j.jbiomech.2007.05.001
https://doi.org/10.1016/j.jshs.2015.11.003
https://doi.org/10.1016/j.jbiomech.2010.03.008
https://doi.org/10.1016/j.jbiomech.2010.03.008
https://doi.org/10.1080/10255842.2010.527837
https://doi.org/10.1080/10255842.2010.527837
https://doi.org/10.3390/sports7110233
https://doi.org/10.1016/j.gaitpost.2021.07.013
https://doi.org/10.1016/j.gaitpost.2021.07.013
https://doi.org/10.1080/14763141.2022.2094825
https://doi.org/10.3390/app10248818
https://doi.org/10.3390/app10248818
https://doi.org/10.1016/j.jbiomech.2019.109366
https://doi.org/10.1109/TNSRE.2003.810428
https://doi.org/10.1249/MSS.0b013e318201f6f8
https://doi.org/10.2519/jospt.2014.5433
https://doi.org/10.1111/j.1469-7793.1998.927bm.x
https://doi.org/10.1111/j.1469-7793.1998.927bm.x
https://doi.org/10.1016/j.cub.2022.03.076
https://doi.org/10.1016/j.gaitpost.2014.08.009
https://doi.org/10.2165/00007256-198502020-00006
https://doi.org/10.2165/00007256-198502020-00006
https://doi.org/10.3109/17453674.2011.570675
https://doi.org/10.3109/17453674.2011.570675
https://doi.org/10.1152/japplphysiol.00925.2018
https://doi.org/10.1007/s40279-019-01237-z
https://doi.org/10.1080/14763141.2021.1873411
https://doi.org/10.1080/02640414.2019.1614137
https://doi.org/10.1080/02640414.2019.1614137
https://doi.org/10.1152/japplphysiol.00146.2013
https://doi.org/10.1152/jappl.2000.89.5.1991
https://doi.org/10.1016/j.pmrj.2013.08.602
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1044363


 

 1 

 

Supplementary Materials: 

Using statistical parametric mapping to assess the association of duty factor and step 
frequency on running kinetic 

S1 Trajectory of the Center of Pressure during the Stance Running Phase 
Figure S1 shows the trajectory of the center of pressure for one representative right foot contact 
at 11km/h. This figure depicts that the center of pressure calculated with low vertical ground 
reaction force values, i.e., below 200N, are not reliable. This can be explained because the 
vertical ground reaction force is present in the denominator of the equations required to 
calculate the anterior-posterior and mediolateral trajectories of the center of pressure and 
therefore cannot be too low (reference: http://www.kwon3d.com/theory/grf/cop.html). 
 

 
Figure S1. Example of the trajectory of the center of pressure (COP) for one representative 
right foot contact at 11km/h. The green and red colors show the trajectory of the COP at the 
initial and final instant of the stance running phase, respectively, i.e., when the vertical ground 
reaction force was below 200N. The vertical axis is the anterior-posterior COP position while 
the horizontal axis is the mediolateral COP position. 
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Franche-Comté, Besançon, France   

A R T I C L E  I N F O   
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A B S T R A C T   

Contact time (tc) relies upon the accuracy of foot-strike and toe-off events, for which ground reaction force (GRF) 
is the gold standard. However, force plates are not always available, e.g., when running on a noninstrumented 
treadmill. In this situation, a kinematic algorithm (KA) – an algorithm based on motion capture data – might be 
used if it performs equally for all foot-strike angles across speeds. The purpose of this study was to propose a 
novel KA, using a combination of heel and toe kinematics (three markers per foot), to detect foot-strike and toe- 
off and compare it to GRF at different speeds and across foot-strike angles. One hundred runners ran at 9 km/h, 
11 km/h, and 13 km/h. Force data and whole-body kinematic data were acquired by an instrumented treadmill 
and optoelectronic system. Foot-strike and toe-off showed small systematic biases between GRF and KA at all 
speeds (≤5 ms), except toe-off at 11 km/h (no bias). The root mean square error (RMSE) was ≤9 ms and was 
mostly constant across foot-strike angles for toe-off (7.4 ms) but not for foot-strike (4.1–11.1 ms). Small sys-
tematic biases (≤8 ms) and significant differences (P ≤ 0.01) were reported for tc at all speeds, and the RMSE 
was ≤14 ms (≤5%). The RMSE for tc increased with increasing foot-strike angle (3.5–5.4%). Nonetheless, this 
novel KA computed smaller errors than existing methods for foot-strike, toe-off, and tc. Therefore, this study 
supports the use of this novel KA to accurately estimate foot-strike, toe-off, and tc from kinematic data obtained 
during noninstrumented treadmill running independent of the foot-strike angle.   

1. Introduction 

Running is defined by a duty factor, i.e., a ratio of contact time (tc) 
over stride duration, under 50% (Folland et al., 2017; Minetti, 1998), 
which makes tc a key parameter of running biomechanics. This param-
eter is computed from foot-strike and toe-off events, obtained from the 
ground reaction force (GRF). However, force plates are not always 
available (Abendroth-Smith, 1996; Maiwald et al., 2009), e.g., when 
running on a noninstrumented treadmill. In this situation, foot-strike 
and toe-off, and therefore tc, can be obtained with a kinematic algo-
rithm (KA) based on motion capture data. 

Several algorithms were developed and compared to the use of GRF 
(De Witt, 2010; Fellin et al., 2010; Hreljac and Stergiou, 2000; Leitch 
et al., 2011; Maiwald et al., 2009; Milner and Paquette, 2015; Smith 
et al., 2015) or a footswitch device (Alvim et al., 2015), but they did not 

all offer the same accuracy. Moreover, previous datasets were limited to 
<30 runners (Alvim et al., 2015; Leitch et al., 2011), which may be too 
small to allow generalizing the algorithm to every runner. In addition, 
rearfoot, midfoot, and forefoot strike patterns (Hasegawa et al., 2007), 
which can be determined based on the foot-strike angle (Altman and 
Davis, 2012), can impact kinematic data and algorithm accuracy 
because they involve different biomechanical strategies (Ruder et al., 
2019; Wei et al., 2019). Relatively different errors (up to 30 ms) were 
reported for both foot-strike and toe-off among rearfoot, midfoot, and 
forefoot strikers using five methods (Smith et al., 2015). Similarly, 
Leitch et al. (2011) showed that the most accurate algorithm for 
detecting foot-strike was dependent on the foot-strike pattern but not on 
toe-off detection. These previous algorithms were based on heel kine-
matics, which differ based on foot-strike patterns. Indeed, Milner and 
Paquette (2015) and Smith et al. (2015) reported larger errors for non- 
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rearfoot strikers than for rearfoot strikers when using these heel-based 
algorithms. 

It also seems necessary to compare tc based on GRF and KAs, due to 
its biomechanical importance (Moore et al., 2019). For instance, a larger 
error in tc was observed for an algorithm that was more precise in foot- 
strike and toe-off detection than for those that were less precise (Smith 
et al., 2015) due to the accumulation of errors in foot-strike and toe-off 
detection. 

Hence, the purpose of this study was to propose a novel KA to detect 
foot-strike and toe-off and compare it to the use of GRF at several 
treadmill speeds and across foot-strike angles. In addition, foot-strike 
and toe-off were used to estimate tc which was then compared to that 
based on GRF. This algorithm uses a combination of heel and toe kine-
matics to detect foot-strike. We hypothesized that i) no systematic bias 
would be reported between GRF and KA for foot-strike and toe-off at any 
of the speeds examined and that the error in foot-strike and toe-off 
would be similar independent of foot-strike angle and ii) no systematic 
bias, significant difference between tc derived from GRF and KA, or ef-
fect of foot-strike angle would be obtained. 

2. Materials and methods 

2.1. Participant characteristics 

One hundred recreational runners participated in this study, 
including 75 males (age: 31 ± 8 years, height: 180 ± 6 cm, body mass: 
70 ± 7 kg, foot size: 270 ± 4 mm, and weekly running distance: 37 ± 24 
km) and 25 females (age: 30 ± 7 years, height: 169 ± 5 cm, body mass: 
61 ± 6 kg, foot size: 244 ± 6 mm, and weekly running distance: 20 ± 14 
km). For study inclusion, participants were required to be in good self- 
reported general health with no lower-extremity injury (≤1 month) 
and to have an estimated maximal aerobic speed ≥14 km/h. The study 
protocol was approved by the Ethics Committee (CER-VD 2020–00334) 
and adhered to the latest version of the Declaration of Helsinki of the 
World Medical Association. 

2.2. Experimental procedure 

After providing written informed consent, retroreflective markers 
were positioned on participants to assess their running biomechanics 
(Appendix A). For calibration purposes, a 5-second standing static trial 
using a standard anatomical position was recorded on an instrumented 
treadmill (Arsalis T150–FMT-MED, Louvain-la-Neuve, Belgium) for 
each participant. Then, a 7-minute warm-up run was performed (9 km/ 
h). After a short break (<5 min) participants completed three 1-minute 
runs (9 km/h, 11 km/h, and 13 km/h) performed in a randomized order 
with a 1-minute recovery between each run. These speeds were chosen 
because they are like those used in prior studies (Alvim et al., 2015; 
Leitch et al., 2011; Milner and Paquette, 2015). Three-dimensional (3D) 
kinematic (200 Hz) and kinetic (1000 Hz) data were collected during the 
static trial and for the first 10 strides following the 30-second mark of the 
running trials. The 3D kinetic data were down sampled to 200 Hz to 
match the sampling frequency of 3D kinematic data. Participants were 
familiar with running on a treadmill and wore their habitual running 
shoes during testing (shoe mass:257 ± 49 g and shoe heel-to-toe drop:7 
± 3 mm). 

2.3. Ground reaction force for events detection 

The gold standard foot-strike and toe-off were identified with Visu-
al3D Professional software v6.01.12 (C-Motion Inc., Germantown, MD, 
USA) by applying a 20 N threshold to the z-component of the GRF (Smith 
et al., 2015). 

2.4. Kinematic algorithm for events detection 

The KA was implemented within Visual3D to detect foot-strike and 
toe-off from kinematic data. A mid-toe landmark was created midway 
between markers placed at the head of the first and fifth metatarsals. The 
mid-toe landmark position was rescaled by subtracting its respective 
global minimum (within the 10 strides) to overcome bias due to shoe 
height. Heel and mid-toe accelerations were calculated as the second 
derivative (second order central method) of the heel marker (foot 
calcaneus: aspect of the Achilles tendon insertion) and rescaled mid-toe 
landmark positions, respectively. Following visual observations of heel 
and mid-toe z-acceleration curves, an approach similar to that of Hreljac 
and Stergiou (2000), was followed. The KA was constructed such that 
foot-strike was detected within a time window of 120 ms centered 
around the instant when the mid-toe z-position reached 3.5 cm on 
descent. Foot-strike was defined as the first occurring maximum be-
tween the maxima of the heel marker and mid-toe landmark on z-ac-
celeration curves within this time window (Figs. 1 and 2A). Toe-off was 
detected at the instance when the mid-toe z-position reached 3.5 cm on 
ascent after the preceding foot-strike, following a similar approach to 
that of Alvim et al. (2015). If such a threshold did not exist, 4 and 4.5 cm 
thresholds were used instead (Figs. 1 and 2.B). The distance between the 
mid-toe landmark and the end part of the shoe (on the toe-side) being 
close to 5.5 cm, the global minimum of the mid-toe landmark being close 
to 2 cm, and the foot angle at toe-off being close to 90◦ justified the 3.5 
cm threshold. The KA requires three markers per foot to detect foot- 
strike and toe-off but 39 markers were used because a whole-body 
biomechanical model was needed to construct foot segment angles to 
obtain the foot-strike angle (see Appendix A), which permitted to vali-
date the KA across foot-strike angles. 

2.5. Statistical analysis 

All data are presented as mean ± standard deviation. Bland-Altman 
plots were constructed to examine the presence of systematic bias in 
foot-strike, toe-off, and tc obtained based on GRF and the KA for each 
speed (Atkinson and Nevill, 1998; Bland and Altman, 1995). The cor-
responding lower and upper limits of agreement and 95% confidence 
intervals were calculated. Positive systematic biases indicate over-
estimation by the KA, while negative values indicate underestimation. 
The root mean square error (RMSE) was calculated for foot-strike, toe- 
off, and tc for each participant and each running trial. The RMSE was 
also calculated in relative units for tc, i.e., by normalizing by the mean tc 
value obtained using the GRF for each participant and running trial. In 
addition, the RMSE for foot-strike, toe-off, and tc (averaged over speed) 
were given for forefoot, midfoot, and rearfoot strikers using the classi-
fication proposed by Altman and Davis (2012), i.e., using foot-strike 
angles <-1.6◦, ≥-1.6◦ but <8◦, and ≥8◦, respectively. 

A linear mixed model (a model including both random and fixed 
factors fitted by restricted maximum likelihood) was used to compare tc 
obtained using the GRF and KA for the different speeds and across foot- 
strike angles. The fixed factors were speed (ordinal variable), method 
(GRF vs KA; nominal variable), and foot-strike angle (continuous vari-
able). The within-subject nature was controlled for by including random 
effects for participants. Pairwise post hoc comparisons were performed 
using Holm corrections, and only those comparing the GRF and KA 
methods for a given speed were investigated. Statistical analysis was 
performed using Python (v3.7.4, http://www.python.org) and Jamovi 
(v1.6.23, https://www.jamovi.org), with the level of significance set at 
P ≤ 0.05. 

3. Results 

Systematic biases were obtained for both foot-strike and toe-off at all 
speeds (Table 1 and Fig. 3) and were ≤5 ms (≤1 frame), except for toe- 
off at 11 km/h (no bias; the zero line is between the 95% confidence 
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interval). 
The RMSE was ≤9 ms for both foot-strike and toe-off and decreased 

slightly with increasing speed (Table 2). The RMSE for foot-strike 
increased with increasing foot-strike angle while the RMSE was mostly 
constant across foot-strike angles for toe-off (Fig. 4). The RMSE (aver-
aged over speed) was 4.1 ± 2.2, 10.0 ± 3.5, and 11.1 ± 2.3 ms for foot- 
strike and 7.1 ± 3.1 ms, 8.2 ± 3.6 ms, and 6.9 ± 3.2 ms for toe-off for 
forefoot, midfoot, and rearfoot strikers, respectively. 

Systematic biases were reported for tc at all speeds (<8 ms), and the 

corresponding RMSE was ≤14 ms (≤5%; Table 3). The RMSE for tc 
increased with increasing foot-strike angle (Fig. 5). Forefoot, midfoot, 
and rearfoot strikers had RMSEs for tc (averaged over speed) of 8.6 ± 3.6 
ms (3.5 ± 1.4%), 13.0 ± 6.2 ms (5.1 ± 2.3%), and 13.9 ± 5.3 ms (5.4 ±
1.9%), respectively. 

The linear mixed model depicted significant effects of method, speed, 
foot-strike angle, and method × speed interaction (P ≤ 0.004). tc was 
significantly overestimated by the KA, decreased with increasing speed, 
and increased with increasing foot-strike angle. Holm post hoc tests 

Fig. 1. Description of the kinematic algorithm for detecting foot-strike and toe-off. The mid-toe landmark could be a mid-toe marker (third metatarsal) in a simplified 
marker set. 

Fig. 2. Typical trajectory characteristics for a portion of a stride for three different runners at 11 km/h [rearfoot striker with foot-strike angle = 19.2◦, midfoot striker 
with foot-strike angle = 1.4◦, and forefoot striker with foot-strike angle = -16.5◦] used by the kinematic algorithm to detect (A) foot-strike (FS) and (B) toe-off (TO; +
sign; in red). The blue shaded area depicts the 120 ms time window during which foot-strike is examined. This time window is centered around the instant where the 
mid-toe z-position reached 3.5 cm on descent. The × sign (in red) denotes the second maximum detected by the algorithm during this time window. The first 
maximum defined foot-strike (+ sign; in red) and corresponded to a spike in heel z-acceleration for rearfoot strikers and in mid-toe z-acceleration for both midfoot 
and forefoot strikers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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yielded significantly higher tc when calculated by the KA than by the 
GRF at all speeds (P ≤ 0.01; Table 3). 

4. Discussion 

Systematic biases were reported for foot-strike and toe-off at all 
speeds, refuting the first hypothesis. The RMSE was mostly constant 
across foot-strike angles for toe-off (7.4 ms) but not for foot-strike 
(4.1–11.1 ms), which partly refuted the first hypothesis. Systematic 
biases, as well as significant differences, were reported for tc at all 
speeds. The RMSE for tc increased with increasing foot-strike angle 
(3.5–5.4%), thus refuting the second hypothesis. Nonetheless, smaller 
errors than those obtained by existing methods were obtained for foot- 
strike, toe-off, and tc. Therefore, this novel KA can be applied to accu-
rately estimate foot-strike, toe-off, and tc from kinematic data obtained 

during noninstrumented treadmill running independent of foot-strike 
angle. 

The RMSEs for foot-strike were ≤8 ms at all speeds (Table 2). These 
errors were smaller than those obtained with existing algorithms (Alvim 
et al., 2015; Fellin et al., 2010; Leitch et al., 2011; Milner and Paquette, 
2015; Smith et al., 2015). However, the RMSE increased with increasing 
foot-strike angle and was ~3 times smaller in forefoot strikers (RMSE =
4.1 ms) than in rearfoot strikers (RMSE = 11.1 ms; Fig. 4). Milner and 
Paquette (2015) showed that algorithms based solely on heel kinematics 
(position, velocity, or acceleration) were less accurate in foot-strike 
detection for midfoot or forefoot strikers than for rearfoot strikers 
because heel kinematics around foot-strike differ according to foot- 
strike pattern, i.e., a non-rearfoot striker does not initiate contact with 
the ground using the heel. In addition, the heel-based algorithm re-
ported in Smith et al. (2015) had poorer foot-strike detection abilities in 
non-rearfoot strikers than in rearfoot strikers (RMSE: 22 to 6 ms). Their 
results are opposed to those of this study, most likely because Smith et al. 
(2015) used a heel-based algorithm. Moreover, the range of RMSE re-
ported here was less than that in Smith et al. (2015) (4.1–11.1 ms for 
forefoot to rearfoot strikers; Fig. 4). Leitch et al. (2011) demonstrated 
that heel-based and mid-foot-based algorithms were best suited for 
rearfoot and forefoot strikers. Therefore, the novel KA proposed here, 
which accounts for this recommendation and combines heel and toe 
kinematic data to detect foot-strike, proved to be useful and showed a 
smaller error than existing methods. 

The algorithm proposed by Milner and Paquette (2015) was based on 

Table 1 
Systematic bias, lower limit of agreement (lloa), and upper limit of agreement (uloa) for foot-strike and toe-off detected using ground reaction force and the kinematic 
algorithm at three running speeds. 95% confidence intervals are given in square brackets [lower, upper].   

9 km/h 11 km/h 13 km/h 
Bias 
(ms) 

lloa  
(ms) 

uloa  
(ms) 

bias  
(ms) 

lloa  
(ms) 

uloa  
(ms) 

bias  
(ms) 

lloa  
(ms) 

uloa  
(ms) 

Foot-strike −4.4  
[−4.8, −4.0] 

−20.8  
[−21.4, −20.2] 

12.0  
[11.3, 12.6] 

−4.8  
[−5.2, −4.5] 

−20.1  
[−20.7, −19.6] 

10.5  
[9.9, 11.0] 

−4.6  
[−5.0, −4.3] 

−19.1  
[−19.7, −18.6] 

9.9  
[9.3, 10.4] 

Toe-off 3.5  
[3.1, 3.9] 

−13.9  
[−14.6, −13.2] 

20.9  
[20.2, 21.6] 

0.2  
[−0.1, 0.5] 

−13.6  
[−14.1–13.1] 

14.1  
[13.5, 14.6] 

−1.8  
[−2.1, −1.5] 

−15.9  
[−16.4–15.4] 

12.3  
[11.7, 12.8] 

Note: for bias, positive and negative values indicate that the kinematic algorithm overestimated and underestimated gait events, respectively. 

Fig. 3. Comparison of foot-strike and toe-off detection using ground reaction force and the kinematic algorithm [differences (Δ) as a function of mean values for the 
10 analyzed strides of each participant (gray empty circles; 2000 values) together with systematic bias (red solid line), lower and upper limit of agreements (red 
dashed lines), and the zero line (black solid line), i.e., a Bland-Altman plot] for three running speeds. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 2 
Root mean square error (RMSE) for foot-strike and toe-off events at three 
running speeds.  

Running speed 
(km/h) 

RMSE for foot-strike  
(ms) 

RMSE for toe-off 
(ms) 

9 8.4 ± 4.4 8.6 ± 4.0 
11 8.2 ± 4.2 6.6 ± 2.6 
13 7.8 ± 3.9 6.9 ± 2.8 

Values are presented as mean ± standard deviation. 
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the velocity of the center of mass of the pelvis and had a 15 ms offset for 
foot-strike. Similarly, the algorithm of Dingwell et al. (2001), originally 
designed for walking gait and based on knee extension spikes and used 
by Smith et al. (2015), depicted a 28 ms RMSE for foot-strike. These 
algorithms performed worse than the KA proposed here for foot-strike 
detection (RMSE ≤ 8 ms or |bias| ≤ 5ms). One reason could be that 
these algorithms used more proximal segments, which might be 
temporally shifted compared to what is happening directly at the foot. 

Toe-off necessarily occurs based on the toes moving away from the 
ground, suggesting that a toe-based algorithm should accurately detect 
toe-off. The RMSE for toe-off was mostly constant across foot-strike 
angles (7.4 ms; Fig. 4), which corroborates the findings of Leitch et al. 
(2011). This RMSE was similar to the RMSE of rearfoot strikers given by 
the algorithm proposed by Smith et al. (2015) (ms) but slightly higher 

than the modified version of the algorithm of Alton et al. (1998) (3 ms) 
(Smith et al., 2015). However, the RMSE was obtained here was smaller 
than that obtained for forefoot strikers [7 vs 17 (Smith et al., 2015) or 
12 ms (Alton et al., 1998)]. Therefore, toe-off detection with the novel 
KA showed similar or better accuracy than existing methods. 

Small systematic biases, as well as significant differences, were re-
ported for tc at all speeds (Table 3). Even though the novel KA yielded 
smaller errors for foot-strike than the algorithm of Smith et al. (2015), 
those authors did not report significant differences in tc between 
methods. The discrepancy might be due to a combination of under- and 
overestimations in foot-strike and toe-off. Moreover, a high speed (20 
km/h) was used in Smith et al. (2015), which makes tc smaller than that 
observed in this study, implicitly reducing observed differences and 
affecting the outcomes of statistical tests. In this study, the RMSE 
decreased with increasing speed [13.7–9.9 ms (5–4.5%) for 9–13 km/h] 
and was smaller than that in Smith et al. (2015) [18.4 ms (11%) at 20 
km/h]. Hence, the algorithm of Smith et al. (2015) could be less effec-
tive at slower speeds because the time scale of kinematic trajectories 
might be slower, thus resulting in larger errors (i.e., greater differences 
in the number of frames) than in this study at similar speeds. 

The proposed method could further be simplified and reduced to a 
two-dimensional analysis (Appendix B) though requiring future studies 
to evaluate its reliability. The strength and limitations of this study are 
specified in Appendix C. 

5. Conclusion 

This study proposed a novel KA that uses a combination of heel and 
toe kinematics (three markers per foot) to detect foot-strike and toe-off. 
Small systematic biases were reported for foot-strike and toe-off at all 
speeds. The RMSE was constant across foot-strike angles for toe-off but 
not for foot-strike. Small systematic biases were reported for tc at all 
speeds, and the RMSE for tc increased with increasing foot-strike angle. 
However, this novel KA yielded smaller errors than existing methods for 
foot-strike, toe-off, and tc. Therefore, it can be applied to accurately 

Fig. 4. The root mean square error (RMSE) for foot-strike and toe-off as a function of foot-strike angle for three running speeds. Each dot represents a participant, and 
colors indicate different foot-strike patterns according to Altman and Davis (2012), i.e., forefoot (red), midfoot (green), and rearfoot (blue) strikers for foot-strike 
angles <-1.6◦, ≥-1.6◦ but <8◦, and ≥8◦, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 3 
Contact time (tc) calculated based on foot-strike and toe-off detected using 
ground reaction force (GRF) and the kinematic algorithm together with sys-
tematic bias, 95% confidence intervals (in square brackets [lower, upper]), and 
root mean square error [RMSE; both in absolute (ms) and relative (%) units]. 
Data are presented for three running speeds. The linear mixed model revealed a 
significant method (kinematic algorithm vs GRF) × speed interaction effect (P =
0.004). *Significant difference (P ≤ 0.01) between the tc calculated based on 
GRF and that calculated based on the kinematic algorithm, as determined by 
Holm post hoc tests.   

9 km/h 11 km/h 13 km/h 
tc (ms)  286.6 ± 27.5* 255.4 ± 23.7* 230.7 ± 20.5* 

tc GRF (ms)  278.6 ± 24.9 250.3 ± 20.7 227.9 ± 18.4 
bias (ms) 7.9 [7.3, 8.5] 5.1 [4.6, 5.6] 2.8 [2.4, 3.3] 

RMSE (ms) 13.7 ± 7.0 11.2 ± 4.8 9.9 ± 3.9 
RMSE (%) 4.9 ± 2.5 4.5 ± 1.9 4.4 ± 1.7 

Values are presented as mean ± standard deviation. Note: for bias, positive and 
negative values indicate that the kinematic algorithm overestimated and 
underestimated tc, respectively. 
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estimate foot-strike, toe-off, and tc from kinematic data obtained during 
treadmill running, independent of foot-strike angle. 
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Appendix A. . Data collection and processing 

Whole-body three-dimensional (3D) kinematic data were collected at 200 Hz using motion capture (8 cameras) and Vicon Nexus software v2.9.3 
(Vicon, Oxford, UK). The laboratory coordinate system was oriented such that the x-, y-, and z-axes denoted the mediolateral (pointing toward the 
right side of the body), anterior-posterior, and inferior-superior axes, respectively. Forty-three and 39 retroreflective markers of 12.5 mm diameter 
were used for the static and running trials, respectively. They were affixed to the skin and shoes of participants over anatomical landmarks using 
double-sided tape following standard guidelines (Tranberg et al., 2011). Synchronized kinetic data (1000 Hz) were also collected using the force plate 
embedded in the treadmill. 

3D markers and force (analog signal) were exported in .c3d format and processed in Visual3D. 3D marker data were interpolated using a third- 
order polynomial least-square fit algorithm, allowing a maximum of 20 frames for gap filling, and subsequently low-pass filtered at 20 Hz using a 
fourth-order Butterworth filter (Lussiana et al., 2019). The 3D force signal was down sampled to 200 Hz to match the sampling frequency of marker 
data and filtered using the same filter. 

From the marker set, a full-body biomechanical model with six degrees of freedom and 15 rigid segments was constructed. Segments included the 
head, upper arms, lower arms, hands, thorax, pelvis, thighs, shanks, and feet. In Visual3D, segments were treated as geometric objects, assigned   

Fig. 5. The root mean square error (RMSE) for contact time (tc) in both absolute (ms) and relative (%) units as a function of foot-strike angle for three running speeds. 
Each dot represents a participant, and colors indicate different foot-strike patterns according to Altman and Davis (2012), i.e., forefoot (red), midfoot (green), and 
rearfoot (blue) strikers for foot-strike angles <-1.6◦, ≥-1.6◦ but <8◦, and ≥8◦, respectively. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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inertial properties and center of mass locations based on their shape (Hanavan, 1964), and attributed relative mass based on standard regression 
equations (Dempster, 1955). The foot segment angle was defined as the orientation of the foot segment relative to the laboratory coordinate system 
and computed using an x–y–z Cardan sequence. The foot segment angle at foot-strike defined the foot-strike angle. 

Appendix B. . Simplification of the proposed method 

The proposed KA used three markers per foot to estimate tc. This can be simplified by using only two markers. First, assuming that tc is symmetric 
between right and left running steps (symmetry index ~ 3%) (Mo et al., 2020), markers could be positioned on a single of both feet. Second, the two 
markers placed on the head of the first and fifth metatarsals could be replaced by a single marker placed on the head of the third metatarsal. In this 
case, the 3D analysis could further be simplified to a two-dimensional analysis (in the sagittal plane), which could then more easily be used outside the 
laboratory and by non-scientific teams (e.g., podiatrists, coaches, etc.). Nonetheless, future studies should be performed to assess the reliability of this 
simplified method. 

Appendix C. Strengths and limitations 

The strength of the results is due to the large dataset employed. This dataset allows better generalization of the results than datasets obtained with 
the smaller cohorts of 10 (Leitch et al., 2011) to 30 (Alvim et al., 2015) runners used previously. Nonetheless, a few limitations to this study exist. The 
KA was compared to the use of GRF using only treadmill runs, and speeds were limited to endurance speeds. The KA might also perform well for 
overground running trials because spatiotemporal parameters between motorized treadmill and overground running are largely comparable (Van 
Hooren et al., 2020). However, it was also concluded that participants behaved differently when attempting to achieve faster speeds overground than 
on a treadmill (Bailey et al., 2017). Therefore, further studies should focus on comparing this novel KA to the use of GRF using additional conditions, i. 
e., faster speeds, positive and negative slopes, and different types of ground. Finally, toe-off detection is based on an absolute threshold (3.5 cm), and 
its accuracy might be influenced by marker placement, shoe size, and footwear characteristics. Nonetheless, the toe-off detection method proposed 
herein yielded equivalent or smaller errors than existing methods. 
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A B S T R A C T   

Background: While running, the human body absorbs repetitive shocks with every step. These shocks can be 
quantified by the peak vertical ground reaction force (Fv,max). To measure so, using a force plate is the gold 
standard method (GSM), but not always at hand. In this case, a motion capture system might be an alternative if 
it accurately estimates Fv,max. 
Research question: The purpose of this study was to estimate Fv,max based on motion capture data and validate the 
obtained estimates with force plate-based measures. 
Methods: One hundred and fifteen runners participated at this study and ran at 9, 11, and 13 km/h. Force data 
(1000 Hz) and whole-body kinematics (200 Hz) were acquired with an instrumented treadmill and an opto-
electronic system, respectively. The vertical ground reaction force was reconstructed from either the whole-body 
center of mass (COM-M) or sacral marker (SACR-M) accelerations, calculated as the second derivative of their 
respective positions, and further low-pass filtered using several cutoff frequencies (2−20 Hz) and a fourth-order 
Butterworth filter. 
Results: The most accurate estimations of Fv,max were obtained using 5 and 4 Hz cutoff frequencies for the filtering 
of COM and sacral marker accelerations, respectively. GSM, COM-M, and SACR-M were not significantly 
different at 11 km/h but were at 9 and 13 km/h. The comparison between GSM and COM-M or SACR-M for each 
speed depicted root mean square error (RMSE) smaller or equal to 0.17BW (≤6.5 %) and no systematic bias at 11 
km/h but small systematic biases at 9 and 13 km/h (≤0.09 BW). COM-M gave systematic biases three times 
smaller than SACR-M and two times smaller RMSE. 
Significance: The findings of this study support the use of either COM-M or SACR-M using data filtered at 5 and 4 
Hz, respectively, to estimate Fv,max during level treadmill runs at endurance speeds.   

1. Introduction 

Even though running can offer many health benefits, the incidence of 
running related injuries remains high [1]. These injuries often occur 
when the loading of the musculoskeletal system exceeds its load bearing 
capacities. This loading corresponds to the repetitive shocks associated 
with every step that the human body must absorb by adopting a specific 
running biomechanics. Although the magnitude of these shocks are 
relatively insubstantial, in the order of 1.5–2.5 body weights (BW) for 

the active peak [2], their quantity can be significant. For instance, an 
individual running an average of 20 km/week produces more than one 
million of active peaks during a one year period [3]. 

Although the internal forces contribute most to the experienced 
loading [4,5], the external forces are often used as substitute measures 
to estimate the loading of the musculoskeletal system [5–8]. For 
instance, moderate correlation was observed between the active peak 
force, i.e., peak vertical ground reaction force (Fv,max), and peak axial 
tibial compressive force [6]. It was also suggested that the peak tibial 
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bone loading occurs during midstance at Fv,max [5,8] and that Fv,max is 
representative of the magnitude of external bone loading during the 
stance running phase [5]. For these reasons, Fv,max proved to be one 
important biomechanical parameter to accurately measure, though this 
variable alone should not be used to assess running related injuries [9]. 

The measurement of Fv,max is usually performed using force plates, 
which is considered as the gold standard method (GSM). However, an 
instrumented treadmill would be required to conduct such measurement 
in the laboratory, which could not always be affordable or at hand [10, 
11]. In such case, alternatives would be to use a sacral-mounted inertial 
measurement unit (IMU) [12–15] or a motion capture system [16,17]. 
The former is low-cost and practical to use in a coaching environment 
[18] while the latter, though more expensive, allows an in-depth 
assessment of running kinematics and is the alternative employed in 
the present study. 

Using Newton’s second law, which states that the sum of the forces 
applied to the human body is given by the body mass (m) multiplied by 
the acceleration of its center of mass (COM), vertical ground reaction 
force (Fv) can easily be recovered when assuming no air resistance and is 
given by Eq. 1 

Fv(t) = m[av(t) + g] (1)  

where mg represents body weight and av is the whole-body COM vertical 
acceleration. The latter is the last piece of missing information in the 
previous equation and can be provided by the outcome of the motion 
capture system. Indeed, based on the three-dimensional (3D) kinematics 
of the entire body, the COM trajectory is computed as a weighted sum of 
the COM of each body segments (segmental analysis) [19], which ulti-
mately allows obtaining the whole-body COM acceleration by 
computing the second derivative of the COM trajectory. 

Although the segmental analysis is quite widespread, it is not a 
perfect estimation. For instance, it is subject to soft tissue artefact [20] 
and relies on accurate markers placement [21]. Moreover, this methods 
is time-consuming due to the large number of markers required to 
approximate each segment as a rigid body, where the choice of each 
rigid body, i.e., the schematic model of each body segment, is essential 
to correctly estimate the whole-body COM [22]. Furthermore, body 
segments need to be assigned inertial properties and COM locations 
based on their shape [23], and attributed relative mass based on stan-
dard regression equations [24], which add extra approximations. For 
these reasons, Napier, Jiang, MacLean, Menon and Hunt [25] approxi-
mated the whole-body COM trajectory by the trajectory of a single 
marker placed on the sacrum at the midpoint of the posterior superior 
iliac spines. These authors demonstrated that this very simple alterna-
tive was a valid proxy for the COM trajectory in vertical and fore-aft 
directions at specific events of the running cycle [25]. However, to the 
best of our knowledge, using the vertical acceleration of a single sacral 
marker to estimate Fv,max has never been investigated while using the 
whole-body vertical COM acceleration has already been attempted but 
using a single participant [26]. 

Alternatively, sacral acceleration directly recorded using sacral- 
mounted IMU were used to estimate Fv,max [12–15]. For instance, 
Alcantara, Day, Hahn and Grabowski [13] predicted Fv,max using ma-
chine learning and reported a root mean square error (RMSE) of 0.15 
BW. Moreover, weak to moderate correlations were obtained between 
Fv,max measured using GSM and estimated using IMU data [12]. These 
authors observed an effect of the low-pass cutoff frequency used for the 
IMU data, where a better correlation was depicted for a 10 Hz than a 5 or 
30 Hz cutoff frequency. 

The previous findings suggest that the choice of the cutoff frequency 
proved to be important. Indeed, a substantial filtering method is 
required to avoid unrealistic peaks in the acceleration signal [19]. 
However, the effect of the cutoff frequency was not investigated when 
estimating Fv,max from whole-body COM [26]. Hence, the purpose of this 
study was to 1) estimate Fv,max based on whole-body COM (COM 

method; COM-M) and sacral marker (sacral marker method: SACR-M) 
accelerations filtered using several cutoff frequencies (2−20 Hz), and 
2) compare these estimations against GSM at several treadmill speeds. 
We hypothesized that 1) a single cutoff frequency should minimize 
RMSE and that this cutoff frequency should be different for each method 
and 2) a similar RMSE than in Alcantara, Day, Hahn and Grabowski [13] 
should be obtained, i.e., ~0.15 BW. 

2. Materials and methods 

2.1. Participant characteristics 

Hundred and fifteen recreational runners, 87 males (age: 30 ± 8 
years, height: 180 ± 6 cm, body mass: 70 ± 7 kg, and weekly running 
distance: 38 ± 24 km) and 28 females (age: 30 ± 7 years, height: 169 ± 5 
cm, body mass: 61 ± 6 kg, and weekly running distance: 22 ± 16 km) 
voluntarily participated in this study. For study inclusion, participants 
were required to not have current or recent lower-extremity injury 
(≤1month), to run at least once a week, and to have an estimated 
maximal aerobic speed ≥14 km/h. The study protocol was approved by 
the local Ethics Committee (CER-VD 2020−00334). 

2.2. Experimental procedure 

After providing written informed consent, retroreflective markers 
were positioned on participants (described in Subsec. 2.3 Data collection 
and processing) to assess their running biomechanics. As for each 
participant, a 7-min warm-up run was performed on an instrumented 
treadmill (Arsalis T150 – FMT-MED, Louvain-la-Neuve, Belgium). Speed 
was set to 9 km/h for the first 3 min and was then increased by 0.5 km/h 
every 30 s. This was followed, after a short break (<5 min), by a 1-s 
static trial on the same treadmill for calibration. Then, three 1-min 
runs (9, 11, and 13 km/h) were performed in a randomized order (1- 
min recovery between each run). 3D kinematic and kinetic data were 
collected during the first 10 strides following the 30-s mark of running 
trials. All participants were familiar with running on a treadmill as part 
of their usual training program and wore their habitual running shoes. 

2.3. Data collection and processing 

Whole-body 3D kinematic data were collected at 200 Hz using mo-
tion capture (8 cameras) and Vicon Nexus software v2.9.3 (Vicon, Ox-
ford, UK). Forty-three and 39 retro-reflective markers of 12.5 mm 
diameter were used for static and running trials, respectively. They were 
affixed to skin and shoes of individuals over anatomical landmarks using 
double-sided tape following standard guidelines [27]. Synchronized 
kinetic data (1000 Hz) were collected using the force plate embedded 
into the treadmill. 

3D marker and ground reaction force (analog signal) were exported 
in. c3d format and processed in Visual3D Professional software v6.01.12 
(C-Motion Inc., Germantown, MD, USA). 3D marker data were inter-
polated using a third-order polynomial least-square fit algorithm (using 
three frames of data before and after the “gap” to calculate the co-
efficients of the polynomial), allowing a maximum of 20 frames for gap 
filling, and subsequently low-pass filtered at 20 Hz using a fourth-order 
Butterworth filter. 3D ground reaction force signal was filtered using the 
same filter and downsampled to 200 Hz to match the sampling fre-
quency of marker data. 

From the marker set, a full-body biomechanical model with six de-
grees of freedom and 15 rigid segments was constructed. Segments 
included the head, upper arms, lower arms, hands, thorax, pelvis, thighs, 
shanks, and feet. Whole-body COM trajectory was calculated from the 
parameters of all 15 segments (directly provided by Visual3D). A sacral 
marker was reconstructed (virtual marker) at the midpoint between the 
two markers affixed to the posterior superior iliac spines [25]. Note-
worthy, similar results would have been obtained by using a real marker 
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at this same location because marker placement error and soft tissue 
movement artefact are expected to be low in this region (prominence of 
bony landmarks and lack of soft tissue) [25]. 

The acceleration of the COM and sacral marker trajectories were 
calculated by computing their second derivative and were subsequently 
low-pass filtered using a fourth-order Butterworth filter. Several cutoff 
frequencies have been tested: 20, 10, 5, 4, 3, and 2 Hz. This choice of 
cutoff frequencies follows from the fact that any frequency above 20 Hz 
should arise due to vibration [3] while 3 Hz spike is considered to be 
reflective of step frequencies (vertical sinusoidal pelvic motion) [28]. 
For each low-pass filtered acceleration of both COM and sacral marker, 
the ground reaction force was reconstructed using Eq. 1. Finally, Fv,max 
was given by the maximum of the measured (GSM) and both estimated 
(COM-M and SACR-M) vertical ground reaction force signals between 
foot-strike and toe-off events. These events were identified within vis-
ual3D and detected by applying a 20 N threshold to the vertical 
component of the ground reaction force [29]. The body mass of each 
participant was obtained from body weight recorded during the static 
trial and was used in Eq. 1 and to express force-like data in BW. For 
further analyses, each Fv,max (from GSM, COM-M, and SACR-M) of each 
participant was given by the average over the 20 consecutives Fv,max 

values corresponding to the 10 analyzed strides. Errors in estimating 
Fv,max with respect to GSM using either COM-M or SACR-M were 
calculated using RMSE (in absolute and relative units, i.e., normalized 
by the mean Fv,max value over all participants and obtained using GSM). 
The best cutoff frequency for COM-M and SACR-M was determined as 
the frequency which minimized RMSE. Statistical analysis was per-
formed on Fv,max estimated by the most accurate COM-M and SACR-M. 
Data analysis was performed using Python (v3.7.4, available at http 
://www.python.org). 

2.4. Statistical analysis 

All data are presented as mean ± standard deviation. Bland-Altman 
plots were constructed to examine the presence of systematic bias on 
Fv,max between COM-M and GSM as well as between SACR-M and GSM 
for each running speed [30,31]. Corresponding lower and upper limit of 
agreements and 95 % confidence intervals (CI) were calculated. Sys-
tematic biases have a direction, i.e., positive values indicate over-
estimations of COM-M or SACR-M while negative values indicate 
underestimations. Then, after having inspected residual plots and hav-
ing observed no obvious deviations from homoscedasticity or normality, 
two-way [method of calculation (GSM vs COM-M vs SACR-M) x running 
speed (9 vs 11 vs 13)] repeated measures ANOVA with Mauchly’s 
correction for sphericity and employing Holm corrections for pairwise 
post hoc comparisons were performed. Differences between GSM, 

COM-M, and SACR-M were quantified using Cohen’s d effect size and 
interpreted as very small, small, moderate, and large when |d| values 
were close to 0.01, 0.2, 0.5, and 0.8, respectively [32]. Statistical 
analysis was performed using Jamovi (v1.2, retrieved from htt 
ps://www.jamovi.org) with a level of significance set at P ≤ 0.05. 

3. Results 

RMSE of the estimation of Fv,max with respect to GSM using either 
COM-M or SACR-M as function of the cutoff frequency of the fourth- 
order Butterworth filter is depicted in Fig. 1 for the three running 
speeds. The filter frequencies which minimized RMSE were 5 and 4 Hz 
for COM-M and SACR-M, respectively, for the three speeds. RMSE for 
COM-M with a 5 Hz cutoff frequency at 9, 11, and 13 km/h were 0.06, 
0.07, and 0.08 BW, respectively, while RMSE for SACR-M with a 4 Hz 
cutoff frequency at 9, 11, and 13 km/h were 0.14, 0.13, and 0.17 BW, 
respectively (RMSE for all cutoff frequencies and running speeds are 
reported in Table S1). Fv,max estimated by COM-M and SACR-M using 
these best frequencies were kept for the following analyses. 

Fig. 2 depicts the vertical ground reaction force obtained using GSM 
(force plate) as well as COM-M and SACR-M using data filtered at 5 and 4 
Hz, respectively. 

No systematic bias was reported for Fv,max at 11 km/h for both COM- 
M and SACR-M compared to GSM (the zero line lied within the 95 % CI) 
while small biases were obtained at 9 and 13 km/h [≤0.09 BW (≤61.8 N 
for a 70 kg person); Fig. 3 and Table 1]. RMSE was smaller or equal to 
0.06 BW (≤2.6 %) and 0.17 BW (≤6.5 %) for the comparison between 
GSM and COM-M and between GSM and SACR-M, respectively 
(Table 1). Estimations of Fv,max using COM-M and SACR-M in Fig. 3 and 
Tables 1–3 were obtained using data filtered at 5 and 4 Hz, respectively. 

Repeated measures ANOVA depicted significant effects for both 
running speed and method of calculation x running speed interaction (P 
< 0.001; Table 2) but there was no effect of the method of calculation (P 
= 0.41; Table 2). Holm post hoc tests yielded significant differences 
between Fv,max obtained using pair of methods at 9 and 13 km/h (P ≤
0.003) but not at 11 km/h (P≥0.23). The other pairwise post hoc 
comparisons were all statistically significant (P ≤ 0.03) except the pair 
GSM at 11 km/h and SACR-M at 13 km/h (P = 0.23). Besides, while a 
linear increase in Fv,max with increasing speed is reported for GSM and 
COM-M, this is less true for SACR-M (Table 2). 

Cohen’s d effect sizes were very small for the comparison of each pair 
of methods at 11 km/h and GSM and COM-M at 9 km/h, small for GSM 
and COM-M at 13 km/h and COM-M and SACR-M at 9 and 13 km/h, and 
moderate for GSM and SACR-M at 9 and 13 km/h were moderate 
(Table 3). 

Fig. 1. Root mean square error [RMSE; in body weight (BW)] of the estimation of the peak vertical ground reaction force with respect to the gold standard method 
using A) the center of mass method (COM-M) and B) the sacral marker method (SACR-M), as function of the cutoff frequency of the fourth-order Butterworth low-pass 
filter and for three running speeds. Noteworthy, a log-scale was used on the x-axis to improve readability and vertical force was filtered at 20 Hz. 

A. Patoz et al.                                                                                                                                                                                                                                   

http://www.python.org
http://www.python.org
https://www.jamovi.org
https://www.jamovi.org


Gait & Posture 89 (2021) 186–192

189

4. Discussion 

According to the first hypothesis, a single cutoff frequency mini-
mized RMSE and was different for each method. Indeed, the most ac-
curate estimations of Fv,max were obtained using a 5 and 4 Hz cutoff 
frequency for the fourth order Butterworth low-pass filtering of COM 
and sacral marker accelerations, respectively. Besides, according to the 
second hypothesis, RMSE close to 0.15 BW were obtained for both COM- 
M and SACR-M at each tested speed (RMSE ≤ 0.17 BW). Conventional 
statistical approaches demonstrated no systematic bias and no signifi-
cant difference of Fv,max between GSM, COM-M, and SACR-M at 11 km/ 
h. However, systematic biases and significant differences were obtained 
at 9 and 13 km/h, though COM-M gave systematic biases three times 
smaller than SACR-M as well as two times smaller RMSE. Nonetheless, 
systematic biases at 9 and 13 km/h were small (≤0.09 BW) and 
accompanied with ≤6.5 % RMSE. 

COM-M and SACR-M depicted the smallest RMSE for a cutoff 

frequency of 5 and 4 Hz, respectively (Fig. 1). As the body segments 
were not considered in the sacral acceleration, this might not attenuate 
and “smooth” the signal compared to COM acceleration (the whole-body 
COM trajectory being a weighted sum of all body segments, its overall 
shape should be smoother than the sacral marker trajectory). This sug-
gests that the vertical peaks in the unfiltered sacral acceleration signal 
were slightly higher than in COM acceleration (see Fig. S1). Therefore, a 
smaller cutoff frequency was required to filter the sacral than COM ac-
celeration to decrease the magnitude of the vertical peaks and to make 
them match with the ones of GSM. Nonetheless, as the sacral marker 
should be close to COM location [25], the corresponding acceleration 
signals should be similar, i.e., the noise in the sacral acceleration was not 
drastically larger than in the COM one, justifying the small difference of 
1 Hz in optimal cutoff frequencies. 

Different RMSE between speeds were reported at lower than optimal 
cutoff frequencies while similar RMSE were obtained at larger than 
optimal cutoff frequencies (Fig. 1). In other words, the effect of speed on 

Fig. 2. Vertical ground reaction force [Fv; in body weight (BW)] obtained using force plate and filtered at 20 Hz, i.e., gold standard method (GSM; solid line), center 
of mass method using a 5 Hz filter (COM-M; dashed line), and sacral marker method using a 4 Hz filter (SACR-M; dotted line) during two running strides for a 
representative participant at 11 km/h. The gray dash-dotted line represents the 20 N threshold used to detect foot-strike and toe-off events on the GSM. 

Fig. 3. Comparison of peak vertical ground 
reaction force [Fv,max; in body weight (BW)] 
obtained using gold standard method and A) 
center of mass method and B) sacral marker 
method [differences (Δ) as function of mean 
values together with systematic bias (black 
solid line) as well as lower and upper limit of 
agreements (black dashed lines), i.e., Bland- 
Altman plots] for three running speeds. COM 
and sacral marker data were filtered at 5 and 4 
Hz, respectively, while vertical force was 
filtered at 20 Hz. Each dot represents the 
average over the 10 analyzed strides from one 
subject.   
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RMSE increased as cutoff frequency decreased. This might be explained 
by the fact that the 2−4 Hz cutoff frequencies were close to the oscil-
latory behavior of COM or sacral marker. Indeed, 3 Hz is considered as 
the frequency corresponding to the vertical sinusoidal pelvic motion, 
reflective of step frequencies [28]. Besides, the higher the speed, the 
higher the step rate, and thus the even more likely to be close to the 
oscillatory behavior of the COM or sacral marker, further explaining the 
higher RMSE reported at 13 km/h than at 11 km/h and 9 km/h at lower 
than optimal cutoff frequencies. 

A previous study evaluating the effect of the cutoff frequency to filter 
sacral-mounted IMU data to estimate Fv,max reported that the smallest 
RMSE was obtained using a 10 Hz cutoff [12]. The present study re-
ported optimal cutoff frequencies that were two times smaller (4 and 5 
Hz). The discrepancy might be explained by the fact that the authors 
were directly measuring the sacral acceleration, which might be more 
prone to high frequency noise [12]. Furthermore, ground reaction force 
was filtered at 30 Hz whereas a 20 Hz cutoff was used in this study. In 
addition, the authors recorded treadmill runs from 13.7 to 19.4 km/h, 
which is faster than the endurance speeds used in the present study. 
Therefore, as the present study slightly overestimated and under-
estimated Fv,max at 9 and 13 km/h, respectively, this suggests that a 
larger cutoff frequency should be used at a faster speed and a smaller one 
at a slower speed, which goes in the direction of the previous findings 
[12]. Indeed, increasing/decreasing the cutoff frequency 

increases/decreases the magnitude of the filtered signal [12]. Moreover, 
a significant effect of running speed was observed (Table 2). Therefore, a 
speed-dependent cutoff frequency would probably provide better re-
sults. However, future studies should focus on testing several slower and 
faster running speeds to further decipher the running speed effect. Be-
sides, a more complicated model could be constructed to better estimate 
Fv,max, for instance following recent research [13,33,34], which use 
artificial intelligence to estimate the vertical ground reaction force. 
Then, in practice, a systematic addition of the bias corresponding to the 
given speed could be applied when estimating Fv,max. 

The differences between GSM and COM-M or SACR-M obtained in 
this study reported the same level of accuracy than in the study based on 
a single participant [26] [≤100 N (≤0.15 BW for a 70 kg person) at 
7−20 km/h]. Moreover, Fv,max estimated using sacral-mounted inertial 
sensors reported similar differences [12] [≤20 N (≤0.03 BW for a 70 kg 
person) at 14−19 km/h] and RMSE [13] (0.15 BW at 13.5–19.5 km/h) 
with respect to GSM than COM-M and SACR-M used in the present study. 
In addition, a 6 % error on Fv,max (6−21 km/h) was reported using an 
inertial sensor placed on the leg along the tibial axis [35] while a 3 % 
error (10−14 km/h) was achieved using three IMUs (two on lower legs 
and one on pelvis) and two artificial neural networks [36]. Thus, esti-
mated Fv,max depicted similar error (~5 %) than previous estimations 
which used whole-body COM trajectory or inertial sensors. Nonetheless, 

Table 1 
Systematic bias, lower limit of agreement (lloa), upper limit of agreement (uloa), and root mean square error [RMSE; both in absolute (body weight; BW) and relative 
(%) units] between peak vertical ground reaction force (Fv,max) obtained using center of mass (COM-M) and gold standard (GSM) method as well as using sacral marker 
method (SACR-M) and GSM at three running speeds. 95 % confidence intervals are given in square brackets [lower, upper].   

Running Speed (km/h) Systematic Bias (BW) Lloa (BW) Uloa (BW) RMSE (BW) 

COM-M vs GSM 9 0.02 [0.01, 0.03] −0.09 [−0.11, −0.07] 0.13 [0.11, 0.15] 0.06 (2.6 %)  
11 −0.01 [−0.02, 0.01] −0.14 [−0.16, −0.12] 0.12 [0.10, 0.15] 0.07 (2.7 %)  
13 −0.04 [−0.05, −0.03] −0.18 [−0.21, −0.16] 0.10 [0.08, 0.13] 0.08 (3.2 %) 

SACR-M vs GSM 9 0.08 [0.06, 0.10] −0.14 [−0.18, −0.11] 0.31 [0.27, 0.34] 0.14 (6.0 %)  
11 0.01 [−0.01, 0.03] −0.25 [−0.29, −0.21] 0.27 [0.23, 0.31] 0.13 (5.3 %)  
13 −0.09 [−0.11, −0.06] −0.37 [−0.42, −0.33] 0.20 [0.15, 0.24] 0.17 (6.5 %) 

Note: for systematic bias, positive and negative values indicate the COM-M and SACR-M methods overestimated and underestimated Fv,max, respectively. COM and 
sacral marker data were filtered at 5 and 4 Hz, respectively, while vertical force was filtered at 20 Hz. 

Table 2 
Peak vertical ground reaction force [Fv,max; in body weight (BW)] obtained using gold standard (GSM), center of mass (COM-M), and sacral marker (SACR-M) methods 
for three running speeds. Significant (P ≤ 0.05) method of calculation, running speed, and interaction effect, as determined by repeated measures ANOVA, are reported 
in bold font. *, †, and ‡ depict significant differences between Fv,max obtained using GSM and COM-M, GSM and SACR-M, and COM-M and SACR-M, respectively, at a 
given running speed and as determined by Holm post hoc tests. Noteworthy, the other pairwise post hoc comparisons were all statistically significant (P ≤ 0.03) except 
the pair GSM at 11 km/h and SACR-M at 13 km/h (P = 0.23) but not represented by a symbol in the table.   

Running Speed (km/h) GSM COM-M SACR-M 

Fv,max (BW)  
9 2.25 ± 0.28*,† 2.27 ± 0.28‡ 2.33 ± 0.29 
11 2.39 ± 0.30 2.38 ± 0.29 2.40 ± 0.30 
13 2.50 ± 0.31*,† 2.46 ± 0.30‡ 2.41 ± 0.30 

Method of calculation effect P = 0.41   
Running speed effect P < 0.001 
Interaction effect P < 0.001 

Note: values are presented as mean ± standard deviation. COM and sacral marker data were filtered at 5 and 4 Hz, respectively, while vertical force was filtered at 20 
Hz. 

Table 3 
Cohen’s d effect size for peak vertical ground reaction force obtained using gold standard method (GSM) and center of mass method (COM-M), GSM and sacral marker 
method (SACR-M), and COM-M and GSM-M for three running speeds.   

Running Speed (km/h) GSM vs COM-M GSM vs SACR-M COM-M vs SACR-M 

d 
9 −0.10 −0.42 −0.33 
11 0.03 −0.05 −0.09 
13 0.22 0.49 0.29 

Note: COM and sacral marker data were filtered at 5 and 4 Hz, respectively, while vertical force was filtered at 20 Hz. 
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the present study only tested running speeds ranging between 9 and 13 
km/h, thus not permitting to generalize on the accuracy of COM-M and 
SACR-M at faster running speeds, especially because a significant effect 
of running speed was observed (Table 2). 

No systematic bias and significant difference were reported for both 
COM-M and SACR-M at 11 km/h (Fig. 3 and Tables 1 and 2). However, 
systematic but small biases were reported at 9 and 13 km/h (Fig. 3 and 
Table 1), which were accompanied with significant differences 
(Table 2). The systematic bias of SACR-M was almost three times larger 
than the one of COM-M at 9 and 13 km/h while RMSE and effect size 
were two times larger (Fig. 3, Tables 1 and 3). Besides, a less important 
linear increase in Fv,max with increasing speed was reported for SACR-M 
than for GSM and COM-M (Table 2). These results could be explained by 
the fact that the speed-dependence of the cutoff frequency might be 
more important for SACR-M than COM-M, which is depicted by the 
larger range of RMSE over the three running speeds at a given cutoff 
frequency for SACR-M than COM-M (Fig. 1). Therefore, SACR-M might 
require a more pronounced variation of the cutoff frequency with 
running speed than COM-M, i.e., the cutoff frequency for SACR-M might 
need to vary (even if <1 Hz) when speed changes by 2 km/h while the 
one of COM-M might not. This might allow to obtain a similar linear 
increase of Fv,max with increasing speed for SACR-M than for GSM and 
COM-M. Nonetheless, further studies should be conducted to validate 
this assumption. 

No significant difference was reported between COM-M and SACR-M 
at 11 km/h but were at 9 and 13 km/h (Table 2), which follows the 
differences between GSM and both COM-M and SACR-M. However, 
SACR-M depicted larger deviations around the mean than COM-M, as 
reported by the larger lower and upper limit of agreements (Fig. 3) and 
95 % CI (Table 1). These larger deviations could be explained by the fact 
that the whole-body COM trajectory is a weighted sum of all body seg-
ments while the sacral marker trajectory is obviously not. Indeed, the 
overall shape of the whole-body COM trajectory being smoother than 
the sacral marker one (see Fig. S1), the difference between participants 
tends to be smaller for the COM trajectory, which is then reflected in the 
acceleration signals obtained by double differentiation. These findings 
showed that COM-M is more consistent amongst participants than SACR- 
M and might be a preferred choice but is not reflected by the statistical 
analysis. Therefore, we suggest researchers with access to a motion 
capture system but not to a force plate to use COM-M or SACR-M with 
data filtered at 5 and 4 Hz, respectively, to estimate Fv,max. Furthermore, 
similar methods but employing a sacral-mounted IMU might be used to 
estimate Fv,max overground, as long as an optimal cutoff frequency has 
been determined [12]. 

As a limitation to the present study, a single cutoff frequency was 
used to filter the vertical ground reaction force, i.e., 20 Hz. Though this 
choice of cutoff frequency is quite widespread [37,38], other cutoff 
frequencies (e.g., 30 or 80 Hz) are also used in the literature [12,13,39]. 
In this case, the optimal cutoff frequencies reported in this study and of 5 
and 4 Hz for COM-M and SACR-M, respectively, might not be valid 
anymore because Fv,max calculated using GSM might be different. Hence, 
further studies investigating the effect of the cutoff frequency of the gold 
standard signal should be conducted. 

5. Conclusion 

To conclude, this study proposed to estimate Fv,max by reconstructing 
the vertical ground reaction force from either the whole-body COM or 
sacral marker accelerations (Eq. 1), themselves obtained by double 
differentiations of their respective trajectories and further low-pass 
filtered using a fourth-order Butterworth filter. The most accurate esti-
mations of Fv,max were obtained using a 5 and 4 Hz cutoff frequency for 
the filtering of COM and sacral marker accelerations, respectively. The 
comparison between GSM and COM-M or SACR-M, using data filtered at 
5 and 4 Hz, respectively, depicted RMSE ≤0.17 BW (≤6.5 %), together 

with no systematic bias at 11 km/h and systematic but small biases at 9 
and 13 km/h (≤0.09 BW). No significant difference was reported be-
tween each pair of methods at 11 km/h but were at 9 and 13 km/h, The 
findings of this study support the use of either COM-M or SACR-M using 
data filtered at 5 and 4 Hz, respectively, to estimate Fv,max during level 
treadmill runs at endurance speeds. 
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vertical ground reaction force in running 

 

 
Figure S1. Vertical ground reaction force ["!; in body weight (BW)] obtained using center of 

mass method (COM-M; dashed line) and sacral marker method (SACR-M; dotted line) without 

applying a low-pass filter to the underlying COM and sacral marker acceleration signals. "! is 

shown for two running strides and for a representative participant at 11km/h.  
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Table S1. Root mean square error [both in absolute (body weight; BW) and relative (%) units] 

between peak vertical ground reaction force obtained using center of mass (COM-M) and gold 

standard (GSM) method as well as using sacral marker method (SACR-M) and GSM at three 

running speeds and for all cutoff frequencies. 

 

 

 

 

  COM-M vs GSM SACR-M vs GSM 

Cutoff frequency (Hz) RMSE 9 km/h 11 km/h 13 km/h 9 km/h 11 km/h 13 km/h 

2 BW 

(%) 

0.82 

(34.6) 

0.96 

(38.3) 

1.09 

(41.5) 

0.74 

(31.4) 

0.90 

(35.7) 

1.04 

(39.8) 

3 BW 

(%) 

0.32 

(13.5) 

0.41 

(16.5) 

0.51 

(19.4) 

0.20 

(8.6) 

0.31 

(12.3) 

0.43 

(16.4) 

4 BW 

(%) 

0.11 

(4.5) 

0.16 

(6.2) 

0.21 

(8.1) 

0.14 

(6.0) 

0.13 

(5.3) 

0.17 

(6.5) 

5 BW 

(%) 

0.06 

(2.6) 
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(2.7) 
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(3.2) 

0.27 

(11.4) 
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(9.6) 

0.20 

(7.7) 
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(%) 
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(6.8) 

0.17 

(6.5) 

0.81 

(34.1) 

0.81 

(32.2) 

0.78 

(29.6) 

20 BW 

(%) 

0.24 

(10.2) 

0.26 

(10.2) 

0.26 

(10.1) 

1.36 

(57.6) 

1.39 

(55.4) 

1.38 

(52.3) 
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Abstract: Peak vertical ground reaction force (Fz,max), contact time (tc), and flight time (t f ) are key
variables of running biomechanics. The gold standard method (GSM) to measure these variables
is a force plate. However, a force plate is not always at hand and not very portable overground.
In such situation, the vertical acceleration signal recorded by an inertial measurement unit (IMU)
might be used to estimate Fz,max, tc, and t f . Hence, the first purpose of this study was to propose a
method that used data recorded by a single sacral-mounted IMU (IMU method: IMUM) to estimate
Fz,max. The second aim of this study was to estimate tc and t f using the same IMU data. The vertical
acceleration threshold of an already existing IMUM was modified to detect foot-strike and toe-off
events instead of effective foot-strike and toe-off events. Thus, tc and t f estimations were obtained
instead of effective contact and flight time estimations. One hundred runners ran at 9, 11, and
13 km/h. IMU data (208 Hz) and force data (200 Hz) were acquired by a sacral-mounted IMU and an
instrumented treadmill, respectively. The errors obtained when comparing Fz,max, tc, and t f estimated
using the IMUM to Fz,max, tc, and t f measured using the GSM were comparable to the errors obtained
using previously published methods. In fact, a root mean square error (RMSE) of 0.15 BW (6%) was
obtained for Fz,max while a RMSE of 20 ms was reported for both tc and t f (8% and 18%, respectively).
Moreover, even though small systematic biases of 0.07 BW for Fz,max and 13 ms for tc and t f were
reported, the RMSEs were smaller than the smallest real differences [Fz,max: 0.28 BW (11%), tc: 32.0 ms
(13%), and t f : 32.0 ms (30%)], indicating no clinically important difference between the GSM and
IMUM. Therefore, these results support the use of the IMUM to estimate Fz,max, tc, and t f for level
treadmill runs at low running speeds, especially because an IMU has the advantage to be low-cost
and portable and therefore seems very practical for coaches and healthcare professionals.

Keywords: gait analysis; biomechanics; sensor; accelerometer

1. Introduction
Running is defined as a cyclic alternance of support and flight phases, where at

most one limb is in contact with the ground. Indeed, Novacheck [1] postulated that the
presence of this flight phase (t f ) marks the distinction between walking and running
gaits. In other words, the duty factor, i.e., the ratio of ground contact time (tc) over stride
duration, should be under 50% to observe a running gait [2,3]. Though running provides
many health benefits, it is also associated with lower limb injuries [4,5], with a yearly
incidence of running related injuries of up to 85% across novice to competitive runners [6,7].
Several biomechanical variables such as the peak vertical ground reaction force (Fz,max,
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i.e., the maximum of the vertical ground reaction force during stance) and tc were used
to identify runners at risk of developing a running related injury [8–13]. In fact, Fz,max is
representative of the magnitude of external bone loading during the stance running phase
while tc measures the time during which this force is applied [14]. Therefore, Fv,max, tc, and
t f are key variables of running biomechanics.

A force plate is the gold standard method (GSM) to measure Fz,max, tc, and t f . However,
a force plate could not always be available and used [15,16]. In such a case, alternatives
would be to use a motion capture system [17,18] or a light-based optical technology [19].
Nevertheless, even though these three systems can be used outside the laboratory [20–22],
they suffer from a lack of portability and are restricted to a specific and small capture
volume. To overcome such limitation, techniques were developed to estimate Fz,max, tc,
and t f using portable tools such as inertial measurement units (IMUs), which are low-cost
and practical to use in a coaching environment [23].

Fz,max was previously estimated using the vertical acceleration signal recorded by a
sacral-mounted IMU [24,25]. For instance, a root mean square error (RMSE) of 0.15 BW
was reported when using a machine learning algorithm that used data filtered using a
10 Hz 8th order low-pass Butterworth filter [25]. Another method calculated the center of
mass and sacral marker vertical accelerations from their corresponding three-dimensional
(3D) kinematic trajectories, and reported an RMSE  0.17 BW when estimating Fz,max from
these acceleration signals [26]. The whole-body center of mass acceleration calculated from
the kinematic trajectories was also used by Pavei, et al. [27] to estimate Fz,max, but for a
single participant, and by Verheul, et al. [28] to estimate the resultant ground reaction
force impact peak (within the first 30% of the stance). Pavei, Seminati, Storniolo and
Peyré-Tartaruga [27] reported an RMSE of ~0.15 BW for running speeds ranging from
7 to 20 km/h, while an error of ~0.20 BW was reported by Verheul, Gregson, Lisboa,
Vanrenterghem and Robinson [28] for speeds between 7 and 18 km/h.

tc and t f are calculated from foot-strike (FS) and toe-off (TO) events, which can them-
selves be identified using different available techniques that used IMU data [24,25,29–39].
When using a sacral-mounted IMU, which is a natural choice as it approximates the location
of the center of mass [40], either the forward [31] or the vertical acceleration [24,25] were
used to estimate tc and t f . On the one hand, Lee, Mellifont and Burkett [31] detected
specific spikes in their unfiltered forward acceleration signals sampled at 100 Hz to identify
FS and TO events. On the other hand, the vertical ground reaction force was estimated from
the vertical acceleration signal recorded by the IMU (using Newton’s second law), which
allowed detecting FS and TO events using a 0 N threshold [24,25]. A 5 Hz low-pass But-
terworth filter (8th order) was shown to result in the best correlation between tc, obtained
from GSM and IMU data (sampled at 500 Hz) [24], while a machine learning algorithm
that used data filtered using a 10 Hz 8th order low-pass Butterworth filter, resulted in an
RMSE of 11 ms for tc [25]. The vertical acceleration (sampled at 208 Hz) was also used to
estimate the effective contact and flight times [39], two variables that allow deciphering
the landing-take-off asymmetry of running [41–43]. The authors estimated these effective
timings by using a body weight threshold instead of a 0 N threshold, which allowed de-
tecting effective FS and TO events and thus estimating effective contact and flight times.
Moreover, the vertical acceleration was filtered using a Fourier series truncated to 5 Hz
instead of the usual low-pass Butterworth filter. The authors reported an RMSE  22 ms
for both effective contact and flight times.

As previously stated, more research investigating the effect of different filtering meth-
ods are needed when estimating biomechanical variables such as Fz,max and tc [24], espe-
cially because the low-pass cutoff frequency could affect the estimation of biomechanical
variables [44,45]. For this reason, the first purpose of this study was to estimate Fz,max
using a Fourier series truncated to 5 Hz to filter the acceleration signal recorded by a sacral-
mounted IMU (IMU method: IMUM). The second aim of this study was to estimate tc and
t f using the same filtered acceleration signal. We previously used this filter to estimate
both effective contact and flight times [39], but this filter has never been used, to the best of
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the authors knowledge, to estimate Fz,max, tc, and t f . In the present study, tc and t f were
estimated from FS and TO events, themselves detected by modifying the body weight
threshold we previously used [39]. We hypothesized that (i) an RMSE smaller than or equal
to the 0.15 BW reported in Alcantara, Day, Hahn and Grabowski [25] should be obtained for
Fz,max, even if the IMUM is a simple method which does not rely on machine learning, as
was the 3D kinematic method [26], and (ii) tc and t f should have an RMSE smaller than or
equal to that we previously reported for effective contact and flight times (i.e., 0.22 ms) [39].

2. Materials and Methods
2.1. Participant Characteristics

One hundred recreational runners, which consisted of 27 females (age: 29 ± 7 years,
height: 169 ± 5 cm, body mass: 61 ± 6 kg, and weekly running distance: 22 ± 16 km) and
73 males (age: 30 ± 8 years, height: 180 ± 6 cm, body mass: 71 ± 7 kg, and weekly running
distance: 38 ± 24 km), were randomly selected from an existing database consisting
of 115 participants [26] for the purpose of the present study. Participants voluntarily
participated in this study, and to be included, they were required to run at least once a
week and to not have current or recent lower-extremity injury (1 month). The study
protocol was conducted according to the guidelines of the latest declaration of Helsinki and
approved by the local Ethics Committee of the Vaud canton (CER-VD 2020-00334). Written
informed consent was obtained for all subjects involved in the study.

2.2. Experimental Procedure and Data Collection

The experimental procedure and data collection has already been described else-
where [39]. Briefly, an IMU of 9.4 g (Movesense sensor, Suunto, Vantaa, Finland) was
firmly attached to the sacrum of participants using an elastic strap belt (Movesense, Suunto,
Vantaa, Finland; see first figure in [39]). Then, after a warm-up run of 7-min, performed
between 9 and 13 km/h on an instrumented treadmill (Arsalis T150–FMT-MED, Louvain-
la-Neuve, Belgium), three 1-min running trials using speeds of 9, 11, and 13 km/h were
recorded in a randomized order. Three-dimensional IMU and kinetic data corresponding
to the first 10 strides following the 30-s mark of the running trials were kept for data analy-
sis. Kinetic and IMU data were not exactly synchronized. However, the synchronization
delay between kinetic and IMU data was small (50 ms). Therefore, kinetic and IMU data
corresponded to the same 10 strides.

IMU data (saturation range: ±8 g) were collected at 208 Hz (manufacturing specifi-
cation) using a home-made iOS application running on an iPhone SE (Apple, Cupertino,
CA, USA). The IMU orientation was such that its medio-lateral (pointing towards the right
side of the IMU), posterior–anterior, and inferior–superior axes were denoted as the x-,
y-, and z-axis, respectively. These IMU data were transferred to a personal computer for
post processing.

The force plate embedded into the treadmill together with the Vicon Nexus software
(v2.9.3, Vicon, Oxford, UK) were used to collect kinetic data (200 Hz). In the laboratory
coordinate system (LCS), medio-lateral (pointing towards the right side of the body),
posterior–anterior, and inferior–superior axes were denoted as the x-, y-, and z-axis, respec-
tively. The Visual3D Professional software (v6.01.12, C-Motion Inc., Germantown, MD,
USA) was used to process the 3D ground reaction forces (analog signal), which were first
exported in .c3d format. Then, the forces were low-pass filtered at 20 Hz using a 4th order
Butterworth filter.

2.3. Gold Standard Method

For each running trial, FS and TO events were identified within Visual3D. These events
were detected by applying a 20 N threshold to the vertical ground reaction force [46]. tc

and t f were defined by the time between FS and TO events and between TO and FS events,
respectively, while Fz,max was defined by the maximum of the vertical ground reaction
force between FS and TO events and was expressed in body weights.
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2.4. Inertial Measurement Unit Method

The custom c++ code [47] used to process IMU data has already been described
elsewhere [39]. Briefly, the average angle between the z-axis of the IMU and LCS was
calculated using the median values of the 3D raw acceleration data filtered using a truncated
Fourier series to 0.5 Hz in each dimension. This angle was used to align (reorient) the
z-axis of the IMU with the LCS. This reorientation process was not considered in previous
research that used a sacral-mounted IMU to estimate Fz,max and tc [24,25,31]. Then, 3D
reoriented data were filtered using a truncated Fourier series to 5 Hz in each dimension. The
vertical ground reaction force was approximated by the filtered vertical acceleration signal
multiplied by body mass. FS and TO events were detected using a 20 N threshold, which
allowed to estimate tc and t f . This 20 N threshold replaced the body weight threshold used
in the original custom code described in [39] and is the only change made herein. Fz,max
was estimated as the maximum of the approximated vertical ground reaction force between
FS and TO events.

2.5. Data Analysis

The RMSE, both in absolute (ms and BW) and relative units, i.e., normalized by
the corresponding mean value over all participants and obtained using the GSM, was
calculated for Fz,max, tc, and t f averaged over the 10 analyzed strides for each participant
and each running trial. Data analysis was performed using Python (v3.7.4, available at
http://www.python.org (accessed on 25 October 2021)).

2.6. Statistical Analysis

All data are presented as mean ± standard deviation. To examine the presence of
systematic bias on Fz,max, tc, and t f obtained from the GSM and IMUM for each speed,
Bland–Altman plots were constructed [48,49]. In case of a systematic bias, a positive
value indicates an overestimation of the IMUM compared to the GSM, while a negative
value indicates an underestimation. In addition, lower and upper limit of agreements
and 95% confidence intervals were calculated. The limits of agreements were calculated
as the bias ± the smallest real difference (SRD). SRD defines the smallest change that
indicates a clinically important difference and is calculated as SRD = 1.96 s, where s is the
standard deviation of the difference between the gold standard and estimated values [50,51].
Besides, a significant slope of the regression line indicates the presence of a proportional
bias (heteroscedasticity). Then, as no obvious deviations from homoscedasticity and
normality were observed in the residual plots, two-way [method of calculation (GSM vs.
IMUM) ⇥ running speed (9 vs. 11 vs. 13)] repeated measures ANOVA using Mauchly’s
correction for sphericity were performed for Fz,max, tc, and t f . Holm corrections were
employed for pairwise post hoc comparisons. The differences between the GSM and IMUM
were quantified using Cohen’s d effect size, where |d| values close to 0.01, 0.2, 0.5, and
0.8 reflect a very small, small, moderate, and large effect size, respectively [52]. Statistical
analysis was performed using Jamovi (v1.2, https://www.jamovi.org (accessed on 25
October 2021)) with a level of significance set at p  0.05.

3. Results
The raw forward acceleration recorded by the IMU and the filtered vertical acceleration

recorded by the IMU, as well as the vertical acceleration recorded by the force plate during
a running stride for three representative participants running at 11 km/h, are depicted in
Figure 1.

Systematic biases (average over running speeds) were obtained for Fz,max (0.07 BW)
and tc and t f (13 ms), and 11 km/h gave the smallest absolute bias, followed by 9 km/h
and 13 km/h (Table 1). The three variables reported a significant negative proportional
bias at all speeds and the proportional bias of t f was larger than that of tc (Table 1).

http://www.python.org
https://www.jamovi.org
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Figure 1. Raw forward acceleration from inertial measurement unit (IMU), filtered vertical acceler-
ation from IMU, and vertical acceleration from force plate during a running stride for three repre-
sentative participants at 11 km/h are reported in (A–C). The vertical lines represent foot-strike and 
toe-off events as determined using a 20 N threshold on force plate data. 

Figure 1. Raw forward acceleration from inertial measurement unit (IMU), filtered vertical ac-
celeration from IMU, and vertical acceleration from force plate during a running stride for three
representative participants at 11 km/h are reported in (A–C). The vertical lines represent foot-strike
and toe-off events as determined using a 20 N threshold on force plate data.
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Table 1. Systematic bias, lower limit of agreement (Lloa), upper limit of agreement (Uloa), and
proportional bias ± residual random error together with its corresponding p-value between peak
vertical ground reaction force (Fz,max), contact time (tc), and flight time (t f ) obtained using inertial
measurement unit method and gold standard method at three running speeds. Confidence intervals
of 95% are given in square brackets [lower, upper]. Significant (p  0.05) proportional biases are
reported in bold font.

Speed (km/h) Systematic Bias Lloa Uloa Proportional Bias (p)

Fz,max (BW) 9 0.05 [0.04, 0.05] �0.21 [�0.22, �0.20] 0.30 [0.29, 0.31] �0.28 ± 0.02 (<0.001)
11 �0.04 [�0.04, �0.03] �0.31 [�0.32, �0.30] 0.23 [0.22, 0.24] �0.41 ± 0.02 (<0.001)
13 �0.13 [�0.13, �0.12] �0.45 [�0.46, �0.43] 0.19 [0.18, 0.20] �0.51 ± 0.02 (<0.001)

tc (ms) 9 �9.9 [�10.6, �9.1] �43.7 [�45.0, �42.4] 23.9 [22.6, 25.2] �0.38 ± 0.02 (<0.001)
11 7.3 [6.5, 8.0] �24.6 [�25.8, �23.4] 39.1 [37.9, 40.3] �0.37 ± 0.02 (<0.001)
13 20.2 [19.5, 20.9] �10.1 [�11.3, �9.0] 50.6 [49.4, 51.7] �0.29 ± 0.02 (<0.001)

t f (ms) 9 9.9 [9.1, 10.7] �23.8 [�25.0, �22.5] 43.5 [42.3, 44.8] �0.79 ± 0.02 (<0.001)
11 �7.4 [�8.1, �6.6] �39.2 [�40.5, �38.0] 24.5 [23.3, 25.8] �0.86 ± 0.02 (<0.001)
13 �20.4 [�21.1, �19.7] �50.8 [�52.0, �49.7] 10.0 [8.9, 11.2] �0.91 ± 0.02 (<0.001)

Note: For systematic biases, positive and negative values indicate the inertial measurement unit method overesti-
mated and underestimated Fz,max, tc, and t f , respectively.

Repeated measures ANOVA depicted significant effects for both methods and running
speed, as well as an interaction effect for Fz,max, tc, and t f (p  0.002; Table 2). Holm post
hoc tests yielded significant differences between Fz,max, tc, and t f obtained using the GSM
and IMUM at all speeds (p  0.006). The average RMSE over running speed was 0.15 BW
for Fz,max (6%), while it was 20 ms for tc and t f , corresponding to 8% and 18%, respectively
(Table 2). Cohen’s d effect sizes were small for Fz,max and moderate for tc and t f , except at
13 km/h which was large for the three variables (Table 2). The average SRD over running
speed was 0.28 BW for Fz,max (11%), while it was 32.0 ms for tc and t f , corresponding to
13% and 30%, respectively (Table 2).

Table 2. Peak vertical ground reaction force (Fz,max), contact time (tc), and flight time (
⇣

t f

⌘
) obtained

using the gold standard method (GSM) and inertial measurement unit method (IMUM) together with
the root mean square error [RMSE; both in absolute (ms or BW) and relative (%) units], as well as
Cohen’s d effect size and smallest real difference (SRD) for three running speeds. Significant (p  0.05)
method of calculation, running speed, and interaction effect, as determined by repeated measures
ANOVA, are reported in bold font. * Significant difference between Fz,max, tc, and t f obtained using
the GSM and IMUM at a given running speed, as determined by Holm post hoc tests.

Speed (km/h) Parameter Fz,max (BW) tc (ms) tf (ms)

GSM 2.37 ± 0.19 * 278.3 ± 22.2 * 92.8 ± 22.4 *
9 IMUM 2.42 ± 0.14 268.4 ± 15.5 102.7 ± 10.8

RMSE (absolute) 0.13 18.5 18.6
RMSE (%) 5.3 6.7 20.1

d �0.27 0.49 �0.54
SRD 0.26 (11%) 33.8 (12%) 33.7 (36%)

GSM 2.51 ± 0.19 * 249.7 ± 19.2 * 111.5 ± 19.7 *
11 IMUM 2.47 ± 0.13 256.9 ± 13.9 104.1 ± 9.1

RMSE (absolute) 0.13 16.4 16.5
RMSE (%) 5.1 6.6 14.8

d 0.22 �0.41 0.45
SRD 0.27 (11%) 31.8 (13%) 31.9 (29%)
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Table 2. Cont.

Speed (km/h) Parameter Fz,max (BW) tc (ms) tf (ms)

GSM 2.62 ± 0.20 * 227.6 ± 16.5 * 122.8 ± 17.5 *
13 IMUM 2.49 ± 0.11 247.8 ± 12.8 102.4 ± 8.0

RMSE (absolute) 0.19 24.4 24.5
RMSE (%) 7.4 10.7 20.0

d 0.73 �1.26 1.37
SRD 0.32 (12%) 30.3 (13%) 30.4 (25%)

Method of calculation effect
Running speed effect

Interaction effect

p = 0.002 p < 0.001 p < 0.001
p < 0.001 p < 0.001 p < 0.001
p < 0.001 p < 0.001 p < 0.001

Note: Values are presented as mean ± standard deviation.

4. Discussion
According to the first hypothesis, an RMSE equal to 0.15 BW was reported for Fz,max.

Moreover, according to the second hypothesis, an RMSE equal to 20 ms was obtained for tc

and t f . Our findings demonstrated systematic and proportional biases, as well as significant
differences between gold standard and estimated Fz,max, tc, and t f at each speed employed.
Nonetheless, systematic biases averaged over running speeds were small (0.07 BW and
13 ms) and the RMSEs were smaller than the SRDs, indicating no clinically important
difference between the GSM and IMUM. Hence, the present findings support the use of the
IMUM to estimate Fz,max, tc, and t f for level treadmill runs at low running speeds.

A systematic bias of 0.07 BW and an RMSE of 0.15 BW (6%) were reported for Fz,max.
These errors seemed to be comparable to those obtained using a 10 Hz low-pass cutoff
frequency [24], though the bias and RMSE were not explicitly reported [~0.15 BW by visual
inspection of the fourth figure in [24] (14–19 km/h)]. In addition, the RMSE found for Fz,max
in the present study was equal to the RMSE obtained using two different machine learning
algorithms (linear regression and quantile regression forest) [25]. This result suggests
that combining IMU data with machine learning algorithms seems to not necessarily be
advantageous to estimate Fz,max. Using inertial sensors placed on the legs along the tibial
axis, Charry, et al. [53] obtained a 6% error on Fz,max (6–21 km/h), while Wouda, et al. [54]
achieved a 3% error (10–14 km/h) by using three IMUs (two on lower legs and one on
pelvis) and two artificial neural networks. Besides, an RMSE  0.17 BW was reported
when estimating Fz,max using 3D kinematic data of the center of mass or sacral marker
trajectory [26]. An RMSE close to 0.15 BW was reported by Pavei, Seminati, Storniolo and
Peyré-Tartaruga [27] when the whole-body center of mass acceleration, obtained using
kinematic data to estimate Fz,max for running speeds ranging from 7 to 20 km/h, was
used for a single participant. Thus, the errors reported for Fz,max in the present study were
comparable to those obtained using previously published methods [24–27,53,54]. Moreover,
the RMSE of Fz,max was smaller than its SRD for each tested speed (Table 2), indicating no
clinically important difference between Fz,max values obtained using the GSM and IMUM.

The IMUM reported a systematic bias of 13 ms and an RMSE of 20 ms (8%) for tc

(Tables 1 and 2). These errors seemed to be smaller than those obtained using a 5 Hz
low-pass cutoff frequency [24], though the bias and RMSE were not explicitly reported
[~30 ms by visual inspection of the fifth figure in [24] (14–19 km/h)]. The IMUM employed
in the present study might be advantageous compared to that previously used [24] because
the present IMUM utilized a single low-pass cutoff frequency (5 Hz) to estimate both
Fz,max and tc while the previous method required two different cutoff frequencies (10 Hz
for Fz,max and 5 Hz for tc). However, the present errors were much higher than those
reported by Lee, Mellifont and Burkett [31] (0 ms). These authors used specific spikes
in an unfiltered forward acceleration signal recorded by a sacral-mounted IMU sampled
at 100 Hz to detect FS and TO events. However, these spikes were not present in most
of the data recorded in the present study [see the first figure in in Lee, Mellifont and
Burkett [31] vs. Figure 1 herein]. One possible explanation could be that the 10 national
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level runners recruited by these authors shared a very similar running pattern with specific
acceleration spikes that were not always observed in the present study. As a side note, the
anterior–posterior acceleration signal recorded by the IMU (Figure 1) was quite different
from that depicted in Lee, Mellifont and Burkett [31], and both anterior–posterior IMU
signals were different from that assessed using the gold standard anterior–posterior ground
reaction force signal [55]. This was also previously observed when reconstructing the
anterior–posterior acceleration signal using 3D kinematic trajectories [27]. Besides, the
20 ms RMSE obtained in our study is almost two times larger than the 10 ms RMSE reported
by Alcantara, Day, Hahn and Grabowski [25]. Such a difference might be explained by the
fact that these authors predicted tc using two different machine learning algorithms (linear
regression and quantile regression forest) while the present study estimates tc directly from
the post-processing of the vertical acceleration signal recorded by the sacral-mounted IMU.
Moreover, such a difference suggests that combining IMU data with a machine learning
algorithm may improve the estimations of tc and t f compared to those obtained using IMU
data alone. However, the robustness of the machine learning algorithms employed by these
authors might be questioned as these algorithms were trained on 28 runners and tested on
9 runners, which is below the median value of 40 participants used for this kind of research
question [56]. Nonetheless, further studies would be required to evaluate if applying a
machine learning algorithm on our IMU data, which contains 100 participants, would be
more accurate in estimating tc and t f . Using foot-worn inertial sensors, the systematic bias
on tc was ~10 ms (10–20 km/h) [33] and the RMSE was ~10 ms (11 km/h) [38]. Hence,
the errors reported for the IMUM [systematic bias: 7 ms; RMSE: 15 ms (6%) at 11 km/h]
were comparable to those previously reported using foot-worn inertial sensors. In addition,
Falbriard, Meyer, Mariani, Millet and Aminian [33] reported a proportional bias for tc, as
in the present study. Using 3D kinematic data, the RMSE was larger or equal to 15 ms for
tc (20 km/h) [46] while using a photoelectric system, a bias of ~1 ms was reported for tc,
though validated against motion capture (12 km/h) [57]. Therefore, the error reported for
the IMUM when estimating tc was comparable to the error obtained using an optoelectronic
system [46], but was much larger than the error obtained using a photoelectric system [57].
However, even though these two systems can be used outside the laboratory [20,21], they
suffer from a lack of portability and do not allow continuous data collection. For this reason,
using a single IMU was advantageous by its portability, and was shown to be quite accurate
to estimate tc, and therefore t f . Indeed, when the error is calculated for many running
steps, as tc and t f are based on the same TO events, the bias of t f is the negative of the bias
of tc, and the RMSEs for tc and t f are mostly the same in absolute (ms) units. Furthermore,
tc and t f reported smaller RMSEs than their corresponding SRDs for each tested speed
(Table 2), indicating no clinically important differences between tc and t f values obtained
using the GSM and IMUM.

A significant effect of running speed was observed for Fz,max, tc, and t f (Table 2).
Moreover, the most accurate estimation was given at 11 km/h (Tables 1 and 2). These
findings could not readily be explained. However, further studies should focus on testing
several slower and faster running speeds to further decipher the running speed effect.
Then, future studies could focus on constructing a more sophisticated model, considering
the running speed to try to improve the estimations of Fz,max, tc, and t f .

A few limitations to this study exist. The IMUM was compared to the GSM only
at low running speeds during treadmill runs. However, the IMUM might also perform
well overground because spatiotemporal variables between treadmill and overground
running are largely comparable [58], although controversial [59]. Nonetheless, further
studies should focus on comparing the IMUM to the GSM using additional conditions
(i.e., faster speeds, positive and negative slopes, and different types of ground). Moreover,
kinetic and IMU data were not exactly synchronized. Therefore, further studies should
focus on synchronizing these data and performing FS and TO events comparisons between
the GSM and IMUM. This may be useful if the assessment of metrics at specific FS and TO
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events is needed, e.g., knee angle at FS, using additional IMUs [60] synchronized with the
sacral-mounted IMU providing FS and TO events.

5. Conclusions
This study estimated Fz,max, tc, and t f using the vertical acceleration signal recorded

by a single sacral-mounted IMU, which was filtered using a truncated Fourier series to
5 Hz. The comparison between the GSM and IMUM depicted an RMSE of 0.15 BW for
Fz,max, and of 20 ms for tc and t f , and small systematic biases of 0.07 BW for Fz,max, and
13 ms for tc and t f (average over running speeds). These errors were comparable to those
obtained using previously published methods. Moreover, the RMSEs were smaller than
the SRDs, indicating no clinically important difference between the GSM and IMUM.
Therefore, the findings of this study support the use of the IMUM to estimate Fz,max, tc,
and t f for level treadmill runs at low running speeds, especially because an IMU has the
advantage to be low-cost and portable, and therefore seems very practical for coaches and
healthcare professionals.
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d Research Unit EA3920 Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation platform, University of 
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A B S T R A C T   

Effective ground contact (tce) and flight (tfe) times were proven to be more appropriate to decipher the landing- 
take-off asymmetry of running than usual ground contact (tc) and flight (tf ) times. To measure these effective 
timings, force plate is the gold standard method (GSM), though not very portable overground. In such situation, 
alternatives could be to use portable tools such as inertial measurement unit (IMU). Therefore, the purpose of this 
study was to propose a method that uses the vertical acceleration recorded using a sacral-mounted IMU to es-
timate tce and tfe and to compare these estimations to those from GSM. Besides, tce and tfe were used to evaluate 
the landing-take-off asymmetry, which was further compared to GSM. One hundred runners ran at 9, 11, and 13 
km/h. Force data (200 Hz) and IMU data (208 Hz) were acquired by an instrumented treadmill and a sacral- 
mounted IMU, respectively. The comparison between GSM and IMU method depicted root mean square error 
≤22 ms (≤14%) for tce and tfe along with small systematic biases (≤20 ms) for each tested speed. These errors are 
similar to previously published methods that estimated usual tc and tf . The systematic biases on tce and tfe were 
subtracted before calculating the landing-take-off asymmetry, which permitted to correctly evaluate it at a group 
level. Therefore, the findings of this study support the use of this method based on vertical acceleration recorded 
using a sacral-mounted IMU to estimate tce and tfe for level treadmill runs and to evaluate the landing-take-off 
asymmetry but only after subtraction of systematic biases and at a group level.   

1. Introduction 

Back in 1988, Cavagna et al. (1988) defined two key running pa-
rameters denoted as effective ground contact (tce) and flight (tfe) times. 
They differ from the usual ground contact (tc) and flight (tf ) times by the 
fact that tce and tfe correspond to the amount of time where the vertical 
ground reaction force is above and below body weight, respectively, 
rather than where the foot is in contact with the ground or not (Cavagna 
et al., 2008a). These effective timings were proven to be more appro-
priate to decipher the landing-take-off asymmetry of running than the 
usual timings (i.e., tc and tf ) (Cavagna, 2006; Cavagna et al., 2008a, b). 

These two parameters are usually obtained from effective foot-strike 
(eFS) and toe-off (eTO) events, i.e., when vertical ground reaction force 

goes over and below body weight, respectively. To obtain such events, 
the use of force plates is considered as the gold standard method (GSM). 
However, force plates are not always available and not very portable 
overground (Abendroth-Smith, 1996; Maiwald et al., 2009). To over-
come such limitation, gait events detection methods were developed 
using inertial measurement units (IMU) (Chew et al., 2018; Day et al., 
2021; Falbriard et al., 2018, 2020; Flaction et al., 2013; Giandolini et al., 
2016; Giandolini et al., 2014; Gindre et al., 2016; Lee et al., 2010; Moe- 
Nilssen, 1998; Norris et al., 2014). Amongst them, a natural choice is a 
sacral-mounted IMU, the reason being that such placement approxi-
mates the location of the center of mass (Napier et al., 2020). 

On the one hand, Flaction et al. (2013) determined effective timings 
using the Myotest® but did not explicitly mentioned the exact procedure 
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to go from raw IMU data to effective timings. Moreover, the Myotest® 
outcomes were compared to tc and tf from photocell- and optical-based 
systems instead of tce and tfe from GSM, leading to an “unusable” validity 
assessment (Gindre et al., 2016). On the other hand, Day et al. (2021) 
calculated tc and tf from usual foot-strike and toe-off events obtained 
using a 0 N threshold applied to an estimation of the vertical ground 
rection force (using Newton’s second law of motion). However, the 
authors did not attempt to calculate tce and tfe. Nonetheless, they showed 
that a 5 Hz low-pass filter was resulting in the best correlation between tc 
obtained from GSM and their method, though mentioning that more 
research investigating the effect of different filtering methods is needed. 
For this reason, the purpose of this study was to estimate tce and tfe using 
a different filtering method than the one proposed by Day et al. (2021), i. 
e., a Fourier series truncated to 5 Hz instead of a 5 Hz low-pass filter, to 
filter the sacral-mounted IMU data (IMU method; IMUM) and to 
compare these estimations to those from GSM. Besides, estimated tce and 
tfe were used to evaluate the landing-take-off asymmetry of running and 
compare it to that obtained using GSM. 

2. Materials and methods 

2.1. Participant characteristics 

Hundred recreational runners, 74 males (age: 30 ± 8 years, height: 
180 ± 6 cm, body mass: 71 ± 7 kg, and weekly running distance: 37 ±
22 km) and 26 females (age: 30 ± 7 years, height: 169 ± 5 cm, body 
mass: 61 ± 6 kg, and weekly running distance: 22 ± 16 km) voluntarily 
participated in this study. For study inclusion, participants were 
required to do not have current or recent lower-extremity injury 
(≤1month). The study protocol was approved by the local Ethics Com-
mittee (CER-VD 2020–00334) and each participant gave written 
informed consent. 

2.2. Experimental procedure and data collection 

After providing written informed consent, an IMU of 9.4 g (Move-
sense, Vantaa, Finland) was firmly attached to the sacrum at the 
midpoint between the posterior superior iliac spinae (Fig. 1) using an 
elastic strap belt (Movesense, Vantaa, Finland). Then, a 7-min warm-up 
run (9–13 km/h) was performed on an instrumented treadmill (Arsalis 
T150–FMT-MED, Louvain-la-Neuve, Belgium), followed by three 1-min 
runs (9, 11, and 13 km/h) performed in a randomized order. Three- 
dimensional (3D) kinetic and IMU data were collected during the first 
10 strides following the 30-s mark of running trials. 

3D kinetic data were collected at 200 Hz using the force plate 
embedded into the treadmill and Vicon Nexus software v2.9.3 (Vicon, 
Oxford, United-Kingdom), and processed in Visual3D Professional soft-
ware v6.01.12 (C-Motion, Germantown, USA). Ground reaction forces 
were interpolated using a third-order polynomial least-square fit algo-
rithm and low-pass filtered at 20 Hz using a fourth-order Butterworth 
filter (Swinnen et al., 2021). 

IMU data were collected at 208 Hz (manufacturing specification) 
with a saturation range of ± 8 g, and using an iPhone SE (Apple, 
Cupertino, USA) and a home-made iOS application that communicated 
with the IMU via Bluetooth. During each running trial, the iPhone was 
kept close to the participant (≤1 m) to avoid losing the Bluetooth 
connection. Kinetic and IMU data were not exactly synchronized 
(Fig. 2). 

2.3. Gold standard method 

eFS and eTO were identified within Visual3D by applying a body 
weight threshold to the vertical ground reaction force (Cavagna et al., 
1988). Then, tce was given by the time between eFS and eTO while tfe by 

Fig. 1. The Movesense inertial measurement unit attached to the sacrum of a 
representative participant using an elastic strap belt. 

Fig. 2. Vertical ground reaction force (Fz) obtained using force plate (gold 
standard; solid line) and inertial measurement unit (IMU; raw: dotted line and 
filtered: dashed line) during two running strides for a given participant at A) 9 
km/h, B) 11 km/h, and C) 13 km/h. The gray dash-dotted line represents the 
body weight threshold used to detect effective foot-strike and toe-off events. 
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the time between eTO and eFS. 

2.4. Inertial measurement unit method 

A custom c++ code (ISO/IEC, 2020) was used to process IMU data. 
First, the z-axis of IMU was aligned with z-axis of local coordinate system 
(Appendix A). Then, aligned raw acceleration data were filtered using a 
truncated Fourier series to 5 Hz. This cut-off frequency was chosen 
because it led to the best estimation of tc in Day et al. (2021). Filtered 
data were used to detect eFS and eTO using a g = 9.81 m/s2 threshold 
(equivalent to the body weight threshold of GSM), and to reconstruct 
vertical ground reaction force by multiplying it by body mass. Besides, 
tce and tfe were calculated from eFS and eTO (Appendix B). 

2.5. Data analysis 

Root mean square error [RMSE; in absolute (ms) and relative units, i. 
e., normalized by the corresponding mean value over all participants 
and obtained using GSM] was calculated for tce and tfe. RMSE was 
computed from tce and tfe averaged over the 10 analyzed strides for each 
participant and each running trial. Data analysis was performed using 
Python (v3.7.4, available at http://www.python.org). 

2.6. Statistical analysis 

All data are presented as mean ± standard deviation. Systematic 
bias, lower and upper limit of agreements, and 95% confidence intervals 
between GSM and IMUM for tce and tfe were examined using Bland- 
Altman plots for each speed (Atkinson and Nevill, 1998; Bland and 
Altman, 1995). Systematic biases have a direction, i.e., positive values 
indicate overstimations of IMUM while negative values indicate 

underestimations. Proportional bias was identified by a significant slope 
of the regression line. Coefficients of determination (R2) were computed 
to assess the quality of the linear fit. tce and tfe obtained using IMUM and 
GSM were compared using two-way [method of calculation (GSM vs. 
IMUM) × running speed (9 vs. 11 vs. 13)] repeated measures ANOVA 
with Mauchly’s correction for sphericity and employing Holm correc-
tions for pairwise post hoc comparisons. Differences between GSM and 
IMUM were quantified using Cohen’s d effect size and interpreted as 
very small, small, moderate, and large when |d| values were close to 
0.01, 0.2, 0.5, and 0.8, respectively (Cohen, 1988). The landing-take-off 
asymmetry was evaluated as the difference between tfe and tce (Δ) 
(Cavagna, 2006; Cavagna et al., 2008a, b). Δ obtained using IMUM and 
GSM were compared using two-way repeated measures ANOVA and 
differences between GSM and IMUM were also quantified using Cohen’s 
d effect size. Statistical analysis was performed using Jamovi (v1.2, 
retrieved from https://www.jamovi.org) with a level of significance set 
at P ≤ 0.05. 

3. Results 

Fig. 2 depicts the vertical ground reaction force obtained using GSM 
(force plate) and IMUM (raw and filtered IMU). 

tce and tfe depicted small systematic biases (≤20 ms) at all speeds. The 
smallest absolute bias was given for 9 km/h, followed by 11 km/h and 
13 km/h (Fig. 3 and Table 1). Both effective timings reported a signif-
icant negative proportional bias at all speeds but were accompanied 
with small R2 (Table 1). 

Significant effects for both method of calculation and running speed 
as well as an interaction effect were depicted by repeated measures 
ANOVA for tce and tfe (P < 0.001; Table 2). Significant differences be-
tween GSM and IMUM for tce and tfe at all speeds (P < 0.001) were 

Fig. 3. Comparison of A) effective contact time (tce) and B) effective flight time (tfe) obtained using inertial measurement unit method and gold standard method 
[differences (Δ) as function of mean values together with systematic bias (black solid line) as well as lower and upper limit of agreements (black dashed lines), and 
proportional bias (black dotted line), i.e., Bland-Altman plots] for three running speeds. For systematic bias, positive and negative values indicate the inertial 
measurement unit method overestimated and underestimated tce and tfe, respectively. 
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reported by Holm post hoc tests. RMSE was ≤22 ms (≤14%) for tce and tfe 
(Table 2) and Cohen’s d effect size was large for tce and tfe except at 9 
km/h which was moderate (Table 2). 

Due to the presence of systematic biases for tce and tfe obtained by 
IMUM (Table 1), Δ was also estimated from these tce and tfe but with 
further subtracting the systematic biases (corrected IMUM). Significant 
effects for both method of calculation and running speed as well as an 
interaction effect were depicted by repeated measures ANOVA for Δ (P 
< 0.001; Table 3). Holm post hoc tests reported significantly larger Δ for 
GSM than IMUM and for corrected IMUM than IMUM at all speeds (P <
0.001) whereas GSM and corrected IMUM were not statistically different 
(P = 1.0). Cohen’s d effect size was large between GSM and IMUM but 
very small between GSM and corrected IMUM at all speeds (Table 3). 
Noteworthy, proportional biases were not taken into account because 
their corresponding R2 (≤0.30) were not satisfactory. Indeed, using 
proportional biases to correct tce and tfe resulted in a worse estimation of 
Δ than with corrected IMUM (data not shown). 

4. Discussion 

Our findings demonstrated systematic and proportional biases be-
tween GSM and IMUM for tce and tfe at each speed employed as well as 
significant differences between GSM and IMUM. Nonetheless, system-
atic biases were small (≤20 ms). In addition, after subtraction of these 
systematic biases, the landing-take-off asymmetry was correctly 

evaluated by corrected IMUM at a group level. However, as revealed by 
the small standard deviations obtained for corrected IMUM, the landing- 
take-off asymmetry was not as correctly evaluated at an individual than 
at a group level. 

IMUM reported systematic biases ≤20 ms and RMSE ≤22 ms (≤14%) 
for tce (Tables 1 and 2). Noteworthy, error in tfe (in absolute units) tends 
to be equal to the one in tce when the number of strides per individual 
tends to infinity. Indeed, the only difference to calculate tce and tfe being 
in the first eFS and last eTO. In addition, errors in tce and tfe could not 
directly be compared to the actual literature because, to the best of our 
knowledge, no study comparing several methods to calculate these 
effective timings was conducted so far. Indeed, we are only aware of the 
comparison between tce and tfe obtained using Myotest® and tc and tf 
obtained from photocell- and optical-based systems (Gindre et al., 
2016), which makes this comparison useless as different outcomes (tce 
vs. tc and tfe vs. tf ) were actually being compared. Nevertheless, the 
authors were aware of this limitation and clearly stated this limitation 
(Gindre et al., 2016). 

Errors in tce and tfe could be compared to those obtained for usual 
timings (tc and tf ). For instance, the errors reported in this study seemed 
to be smaller than the one obtained for tc by Day et al. (2021) though 
bias and RMSE were not explicitely given [~30 ms by visual inspection 

Table 1 
Systematic bias, lower limit of agreement (lloa), upper limit of agreement (uloa), proportional bias ± residual random error together with its corresponding P-value, 
and coefficient of determination (R2) between effective contact (tce) and flight (tfe) times obtained using inertial measurement unit method and gold standard method at 
three running speeds. 95% confidence intervals are given in square brackets [lower, upper]. Significant (P ≤ 0.05) proportional bias are reported in bold font. For 
systematic bias, positive and negative values indicate the inertial measurement unit method overestimated and underestimated tce and tfe, respectively.   

Running Speed (km/h) Systematic Bias lloa uloa Proportional Bias (P) R2 

tce(ms)  9 9.0 [8.4, 9.5] −15.8 [-16.7, −14.9] 33.7 [32.8, 34.7] ¡0.64 ± 0.02 (<0.001)  0.30  
11 14.5 [13.9, 15.0] −10.0 [-10.9, −9.0] 38.9 [38.0, 39.8] ¡0.60 ± 0.02 (<0.001)  0.25  
13 18.8 [18.3, 19.3] −4.1 [-5.0, −3.2] 41.7 [40.8, 42.5] ¡0.50 ± 0.03 (<0.001)  0.15 

tfe(ms)  9 −8.9 [-9.4, −8.3] −34.6 [-35.6, –33.6] 16.9 [15.9, 17.9] ¡0.35 ± 0.02 (<0.001)  0.10  
11 −14.5 [-15.0, −13.9] −39.9 [-40.9, −39.0] 11.0 [10.0, 12.0] ¡0.51 ± 0.02 (<0.001)  0.18  
13 −18.9 [-19.4, −18.3] −43.0 [-43.9, −42.1] 5.3 [4.3, 6.2] ¡0.50 ± 0.02 (<0.001)  0.19  

Table 2 
Effective contact (tce) and flight (tfe) times obtained using gold standard method 
(GSM) and inertial measurement unit method (IMUM) together with root mean 
square error [RMSE; both in absolute (ms or N) and relative (%) units], as well as 
Cohen’s d effect size for three running speeds. Significant (P ≤ 0.05) method of 
calculation, running speed, and interaction effect, as determined by repeated 
measures ANOVA, are reported in bold font. *Significant difference between tce 
and tfe obtained using GSM and IMUM, as determined by Holm post hoc tests.  

Running Speed (km/h)  tce(ms)  tfe(ms)  

9     GSM 
IMUM 
RMSE (ms)  
RMSE (%) 
d 

172.2 ± 14.4* 
181.2 ± 8.0 
14.7 
8.5 
-0.71 

198.6 ± 14.3* 
189.8 ± 10.3 
14.8 
7.4 
0.65 

11     GMS 
IMUM 
RMSE (ms)  
RMSE (%) 
d 

162.5 ± 13.6* 
177.0 ± 8.1 
18.5 
11.4 
-1.21 

198.7 ± 13.8* 
184.2 ± 8.4 
18.6 
9.4 
1.14 

13     GSM 
IMUM 
RMSE (ms)  
RMSE (%) 
d 

152.7 ± 12.0* 
171.5 ± 7.9 
21.6 
14.2 
-1.72 

197.3 ± 13.3* 
178.4 ± 8.0 
21.7 
11.0 
1.51 

Method of calculation effect 
Running speed effect 
Interaction effect 

P < 0.001 
P < 0.001 
P < 0.001 

P < 0.001 
P < 0.001 
P < 0.001 

Values are presented as mean ± standard deviation. 

Table 3 
Landing-take-off asymmetry (Δ), i.e., the difference between effective flight and 
effective contact times, obtained using gold standard method (GSM), inertial 
measurement unit method (IMUM), and corrected IMUM (subtraction of sys-
tematic biases on effective flight and effective contact times), as well as Cohen’s 
d effect size between GSM and IMUM and between GSM and corrected IMUM for 
three running speeds. Significant (P ≤ 0.05) method of calculation, running 
speed, and interaction effect, as determined by repeated measures ANOVA, are 
reported in bold font. * and † denote a significant difference between Δ obtained 
using GSM and IMUM and using IMUM and corrected IMUM, respectively, as 
determined by Holm post hoc tests.  

Running Speed (km/h)  Δ (ms) 

9     GMS 
IMUM 
corrected IMUM 
d (IMUM)  
d (corrected IMUM) 

26.4 ± 23.0* 
8.6 ± 7.0 
26.5 ± 7.0†

0.96 
0.00 

11     GMS 
IMUM 
corrected IMUM 
d (IMUM)  
d (corrected IMUM) 

36.2 ± 22.1* 
7.2 ± 3.7 
36.2 ± 3.7†

1.67 
0.00 

13     GSM 
IMUM 
corrected IMUM 
d (IMUM)  
d (corrected IMUM) 

44.6 ± 20.1* 
6.9 ± 2.4 
44.6 ± 3.4†

-2.32 
0.0  

Method of calculation effect 
Running speed effect 
Interaction effect 

P < 0.001 
P < 0.001 
P < 0.001 

Values are presented as mean ± standard deviation. 
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of their Fig. 5 (14–19 km/h)]. As for foot-worn inertial sensors, a sys-
tematic bias on tc of ~ 10 ms (10–20 km/h) (Falbriard et al., 2018) and 
RMSE of ~ 10 ms (11 km/h) (Chew et al., 2018) were reported, which 
placed IMUM at a similar level of accuracy. In addition, Falbriard et al. 
(2018) depicted a proportional bias for tc, as in this study for tce. Besides, 
IMUM showed similar accuracy than an opoelectronic system (3D ki-
nematic data), which reported RMSE ≥ 15 ms for tc (20 km/h) (Smith 
et al., 2015). However, such system suffers from a lack of portability and 
do not allow continuous data collection. For this reason, using a single 
IMU was advantageous by its portability, and was shown to be quite 
accurate to estimate tce (and tfe). Moreover, in practice, a systematic 
subtraction of the bias corresponding to the given speed could be 
applied when estimating tce and tfe. 

Due to the inexact synchronization between kinetic and IMU data, 
eFS and eTO could not be compared between GSM and IMUM. However, 
we suspect that even under perfect synchronization, eFS and eTO from 
GSM and IMUM would not exactly coincide as vertical force used in 
IMUM is an approximation of ground truth vertical force recorded by 
force plate. Nonetheless, further studies involving synchronized kinetic 
and IMU data would prove useful, especially if one is interested in 
assessing metrics at specific eFS and eTO, for instance using additional 
IMUs (Favre et al., 2008) themselves synchronized with the sacral- 
mounted one which would provide eFS and eTO. 

A single cut-off frequency was used to filter the vertical ground re-
action force, i.e., 20 Hz. Though this choice of cut-off frequency is quite 
widespread (Mai and Willwacher, 2019; Swinnen et al., 2021), other 
cut-off frequencies (e.g., 30 or 80 Hz) are also used in the literature 
(Alcantara et al., 2021; Breine et al., 2017). In this case, the error of 
IMUM might increase because the cut-off frequency affects the magni-
tude of the vertical ground reaction force and thus the time at which eFS 
and eTO occur. Hence, it would also be useful to explore the effect of the 
cut-off frequency of the truncated Fourier series on the accuracy of 
IMUM, as already explored by Day et al. (2021) for a low-pass filter. 
Additionally, the effect of the filter itself (e.g., truncated Fourier series, 
4th order low-pass Butterworth filter, 8th order low-pass Butterworth 
filter, etc.) might also be worth exploring. Therefore, further studies 
investigating the effect of the cut-off frequency of both the gold standard 
and IMU signals as well as the kind of filter should be conducted. 
Furthermore, a significant effect of running speed was observed for tce 
and tfe (Table 2). The most accurate estimation (smallest systematic bias 
and RMSE) was given at 9 km/h (Fig. 3 and Tables 1 and 2). These 
findings suggests that the cut-off frequency that estimates best tce and tfe 
might be speed dependent and reinforce the need to further explore the 
effect of the cut-off frequency of both GSM and IMUM, and to explore 
slower and faster speeds. 

The landing-take-off asymmetry was reported to increase from ~20 
to ~50 ms with increasing running speed (8–20 km/h) (Cavagna, 2006; 
Cavagna et al., 2008a, b). The present study depicted that Δ increased 
from 25 to 45 ms with running speed (9–13 km/h) for GSM and for 
corrected IMUM while Δ was ~7 ms at all tested speeds for IMUM. Due 
to the systematic biases reported for tfe and tce, though similar than 
previously published methods that estimated usual tf and tc, IMUM was 
not able to evaluate the landing-take-off asymmetry. The main reason 
was that tfe and tce were underestimated and overestimated, respectively, 
leading to an accumulation of errors. Moreover, the deviation from GSM 
increased with increasing speed because the error on tfe and tce also 
increased with speed. However, after subtraction of these systematic 
biases, the landing-take-off asymmetry was correctly evaluated by cor-
rected IMUM at a group level. Nonetheless, even though these biases 
might be generalizable due to the large dataset employed, i.e., 100 
runners, they might still be dependent on the given dataset. Therefore, 
we suggest researchers willing to employ this method to first calculate 
these biases using their own dataset and then subtract these calculated 
biases to evaluate the landing-take-off asymmetry. Finally, the landing- 

take-off-asymmetry evaluated by corrected IMUM reported small stan-
dard deviations (Table 3), meaning that the landing-take-off asymmetry 
was not as correctly evaluated at an individual than at a group level. 
Indeed, corrected IMUM was not totally able to provide insights into the 
inter-individual variation of the landing-take-off asymmetry. 

This study presents few limitations. The comparison between IMUM 
and GSM was performed using treadmill runs. As spatiotemporal pa-
rameters between overground and treadmill running are largely com-
parable, IMUM might also perform well overground (Van Hooren et al., 
2020). However, it was concluded that participants behaved differently 
when attempting to achieve faster speeds overground than on a tread-
mill (Bailey et al., 2017). Therefore, the comparison between IMUM and 
GSM using additional conditions (i.e., faster speeds, positive and nega-
tive slopes, and different types of ground) should be further studied. 

5. Conclusion 

A IMUM was provided to estimate tce and tfe. These timings were 
obtained by filtering the vertical acceleration recorded by a sacral- 
mounted IMU using a truncated Fourier series to 5 Hz. GSM and 
IMUM depicted RMSE ≤22 ms (≤14%) together with small systematic 
biases (≤20 ms) for tce and tfe at each speed. These errors are similar to 
previously published methods that estimated usual tc and tf . To avoid 
that the errors on tce and tfe accumulate when evaluating the landing- 
take-off asymmetry, the systematic biases on tce and tfe were sub-
tracted before calculating the landing-take-off asymmetry, which 
permitted to correctly evaluate it at a group level. Therefore, the find-
ings of this study support the use of this method based on vertical ac-
celeration recorded using a sacral-mounted IMU to estimate tce and tfe for 
level treadmill runs and to evaluate the landing-take-off asymmetry of 
running but only after subtraction of systematic biases and at a group 
level. 
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Appendix A. . Aligning the IMU z-axis with the z-axis of the local coordinate system 

The laboratory coordinate system (LCS) was oriented such that x-, y-, and z-axis denoted medio-lateral (pointing towards the right side of the 
body), posterior-anterior, and inferior-superior axis, respectively. The IMU was oriented such that its own x-, y-, and z-axes denoted medio-lateral 
(pointing towards the right side of the IMU), posterior-anterior, and inferior-superior axis, respectively. 

Raw acceleration data was filtered using a truncated Fourier series to 0.5 Hz in each dimension, allowing to remove any acceleration due to 
movement of the IMU (vibrations and body motion) (Day et al., 2021). Indeed, a truncated Fourier series allows removing any frequency component 
within the original signal that are above the requested cut-off. Noteworthy, the number of terms to include in the truncated Fourier series is given by 
N = nF/f , where n is the number of IMU data points, F is the requested truncation frequency, and f is the IMU sampling frequency. Then, the median of 
each component of the filtered 3D signal was computed. Knowing that the average acceleration should be equal to g in the z-axis of LCS and 0 in the 
other two axes, the average angle between the z-axis of IMU and LCS could be calculated based on the previously computed medians. This average 
angle corresponds to the average tilt of the IMU with respect to the z-axis of LCS. Therefore, the IMU can be reoriented using this average angle so that 
its z-axis is, in average, aligned with the one of LCS. However, it was assumed that the rotational motion of the sensor around any of the three axes was 
negligible so that no complicated reorientation of the IMU had to be performed at each timestamp, which would anyway require several approxi-
mations (see for instance Falbriard et al. (2020) for foot-worn IMU). This reorientation process is usually not taken into account when using sacral- 
mounted IMU and signals from sacral-mounted IMU are usually analyzed along the IMU’s coordinate system and compared to ground reaction forces 
analyzed in LCS (Alcantara et al., 2021; Day et al., 2021; Lee et al., 2010). 

Appendix B. . Computing tce and tfe from eFS and eTO obtained using the sacral-mounted IMU 

tce was given by the time between eFS and eTO data points while tfe by the time between eTO data point +1 and eFS data point −1. Doing so, two 
timesteps were missing when computing tce and tfe for a running step. However, this was corrected by using a linear interpolation to calculate the 
“exact” timing of the threshold for eFS and eTO, using eFS data point and previous data point and eTO data point and next data point, respectively. 
Then, the duration between exact eFS threshold and eFS data point as well as between eTO data point and exact eTO threshold were added to tce while 
the duration between eFS data point−1 and exact eFS threshold as well as between exact eTO threshold and eTO data point +1 were added to tfe. This 
procedure allowed to obtain the exact (under linear interpolation) tce and tfe falling above and below the threshold, respectively. 
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Abstract 

Machine learning (ML) was used to predict contact (!!) and flight (!") time, duty factor (DF), 

and peak vertical force ("#,%&') from IMU-based estimations. One hundred runners ran on an 

instrumented treadmill (9-13km/h) while wearing a sacral-mounted IMU. Linear regression 

(LR), support vector regression, and two-layers neural-network were trained (80 participants) 

using IMU-based estimations, running speed, stride frequency, and body mass. Predictions 

(remaining 20 participants) were compared to gold standard (kinetic data collected using the 

force plate) by calculating the mean absolute percentage error (MAPE). MAPEs of "#,%&' did 

not significantly differ among its estimation and predictions (P=0.37) while prediction MAPEs 

for !!, !", and DF were significantly smaller than corresponding estimation MAPEs (P≤0.003). 

There were no significant differences among prediction MAPEs obtained from the three ML 

models (P≥0.80). Errors of the ML models were equal to or smaller than (≤32%) the smallest 

real difference for the four variables while errors of the estimations were not (15-45%), 

indicating that ML models were sufficiently accurate to detect a clinically important difference. 

The simplest ML model (LR) should be used to improve the accuracy of the IMU-based 

estimations. These improvements may be beneficial when monitoring running-related injury 

risk factors in real-world settings. 

 

Keywords: biomechanics, gait, locomotion, inertial measurement unit, duty factor, contact 

time, running injuries  
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Introduction 

While providing many health benefits, running is also associated with lower limb overuse 

injuries (Fredette et al., 2021; Hreljac, 2004; Hreljac, Marshall, & Hume, 2000; Nielsen, Buist, 

Sørensen, Lind, & Rasmussen, 2012). These injuries often occur when a repetitive stress is 

applied to the system beyond its maximum tolerance (Hreljac, 2004). The peak vertical ground 

reaction force ("#,%&'), contact time (!!),  and duty factor (DF), i.e., the product of !! and stride 

frequency (SF) (Folland, Allen, Black, Handsaker, & Forrester, 2017; Minetti, 1998) were 

shown to play a role in running-related injury development (Edwards, 2018; Kiernan et al., 

2018; Lenhart, Thelen, Wille, Chumanov, & Heiderscheit, 2014; Malisoux, Gette, Delattre, 

Urhausen, & Theisen, 2022; Matijevich, Branscombe, Scott, & Zelik, 2019; Sasimontonkul, 

Bay, & Pavol, 2007; Scott & Winter, 1990). Flight time (!") might also play a role as it takes 

both the vertical ground reaction force and its time of production into account (Appendix).  

 

These variables have often been estimated using inertial measurement units (IMUs) (Chew, 

Ngoh, Gouwanda, & Gopalai, 2018; Day, Alcantara, McGeehan, Grabowski, & Hahn, 2021; 

Falbriard, Meyer, Mariani, Millet, & Aminian, 2018; Lee, Mellifont, & Burkett, 2010; Norris, 

Anderson, & Kenny, 2014; Patoz, Lussiana, Breine, Gindre, & Malatesta, 2022), which are 

effective devices to longitudinally monitor these variables outside of a laboratory (Camomilla, 

Bergamini, Fantozzi, & Vannozzi, 2018). However, obtaining accurate estimations based on 

IMU data depends on several factors such as the number of sensors, sensor position, or signal 

filtering (Alcantara, Day, Hahn, & Grabowski, 2021). For instance, error on !! was ~10ms 

when using foot-worn inertial sensors (Chew et al., 2018; Falbriard et al., 2018). Using a single 

sacral-mounted IMU to estimate !!, !", and "#,%&' led to root mean square errors (RMSEs) of 

20ms and 0.15BW compared to gold standard values (force plate) (Patoz et al., 2022). 

Similarly, Day et al. (2021) reported Pearson correlation coefficients (r) of ~0.65 between IMU 
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estimations and gold standard values for !! and "#,%&'. A sacral-mounted IMU is a natural 

choice because it approximates the location of the center of mass (Napier, Jiang, MacLean, 

Menon, & Hunt, 2020) but led to error two times larger for !!. However, applying advanced 

analysis methods such as machine learning (ML) on top of these estimations may provide more 

accurate predictions. 

 

ML was used to explain the differences of gait patterns between high and low-mileage runners 

(Xu et al., 2022) as well as to estimate biomechanical variables based on IMU data (Alcantara 

et al., 2021; Derie et al., 2020; Matijevich, Scott, Volgyesi, Derry, & Zelik, 2020; Wouda et 

al., 2018). ML has the advantage to provide an analytical model which is trained and tested 

using different subsets of the dataset (Halilaj et al., 2018) and built from physics-based 

variables, i.e., variables that demonstrated to provide changes in running biomechanics 

(Alcantara et al., 2021). The modeling of the relationships between clinical outcomes and 

biomechanical measures was attempted using ML models like linear regressions (LRs), support 

vector machines, and artificial neural networks (NNs) (Backes et al., 2020; Halilaj et al., 2018). 

Though limited to linear relationships, LRs are widely used because the regression coefficients 

are useful for model interpretability (Chambers, 1992). On the other hand, support vector 

machines and NNs are used to model non-linear relationships. Although they usually provide 

better accuracies than LRs, their coefficients are difficult to interpret because of their large 

numbers (Halilaj et al., 2018). Therefore, using both basic and complex ML models might 

illustrate the tradeoff between interpretability and accuracy and give the option to prioritize 

between the former and the latter. 

 

Hence, the purpose of this study was to apply ML to predict !!, !", DF, and "#,%&' from their 

respective IMU-based estimations. It was hypothesized that further applying ML to these IMU-
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based estimations should provide predictions with higher accuracies than those previously 

reported for the estimations (Patoz et al., 2022). Errors of the ML models were also compared 

to the smallest real difference (SRD) for the four variables, i.e., it was investigated if the ML 

models were sufficiently accurate to detect a clinically important difference. The comparison 

among the predictions of several ML models would allow defining which model has the best 

tradeoff between interpretability and accuracy. 

 

Materials and Methods 

Participant Characteristics 

An existing database of 100 recreational runners (Patoz et al., 2022) (females: 27, age: 

29±7years, height: 169±5cm, body mass: 61±6kg, and weekly running distance: 22±16km; 

males: 73, age: 30±8years, height: 180±6cm, body mass: 71±7kg, and weekly running distance: 

38±24km) was used in the present study. Participants were required to run at least once a week 

and to not have current or recent lower-extremity injury (≤1month) to be involved in this study. 

The local Ethics Committee of the XXX approved the study protocol prior to data collection 

(XXX) and adhered to the latest version of the Declaration of Helsinki of the World Medical 

Association. Written informed consent was obtained for all subjects. 

 

Experimental Procedure, Data Collection, and Estimations from Inertial Measurement Unit 

Data 

The experimental procedure, data collection, and IMU-based estimations have already been 

described elsewhere (Patoz et al., 2022) and are briefly summarized herein.  

 

An IMU of 9.4g (Movesense sensor, Suunto, Vantaa, Finland) was attached to the sacrum of 

participants. Then, after a warm-up run of 7-min (9-13km/h) on an instrumented treadmill 
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(Arsalis T150–FMT-MED, Louvain-la-Neuve, Belgium), three 1-min running trials (9, 11, and 

13 km/h) were recorded in a randomized order. These speeds were chosen because they 

represent the most commonly adopted speeds of recreational runners (Selinger et al., 2022). 

Data analysis was performed on the IMU and kinetic data corresponding to the first 10 strides 

following the 30-s mark. IMU and kinetic data were not exactly synchronized (technical 

limitation), but the same 10 strides were used for each running trial of each participant because 

the synchronization delay between IMU and kinetic data was small (≤50ms).  

 

A home-made iOS application running on an iPhone SE (Apple, Cupertino, CA, USA) was 

used to collect IMU data (saturation range: ±8g) at 208Hz (manufacturing specification). IMU 

data were then transferred to a personal computer for post processing.  

Kinetic data were collected at 200Hz using the force plate embedded into the treadmill (Arsalis, 

Louvain-la-Neuve, Belgium) together with the Vicon Nexus software (v2.9.3, Vicon, Oxford, 

UK). The Visual3D Professional software (v6.01.12, C-Motion Inc., Germantown, MD, USA) 

was used to process the 3D ground reaction forces (analog signal), which were first exported 

in .c3d format. The forces were low-pass filtered at 20Hz using a fourth-order Butterworth 

filter.  

 

Gold standard !! and !" were given by the time during which the vertical ground reaction force 

was above and below 20N, respectively (Smith, Preece, Mason, & Bramah, 2015). Gold 

standard DF was given by the product of !! and SF. Gold standard "#,%&' was given by the 

maximum of the vertical ground reaction force during !! and was expressed in body weight 

units. The gold standard variables were computed within Visual3D and given as the average 

over the 10 analyzed strides. 
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A custom c++ code (ISO/IEC, 2020) was used to process IMU data and has already been 

described elsewhere (Patoz et al., 2022). Briefly, the vertical ground reaction force was 

approximated by the vertical acceleration (previously reoriented and filtered using a truncated 

Fourier series to 5Hz) multiplied by body mass. Then, !!, !", DF, and "#,%&' were estimated as 

in the gold standard case but using the approximated vertical ground reaction force. In other 

words, !! and !" were given by the time during which the approximated vertical ground reaction 

force was above and below 20N, respectively, DF was given by the product of !! and SF, and  

"#,%&' was given by the maximum of the approximated vertical ground reaction force during 

!!. The custom c++ code provided the estimated variables as the average over the 10 analyzed 

strides. 

 

Predicted Variables Obtained using Machine Learning Models 

Three ML models: LR, support vector regression (SVR) – the regression analog of support 

vector machine – with the radial basis function kernel, and two-layers NN (NN2), were 

constructed to predict !!, !", DF, and "#,%&' using a train/test method (80%–20% split; 80 and 

20 runners in the training and testing set, respectively). All the running trials from one subject 

were included in only one set to ensure that the models generalize well to new data and a similar 

distribution of male (72.5%) and female (27.5%) was maintained in both subsets to avoid 

introducing bias in the model during training (Halilaj et al., 2018). For each variable predicted 

by the three models, four features were used as predictors: running speed, runner's body mass, 

SF, and corresponding IMU-based estimation. This choice follows from their relationship with 

changes in running biomechanics (Alcantara et al., 2021; Nagahara, Takai, Kanehisa, & 

Fukunaga, 2018; Nilsson & Thorstensson, 1989) and to keep the models relatively simple. The 

SF included in the features was the IMU-based estimation and was almost identical to the gold 

standard (Fig. 1). The features were standardized by removing the mean and by scaling to unit 
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variance. The different models were trained using a 5-fold cross validation approach for 

hyperparameter optimization. Hyperparameters are given in Table 1. The trained models were 

used to make predictions on the testing set, which was previously standardized based on the 

mean and standard deviation (SD) of the training set, leading to a total of 60 predictions (three 

running speeds x 20 individuals). The accuracy between gold standard and predicted values 

was quantified using r, RMSE, and mean absolute percentage error (MAPE). Besides, RMSE 

was compared to the SRD to evaluate if the precision of a model is sufficient to detect a 

clinically important difference. Indeed, SRD can be defined as the smallest change that 

indicates a clinically important difference and was calculated as SRD = 1.96	,, where , is the 

within-subject standard deviation of the gold standard values. The analysis was performed 

using Python (v3.7.4, available at http://www.python.org). 

 

Statistical Analysis 

All data are presented as mean ± SD. To examine the presence of systematic bias between gold 

standard !!, !", DF, and "#,%&' values and corresponding predicted or estimated values, Bland-

Altman plots were constructed (Atkinson & Nevill, 1998; Bland & Altman, 1995). In case of 

a systematic bias, a positive value indicates the estimated or predicted variable is 

overestimated. In addition, lower and upper limit of agreements and 95% confidence intervals 

were calculated. Moreover, residual plots were inspected and no obvious deviations from 

homoscedasticity and normality were observed; therefore, one-way [model (no model vs LR 

vs SVR vs NN2)] repeated measures ANOVA with Mauchly’s correction for sphericity and 

employing Holm corrections for pairwise post hoc comparisons were used to compare MAPE 

between models. This comparison was possible because an MAPE was calculated for each 

estimation/prediction made in the testing set. Statistical analysis was performed using Jamovi 

(v1.6.23, available at https://www.jamovi.org) with a level of significance set at P≤0.05. 
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Results 

Participant characteristics and biomechanical variables within training and testing sets 

 

Participant characteristics were not significantly different between training and testing sets 

(P≥0.24; Table 2). Gold standard values in the training set and gold standard, estimated (using 

IMU data, no ML), and predicted values in the testing set are reported in Tables 3 and 4, 

respectively. 

 

Accuracy of the machine learning models (predictions) and estimations 

 

The ML models predicted !! with an r of 0.89±0.01, RMSE of 12.2±0.2ms, and MAPE of 

3.6±0.1% (mean ± SD for the three models). As for !", the r, RMSE, and MAPE were 

0.86±0.01, 11.7±0.4ms, and 9.3±0.4%. DF was predicted with an r of 0.84±0.03, RMSE of 

1.7±0.1%, and MAPE of 3.6±0.2%. As for "#,%&', the r, RMSE, and MAPE were 0.77±0.01, 

0.13±0.01BW, and 3.8±0.1% (Fig. 2). For completeness, Fig. 2 also depicts the gold standard 

as function of estimated values for the testing set together with their corresponding r, RMSE, 

and MAPE.  

 

A significant model effect was reported for the MAPE of !!, !", and DF (P≤0.001) but not of 

"#,%&' (P=0.37). Post hoc tests revealed that the MAPEs obtained using the three ML models 

were significantly smaller than the MAPE obtained without ML for !!, !", and DF (P≤0.003; 

Fig. 2). However, there was no significant difference among the MAPEs obtained using the 

three ML models for these three variables (P≥0.80). 
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Bland-Altman plots between gold standard and predicted or estimated values are given in Fig. 

3, and systematic bias as well as lower and upper limit agreements are reported in Table 5. The 

smallest bias was reported for LR. 

 

Accuracy improvement between the predictions and estimations 

 

Using ML allowed increasing r by 28±1%, 59±2%, 65±5%, and 15±1%, for !!, !", DF, and 

"#,%&', respectively, compared to those obtained from IMU-based estimations. As for the 

RMSEs, they decreased by 37±1%, 39±2%, 37±4%, and 16±4% for !!, !", DF, and "#,%&', 

respectively, while the MAPEs decreased by 40±1%, 40±3%, 41±3%, and 9±1% (Table 6).  

 

Ability to detect a clinically important difference 

 

SRD were equal to 13.2ms, 15.4ms, 1.8%, and 0.13BW for !!, !", DF, and "#,%&', respectively. 

RMSE of the ML models were equal to or smaller than (≤32%) the SRDs of the four variables. 

However, RMSE of the estimated values were larger than the SRDs of the four variables (15-

45%). 

 

Optimal coefficients of the linear regression models 

 

The optimal coefficients obtained for the predictors used in the LR models are given in Table 

7. Among all predictors, SF did not contribute significantly to the predictions (P≥0.69; Table 

7). Hence, new LR models which did not include SF as a predictor were optimized, and optimal 

coefficients are reported in Table 8. These new LR models predicted !! with an r of 0.88, 

RMSE of 12.9ms, and MAPE of 3.9±3.3%. As for !", r, RMSE, and MAPE were 0.85, 12.2ms, 
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and 9.9±8.9%. DF was predicted with an r of 0.82, RMSE of 1.8%, and MAPE of 4.1±3.1%, 

while "#,%&' with an r, RMSE, and MAPE of 0.77, 0.13BW, and 3.8±3.0%. 

 

Discussion and Implications 

The purpose of the present study was to apply ML to predict !!, !", DF, and "#,%&' from their 

respective IMU-based estimations. According to the hypothesis, further applying ML to IMU-

based estimations of !!, !", DF, and "#,%&' increased the accuracy of their predictions. 

However, the enhancement was not significant for "#,%&'. The simplest ML model (LR) was 

characterized by a similar prediction accuracy than more complicated models (SVR and NN2).  

Therefore, the simplest ML model (LR) should be used to improve the accuracy of the 

estimations of !!, !", DF and  "#,%&' obtained using a sacral-mounted IMU across a range of 

running speeds. These improvements may be beneficial when monitoring running-related 

injury risk factors in real-world settings. 

 

ML was able to improve the prediction accuracy, as reported by the higher r and lower RMSE 

and MAPE compared to those of the IMU-based estimations (Figs. 2 and 3 and Table 6). 

Nonetheless, the enhancement reported for "#,%&' was not significant. Using more complicated 

ML models (SVR and NN2) did not further improve the prediction accuracy compared to the 

simple LR (Fig. 2 and Table 6). These results corroborate previous findings which observed 

similar errors for LR and quantile regression forest when predicting !!, "#,%&', and vertical 

impulse with an accelerometer (Alcantara et al., 2021). Moreover, the present RMSE and 

MAPE of !! and "#,%&' were similar to those previously obtained (!!: ~10ms and ~4% and 

"#,%&': ~0.14BW and ~4%) using a different algorithm to estimate !! and "#,%&' from IMU 

data (Alcantara et al., 2021). Nonetheless, these previous results might suffer from 

generalization due to the small sample size (N=37). Using three inertial sensors placed on the 
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lower limb (two on lower leg and one on pelvis), Wouda et al. (2018) achieved a 3% error with 

a NN (10-14km/h), which is similar to the present accuracy (MAPE~4%, Fig. 2). Despite their 

low prediction error, their results were harder to interpret because of the experimental setup 

(three IMUs instead of one) and more complicated ML model than the model employed herein. 

Practically, the improvements reported herein may be beneficial for practitioners seeking to 

monitor running-related injury risk factors in real-world settings, though keeping in mind that 

there exists only limited evidence for most running-related injury-specific risk factors 

(Willwacher et al., 2022). Besides, as asymmetry level might be an important factor to consider 

for injured runner (Russell Esposito, Choi, Owens, Blanck, & Wilken, 2015), a ML model 

should be used to predict the biomechanical variables of the right and left lower limbs 

separately. Moreover, as the biomechanical variables of an injured lower limb might give 

different values than the ones used in the current training set (healthy individuals), the ML 

model should further be trained using injured runners and by separating the values of the 

biomechanical variables of the injured and non-injured lower limb in the training process. 

  

ML was able to decrease the confidence limits (95% confidence intervals and lower and upper 

limit of agreements) compared to those of the IMU-based estimations (Table 5). In addition, 

the systematic bias reported for the simple linear regression was smaller than the bias obtained 

without ML (Table 5). Moreover, Fig. 3 suggests that the IMU-based estimations have a 

proportional bias (i.e., the error depends on the value of the estimated parameter). This 

proportional bias drastically decreased when using ML. Hence, these results strengthen the use 

of ML to obtain more accurate predictions. 

 

SF was not reported as a predictor of the four variables (P≥0.69; Table 7). Hence, LRs which 

consider only the body mass, running speed, and IMU-based estimation should be used to 
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improve the prediction accuracy (see Table 8 for the coefficients). The optimal coefficients of 

a ML model might be specific to the IMU-based estimations used in the training and testing 

sets because each algorithm used to obtain these IMU-based estimations might have its own 

bias. Hence, these LRs can be used to predict !!, !", and DF, and "#,%&' to a lower extent, as 

long as the IMU-based estimations were obtained using the present algorithm, which is 

described elsewhere (Patoz et al., 2022). Nonetheless, further studies should try to create a ML 

model based on IMU-based estimations obtained from different algorithms, so that its usage 

could largely be generalized.  

 

Previously, ML was also used to predict the vertical impulse from its IMU-based estimation as 

well as body mass, running speed, and step frequency (Alcantara et al., 2021). The authors 

reported an almost perfect correlation between gold standard and predicted vertical impulse 

values (r=0.995) and obtained that the intercept and step frequency of the LR were the only 

significant predictors of the vertical impulse. However, this was not necessarily needed. 

Indeed, as the integral of the vertical external forces during a running step is null (Eq. 1): 

- "((!)0!
)!

*
−23	(!! + !") = 0, (1) 

we get 

!+,-. = ∫ 0"())3)#!
$

45 = 6"
45, (2) 

where !+,-. = !! + !" and 7( represent the step time and vertical impulse, respectively. 

Therefore, according to Eq. 2, the step frequency, i.e., the inverse of !+,-., is given by the 

inverse of the vertical impulse expressed in body weight units. Hence, the model created by 

Alcantara et al. (2021) to predict the vertical impulse was redundant and not necessarily 

needed. First, the vertical impulse is directly given by !+,-. and thus by the inverse of the step 

frequency (Eq. 2). Second, they assumed that the step frequency estimated using IMU data is 
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a valid surrogate to its gold standard counterpart (they used the step frequency estimated using 

IMU data as a predictor for the vertical impulse, !!, and "(,%&'). Thus, they already indirectly 

assumed that the estimated vertical impulse, i.e., !+,-. (the inverse of the step frequency), is 

equivalent to its gold standard counterpart. In the present study, gold standard and estimated 

SF were shown to be equivalent (r=0.998; Fig. 1), which corroborates what has just been 

explained. Indeed, !+,-. could be approximated by half of the stride time because small 

symmetry indices ≤4% were previously reported for !+,-. of competitive, recreational, and 

novice runners at running speeds ranging from 8 to 12km/h (Mo et al., 2020). 

 

As expected, as gold standard and estimated SF were equivalent (r=0.998; Fig. 1), similar 

MAPEs were reported between !! and DF (~4%; Fig. 2). Thus, the DF prediction is almost 

only dependent on the !! prediction. Finally, it is worth mentioning that using predicted !! 

values and IMU-based estimations of SF to predict DF instead of constructing a specific LR 

led to a slightly larger prediction accuracy. Indeed, using predicted !! values from the LR 

reported in Table 8, DF was predicted with an r of 0.82, RMSE of 1.8%, and MAPE of 

3.9±3.3%. 

 

The strength of the present results is due to the large dataset employed (N=100). This dataset 

allows better generalization of the results than those previously obtained with the smaller 

cohorts of 37 runners (Alcantara et al., 2021), though the generalization might not apply to 

populations not represented in the training set. Hence, further studies should include a broader 

population (increase N) by including elite athletes and less experienced runners. Moreover, 

injured runners should also be included in the training set, and the values of the biomechanical 

variables of the left and right lower limb should be separated in the training process, especially 

in the case of an asymmetry-based injury. In this case, the dataset would contain as much 
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different running gaits as possible, which would make the trained ML models as much 

generalizable as possible.  Further studies could also apply other ML models and even more 

complex models such as deep learning models, though their complexity make them very 

difficult to interpret (Halilaj et al., 2018). Furthermore, running trials were performed only at 

level, endurance speeds, and on a treadmill. However, predictions obtained using ML might 

also perform well overground because spatiotemporal parameters between treadmill and 

overground running are largely comparable (Van Hooren et al., 2020). Nonetheless, running 

speed must be known to use the ML models. In real-life situation, the ML model could use the 

instantaneous running speed provided by the gps of the smartwatch or smartphone to predict 

the biomechanical variables in real-time. Finally, further studies should focus on improving 

the predictions by using additional conditions (i.e., faster speeds, positive and negative slopes, 

and different types of ground) when training the ML models. 

 

Conclusion 

Further applying ML to IMU-based estimations of !!, !", DF, and "#,%&' increased the accuracy 

of their predictions, though the enhancement was not significant for "#,%&'. The simplest ML 

model (LR) was characterized by a similar prediction accuracy than more complicated models 

(SVR and NN2). Moreover, errors of the ML models were equal to or smaller than the SRD 

for the four variables while errors of the estimations were not, indicating that ML models were 

sufficiently accurate to detect a clinically important difference. Therefore, the simplest ML 

model (LR) should be used to improve the accuracy of the estimations of !!, !", DF and  "#,%&' 

obtained using a sacral-mounted IMU across a range of running speeds. These improvements 

may be beneficial for practitioners seeking to monitor running-related injury risk factors in 

real-world settings. 
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Availability of Data and Material: The datasets and codes supporting this article are available 

online at https://github.com/aurelienPatoz/predictions-of-tc-tf-DF-Fvmax-using-machine-

learning. 

 

Appendix. The Relation between Flight Time and Net Vertical Impulse 

The integral of the vertical external forces during a running step is null. Hence, !" relates to the 

net vertical impulse (7(,7-,), i.e., the integral of the vertical ground reaction force ("() which is 

above body weight during !! (Eqs. A1 and A2) (Heise & Martin, 2001) 

- ("((!) − 23)0!
)!

*
−23	!" = 0, 

!" =
∫ ("((!) − 23)0!)!
*

23 = 7(,7-,
23 . 

(A1) 

 

(A2) 

Therefore, !" takes both the vertical ground reaction force and its time of production into 

account. Hence,	!" might play a role in running-related injury development. 

 

References 

Alcantara, R. S., Day, E. M., Hahn, M. E., & Grabowski, A. M. (2021). Sacral acceleration 
can predict whole-body kinetics and stride kinematics across running speeds. PeerJ, 
9, e11199. doi: 10.7717/peerj.11199 

Atkinson, G., & Nevill, A. M. (1998). Statistical methods for assessing measurement error 
(reliability) in variables relevant to sports medicine. Sports Medicine, 26(4), 217-238. 
doi: 10.2165/00007256-199826040-00002 

Backes, A., Skejø, S. D., Gette, P., Nielsen, R. Ø., Sørensen, H., Morio, C., & Malisoux, L. 
(2020). Predicting cumulative load during running using field-based measures. 
Scandinavian Journal of Medicine & Science in Sports, 30(12), 2399-2407. doi: 
https://doi.org/10.1111/sms.13796 

Bland, J. M., & Altman, D. G. (1995). Comparing methods of measurement: why plotting 
difference against standard method is misleading. Lancet, 346(8982), 1085-1087. doi: 
10.1016/s0140-6736(95)91748-9 



 18 

Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends Supporting the 
In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A 
Systematic Review. Sensors, 18(3), 873. doi: 10.3390/s18030873 

Chambers, J. (1992). Chapter 4: linear models. In J. Chambers & T. Hastie (Eds.), Statistical 
models in S. Pacific Grove, California: Wadsworth & Brooks/Cole. 

Chew, D.-K., Ngoh, K. J.-H., Gouwanda, D., & Gopalai, A. A. (2018). Estimating running 
spatial and temporal parameters using an inertial sensor. Sports Engineering, 21(2), 
115-122. doi: 10.1007/s12283-017-0255-9 

Day, E. M., Alcantara, R. S., McGeehan, M. A., Grabowski, A. M., & Hahn, M. E. (2021). 
Low-pass filter cutoff frequency affects sacral-mounted inertial measurement unit 
estimations of peak vertical ground reaction force and contact time during treadmill 
running. Journal of Biomechanics, 119, 110323. doi: 
https://doi.org/10.1016/j.jbiomech.2021.110323 

Derie, R., Robberechts, P., Van den Berghe, P., Gerlo, J., De Clercq, D., Segers, V., & Davis, 
J. (2020). Tibial Acceleration-Based Prediction of Maximal Vertical Loading Rate 
During Overground Running: A Machine Learning Approach. Frontiers in 
Bioengineering and Biotechnology, 8. doi: 10.3389/fbioe.2020.00033 

Edwards, W. B. (2018). Modeling Overuse Injuries in Sport as a Mechanical Fatigue 
Phenomenon. Exercise and Sport Sciences Reviews, 46(4), 224-231 

Falbriard, M., Meyer, F., Mariani, B., Millet, G. P., & Aminian, K. (2018). Accurate 
Estimation of Running Temporal Parameters Using Foot-Worn Inertial Sensors. 
Frontiers in Physiology, 9(610). doi: 10.3389/fphys.2018.00610 

Folland, J. P., Allen, S. J., Black, M. I., Handsaker, J. C., & Forrester, S. E. (2017). Running 
Technique is an Important Component of Running Economy and Performance. 
Medicine & Science in Sports & Exercise, 49(7), 1412-1423 

Fredette, A., Roy, J. S., Perreault, K., Dupuis, F., Napier, C., & Esculier, J. F. (2021). The 
association between running injuries and training parameters: A systematic review. 
Journal of Athletic Training. doi: 10.4085/1062-6050-0195.21 

Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J. L., Hastie, T. J., & Delp, S. L. (2018). 
Machine learning in human movement biomechanics: Best practices, common 
pitfalls, and new opportunities. Journal of Biomechanics, 81, 1-11. doi: 
https://doi.org/10.1016/j.jbiomech.2018.09.009 

Heise, G. D., & Martin, P. E. (2001). Are variations in running economy in humans 
associated with ground reaction force characteristics? European Journal of Applied 
Physiology, 84(5), 438-442. doi: 10.1007/s004210100394 

Hreljac, A. (2004). Impact and overuse injuries in runners. Medicine and Science in Sports 
and Exercise, 36(5), 845-849. doi: 10.1249/01.mss.0000126803.66636.dd 

Hreljac, A., Marshall, R. N., & Hume, P. A. (2000). Evaluation of lower extremity overuse 
injury potential in runners. Medicine and Science in Sports and Exercise, 32(9), 1635-
1641. doi: 10.1097/00005768-200009000-00018 



 19 

ISO/IEC. (2020). ISO International Standard ISO/IEC 14882:2020(E) Programming 
languages — C++: Geneva, Switzerland: International Organization for 
Standardization  

Kiernan, D., Hawkins, D. A., Manoukian, M. A. C., McKallip, M., Oelsner, L., Caskey, C. 
F., & Coolbaugh, C. L. (2018). Accelerometer-based prediction of running injury in 
National Collegiate Athletic Association track athletes. Journal of Biomechanics, 73, 
201-209. doi: 10.1016/j.jbiomech.2018.04.001 

Lee, J. B., Mellifont, R. B., & Burkett, B. J. (2010). The use of a single inertial sensor to 
identify stride, step, and stance durations of running gait. Journal of Science and 
Medicine in Sport, 13(2), 270-273. doi: https://doi.org/10.1016/j.jsams.2009.01.005 

Lenhart, R. L., Thelen, D. G., Wille, C. M., Chumanov, E. S., & Heiderscheit, B. C. (2014). 
Increasing running step rate reduces patellofemoral joint forces. Medicine and Science 
in Sports and Exercise, 46(3), 557-564. doi: 10.1249/MSS.0b013e3182a78c3a 

Malisoux, L., Gette, P., Delattre, N., Urhausen, A., & Theisen, D. (2022). Spatiotemporal and 
Ground-Reaction Force Characteristics as Risk Factors for Running-Related Injury: A 
Secondary Analysis of a Randomized Trial Including 800+ Recreational Runners. The 
American Journal of Sports Medicine, 50(2), 537-544. doi: 
10.1177/03635465211063909 

Matijevich, E. S., Branscombe, L. M., Scott, L. R., & Zelik, K. E. (2019). Ground reaction 
force metrics are not strongly correlated with tibial bone load when running across 
speeds and slopes: Implications for science, sport and wearable tech. PloS One, 14(1), 
e0210000. doi: 10.1371/journal.pone.0210000 

Matijevich, E. S., Scott, L. R., Volgyesi, P., Derry, K. H., & Zelik, K. E. (2020). Combining 
wearable sensor signals, machine learning and biomechanics to estimate tibial bone 
force and damage during running. Human Movement Science, 74, 102690. doi: 
https://doi.org/10.1016/j.humov.2020.102690 

Minetti, A. E. (1998). A model equation for the prediction of mechanical internal work of 
terrestrial locomotion. Journal of Biomechanics, 31(5), 463-468. doi: 10.1016/S0021-
9290(98)00038-4 

Mo, S., Lau, F. O. Y., Lok, A. K. Y., Chan, Z. Y. S., Zhang, J. H., Shum, G., & Cheung, R. 
T. H. (2020). Bilateral asymmetry of running gait in competitive, recreational and 
novice runners at different speeds. Human Movement Science, 71, 102600. doi: 
https://doi.org/10.1016/j.humov.2020.102600 

Nagahara, R., Takai, Y., Kanehisa, H., & Fukunaga, T. (2018). Vertical Impulse as a 
Determinant of Combination of Step Length and Frequency During Sprinting. 
International Journal of Sports Medicine. doi: 10.1055/s-0043-122739 

Napier, C., Jiang, X., MacLean, C. L., Menon, C., & Hunt, M. A. (2020). The use of a single 
sacral marker method to approximate the centre of mass trajectory during treadmill 
running. Journal of Biomechanics, 108, 109886. doi: 
https://doi.org/10.1016/j.jbiomech.2020.109886 



 20 

Nielsen, R. O., Buist, I., Sørensen, H., Lind, M., & Rasmussen, S. (2012). Training errors and 
running related injuries: a systematic review. International Journal of Sports Physical 
Therapy, 7(1), 58-75 

Nilsson, J., & Thorstensson, A. (1989). Ground reaction forces at different speeds of human 
walking and running. Acta Physiologica Scandinavica, 136(2), 217-227. doi: 
10.1111/j.1748-1716.1989.tb08655.x 

Norris, M., Anderson, R., & Kenny, I. C. (2014). Method analysis of accelerometers and 
gyroscopes in running gait: A systematic review. Proceedings of the Institution of 
Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 
228(1), 3-15. doi: 10.1177/1754337113502472 

Patoz, A., Lussiana, T., Breine, B., Gindre, C., & Malatesta, D. (2022). A Single Sacral-
Mounted Inertial Measurement Unit to Estimate Peak Vertical Ground Reaction 
Force, Contact Time, and Flight Time in Running. Sensors, 22(3), 784. doi: 
10.3390/s22030784 

Russell Esposito, E., Choi, H. S., Owens, J. G., Blanck, R. V., & Wilken, J. M. (2015). 
Biomechanical response to ankle-foot orthosis stiffness during running. Clinical 
Biomechanics (Bristol, Avon), 30(10), 1125-1132. doi: 
10.1016/j.clinbiomech.2015.08.014 

Sasimontonkul, S., Bay, B. K., & Pavol, M. J. (2007). Bone contact forces on the distal tibia 
during the stance phase of running. Journal of Biomechanics, 40(15), 3503-3509. doi: 
https://doi.org/10.1016/j.jbiomech.2007.05.024 

Scott, S. H., & Winter, D. A. (1990). Internal forces of chronic running injury sites. Medicine 
and Science in Sports and Exercise, 22(3), 357-369 

Selinger, J. C., Hicks, J. L., Jackson, R. W., Wall-Scheffler, C. M., Chang, D., & Delp, S. L. 
(2022). Running in the wild: Energetics explain ecological running speeds. Current 
Biology, 32(10), 2309-2315.e2303. doi: https://doi.org/10.1016/j.cub.2022.03.076 

Smith, L., Preece, S., Mason, D., & Bramah, C. (2015). A comparison of kinematic 
algorithms to estimate gait events during overground running. Gait & Posture, 41(1), 
39-43. doi: 10.1016/j.gaitpost.2014.08.009 

Van Hooren, B., Fuller, J. T., Buckley, J. D., Miller, J. R., Sewell, K., Rao, G., . . . Willy, R. 
W. (2020). Is Motorized Treadmill Running Biomechanically Comparable to 
Overground Running? A Systematic Review and Meta-Analysis of Cross-Over 
Studies. Sports Medicine, 50(4), 785-813. doi: 10.1007/s40279-019-01237-z 

Willwacher, S., Kurz, M., Robbin, J., Thelen, M., Hamill, J., Kelly, L., & Mai, P. (2022). 
Running-Related Biomechanical Risk Factors for Overuse Injuries in Distance 
Runners: A Systematic Review Considering Injury Specificity and the Potentials for 
Future Research. Sports Medicine, 52(8), 1863-1877. doi: 10.1007/s40279-022-
01666-3 

Wouda, F. J., Giuberti, M., Bellusci, G., Maartens, E., Reenalda, J., van Beijnum, B.-J. F., & 
Veltink, P. H. (2018). Estimation of Vertical Ground Reaction Forces and Sagittal 



 21 

Knee Kinematics During Running Using Three Inertial Sensors. Frontiers in 
Physiology, 9(218). doi: 10.3389/fphys.2018.00218 

Xu, D., Quan, W., Zhou, H., Sun, D., Baker, J. S., & Gu, Y. (2022). Explaining the 
differences of gait patterns between high and low-mileage runners with machine 
learning. Scientific Reports, 12(1), 2981. doi: 10.1038/s41598-022-07054-1 

  



 22 

 
Figure 1. Gold standard (obtained using force plate data) stride frequency (SF) as function of 
estimated SF (obtained using inertial measurement unit data, no machine learning) for the 
entire set of data and corresponding Pearson correlation coefficient (r), root mean square error 
(RMSE), and mean absolute percentage error (MAPE). Each point represents the value for a 
given participant-running speed combination (300 points: three running speeds x 100 runners). 
Colors represent different participants while the three symbols represent different running 
speeds (o: 9km/h, ⊳: 11km/h, ⊲: 13km/h). 
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Figure 2. Gold standard (obtained using force plate data) as function of predicted (obtained 
using three different machine learning models) and estimated (obtained using inertial 
measurement unit data, no machine learning) (A) contact time, (B) flight time, (C) duty factor, 
and (D) peak vertical ground reaction force for the testing set and corresponding Pearson 
correlation coefficient (r), root mean square error (RMSE), and mean absolute percentage error 
(MAPE). The one-way repeated measures ANOVA revealed a significant model effect (no 
model vs linear regression vs support vector regression with the radial basis function kernel vs 
two-layers neural network) for contact time, flight time, and duty factor when comparing the 
MAPE among the models. *Significant difference (P≤0.003) between the MAPE of the 
predictions obtained using a given machine learning model and the MAPE of the estimations 
obtained using inertial measurement unit data, as determined by Holm post hoc tests. Each 
point represents the value for a given participant-running speed combination (60 points: three 
running speeds x 20 runners). Colors represent different participants while the three symbols 
represent different running speeds (o: 9km/h, ⊳: 11km/h, ⊲: 13km/h).  
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Figure 3. Comparison between gold standard (obtained using force plate data) and predicted 
(obtained using three different machine learning models) as well as estimated (obtained using 
inertial measurement unit data, no machine learning) (A) contact time, (B) flight time, (C) duty 
factor, and (D) peak vertical ground reaction force for the testing set [differences (Δ) as a 
function of mean values together with systematic bias (solid line) as well as lower and upper 
limit of agreements (dashed lines), i.e., a Bland-Altman plot]. Each point represents the value 
for a given participant-running speed combination (60 points: three running speeds x 20 
runners). Colors represent different participants while the three symbols represent different 
running speeds (o: 9km/h, ⊳: 11km/h, ⊲: 13km/h). For systematic bias, positive values indicate 
the estimated or predicted variable is overestimated.  
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Table 1. Hyperparameters optimized during the 5-fold cross validation for the three machine 
learning models employed. 

  

Machine learning model Hyperparameter Values 

Linear regression Intercept in the model True and False 

Support vector 
regression 

C 
(inversely proportional to the strength of the 

regularization) 

20 points 
(logarithmic scale between 

0.001 and 10000) 

Epsilon 
(specifies the epsilon-tube within which no penalty is 

associated in the training loss function with points 
predicted within a distance epsilon from the actual value) 

20 points 
(logarithmic scale between 

0.001 and 100) 

Two-layers neural 
network 

Activation function of the first layer relu, tanh, sigmoid, and softmax 

Dimensionality of the inner layer 8, 16, 32, and 64 

Batch size 2, 4, 8, and 16 

Loss function 
mean absolute error and mean 

squared error 
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Table 2. Participant characteristics for the training (80 runners) and testing (20 runners) sets. 

 

 

 

 

 

 

 

Note. The values are presented as mean ± standard deviation. M: male, F: female, and NA: 
not applicable. 
 
  

Characteristics Training set Testing set p-value 

Sex M = 58; F = 22 M = 15; F = 5 NA 

Age (yr) 30 ± 7 30 ± 8 0.96 

Height (cm) 177 ± 8 177 ± 7 0.89 

Body mass (kg) 68 ± 8 70 ± 6 0.29 

Running distance (km/week) 32 ± 24 39 ± 20 0.24 
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Table 3. Gold standard (obtained using force plate data) contact time (!!), flight time (!"), duty 

factor (DF), and peak vertical ground reaction force ("#,%&') for the training set (80 runners) at 
three running speeds. 
 

 

 

 

 

 

Note. The values are presented as mean ± standard deviation.  

Running speed 
(km/h) 

!! 
(ms) 

!" 
(ms) 

DF 
(%) 

"#,%&' 
(BW) 

9 277 ± 23 95 ± 23 37.3 ± 2.9 2.4 ± 0.2 

11 249 ± 20 113 ± 19 34.4 ± 2.4 2.5 ± 0.2 

13 227 ± 17 124 ± 17 32.3 ± 2.2 2.6 ± 0.2 
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Table 4. Gold standard (obtained using force plate data) contact time (!!), flight time (!"), duty 

factor (DF), and peak vertical ground reaction force ("#,%&') as well as corresponding estimated 
(obtained using inertial measurement unit data, no machine learning) and predicted [obtained 
using three machine learning models: linear regression (LR), support vector regression with 
the radial basis function kernel (SVR), and two-layers neural network (NN2)] values for the 
testing set (20 runners) at three running speeds. 

Note. The values are presented as mean ± standard deviation. 

  

Variable 
 

Running speed 
(km/h) 

Gold standard 
 

Estimated 
 

Predicted 
LR 

Predicted 
SVR 

Predicted 
NN2 

!! (ms) 

9 282 ± 18 268 ± 14 279 ± 13 278 ± 13 278 ± 13 

11 253 ± 17 257 ± 13 253 ± 12 251 ± 15 252 ± 11 

13 229 ± 14 246 ± 11 229 ± 9 227 ± 10 228 ± 9 

!" (ms) 
 

9 86 ± 19 100 ± 9 89 ± 15 91 ± 14 89 ± 17 

11 105 ± 21 101 ± 9 105 ± 16 107 ± 15 108 ± 16 

13 117 ± 18 100 ± 8 118 ± 13 119 ± 13 119 ± 14 

DF (%) 

9 38.4 ± 2.3 36.4 ± 1.0 38.0 ± 1.7 37.5 ± 1.3 37.8 ± 1.3 

11 35.4 ± 2.4 35.9 ± 0.9 35.3 ± 1.6 34.9 ± 1.5 35.4 ± 1.5 

13 33.2 ± 2.1 35.6 ± 0.7 33.1 ± 1.4 32.8 ± 1.4 33.1 ± 1.4 

"#,%&' (BW) 

9 2.35 ± 0.15 2.39 ± 0.10 2.34 ± 0.11 2.34 ± 0.11 2.33 ± 0.12 

11 2.47 ± 0.20 2.45 ± 0.11 2.48 ± 0.13 2.48 ± 0.13 2.50 ± 0.13 

13 2.59 ± 0.18 2.47 ± 0.09 2.60 ± 0.10 2.59 ± 0.11 2.58 ± 0.09 
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Table 5. Systematic bias, lower limit of agreement (Lloa), and upper limit of agreement (Uloa) 
between contact time (!!), flight time (!"), duty factor (DF), and peak vertical ground reaction 

force ("#,%&') obtained using a force plate (gold standard method) and machine learning models 
(predictions; linear regression, support vector regression with the radial basis function kernel, 
and two-layers neural network) as well as an inertial measurement unit (estimations; no 
machine learning) for the testing set (20 runners).  

Note. Confidence intervals of 95% are given in square brackets [lower, upper]. For systematic 
bias, positive values indicate the estimated or predicted variable is overestimated. 
  

Variable Method Systematic Bias Lloa Uloa 
!! (ms)  Linear regression -1.0 [-4.0, 2.0] -24.3 [-29.4, -19.1] 22.2 [17.1, 27.3] 

Support vector regression -3.0 [-6.0, 0.0] -26.3 [-31.4, -21.1] 20.3 [15.2, 25.5] 

2-layers neural network -2.2 [-5.3, 0.9] -26.0 [-31.3, -20.7] 21.7 [16.4, 26.9] 

No machine learning 2.3 [-2.5, 7.2] -35.1 [-43.4, -26.9] 39.8 [31.5, 48.0] 

!" (ms)   Linear regression 1.3 [-1.6, 4.3] -21.6 [-26.6, -16.5] 24.2 [19.2, 29.3] 

Support vector regression 3.1 [0.3, 5.8] -18.3 [-23.0, -13.6] 24.4 [19.7, 29.1] 

2-layers neural network 2.6 [-0.4, 5.6] -20.5 [-25.6, -15.4] 25.8 [20.7, 30.9] 

No machine learning -2.2 [-7.1, 2.6] -39.8 [-48.0, -31.5] 35.3 [27.0, 43.6] 

DF (%) Linear regression -0.2 [-0.6, 0.2] -3.3 [-4.0, -2.6] 2.9 [2.3, 3.6] 

Support vector regression -0.6 [-1.0, -0.2] -3.9 [-4.6, -3.2] 2.7 [2.0, 3.5] 

2-layers neural network -0.2 [-0.6, 0.2] -3.3 [-4.0, -2.6] 2.9 [2.2, 3.5] 

No machine learning 0.3 [-0.3, 1.0] -4.8 [-6.0, -3.7] 5.5 [4.3, 6.6] 

"#,%&' (BW)  Linear regression 0.00 [-0.03, 0.04] -0.24 [-0.29, -0.18] 0.25 [0.19, 0.30] 

Support vector regression 0.00 [-0.03, 0.04] -0.24 [-0.30, -0.19] 0.25 [0.20, 0.31] 

2-layers neural network 0.00 [-0.03, 0.04] -0.25 [-0.30, -0.19] 0.26 [0.20, 0.31] 

No machine learning -0.03 [-0.07, 0.01] -0.31 [-0.37, -0.25] 0.25 [0.19, 0.31] 
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Table 6. Percentage difference of the Pearson correlation coefficient (r), root mean square error 

(RMSE), and mean absolute percentage error (MAPE) between those obtained using 

estimations based on inertial-measurement unit data and those obtained using a machine 

learning model among linear regression, support vector regression with the radial basis 

function kernel, and two-layers neural network, for four predicted variables, i.e., contact time, 

flight time, duty factor, and peak vertical ground reaction force. 

 

  

Variable Metrics 
Linear 

regression 
(%) 

Support vector 
regression 

(%) 

Two-layers 
neural network 

(%) 
Contact time r 29 27 27 

RMSE  -38 -36 -36 

MAPE -40 -42 -40 

Flight time r 59 61 57 

RMSE  -39 -41 -37 

MAPE -38 -43 -38 

Duty factor r 67 59 69 

RMSE  -40 -32 -40 

MAPE -42 -37 -43 

Peak vertical ground reaction force r 16 15 13 

RMSE  -20 -13 -13 

MAPE -11 -9 -8 
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Table 7. Optimal coefficients, standard error, and p-values (P) obtained for the predictors used 

in the linear regression models, i.e., intercept, runner's body mass, stride frequency, running 

speed, and estimated variable obtained using inertial measurement unit data, constructed to 

predict contact time (!!), flight time (!"), duty factor (DF), and peak vertical ground reaction 

force ("#,%&').  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note. Significant coefficients (P≤0.05) are reported in bold font. 
  

Variable Metrics Coefficient Standard error P 
!! (ms)  intercept 251.08 56.09 <0.001 

runner's body mass 5.40 0.11 <0.001 

stride frequency 9.40 23.22 0.69 

running speed -13.71 0.60 <0.001 

estimated #( 22.20 0.10 <0.001 
!" (ms)   intercept 110.64 28.24 <0.001 

runner's body mass -5.33 0.11 <0.001 

stride frequency -3.35 15.80 0.83 

running speed 13.80 0.61 <0.001 

estimated #) 12.50 0.10 <0.001 
DF (%) intercept 34.68 4.67 <0.001 

runner's body mass 0.74 0.02 <0.001 

stride frequency 0.67 1.92 0.73 

running speed -1.92 0.08 <0.001 

estimated DF 1.56 0.10 <0.001 
"#,%&' (BW)  intercept 2.51 0.27 <0.001 

runner's body mass 0.01 0.00 <0.001 

stride frequency -0.01 0.14 0.93 

running speed 0.07 0.01 <0.001 

estimated $*,+,- 0.15 0.07 0.02 
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Table 8. Optimal coefficients, standard error, and p-values (P) obtained for the linear 

regression models which excluded stride frequency as a predictor to predict contact time (!!), 

flight time (!"), duty factor (DF), and peak vertical ground reaction force ("#,%&').  

 

 

 

 

 

 

 

 

 

 

 

 

Note. Significant coefficients (P≤0.05) are reported in bold font. 

Variable Metrics Coefficient Standard error P 
!! (ms)  intercept 251.08 20.84 <0.001 

runner's body mass 5.29 0.11 <0.001 

running speed -13.27 0.64 <0.001 

estimated #( 14.42 0.06 <0.001 
!"  (ms)   intercept 110.64 13.43 <0.001 

runner's body mass -4.79 0.11 <0.001 

running speed 12.27 0.53 <0.001 

estimated #) 13.88 0.09 <0.001 
DF (%) intercept 34.68 4.17 <0.001 

runner's body mass 0.63 0.02 <0.001 

running speed -1.61 0.08 <0.001 

estimated DF 1.56 0.11 <0.001 
"#,%&' (BW) intercept 2.51 0.19 <0.001 

runner's body mass 0.01 0.00 <0.001 

running speed 0.07 0.01 <0.001 

estimated $*,+,- 0.15 0.07 0.02 
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Abstract
Purpose Intensity domains are recommended when prescribing exercise. The distinction between heavy and severe domains 
is made by the critical speed (CS), therefore requiring a mathematically accurate estimation of CS. The different model 
variants (distance versus time, running speed versus time, time versus running speed, and distance versus running speed) 
are mathematically equivalent. Nevertheless, error minimization along the correct axis is important to estimate CS and the 
distance that can be run above CS (d′). We hypothesized that comparing statistically appropriate fitting procedures, which 
minimize the error along the axis corresponding to the properly identified dependent variable, should provide similar esti-
mations of CS and d′ but that different estimations should be obtained when comparing statistically appropriate and inap-
propriate fitting procedure.
Methods Sixteen male runners performed a maximal incremental aerobic test and four exhaustive runs at 90, 100, 110, and 
120% of their peak speed on a treadmill. Several fitting procedures (a combination of a two-parameter model variant and 
regression analysis: weighted least square) were used to estimate CS and d′.
Results Systematic biases (P < 0.001) were observed between each pair of fitting procedures for CS and d′, even when com-
paring two statistically appropriate fitting procedures, though negligible, thus corroborating the hypothesis.
Conclusion The differences suggest that a statistically appropriate fitting procedure should be chosen beforehand by the 
researcher. This is also important for coaches that need to prescribe training sessions to their athletes based on exercise 
intensity, and their choice should be maintained over the running seasons.

Keywords Running · Curve fitting · Linear model · Hyperbolic model · Exercise prescription · Intensity domains

Abbreviations
CP  Critical power
CS  Critical speed
d′  Distance that can be run above critical speed
LS  Least squares
sV̇O2max  Speed associated with maximum oxygen 

consumption
PS  Peak speed of the incremental test
WLS  Weighted least squares

Introduction

Exercise intensity, one of the most important criteria for 
obtaining the desired metabolic stimulus and inducing spe-
cific adaptations to training (MacInnis and Gibala 2017), is 
often prescribed based on the percentage of the maximal rate 
of oxygen uptake or maximal heart rate (American College 
of Sports Medicine 2000; Roy et al. 2018). However, there 
is a large variability in the characteristics of the metabolic 
responses and the duration of exercise at a common per-
centage of the maximum between individuals. For example, 
Fontana et al. (2015) showed that the lactate threshold as 
well as critical power/speed (CP/CS) can occur at different 
percentages of the maximum oxygen consumption between 
individuals. Therefore, the control of exercise intensity is 
not guaranteed when the prescription is based on percent-
ages of maximum values (DiMenna and Jones 2009; Lansley 
et al. 2011). Instead, Iannetta et al. (2020) recommended the 
use of a model that considers exercise intensity domains for 
exercise prescription. These different intensity domains can 
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be defined based on the oxygen uptake kinetics (Whipp and 
Mahler 1980), maximum lactate steady-state (Iannetta et al. 
2018), ventilatory threshold (Wasserman et al. 1973), or CP/
CS (Vanhatalo et al. 2007; Jones et al. 2019).

Exercising above or below such thresholds leads to con-
siderable differences in the physiological responses (Black 
et al. 2017). Therefore, training across disparate specific 
work intensities spanning different intensity domains is 
important to improve athletic performance. The CP/CS 
concept is widely used to evaluate the threshold intensity 
associated with the lower extremity of the severe intensity 
domain (Galán-Rioja et al. 2020; Jones et al. 2019). There-
fore, having an accurate estimation of CP/CS, i.e., a very 
good approximation of the critical intensity but not the criti-
cal intensity per se, is important. This is usually obtained 
using the relationship between power/speed and time to 
exhaustion.

This relationship has been characterized with a number of 
models that differ in their mathematical form and number of 
parameters (Monod and Scherrer 1965; Moritani et al. 1981; 
Whipp et al. 1982; Morton 1996, 1986; Wilkie 1980; Peron-
net and Thibault 1989). The original linear model formula-
tion was proposed by Monod and Scherrer (1965) and relates 
the work performed during an exhaustive bout and the actual 
time to exhaustion through two parameters: the highest sus-
tainable oxidative metabolic rate and the fixed anaerobic 
work capacity. The first parameter, known as CP (Monod and 
Scherrer 1965) or threshold of fatigue (Bigland-Ritchie and 
Woods 1984), separates power outputs for which exercise 
tolerance is predictably limited (exercise > CP) from those 
that can be sustained for longer periods (exercise < CP). The 
second parameter represents the energy reserve located in 
the muscle that can be utilized above CP as fast or as slow 
as needed (i.e., the sustainable work of exercise above that 
metabolic rate) (Monod and Scherrer 1965). Later, some 
authors related power and time to exhaustion by dividing 
the variables of the original model by the exercise duration 
(Poole et al. 1986; Gaesser and Wilson 1988; Housh et al. 
1989). As exercise duration is the dependent variable and 
power the independent variable when considering bouts of 
fixed power, Gaesser et al. (1990) proposed expressing this 
exercise duration as a function of the power, which led to 
the well-known hyperbolic model (Morton and Hodgson 
1996). Another model variant, proposed by Morton (2006), 
expresses the work performed as function of power, since 
this work (power multiplied by time to exhaustion) is also a 
dependent variable. However, this model has, to our knowl-
edge, never been used so far.

A straightforward transposition of CP to running has 
been studied by several researchers (Hughson et al. 1984; 
Housh et al. 1991, 2001; McDermott et al. 1993). By anal-
ogy to the power versus time relationship, the running 
speed and time variables are related through critical speed 

(CS; the running analogue of CP for cycle ergometry) and 
anaerobic running capacity (d’; the running analogue of 
the anaerobic work capacity) (Hill and Ferguson 1999; 
Housh et al. 1991; Hughson et al. 1984; Pepper et al. 
1992). The latter was more recently and accurately defined 
as the distance that can be run above CS (Jones and Van-
hatalo 2017). It implicitly follows that the work performed 
during an exhaustive bout becomes the distance travelled. 
These different two-parameter model variants are still 
extensively used to assess CS and d′ (for review see Jones 
and Vanhatalo (2017) and Jones et al. (2019)).

The estimation of CS and d′ are usually obtained from 
data provided by the critical speed test procedure (Poole 
et al. 1988), where the number and duration of the exhaus-
tive runs were shown to play an important role in these 
estimations (Bishop et al. 1998; Mattioni Maturana et al. 
2018). Based on the data provided by this test, CS and 
d′ could be estimated using a regression fitting routine. 
In general, the least squares (LS) loss function is used to 
minimize the error. In that case, the dependent variable 
must be observed with additive error (white noise) while 
the independent variable does not (Morton and Hodgson 
1996). As heteroscedasticity is taking place (a smaller 
error is most likely to occur in the measurement of time to 
exhaustion for high running speeds, i.e., for short times to 
exhaustion (McLellan and Skinner 1985; Poole et al. 1988; 
Faude et al. 2017)), Morton and Hodgson (1996) suggested 
using weighted LS (WLS) in the regression analysis with 
weights proportional to the inverse of the variance of time 
to exhaustion, where the variance is itself proportional to 
the time to exhaustion.

The different model variants (distance versus time, run-
ning speed versus time, time versus running speed, and 
distance versus speed) are mathematically equivalent. 
Nevertheless, error minimization along the correct axis is 
important to estimate CS and d′, as already highlighted but 
not yet investigated by Gaesser et al. (1995). Therefore, the 
purpose of this study was to compare the estimations of CS 
and d′ obtained using statistically appropriate fitting proce-
dures (which minimize the error along the axis correspond-
ing to the properly identified dependent variables (Vinetti 
et al. 2020)), and statistically inappropriate fitting proce-
dures (which do not minimize the error along the axis that 
contain the dependent variable) but are frequently used in 
the literature (Jones et al. 2019; Jones and Vanhatalo 2017). 
These estimations were obtained using several combinations 
of a linear two-parameter model variant and a regression 
analysis (fitting procedure). We hypothesized that the com-
parison of statistically appropriate fitting procedures should 
provide similar estimations of CS and d′. On the other hand, 
different estimations of CS and d′ should be obtained when 
comparing a statistically appropriate with a statistically inap-
propriate fitting procedure.
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Materials and methods

Participant characteristics

Sixteen male runners participated in the present experi-
ment (age: 25.6 ± 3.9 years old; height: 1.79 ± 0.05 m; 
body mass: 69.2 ± 5.3 kg; speed associated with maximum 
oxygen consumption ( sV̇O2max ): 18.2 ± 1.4 km/h; maximum 
oxygen consumption: 63.0 ± 4.9 ml/min/kg). For study 
inclusion, participants were required to be in good self-
reported general health with no symptoms of cardiovas-
cular disease or major coronary risk factors, no current or 
recent lower-extremity injury that could prevent them from 
giving 100% of their capacity during the test and to meet 
a certain level of running performance. More specifically, 
runners were required to have an sV̇O2max greater or equal 
to 16 km/h.

Experimental procedure

Each participant completed five experimental sessions 
interspersed by at least two days in the laboratory. All 
participants were advised to avoid strenuous exercise the 
day before a test but to maintain their usual training pro-
gramme otherwise. During the first session, participants 
completed a maximal incremental aerobic test on a tread-
mill (Arsalis T150—FMT-MED, Louvain-la-Neuve, Bel-
gium). This test consisted of a 10-min warm-up at 10 km/h 
followed by an incremental increase in the running speed 
of 1 km/h every two minutes until exhaustion. This test 
was used to determine the peak speed (PS) of the incre-
mental test of each participant. PS is defined as the running 
speed of the last fully completed increment ( sV̇O2max ) plus 
the fraction of time spent in the following uncompleted 
increment ( ! ) multiplied by the running speed increment 
(∆s = 1 km/h) (Kuipers et al. 2003): PS = sV̇O2max + "Δs.

The other four tests were performed in a randomized 
order and consisted of exhaustive runs at a given percent-
age of the participant’s PS (90, 100, 110, or 120%). These 
tests were as follows: after a 10-min warm-up at 10 km/h 
and a 5-min rest period, the running speed was increased 
to a given percentage of PS, and the participant had to 
maintain the pace until exhaustion. The time to exhaustion 
was collected for each of the four sessions. No informa-
tion about the timings or running speed was given to any 
participant during any of the five experimental sessions. 
All participants were familiar with running on a treadmill.

Mathematical modelling

The estimations of CS and d′ were obtained from the 
following four different but mathematically equivalent 
equations

where t , s, and d stand for time to exhaustion, running speed, 
and distance, respectively. Equation 4 represents the orig-
inal linear model of Monod and Scherrer (1965). Whipp 
et al. (1982) and Gaesser et al. (1990) proposed the models 
given by Eqs. 3 and 1, respectively. Equation 2 denotes the 
distance as function of running speed model proposed by 
Morton (2006).

Data analysis

Four different fitting procedures were used on the data 
set obtained for each subject to estimate CS and d′. More 
specifically, t(s) (Eq. 1) using WLS and d(s) (Eq. 2) using 
WLS were evaluated. These first two fitting procedures are 
statistically appropriate. The two other fitting procedures 
that have been evaluated were s(t) (Eq. 3) using LS and 
d(t) (Eq. 4) using LS. These two fitting procedures are 
statistically inappropriate but are frequently used in the 
literature (Jones et al. 2019; Jones and Vanhatalo 2017). 
In the first case, time to exhaustion should be considered 
as the dependent variable and not speed. In the second 
case, both distance and time to exhaustion should be 
considered as dependent variables and not only distance. 
However, the errors of both variables are correlated, i.e., 
the error of distance is given by the product of speed and 
the error of time to exhaustion variable, since speed does 
not carry any error. This is known as endogeneity and, 
to the best of our knowledge, there exists no regression 
method that can handle such case (Antonakis et al. 2014). 
Weights were applied to corresponding dependent vari-
ables (time to exhaustion or distance) only in the statisti-
cally appropriate fitting procedures. Error minimization 
was performed iteratively using the Levenberg–Marquardt 
algorithm (Levenberg 1944; Marquardt 1963) for (W)LS 
regression. The standard error of the estimate (SEE) in 

(1)t(s) =
d′

s − CS

(2)d(s) = s
d′

s − CS

(3)s(t) =
d′

t
+ CS

(4)d(t) = d′ + CSt
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absolute numbers for both CS and d′, the combined SEE 
(%SEE), i.e., the sum of SEE of CS and d′ transformed to 
percent units, and the residual standard error (RSE) of the 
fitting procedure were computed to assess the quality of 
the fit. Data analysis was performed using Python (version 
3.7.4, Python Software Foundation. Available at http:// 
www. python. org).

Statistical analysis

Descriptive statistics are presented using mean ± standard 
deviation (SD) unless otherwise indicated. The normal-
ity of the data was confirmed through the Shapiro–Wilk 
test. Bland–Altman plots were constructed to examine the 
presence of systematic and proportional bias on CS and 
d′ estimated from two different fitting procedures (Bland 
and Altman 1995; Atkinson and Nevill 1998). System-
atic bias was also identified by a significant difference 
obtained from a paired two-sided Student’s t-test. After 
confirming no correlation amongst the residuals using the 
Durbin-Watson test (Durbin-Watson statistic between 1.5 
and 2.5), the proportional bias (heteroscedasticity) was 
identified by a significant slope of the regression line. In 
addition, the estimations of CS and d′ obtained from the 
two statistically appropriate fitting procedures as well 
as from a statistically appropriate and both statistically 
inappropriate fitting procedures were compared using 
one-way repeated measures ANOVA (RM-ANOVA) with 
Mauchly’s correction for sphericity and employing Holm 
corrections for pairwise post hoc comparisons. Statisti-
cal analysis was performed using Jamovi (version 1.0.8, 
[Computer Software], retrieved from https:// www. jamovi. 
org) and R (version 3.5.0, The R Foundation for Statistical 

Computing, Vienna, Austria) with a level of significance 
set at P ≤ 0.05.

Results

Table 1 depicts the time to exhaustion corresponding to the 
four exhaustive runs performed at 90, 100, 110, and 120% 
of the participant’s PS.

Table 2 depicts the estimations of CS and d′ obtained 
from the two statistically appropriate [ t(s) using WLS and 
d(s) using WLS] and the two statistically inappropriate 
but frequently used [ s(t) using LS and d(t) using LS] fit-
ting procedures together with their corresponding %SEE 
and RSE. Note that as the units of the residual sum of 
squares depend on the fitting procedure itself, the RSE 
cannot be compared between the different fitting proce-
dures employed. The smallest to largest estimations of CS 
were given by t(s) using WLS and d(s) using WLS (same 
CS), d(t) using LS, and s(t) using LS, while those for d′ 
were ordered as s(t) using LS, d(t) using LS, d(s) using 
WLS, and t(s) using WLS (Table 2).

Comparison between statistically appropriate [ t(s) 
using WLS and d(s) using WLS] fitting procedures

Bland–Altman plots comparing statistically appropriate 
fitting procedures for both CS and d′ are depicted in Fig. 1, 
while Table 3 reports their systematic and proportional 
biases.

Table 1  Means ± standard deviations of the time to exhaustion corresponding to the four exhaustive runs performed at 90, 100, 110, and 120% of 
the participant’s peak aerobic speed (PS)

Running speed (%PS) 90 100 110 120
Time to exhaustion (min) 14.8 ± 2.57 5.94 ± 1.21 2.78 ± 0.78 1.68 ± 0.50

Table 2  Means ± standard deviations of the critical speed (CS) and 
distance that can be run above CS (d′) and their corresponding stand-
ard error of estimate (SEE, in parenthesis) obtained from statistically 
appropriate [ t(s) using weighted least squares (WLS) and d(s) using 

WLS] and statistically inappropriate [ s(t) and d(t) both using LS] fit-
ting procedures together with the combined SEE (%SEE), i.e., the 
sum of SEE of CS and d′ transformed to percent units, as well as the 
residual standard errors (RSE)

Statistically appro-
priate

Fitting procedure CS (m/s) d′ (m) %SEE RSE

Yes t(s) using WLS 4.39 ± 0.41 (0.03 ± 0.01) 226.0 ± 57.0 (20.3 ± 8.0) 9.8 ± 3.4 37.0 ± 14.5
d(s) using WLS 4.39 ± 0.40 (0.03 ± 0.01) 222.3 ± 56.0 (19.8 ± 7.6) 9.7 ± 3.4 201.5 ± 79.3

No s(t) using LS 4.59 ± 0.43 (0.07 ± 0.02) 167.3 ± 46.2 (11.2 ± 4.3) 8.3 ± 2.6 0.11 ± 0.04
d(t) using LS 4.42 ± 0.39 (0.04 ± 0.02) 210.2 ± 50.5 (19.7 ± 7.7) 10.5 ± 3.9 34.4 ± 11.9

http://www.python.org
http://www.python.org
https://www.jamovi.org
https://www.jamovi.org
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Comparison between the statistically appropriate 
[ t(s) using WLS] and the two statistically 
inappropriate [ s

(

t
)

 and d(t) both using LS] fitting 
procedures

Bland–Altman plots comparing the statistically appropriate 
t(s) using WLS fitting procedure to the two frequently used 
but statistically inappropriate fitting procedures for both CS 
and d′ are depicted in Fig. 2, while Table 4 reports their 
systematic and proportional biases.

The comparison of the three fitting procedures using RM-
ANOVA yielded a significant main effect (P < 0.001) for 
both CS and d′. In addition, post hoc comparisons gave sig-
nificant differences between each pair of fitting procedures 
and for both CS and d′ (P ≤ 0.01). Notably, the pair [ t(s) 
using WLS, d(t) using LS] was the only comparison giving 
P values larger than 0.001 for CS, i.e., 0.01.

Comparison between the statistically appropriate 
[ d(s) using WLS] and the two statistically 
inappropriate [ s(t) and d(t) both using LS] fitting 
procedures

Bland–Altman plots comparing the statistically appropriate 
d(s) using WLS fitting procedure to the two frequently used 
but statistically inappropriate fitting procedures are depicted 
in Fig. 3, while Table 5 reports their systematic and propor-
tional biases.

The comparison of the three fitting procedures using RM-
ANOVA yielded a significant main effect (P < 0.001) for 
both CS and d′. In addition, post hoc comparisons yielded 
significant differences between each pair of fitting proce-
dures and for both CS and d′ (P ≤ 0.02). Notably, the pair 
[ d(s) using WLS, d(t) using LS] was the only comparison 
giving P values larger than 0.001 for CS and d’, i.e., 0.02 
and 0.006, respectively.

Discussion

Conventional statistical approaches demonstrated a system-
atic bias between each pair of fitting procedures for the esti-
mation of both CS and d′. These results were in line with 
the hypothesis that different estimations of CS and d′ should 
have been obtained when comparing a statistically appro-
priate with a statistically inappropriate fitting procedure. 
Although these findings seem to refute the hypothesis that 
similar estimations of CS and d′ should have been obtained 
when comparing statistically appropriate fitting procedures, 
the differences for these estimations between statistically 
appropriate fitting procedures were negligible.

As pointed out by Iannetta et al. (2020), coaches are rec-
ommended to prescribe exercise based on intensity domains. 

Fig. 1  Comparison between statistically appropriate fitting pro-
cedures. Bland–Altman plots comparing t(s) using weighted least 
squares (WLS) and d(s) using WLS for (i) critical speed (CS) and (ii) 
distance that can be run above CS (d′)

Table 3  Systematic bias ± random error (RE, i.e., 1.6 standard devia-
tion) and proportional bias ± residual standard error (RSE) for critical 
speed (CS) and distance that can be run above CS (d′) when compar-
ing statistically appropriate fitting procedures, i.e., t(s) using weighted 
least squares (WLS) and d(s) using WLS

Significant differences (P ≤ 0.05) are depicted in bold font

t(s) using WLS vs. d(s) using WLS
CS d′

Systematic bias ± RE
P

− 0.005 ± 0.001
 < 0.001

3.8 ± 0.8
 < 0.001

Proportional bias ± RSE
P

0.002 ± 0.001
0.12

0.02 ± 0.005
0.006
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To do so, one possibility is to estimate CS and use it as a 
limit between the heavy and severe intensity domains (Jones 
et al. 2019). Therefore, an accurate estimation of CS is 
required. There exist two statistically appropriate fitting pro-
cedures for the two-parameter model variants that allow us to 
estimate CS: t(s) using WLS and d(s) using WLS. The com-
parison of these two fitting procedures yielded significant 
systematic biases − 0.005 ± 0.001 m/s (0.018 ± 0.004 km/h) 
and 3.8 ± 0.8 m for CS and d′, respectively (P < 0.001). 
However, the bias for CS was less than treadmills’ speed 
resolution. Therefore, these differences could be assumed to 
be negligible when prescribing a training session based on 
exercise intensity because they would be practically mean-
ingless. Nonetheless, they could be due to the specific data 
set used in this study and could potentially be larger with 

another data set, other choices of running speeds, a larger 
number of exhaustive runs, or another underlying model 
(e.g., three-parameters or exponential). In addition, even 
though the estimated CS should be a very good approxi-
mation of the critical intensity but not the critical intensity 
per se, we suggest coaches to physiologically verify that the 
estimated CS represents the upper boundary of sustainable 
exercise. Moreover, there is a day-to-day variation in human 
performance and given the SEE of CS (0.03 ± 0.01 m/s or 
0.11 ± 0.04 km/h, Table 2), its confidence limits are about 
10% of its value. Therefore, it would be justified to prescribe 
exercise intensity outside these confidence limits to avoid 
being in a range of values that are uncertain due to measure-
ment error, which could be defined as the phase transition 
between heavy and severe intensity domains (Anderson et al. 

Fig. 2  Comparison between the 
statistically appropriate [ t(s) 
using weighted least squares 
(WLS)] and the two statistically 
inappropriate fitting procedures. 
Bland–Altman plots compar-
ing a t(s) using WLS and s(t) 
using LS and b t(s) using WLS 
and d(t) using LS for (i) critical 
speed (CS) and (ii) distance that 
can be run above CS (d′)

Table 4  Systematic bias ± random error (RE, i.e., 1.6 standard devia-
tion) and proportional bias ± residual standard error (RSE) for critical 
speed (CS) and distance that can be run above CS (d′) when compar-

ing t(s) using weighted least squares (WLS) with both s(t) using least 
squares (LS) and d(t) using LS

Significant differences (P ≤ 0.05) are depicted in bold font

t(s) using WLS vs. s(t) using LS t(s) using WLS vs. d(t) using LS
CS d′ CS d′

Systematic bias ± RE
P

− 0.20 ± 0.04
 < 0.001

58.7 ± 12.2
 < 0.001

− 0.04 ± 0.01
 < 0.001

15.8 ± 4.6
 < 0.001

Proportional bias ± RSE
P

− 0.05 ± 0.04
0.24

0.22 ± 0.11
0.06

0.03 ± 0.01
0.07

0.12 ± 0.03
 < 0.001
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2019). From a practical perspective, coaches could still pre-
scribe exercise intensity at CS, but should acknowledge that 
there might be a source of error, especially if no physiologi-
cal verification was performed.

The comparison between the statistically appropriate t(s) 
using WLS [or d(s) using WLS] and statistically inappropri-
ate d(t) using LS fitting procedures produced systematic but 
reasonably small biases for both CS (< − 0.04 ± 0.01 m/s; 

Fig. 3  Comparison between the statistically appropriate [ d(s) using 
weighted least squares (WLS)] and the two statistically inappropriate 
fitting procedures. Bland–Altman plots comparing a d(s) using WLS 

and s(t) using LS and b d(s) using WLS and d(t) using LS for (i) criti-
cal speed (CS) and (ii) distance that can be run above CS (d’)

Table 5  Systematic bias ± random error (RE, i.e., 1.6 standard devia-
tion) and proportional bias ± residual standard error (RSE) for critical 
speed (CS) and distance that can be run above CS (d′) when compar-

ing d(s) using weighted least squares (WLS) with both s(t) using least 
squares (LS) and d(t) using LS

Significant differences (P ≤ 0.05) are depicted in bold font

d(s) using WLS vs. s(t) using LS d(s) using WLS vs. d(t) using LS
CS d′ CS d′

Systematic bias ± RE
P

− 0.19 ± 0.04
 < 0.001

55.0 ± 11.3
 < 0.001

− 0.03 ± 0.01
 < 0.001

12.0 ± 3.9
 < 0.001

Proportional bias ± RSE
P

− 0.06 ± 0.04
0.21

0.20 ± 0.10
0.07

0.03 ± 0.01
0.07

0.11 ± 0.02
 < 0.001
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0.14 ± 0.04 km/h) and d′ (< 15.8 ± 4.6 m). These differ-
ences are quite small and could be assumed to be negli-
gible. The largest biases were obtained between the sta-
tistically appropriate t(s) using WLS [or d(s) using WLS] 
and statistically inappropriate s(t) using LS fitting pro-
cedures (CS: < −  0.20 ± 0.04  m/s or 0.72 ± 0.14  km/h, 
d′: < 58.7 ± 12.2 m). In this case, the observed differences 
could have an impact when prescribing a training session 
based on exercise intensity. Nonetheless, as previously men-
tioned already, the magnitude of all the observed differences 
could be due to the specific data set and could potentially 
be smaller or larger. Moreover, as all comparisons of fit-
ting procedures yielded systematic biases, it suggests that 
each fitting procedure produced specific estimations of CS 
and d′. Therefore, we encourage coaches to verify that the 
estimated CS coincide with the physiological CS and make 
small adjustments based on the observed performance.

The coefficient of determination is not a reliable measure to 
assess the goodness of fit when using WLS (Willet and Singer 
1988; Kvalseth 1985). Therefore, one possibility is to use the 
residual sum of squares or a parameter that depends on it, such 
as RSE. However, the units of RSE depend on the fitting pro-
cedure and, more specifically, on the choice of the vertical and 
horizontal axes for the model variant and on which axes the 
errors are being minimized, making it impossible to compare 
the RSE of different fitting procedures. Moreover, when the 
time to exhaustion is assumed to be the independent variable, 
a lower RSE is necessarily observed because the data points 
mostly lied in the region where there was a high difference 
between the measured and predicted data in the horizontal 
axis (time to exhaustion variable) but a small difference in the 
vertical axis (running speed or distance variable). Therefore, a 
lower RSE and thus a perception of a better fitting procedure 
is likely to be provided by assuming the running speed or dis-
tance as the dependent variable instead of the time to exhaus-
tion (Vinetti et al. 2020). In the case of distance as function 
of time, even if distance is indeed a dependent variable, error 
minimization only along the vertical axis (distance variable) 
is not statistically appropriate and there exists no regression 
method that can take into account the fact the errors are actu-
ally correlated. On the other hand, one could use %SEE and 
assume that the smallest %SEE provides the best fit quality 
(Triska et al. 2021). However, obtaining lower RSE or %SEE 
are not consistent with the experiment generating the data set 
but with the representation of the data set itself, as already 
pointed out by Vinetti et al. (2020). Therefore, based on these 
observations, we suggest deciding the choice of regression 
analysis and model variant beforehand. Moreover, this choice 
should be based on the specific data set (the sources of experi-
mental error) to lead to a statistically appropriate fitting pro-
cedure. Then, we suggest to physiologically verify that the 
estimated CS represents a very good approximation of the 
actual CS.

Heteroscedasticity of the dependent variable was explic-
itly depicted by Hinckson and Hopkins (2005) when using 
usual LS fitting procedure. Indeed, these authors demon-
strated systematic and nonuniform deviation from their mod-
els by showing the residuals as function of predicted values. 
In this study, the suggestion made by Morton and Hodgson 
(1996) to include weights to overcome heteroscedasticity 
was applied.

Practical applications

The preferred choice between model variants is not clear 
(Gaesser et al. 1990; Hill 1993) and researchers/coaches 
might be confused on which model variant to select and the 
corresponding regression analysis to apply based on their 
data set. Therefore, a methodology to select a statistically 
appropriate fitting procedure is provided. The following 
methodology specifically addresses running speed and dis-
tance, but any occurrence of these terms can be replaced by 
power and work, respectively. Moreover, special cases that 
need to be taken into account when dealing with power or 
work are explicitly mentioned. Furthermore, the methodol-
ogy is presented using WLS regression applied to the two-
parameter model variants. This methodology can be general-
ized to other choices of loss functions and more complicated 
(e.g., three-parameter or exponential) models.

First, an experiment that fixes running speed (independ-
ent variable: s) and measures time to exhaustion and dis-
tance (dependent variables: t and d) is considered (Fig. 4a). 
Special consideration exists in the case of extremely high 
power on an ergometer or when cycling outdoors (Vinetti 
et al. 2020; Maier et al. 2017). In such cases, power should 
be considered as a dependent variable and geometric mean 
regression should be employed. The recommendations on 
the choice of the regression analysis are as follows:

1. No regression analysis should be used with the models 
s(t) and s(d) [the inverse function of d(s) ] because in 
these cases, t and d, respectively, should be the depend-
ent variables, but they are not. In the case of extremely 
high power on an ergometer or when cycling outdoors, 
geometric mean regression should be used (Vinetti et al. 
2020).

2. WLS should be used with the models t(s) and d(s) with 
weights applied to t  and d , respectively. In the case of 
extremely high power on an ergometer or when cycling 
outdoors, geometric mean regression should be used 
(Vinetti et al. 2020).

3. No regression should be used with the models d(t) and 
t(d) [the inverse function of d(t) ] as the errors are cor-
related and no regression method exists to handle such 
case.
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Second, an experiment that fixes distance (independent 
variable: d) and measures time trial and running speed 
(dependent variables: t and s) is considered (Fig. 4b). The 
recommendations are as follows:

1. No regression analysis should be used with the models 
d(t) and d(s) because in these cases, t and s, respectively, 
should be the dependent variables, but they are not.

2. WLS should be used with the models t(d) and s(d) with 
weights applied to t and s , respectively.

3. No regression should be used with the models s(t) and 
t(s) as the errors are correlated and no regression method 
exists to handle such case.

Third, an experiment that fixes time (independent vari-
able: t) and measures running speed and distance (depend-
ent variables: s and d) is considered (Fig. 4c). The recom-
mendations are as follows:

1. No regression analysis should be used with the models 
t(s) and t(d) because in these cases, s and d, respectively, 
should be the dependent variables, but they are not.

2. WLS should be used with the models s(t) and d(t) with 
weights applied to s and d , respectively.

3. No regression should be used with the models d(s) 
and s(d) as the errors are correlated and no regression 
method exists to handle such case.

Of note, we did not consider WLS that estimates param-
eters based on an error minimization along the horizontal 
axis of a given model f (⋅) . The reason being that using WLS 
based on an error minimization along the horizontal axis is 
equivalent to applying the usual WLS regression on f (⋅)−1 , 
i.e., the inverse of the model variant. However, it should be 
pointed out that if f (⋅)−1 does not exist (the function is not 
invertible), then WLS based on an error minimization along 
the horizontal axis of the model variant f (⋅) should be used.

Finally, potential error in the model should be acknowl-
edged and a physiological verification that the estimated 
CS represents the upper boundary of sustainable exercise 
should be made. In addition, small adjustments based on the 
observed performance could be applied.

Methodological limitations

A few limitations to the present study are worth noting. First, 
no test–retest repeatability of time to exhaustion has been 
performed. However, even if repeatability was shown to have 

Fig. 4  Recommendations on the choice of regression analysis. a Time 
to exhaustion (dependent variable: t) is measured for a fixed running 
speed (s). Distance (d) is by induction a dependent variable. b Time 
trial and running speed (dependent variables) are measured for a 
fixed distance (independent variable). c Distance and running speed 
(dependent variables) are measured for a fixed time trial (independent 

variable). For sake of clarity, the models represented in the figures are 
not representative of the outcome of the measurements. They are only 
given to demonstrate where a regression method can be applied. WLS 
weighted least squares, CS critical speed, d′ distance that can be run 
above CS, CP critical power, W′ anaerobic work capacity



 European Journal of Applied Physiology

1 3

up to 15% error (Laursen et al. 2007), correctly assigning 
variables being dependent on time to exhaustion, as the 
dependent variables, automatically takes into account the 
fact that they carry error. Nonetheless, familiarization was 
shown to increase reliability but tends to be quite unpracti-
cal for the participant (Triska et al. 2017). Second, no runs 
below, at, and above CS whilst assessing oxygen uptake 
responses to exercise were performed to physiologically 
verify that the estimated CS obtained with statistically 
appropriate fitting procedures represents the threshold inten-
sity associated with the lower extremity of the severe inten-
sity domain. Although this is beyond the aim of this study, 
future studies, using these runs, may determine it. Third, the 
selected percent of PS (90, 100, 110, and 120%) resulted in 
time distributions that were relatively unbalanced. There-
fore, the estimated CS might not represent the physiologi-
cal CS (Bishop et al. 1998; Mattioni Maturana et al. 2018). 
However, this did not affect the present study as the main 
goal was not to show that estimated and physiological CS 
coincide. Nevertheless, when using the estimated CS to pre-
scribe exercise intensity, a careful choice of percent of PS 
is important to make sure the estimated CS is a very good 
approximation of the physiological CS.

Conclusion

Systematic biases were observed between each pair of fitting 
procedures for the estimations of both CS and d′, though 
negligible when comparing statistically appropriate fit-
ting procedures. The observed differences suggest that a 
statistically appropriate fitting procedure should be chosen 
beforehand by the researcher. Indeed, even if these differ-
ences could be negligible when prescribing a training ses-
sion based on exercise intensity, they might vary depending 
on the data set or the underlying model. This statement is 
also particularly important for coaches using CS and d′ for 
prescribing training session intensity: the fitting procedure 
should be maintained over the running seasons. Moreo-
ver, we suggest coaches to physiologically verify that the 
estimated CS represents a very good approximation of the 
actual CS, to acknowledge the error in the model, and make 
adjustments when they seem necessary. In addition, this 
study provides a methodology to determine the statistically 
appropriate fitting procedures that can be considered based 
on a specific data set.
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Fitting Procedures on the
Assessment of Critical Speed and Its
Relationship With Aerobic Fitness
Parameters
Aurélien Patoz1,2* , Nicola Pedrani1, Romain Spicher1, André Berchtold3, Fabio Borrani1†

and Davide Malatesta1†

1 Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland, 2 Research and Development Department,
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An accurate estimation of critical speed (CS) is important to accurately define the
boundary between heavy and severe intensity domains when prescribing exercise.
Hence, our aim was to compare CS estimates obtained by statistically appropriate
fitting procedures, i.e., regression analyses that correctly consider the dependent
variables of the underlying models. A second aim was to determine the correlations
between estimated CS and aerobic fitness parameters, i.e., ventilatory threshold,
respiratory compensation point, and maximal rate of oxygen uptake. Sixteen male
runners performed a maximal incremental aerobic test and four exhaustive runs at 90,
100, 110, and 120% of the peak speed of the incremental test on a treadmill. Then, two
mathematically equivalent formulations (time as function of running speed and distance
as function of running speed) of three different mathematical models (two-parameter,
three-parameter, and three-parameter exponential) were employed to estimate CS, the
distance that can be run above CS (d0), and if applicable, the maximal instantaneous
running speed (smax). A significant effect of the mathematical model was observed
when estimating CS, d0, and smax (P < 0.001), but there was no effect of the fitting
procedure (P > 0.77). The three-parameter model had the best fit quality (smallest
Akaike information criterion) of the CS estimates but the highest 90% confidence
intervals and combined standard error of estimates (%SEE). The 90% CI and %SEE
were similar when comparing the two fitting procedures for a given model. High and very
high correlations were obtained between CS and aerobic fitness parameters for the three
different models (r � 0.77) as well as reasonably small SEE (SEE  6.8%). However, our
results showed no further support for selecting the best mathematical model to estimate
critical speed. Nonetheless, we suggest coaches choosing a mathematical model
beforehand to define intensity domains and maintaining it over the running seasons.

Keywords: running, curve fitting, linear model, hyperbolic model, exponential model, exercise prescription
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INTRODUCTION

The prescription of exercise intensity, one of the most important
criteria to induce specific adaptations to training (Maclnnis
and Gibala, 2017), is often based on the percentage of the
maximal rate of oxygen uptake (V̇O2max) or maximal heart rate
(American College of Sports Medicine, 2000; Burgomaster et al.,
2007; Roy et al., 2018). However, among individuals, the lactate
threshold, the respiratory compensation point (RCP), and critical
power (CP)/speed (CS) were located at di�erent percentages of
V̇O2max (Fontana et al., 2015), leading to substantial di�erences
between participants in terms of characteristics of metabolic
responses and duration of exercise at a common percentage of
the maximum. Therefore, using an exercise prescription based
on percentages of maximum values does not guarantee control
of exercise intensity (DiMenna and Jones, 2009; Lansley et al.,
2011). Instead, a model considering exercise intensity domains
for exercise prescription has been recommended (Iannetta et al.,
2020). Parameters such as oxygen uptake kinetics (Whipp and
Mahler, 1980), ventilatory threshold (VT) (Wasserman et al.,
1973), maximum lactate steady-state (Iannetta et al., 2018), and
CP/CS (Vanhatalo et al., 2007; Constantini et al., 2014; Jones et al.,
2019) can be used to define these various intensity domains.

CP/CS allows defining of the boundary between heavy and
severe intensity domains (Jones et al., 2019; Galán-Rioja et al.,
2020). Therefore, having an accurate estimation of CP/CS is
important. This is obtained by fitting the experimental data
to a mathematical model, chosen among several possibilities
that di�er with respect to their mathematical forms and
number of parameters (Monod and Scherrer, 1965; Wilkie,
1980; Moritani et al., 1981; Whipp et al., 1982; Morton, 1986,
1990, 1996; Peronnet and Thibault, 1989). The original linear
model formulation was proposed byMonod and Scherrer (1965).
This model was applied to cycle ergometry and relates the
work performed during an exhaustive bout and its duration
through two parameters (two-parameter model): CP (Monod
and Scherrer, 1965) or threshold of fatigue (Bigland-Ritchie and
Woods, 1984) and the sustainable work of exercise above that
metabolic rate (W0) (Monod and Scherrer, 1965). Power has
been related to time by dividing the original formulation by
the exercise duration (Poole et al., 1986; Gaesser and Wilson,
1988; Housh et al., 1989) while Gaesser et al. (1990) proposed
expressing this exercise duration as function of power, which
led to the well-known hyperbolic formulation (Morton and
Hodgson, 1996). Another model variant, proposed by Morton
(2006), expresses the work performed as function of power, since
this work (power multiplied by time to exhaustion) is also a
dependent variable. However, this model has, to our knowledge,
never been used so far.

A straightforward transposition of CP to running was studied
by several researchers (Ettema, 1966; Hughson et al., 1984;
Housh et al., 1991, 2001; Sid-Ali et al., 1991; McDermott et al.,
1993). The CS and distance that can be run above CS (d0)
are the running analogs of CP and W0, respectively (Hughson
et al., 1984; Housh et al., 1991; Pepper et al., 1992; Hill and
Ferguson, 1999; Jones and Vanhatalo, 2017). CS is thought to
reflect an inherent characteristic of the aerobic energy supply

system (Hughson et al., 1984; Gaesser and Wilson, 1988; Poole
et al., 1988) and is observed to be correlated with V̇O2max
(Hughson et al., 1984; Gaesser and Wilson, 1988; Poole et al.,
1988), as well as lactate thresholds (Poole et al., 1988) and RCP
(Moritani et al., 1981).

Major shortcomings of the two-parameter model are the
assumptions 1) of infinite running speed as time to exhaustion
approaches zero, and 2) that at the point of fatigue, d0 has
been completely covered (Gaesser et al., 1995; Morton, 1996).
To overcome these limitations, Morton (1996) proposed a three-
parameter model including an additional parameter, the maximal
instantaneous running speed (smax), and a d0 that can be only
partly covered for a running speed between CS and smax.
Alternatively, Hopkins et al. (1989) proposed a three-parameter
exponential model based on CS and smax, but where d0 was
replaced by an undefined time constant (t). The authors reported
that their three-parameter exponential model gave better fits
than the two-parameter model for inclined treadmill running of
short duration (<3 min) (Hopkins et al., 1989). These two- or
three-parameter models can be formulated as either distance as
function of time, time as function of distance, running speed
as function of time, time as function of running speed, distance
as function of running speed, and running speed as function of
distance, which are mathematically equivalent.

To obtain a statistically appropriate estimation of the model
parameters, the correct choice of model formulation and
regression analysis should be chosen (Patoz et al., 2021). Such
choice is based on the data provided by the experiment and
the knowledge of the independent and dependent variables. For
the treadmill CS test, running speed is the independent variable
while time to exhaustion and distance (implicitly, because it
is given by running speed multiplied by time to exhaustion)
are the dependent variables. To minimize the error of a model
formulation expressing the dependent and independent variables
on the vertical and horizontal axes, respectively, the least squares
(LS) loss function can be used and requires that the dependent
variable be observed with additive error while the independent
one would have no additive error (Morton and Hodgson, 1996).
Statistical theory has shown that errors in the independent
variable are of minor importance, making error minimization
in the dependent variable su�cient (Morton and Hodgson,
1996). However, due to heteroscedasticity of the dependent
variable (McLellan and Skinner, 1985; Poole et al., 1988; Faude
et al., 2017), Morton and Hodgson (1996) suggested to use
weighted LS (WLS).

Several researchers have compared the estimation of the
parameters provided by the three di�erent models (two-
parameter, three-parameter, and three-parameter exponential)
and some of their di�erent formulations for cycle ergometry
(Gaesser et al., 1995; Bull et al., 2000; Bergstrom et al., 2014)
and running on a treadmill (Housh et al., 2001). Significant
di�erences were obtained between the di�erent formulations
of the two-parameter model (Gaesser et al., 1995; Bull et al.,
2000; Housh et al., 2001; Bergstrom et al., 2014). The three
models also di�ered significantly from one another and the three-
parameter model gave the lowest estimation of CP (Gaesser
et al., 1995; Bull et al., 2000; Bergstrom et al., 2014) and CS
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(Housh et al., 2001). However, these studies (Gaesser et al., 1995;
Bull et al., 2000; Housh et al., 2001; Bergstrom et al., 2014) did not
consider time to exhaustion as the dependent variable, as honestly
highlighted by Gaesser et al. (1995). Moreover, these previous
studies (Gaesser et al., 1995; Bull et al., 2000; Housh et al.,
2001; Bergstrom et al., 2014) are notmethodologically exhaustive.
Indeed, none of these studies acknowledged heteroscedasticity of
the dependent variable.

Hence, the purpose of this study was twofold. First, we
compared the estimations of the model parameters obtained by
statistically appropriate fitting procedures (the combination of
model formulation and regression analysis) applied to the three
di�erent models (two-parameter, three-parameter, and three-
parameter exponential). We hypothesized that the estimations
of CS, d0, and smax would be significantly di�erent between
the mathematical models employed, but not between the fitting
procedures. We also hypothesized that the three-parameter
model would give the lowest estimation of CS, as already
observed by Housh et al. (2001) for statistically inappropriate
fitting procedures. Second, we determined the correlations
between estimated CS and aerobic fitness parameters, i.e., VT,
RCP, and V̇O2max, as well as the standard error of estimate (SEE)
of these relations. We hypothesized that lower quality of the fit
[determined by Akaike information criterion (AIC)] would be
associated with lower correlations between CS and aerobic fitness
parameters and higher SEE.

MATERIALS AND METHODS

Participant Characteristics
Sixteen male runners gave written informed consent to
participate in the present experiment (age: 25.6 ± 3.9 years
old; height: 1.79 ± 0.05 m; body mass: 69.2 ± 5.3 kg). For
study inclusion, participants were required to be in good self-
reported general health with no symptoms of cardiovascular
disease ormajor coronary risk factors, no current or recent lower-
extremity injury that could prevent them from giving 100% of
their capacity during the test or from meeting a certain level of
running performance. More specifically, runners were required
to have a speed associated with V̇O2max (sV̇O2max) greater or
equal to 4.44 m/s (16 km/h). The study protocol was approved by
the Ethics Committee (CER-VD 2018-01814) and adhered to the
latest Declaration of Helsinki of the World Medical Association.

Experimental Procedure
Each participant completed five experimental sessions
interspersed by at least 2 days in the laboratory. All participants
were advised to avoid strenuous exercise the day before a test
but to maintain their usual training program otherwise. During
the first session, participants completed a maximal incremental
aerobic test on a treadmill (Arsalis T150—FMT-MED, Louvain-
la-Neuve, Belgium). This test consisted of a 10-min warm-up
at 2.78 m/s followed by an incremental increase in the running
speed of 0.28 m/s every 2 min until exhaustion. Throughout
the test, participants breathed into a mask connected to a gas
analyzer (Quark, Cosmed, Italy). Pulmonary gas exchange

variables [expired minute ventilation (V̇E), oxygen uptake
(V̇O2), and carbon dioxide output (V̇CO2)] were measured
breath-by-breath and subsequently averaged over 10-s intervals
throughout the test. Before each test, the O2 and CO2 analyzers
were calibrated using room air and known concentrations of
calibration gas (16.00% O2, 5.02% CO2, and the remainder
N2), and the turbine was calibrated using a 3-L syringe (Hans
Rudolph, Germany).

This test was used, first, to determine the peak speed (PS)
of the incremental test of each participant. PS is defined as the
running speed of the last fully completed increment (sV̇O2max)
plus the fraction of time spent in the following uncompleted
increment (a) multiplied by the running speed increment
(1s = 0.28 m/s) (Kuipers et al., 2003): PS = sV̇O2max + a4s.
Second, the V̇O2max was defined as the highest measured V̇O2
value corresponding to (1) a plateau of V̇O2 with increased
running speed (1V̇O2 between the last two increments smaller
than 50% of the average 1V̇O2 during the submaximal phase
of the test) and/or (2) an heart rate greater than 90% of the
theoretical maximum heart rate given by 220—age associated
with a respiratory quotient greater than 1.1 and a rate of
perceived exertion greater than 17. Third, VT and RCP were
determined based on gas exchange data and using the method
proposed by Wasserman et al. (1973).

The other four tests were performed in a randomized order
and consisted of exhaustive runs at a given percentage of the
participant’s PS (90, 100, 110, or 120%). These tests were as
follows: after a 10-min warm-up at 2.78 m/s and a 5-min rest
period, the running speed was increased to a given percentage of
PS, and the participant had to maintain the pace until exhaustion.
The time to exhaustion was collected for each of the four sessions.
No information about the timings or running speed was given
to any participant, who were strongly encouraged, during any of
the five experimental sessions. All participants were familiar with
running on a treadmill.

Mathematical Modeling
The estimations of CS, d0, and smax were obtained from two
di�erent but mathematically equivalent formulations for the
three di�erent models. Gaesser et al. (1990) proposed the
two-parameter model formulation given by Eq. 1 (non-linear,
time-running speed) while Eq. 2 (non-linear, distance-running
speed) represents the formulation proposed by Morton (2006).
The three-parameter model formulation proposed by Morton
(1996) and the inverse of the three-parameter exponential model
formulation proposed by Hopkins et al. (1989) are given by Eqs.
3 and 5 (non-linear, time-running speed), respectively, while
Eqs. 4 and 6 (non-linear, distance-running speed) represent their
distances as a function of running speed formulations.

t(s) = d0

s � CS
(1)

d(s) = s t(s) = s
d0

s � CS
(2)

t(s) = (s � smax)d0

(s � CS)(CS�smax)
(3)
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d(s) = s t(s) = s
(s � smax)d0

(s � CS)(CS�smax)
(4)

t(s) = t log
✓
smax � CS
s � CS

◆
(5)

d(s) = s t(s) = s t log
✓
smax � CS
s � CS

◆
(6)

t, s, and d stand for time, running speed, and distance,
respectively. Of note, distance as a function of running speed was
simply given by multiplying time as function of running speed by
running speed, i.e., d(s) = s t(s).

The three-parameter exponential model does not provide a
direct estimation of d0 because the distance that can be run
above CS is time-dependent in such a model. Indeed, rearranging
the two-parameter model formulation proposed by Whipp et al.
(1982) and given by Eq. 7 (i.e., the inverse of Eq. 1)

s (t) = d0

t
+ CS (7)

leads to d0 = t[s(t) � CS] = d(t) � tCS. Then, applying
this result to the three-parameter exponential model gives
an equation where the left-hand side is time-dependent, i.e.,
d0(t) = t(smax � CS)e�t/t. The maximum (d0

max) of this equation
appears where its first derivative is equal to zero, which is at
t = t and is given by d0

max = t(smax � CS)e�1. This parameter
(d0

max) was used as an estimate of d0 for the three-parameter
exponential model when comparing the d0 provided by the
di�erent models.

Data Analysis
Two di�erent fitting procedures were used on the data set
obtained for each participant to estimate CS, d0, and smax. More
specifically, t(s) and d(s) using WLS were evaluated. These two
fitting procedures are statistically appropriate, i.e., they minimize
the error along the axes corresponding to the dependent variables
(Vinetti et al., 2020) and should overcome heteroscedasticity
Morton and Hodgson (1996). Weights were applied to the
corresponding dependent variables, i.e., time to exhaustion in
t(s), and distance in d(s). FollowingMorton andHodgson (1996),
weights were set proportional to the inverse of the variance of the
dependent variable, where the variance was itself set proportional
to the dependent variable. Noteworthy, the model variants d(t)
and t(d) have not been used. The reason being that in these
cases, distance and time to exhaustion should be considered as
dependent variables. However, the errors of both variables are
correlated, i.e., the error of distance is given by the product of
speed and the error of time to exhaustion variable, since speed
does not carry any error. This is known as endogeneity and, to the
best of our knowledge, there exists no regression method that can
handle such case (Antonakis et al., 2014). Error minimization was
performed iteratively using the Levenberg-Marquardt algorithm
(Levenberg, 1944; Marquardt, 1963). After inspecting residual
plots, deviations from homoscedasticity were present for the
two fitting procedures applied to the three di�erent models, the

three-parameter model with d(s) and the two-parameter model
with t(s) showing the least and the most heteroscedasticity,
respectively (Supplementary Figure 1).

To obtain the V̇O2 values at the CS estimates for each
participant, first the CS estimates were converted to the times
at which these running speeds occurred during the maximal
incremental aerobic test assuming a linear relation between
running speed and time [i.e., s = 2.78 + 0.14t, leading to
t = (s � 2.78)/0.14, where t and s stand for time and running
speed, respectively]. Then, the V̇O2 values at the CS estimates
were simply given by placing these corresponding times into
the computed linear regression of V̇O2 as a function of time
recorded during the maximal incremental aerobic test. Data
analysis was performed using Python (version 3.7.4, Python
Software Foundation1).

Statistical Analysis
Descriptive statistics were expressed as the mean ± standard
deviation. The 90% confidence intervals (CI) of CS, d0 and if
applicable, smax, the combined standard error of the estimate
(%SEE), i.e., the sum of SEE preliminary transformed to percent
units of CS, d0 and if applicable, smax, and the AIC of the fitting
procedure were computed to assess the quality of the fit. For the
linear regression of V̇O2 as a function of time, its coe�cient of
determination (R2) was calculated to examine its accuracy.

After inspecting residual plots, no obvious deviations from
homoscedasticity and normality were present. Linear mixed
models fitted by restricted maximum likelihood were used to
compare CS, d0, and smax obtained from the three mathematical
models (two-parameter if applicable, three-parameter, and three-
parameter exponential) and two fitting procedures [t(s) and
d(s)]. The fixed e�ects included the mathematical models, fitting
procedures, and their interaction. The within-subject nature was
controlled for by including random e�ects for participants. The
variance explained by the fixed e�ects over the total expected
variance was given by R2marginal while R

2
conditional represented the

variance explained by the fixed and random e�ects together
over the total variance (Johnson, 2014). Intraclass correlation
coe�cients (ICC) of the random e�ects were computed as the
ratios of the variance of the random coe�cient divided by
the sum of itself and the residual variance. On the basis of
commonly used thresholds, poor, moderate, good, and excellent
ICCs are given by ICC values <0.5, 0.5–0.75, 0.75–0.90, and
�0.90, respectively (Koo and Li, 2016). Pairwise post hoc
comparisons of any significant fixed e�ects were performed using
Holm corrections.

Correlations, 90% CI, SEE (in %), and systematic di�erences
of predicted value (1, in %) were computed among the three
mathematical models and two fitting procedures with regard
to CS, d0, and smax and similarly between CS and aerobic
fitness parameters. Data were log transformed as suggested
by Hopkins et al. (2009). Correlations were computed using
Pearson’s correlation coe�cients (r). Very high, high, moderate,
low, and negligible correlations were given by r values of 0.90–
1.00, 0.70–0.90, 0.50–0.70, 0.30–0.50, and 0.00–0.30, respectively

1http://www.python.org
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(Hinkle et al., 2003). Statistical analysis was performed using
Python, Jamovi (version 1.0.8, [Computer Software]2), and R
3.5.0 (The R Foundation for Statistical Computing, Vienna,
Austria) with a level of significance set at P  0.05.

RESULTS

The variables determined by the incremental test were
sV̇O2max: 5.05 ± 0.38 m/s, PS: 5.16 ± 0.39 m/s, V̇O2max:
63.0 ± 4.9 ml/min/kg, VT: 47.1 ± 3.9 ml/min/kg (74.8 ± 4.1
%V̇O2max), and RCP: 56.3 ± 4.8 ml/min/kg (89.3 ± 3.6
%V̇O2max). The average R2 obtained for the linear regression of
the V̇O2 as a function of time relationship recorded during the
maximal incremental aerobic test was 0.94 ± 0.04.

The regression analysis for one representative participant and
for each of the three mathematical models as well as the two
fitting procedures [t(s) and d(s)] is presented in Figure 1.

Table 1 depicts the time to exhaustion corresponding to the
four exhaustive runs performed at 90, 100, 110, and 120% of the
participant’s PS.

Table 2 depicts CS, d0, and smax, together with their
corresponding 90% CI, %SEE, and AIC obtained from the three
mathematical models and two fitting procedures.

The linear mixed model with random e�ects explained almost
all variance in the data for CS while a large part of variance in
the data was still unexplained for d0 and smax even with random
e�ects (Table 3). These results were reinforced by the ICC of
the random e�ects, which was excellent for CS but poor and
moderate for d0 and smax, respectively (Table 3).

A significant mathematical model e�ect was obtained for
CS, d0, and smax (P < 0.001; Table 3). CS was significantly
faster for the three-parameter exponential model compared
with CS determined by two- (P < 0.001) and three-parameter
(P < 0.001) models and it was significantly faster for the two-
than for the three-parameter model (P < 0.001; Table 2). d0 was
significantly lower for the two- and three-parameter exponential
model than for the three-parameter model (P < 0.001; Table 2).
The three-parameter exponential model had a significant slower
estimation of smax than the three-parameter model (P < 0.001;
Table 2).

No significant fitting procedure e�ect or significant
mathematical model x fitting procedure interaction e�ect
were reported for CS, d0, and smax (P � 0.77; Table 3).

On a group level, the average AIC was lower for the three-
parameter model for both fitting procedures; however, it was
very close to the average AIC for the three-parameter exponential
model (Table 2). Note that, because the units of the residual sum
of squares error (RSS) depend on the fitting procedure itself, the
AICs can be compared between models within a given fitting
procedure but not between the two fitting procedures. On an
individual level, t(s) and d(s) fitting procedures gave the lowest
AIC when using the three-parameter model for 12 participants
while 4 participants obtained the lowest AIC when using the
three-parameter exponential model.

2https://www.jamovi.org

The three-parameter model reported the highest 90% CI as
well as the highest %SEE (Table 2). However, %SEE can in general
not be compared between the two- and three-parameter models
because they do not have the same number of parameters to
estimate. Nevertheless, the 90% CI of CS and d0 in the three-
parameter and three-parameter exponential models were higher
than in the two-parameter model, even if expressed in percent
units. Therefore, the two models with three parameters carried
more error on their estimates than the two-parameter model. The
90% CI and %SEE were similar when comparing the two fitting
procedures for a given model (Table 2).

SEE and 1 between CS obtained from the three mathematical
models and two fitting procedures ranged from 0.06 to 3.95%
and from �0.10 to 0.03%, respectively, while correlations were
very high (0.93  r  1.00; 90% CI: [�0.84, 1.00]) and were
all statistically significant (P < 0.001). For d0, SEE and 1 ranged
from 0.58 to 20.2% and from -1.89 to 1.37%, respectively, while
correlations were high and very high (0.77  r  1.00; 90%
CI: [�0.52, 1.00]) and statistically significant (P < 0.001). For
smax, SEE and 1 ranged from 0.62 to 9.09% and from -0.06
to 0.14%, respectively, while correlations were moderate to very
high (0.67  r  1.00; 90% CI: [�0.34, 1.00]) and statistically
significant (P  0.004).

The V̇O2 at the CS estimates expressed as a percentage
of V̇O2max as well as the CS expressed as a percentage of
sV̇O2max for the three mathematical models and two fitting
procedures are given in Table 4. The V̇O2 corresponding to
the CS estimates were based on linear regression, therefore, the
significant di�erences between V̇O2 values were the same as those
for the CV estimates (Table 2; Housh et al., 2001).

Correlations, 90% CI, SEE, and 1 between CS and aerobic
fitness parameters are given in Table 5. Correlations were high
and very high, and all statistically significant (P  0.001).

DISCUSSION

Conventional statistical approaches demonstrated a significant
e�ect of the mathematical model when estimating CS, d0, and
smax, but no significant e�ect of the fitting procedure. These
results validated our first hypothesis that the estimates of CS, d0,
and smax would be significantly di�erent between mathematical
models employed, but not between fitting procedures. Moreover,
the three-parameter model gave the lowest estimation of
CS, in accordance with our first hypothesis. Lower SEE
and higher correlations between aerobic fitness parameters
and CS estimated using a given mathematical model and
fitting procedure were not necessarily associated with a lower
AIC for these models and procedures, which refuted our
second hypothesis.

The linear mixed model showed interindividual di�erences
in CS, d0, and smax, as depicted by the larger R2conditional
than R2marginal (Table 3), but with a higher impact for
CS than for d0 and smax, as depicted by the excellent
ICC of the random e�ects for CS but poor and moderate
ICCs for d0 and smax, respectively (Table 3). In addition,
a large part of the variance was still unexplained for d0
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FIGURE 1 | Regression analysis for each of the three mathematical models [two-parameter (2-param), three-parameter (3-param), and three-parameter exponential
(3-param exp)] and the two fitting procedures (A) t(s) using weighted least squares (WLS) and (B) d(s) using WLS. t: time, s: running speed, and d: distance.

TABLE 1 | Means ± standard deviations of the time to exhaustion corresponding to the four exhaustive runs performed at 90, 100, 110, and 120% of the participant’s
peak speed (PS).

Running speed (%PS) 90 100 110 120

Time to exhaustion (min) 14.8 ± 2.57 5.94 ± 1.21 2.78 ± 0.78 1.68 ± 0.50

TABLE 2 | Mean ± standard deviation of the critical speed (CS), distance that can be run above CS (d0), and maximal instantaneous running speed (smax ), and their
corresponding 90% confidence interval (in parenthesis) obtained from the three mathematical models [two-parameter (2-param), three-parameter (3-param), and
three-parameter exponential (3-param exp)] and two fitting procedures [t(s) and d(s) using weighted least squares] together with the combined standard error of the
estimate (%SEE) and the Akaike information criterion (AIC) assessing the quality of the fit.

Mathematical
model

Fitting
procedure

CS (m/s) d0 (m) smax (m/s) %SEE AIC

2-param t(s) 4.39 ± 0.41 (0.10 ± 0.05) 226.0 ± 57.0 (66.9 ± 26.31) – 9.8 ± 3.4 32.3 ± 3.4

d(s) 4.39 ± 0.40 (0.10 ± 0.05) 222.3 ± 56.0 (65.2 ± 25.1) – 9.7 ± 3.4 45.8 ± 3.4

3-param t(s) 4.12 ± 0.52 (0.27 ± 0.28) 556.9 ± 289.8 (360.6 ± 386.0) 7.72 ± 0.85 (1.50 ± 1.44) 24.8 ± 15.2 24.1 ± 5.3

d(s) 4.12 ± 0.52 (0.27 ± 0.27) 546.6 ± 279.1 (352.3 ± 367.7) 7.76 ± 0.88 (1.58 ± 1.59) 25.2 ± 15.3 37.8 ± 5.2

3-param exp t(s) 4.55 ± 0.41 (0.12 ± 0.15) 219.5 ± 59.2 (151.6 ± 112.4) 6.96 ± 0.43 (0.55 ± 0.34) 23.9 ± 15.1 24.4 ± 9.0

d(s) 4.56 ± 0.41 (0.12 ± 0.15) 217.7 ± 58.0 (150.7 ± 110.0) 6.98 ± 0.43 (0.55 ± 0.35) 24.1 ± 15.2 38.2 ± 8.7

TABLE 3 | Percentage of variance explained, fixed effects, and random effects [intraclass correlation coefficient (ICC)] when assessing the effect of the mathematical
model and fitting procedure on critical speed (CS), distance that can be run above CS (d0), and maximal instantaneous running speed (smax ) using a linear mixed model.

CS d0 smax

Variance explained % % %

R2
marginal 14.0 45.7 24.5

R2
conditional 96.0 72.0 75.6

Fixed effects P P P

Mathematical model <0.001 <0.001 <0.001

Fitting procedure 0.79 0.83 0.77

Mathematical model x fitting procedure interaction 1.00 0.99 0.90

Random effects – – –

ICC for intercept 0.95 0.48 0.68

The variance explained by the fixed effects over the total expected variance was given by R2
marginal while R2

conditional represented the variance explained by the fixed and
random effects together over the total variance. Statistical significances (P  0.05) are indicated in bold.
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TABLE 4 | Oxygen uptake [V̇O2; expressed as a percentage of maximal rate of oxygen uptake (V̇O2max)] at the critical speed (CS) estimates as well as CS [expressed
as a percentage of speed associated with V̇O2max (sV̇O2max )] for the three mathematical models [two-parameter (2-param), three-parameter (3-param), and
three-parameter exponential (3-param exp)] and the two fitting procedures [t(s) and d(s) using weighted least squares].

2-param 3-param 3-param exp

t(s) d(s) t(s) d(s) t(s) d(s)

V̇O2 (%V̇O2max) 88.2 ± 4.4 88.3 ± 4.4 83.1 ± 6.7 83.2 ± 6.6 91.3 ± 4.1 91.4 ± 4.1

CS (%sV̇O2max) 86.7 ± 2.5 86.8 ± 2.5 81.3 ± 6.2 81.4 ± 6.1 90.1 ± 2.9 90.1 ± 2.8

TABLE 5 | Pearson’s correlations coefficients (r) together with their corresponding 90% confidence intervals (CI), standard error of estimate (SEE, in %), and systematic
differences of predicted value (1, in %) between critical speed (CS) obtained from the three mathematical models [two-parameter (2-param), three-parameter (3-param),
and three-parameter exponential (3-param exp)] and two fitting procedures [t(s) and d(s) using weighted least squares] and aerobic fitness parameters [ventilatory
threshold and respiratory compensation point (VT and RCP), and maximal rate of oxygen uptake (V̇O2max)].

2-param 3-param 3-param exp

t(s) d(s) t(s) d(s) t(s) d(s)

VT r 0.85 0.85 0.77 0.77 0.83 0.83

CI 0.66–0.94 0.66–0.94 0.50–0.90 0.51–0.90 0.63–0.93 0.63–0.93

P <0.001 <0.001 <0.001 0.001 <0.001 <0.001

SEE 4.37 4.36 5.50 5.43 4.70 4.67

1 �0.13 0.05 �1.46 2.40 1.07 �0.93

RCP r 0.90 0.90 0.77 0.78 0.88 0.88

CI 0.77–0.96 0.76–0.96 0.52–0.90 0.53–0.91 0.73–0.95 0.73–0.95

P <0.001 <0.001 <0.001 0.001 <0.001 <0.001

SEE 3.90 3.88 5.82 5.73 4.27 4.23

1 0.01 �0.01 1.99 �2.56 �1.95 2.61

V̇O2max r 0.91 0.90 0.85 0.85 0.91 0.91

CI 0.79–0.96 0.78–0.96 0.66–0.94 0.66–0.94 0.79–0.96 0.80–0.97

P <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

SEE 3.63 6.84 4.49 4.43 3.40 3.38

1 0.27 �0.01 �1.38 �2.56 0.40 0.33

Data were log transformed as suggested by Hopkins et al. (2009). Statistical significance of the correlations (P  0.05) are indicated in bold.

and smax (R2conditional  72.0%; Table 3). Therefore, CS
could be well estimated by using the mathematical model
and fitting procedure, but this is not the case for d0

and smax. Furthermore, the high and very high between-
model correlations (r � 0.93) obtained for CS suggest that
the estimation of CS provided by each model qualitatively
represents the same, as already pointed out by Gaesser et al.
(1995). By contrast, some between-model correlations were
high and moderate for d0 and smax, respectively (r � 0.67),
suggesting less link between estimations of d0 and smax
from the di�erent regression analyses. Overall, the regression
analyses provided more robust estimates of CS than of d0

and smax.
The three-parameter model gave the lowest AIC on a group

level as well as for 75% of the participants for both t(s) and
d(s) fitting procedures. Nevertheless, the AICs of both three-
parameter models were very close to one another (Table 2).
The AICs for the two-parameter model were 34% and 21%
higher than the three-parameter model ones for t(s) and d(s),
respectively. Therefore, the two-parameter model gave the lowest
quality of the fit, while the three-parameter model seemed to be
the most accurate one for both fitting procedures even though
it was only slightly better than the three-parameter exponential

model. These observations contradict previous findings that
obtained similar R2 values between di�erent mathematical
models (Gaesser et al., 1995; Bull et al., 2000; Housh et al.,
2001; Bergstrom et al., 2014) [except for a two-parameter
linear model expressing power as function of 1/time (Gaesser
et al., 1995; Bull et al., 2000)]; this might be explained several
ways. First, comparing the accuracy of regression analyses for
models based on a di�erent number of parameters (e.g., two
vs. three parameters) requires an adjusted R2 to normalize
with respect to the number of parameters within the model.
However, these studies (Gaesser et al., 1995; Bull et al., 2000;
Housh et al., 2001; Bergstrom et al., 2014) did not mention
such usage. Second, R2 was shown to be an unfavorable
measure to describe the validity of a non-linear regression
(e.g., both model formulations of the three-parameter model)
(Spiess and Neumeyer, 2010) and when using weights in the
regression analysis (Willet and Singer, 1988). Therefore, one
remaining possibility to compare the quality of the fit of
di�erent mathematical models is to use RSS or a parameter
that depends on it such as AIC. However, the units of RSS
(and thus AIC) being dependent on the fitting procedure (i.e.,
on the choice of model formulation and axes on which the
errors are minimized), the AICs of the various fitting procedures
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cannot be compared, i.e., AIC of t(s) cannot be compared to
the one of d(s).

Another option to compare the quality of the fit of di�erent
mathematical models is to use %SEE (Triska et al., 2021).
However, as already mentioned, %SEE depends on the number
of parameters to estimate and is therefore not optimal to
compare two- and three-parameter models. Nevertheless, in
our case, the 90% CI of CS and d0 in the three-parameter
and three-parameter exponential models were higher than in
the two-parameter model, even if expressed in percent units.
Therefore, the two-parameter model gave the lowest %SEE
(9.7%) and SEE for CS (0.7%) and d0 (9%), while the three-
parameter gave the highest %SEE (25%; CS: 2.2%, d0:17%,
and smax: 5.8%), but only 1% higher than the three-parameter
exponential model (24%; CS: 0.8%, d0:20.8%, and smax:2.4%).
Based on %SEE, the three-parameter model seemed to be
the least accurate model, which is in contradiction with the
results based on AIC.

CS was thought to reflect an inherent characteristic of the
aerobic energy supply system (Hughson et al., 1984; Gaesser
and Wilson, 1988; Poole et al., 1988). Such a characteristic is
supported by the small SEE and high and very high correlations
obtained between CS and aerobic fitness parameters such as
VT, RCP, and V̇O2max (SEE  6.84; r � 0.77; Table 5).
These results additionally confirm previous observations that
showed that CS correlated with V̇O2max (Hughson et al.,
1984; Gaesser and Wilson, 1988; Poole et al., 1988) and RCP
(Moritani et al., 1981). However, the three-parameter model
reported the highest SEE [if we do not consider SEE for the
two-parameter model and d(s)] and smallest correlations, which
were associated with the largest 90% CI (4.43  SEE  5.82;
0.77  r  0.85; Table 5). This is in line with the fact that
the three-parameter model reported the highest %SEE (Table 2).
Nonetheless, SEE and correlations were still small and high,
respectively, for this model.

The linear mixed model provided a significant e�ect of the
mathematical model when estimating CS, d0, and smax (Table 3).
These results accord with those of previous observations that
depicted considerable di�erences in the estimation of parameters
among di�erent models (Gaesser et al., 1995; Bull et al., 2000;
Housh et al., 2001; Bergstrom et al., 2014). The three-parameter
model provided the lowest estimation of CS on a group level
(Table 2) as well as on an individual level. CS estimated
using the three-parameter model were 6% and 9% smaller than
when using the two-parameter and three-parameter exponential
models, respectively. The two-parameter model was shown to
produce overestimated CS (Pepper et al., 1992). The authors
observed that the time to exhaustion at a running speed set at
CS estimated by the two-parameter model was much smaller
than expected. Indeed, participants were able to run only 16 min
instead of a theoretically indefinite time. Because CS predicted
by the three-parameter exponential model was faster than CS
predicted by the two-parameter model (+3%; Table 2), we
could conclude that the three-parameter exponential model also
produced overestimated CS.

The observed between model di�erences for the CS estimates
(up to 0.44 m/s, Table 2) are not negligible and would certainly

have an impact when prescribing a training session based on
exercise intensity. Therefore, we encourage coaches prescribing
exercise based on critical intensity to choose a mathematical
model beforehand to estimate CS and maintain it over the
running seasons, so that CS is always estimated in the same
way. Moreover, even though the estimated CS should be a
very good approximation of the critical intensity but not the
critical intensity per se, we suggest to physiologically verify that
the estimated CS represents the upper boundary of sustainable
exercise. In addition, coaches should not hesitate to make small
adjustments based on the observed performance. Moreover,
given the day-to-day variation of human performance and the
CI of the estimated CS, i.e., about 5% of its value (Table 2), it
would be justified to prescribe exercise intensity outside these
confidence limits to avoid being in the phase transition between
the heavy and severe intensity domains (Anderson et al., 2019).

Jones and Vanhatalo (2017) found that CS occurred at 70–
90% of V̇O2max, depending on training status (the higher
the training status, the higher the CS in %V̇O2max). In the
present study, the V̇O2 at the CS estimates for the three-
parameter model were close to the middle of the range defined
by Jones and Vanhatalo (2017) (83%; Table 4), while the
V̇O2 at the CS estimates for the two-parameter and three-
parameter exponential models were in the higher end of the
range (�88.2 %V̇O2max; Table 4). Higher V̇O2 at the CS
estimates were already reported by Housh et al. (2001) for the
two-parameter and three-parameter exponential models (�94
%V̇O2max) than for the three-parameter model (89 %V̇O2max).
These authors even reported V̇O2 at the CS estimates that
exceeded V̇O2max for the exponential model (105 %V̇O2max).
In the present study, CS corresponded to 81, 87, and 90
%sV̇O2max for the three-parameter, two-parameter, and three-
parameter exponential models, respectively. Billat et al. (1995)
observed that CS corresponded to 86% of sV̇O2max for runners
having 75 ml/min/kg of V̇O2max and 6.22 m/s of sV̇O2max.
These values were higher than those of the participants of
this study (+16 and +19%, respectively). Therefore, we could
speculate that CS estimated by the three-parameter model (81
%sV̇O2max) is closer to reality than CS estimated by the other two
models (�87 %sV̇O2max). Both arguments reinforce the idea that
both two-parameter and three-parameter exponential models
overestimate CS. In any case, a future study involving exhaustive
runs below, at, and above CS whilst assessing oxygen uptake
responses to exercise would be needed to quantitatively validate
this suggestion.

The estimation of d0 using the three-parameter model were
roughly 2.5 times larger than those from the other two models.
These findings are consistent with those of previous studies
(Gaesser et al., 1995; Morton, 1996; Bull et al., 2000; Housh
et al., 2001; Bergstrom et al., 2014). Morton (1996) suggested
that such a model overcomes physiological assumptions of the
two-parameter model such as an infinite power when time
approaches zero and that at d0, the muscular energy reserve is
empty. Assuming an sV̇O2max of 6 m/s and a time to exhaustion of
⇠5 min at 100% of sV̇O2max (Billat et al., 1995), the corresponding
total distance covered is 1,800 m. The anaerobic contribution
was shown to represent approximately 10% of the total distance
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covered, i.e., approximately 200 m (Billat, 2001). Therefore,
becauseMorton (1996) suggested that the three-parameter model
allows d0 to be only partly covered for a running speed between
CS and smax, this statement causes the estimate of d0 that is larger
in the three-parameter model than in the other twomodels to not
be unrealistically high. This idea is reinforced by an explanation
based on anaerobic energy calculation by Gaesser et al. (1995).

Buchheit and Laursen (2013) found that athletes with similar
sV̇O2max to those of the present study had a smax ranging from 161
to 183 %sV̇O2max. Higher level athletes (sV̇O2max = 6.36 m/s) were
shown to have a lower relative smax (149%sV̇O2max) (Sandford and
Stellingwer�, 2019). Therefore, the estimation of smax using the
three-parameter exponential model seemed to be unrealistically
too small (⇠136 %sV̇O2max) whereas the one obtained using
the three-parameter model seemed closer to reality (⇠155
%sV̇O2max). Nonetheless, this has to be nuanced by the fact that
most of the running trials at 120 %PS gave a time to exhaustion
below 2 min, which is below the usual recommendation (Jones
and Vanhatalo, 2017) and could have influenced the estimation of
the parameters present in the mathematical models. In addition,
participants were long distance runners, meaning that they are
not accustomed to running at high speeds (i.e., >100 %sV̇O2max)
and that they actually did not have a high smax. This assumption
is supported by the observations of Sandford and Stellingwer�
(2019), who showed that a 400-m elite runner (sV̇O2max = 6.23
m/s) had a smax of 158 %sV̇O2max while a 1,500-m elite runner
(sV̇O2max = 6.45 m/s) had a smax of 141 %sV̇O2 max.

No significant fitting procedure or mathematical model
x fitting procedure interaction e�ects were reported for the
estimations of CS, d0, and smax (Table 3). Gaesser et al. (1995)
proposed that di�erences between the estimation of parameters
amongmodels could come from the designation of the dependent
and independent variables, the number of parameters in each
model, and the choice of model (e.g., two-parameter, three-
parameter, or three-parameter exponential). Moreover, two
mathematically equivalent model formulations requiring linear
vs. non-linear regressions were shown to provide di�erent
estimations of their underlying parameters (Colquhoun, 1971).
In this study, we observed that using di�erent but statistically
appropriate fitting procedures, i.e., that correctly attribute the
dependent and independent variables, applied to a given model
did not have an impact on the estimations of CS, d0, and smax, as
long as all the model formulations are non-linear or linear.

Heteroscedasticity of the dependent variable was explicitly
depicted by Hinckson and Hopkins (2005) when using usual LS
fitting procedure. Indeed, these authors demonstrated systematic
and non-uniform deviation from their models by showing
the residuals as function of predicted values. In this study,
the suggestion made by Morton and Hodgson (1996) to
overcome heteroscedasticity, i.e., weights proportional to the
inverse of the values of the dependent variable, were applied.
However, the absolute weighted residuals as function of predicted
values for the two fitting procedures applied to the three
di�erent models depicted clear deviations from homoscedasticity
(Supplementary Figure 1). Therefore, considering weights in
the fitting procedure did not overcome the heteroscedasticity
problem. Nonetheless, a future study considering di�erent

weighting schemes should be performed in order to observe if
a specific weighting scheme, di�erent from the one proposed by
Morton and Hodgson (1996), could overcome heteroscedasticity
of the dependent variable.

Some limitations to the present study exist and need
to be addressed. On the one hand, the participant should
complete five experimental sessions interspersed by at least
2 days, which could be slightly unpractical. On the other hand,
performing a regression analysis with only four measurement
points is already quite few, especially when dealing with
heteroscedasticity. Nonetheless, the estimation of CS based on
four points is considered as the best practice (Poole et al.,
2021). Moreover, there is a well-known large variability in the
time to exhaustion during treadmill running at CS (Pepper
et al., 1992). Furthermore, due to the proximity between CS
and RCP in terms of %V̇O2max (CS: 87.6 %V̇O2max; RCP: 89.3
%V̇O2max) and the high and very high correlations between
them (r � 0.85), one could wonder the relevance of CS. However,
the recent meta-analysis of Galán-Rioja et al. (2020) showed
that CS and RCP are not synonymous. Besides, CS can be
estimated using personal best times, which does not require
the participant to go to the laboratory (Jones et al., 2019).
Finally, a recent study demonstrated that using estimations of CS
from raw training data can be su�cient to successfully predict
marathon performance and provide useful pacing information
(Smyth and Muniz-Pumares, 2020).

To conclude, this study demonstrated that CS, d0, and
smax estimated from three di�erent mathematical models (two-
parameter, three-parameter, and three-parameter exponential
model) di�ered significantly, but that no di�erence in the
estimation of CS, d0, and smax was reported between di�erent
statistically appropriate fitting procedures applied to a given
model. Weights did not help overcoming heteroscedasticity of
the dependent variable. CS estimates from the three di�erent
models were correlated with aerobic fitness parameters, i.e., VT,
RCP, and V̇O2max. Moreover, small SEE was obtained. The
three-parameter model gave the lowest AIC on a group level
and the smallest CS estimates. However, the three-parameter
model reported the highest %SEE and 90% CI. Therefore,
our results showed no further support for selecting the best
mathematical model to estimate critical speed. Nevertheless, our
results showed that statistically appropriate fitting procedures
gave the same estimates for a given model. For these
reasons, we suggest coaches choosing a mathematical model
with appropriate fitting procedure beforehand to define CS
and intensity domains and maintaining it over the running
seasons. Moreover, our findings suggest that each CS estimation
during season should be physiologically verified and training
prescription should be done around CS (±10%) for taking into
account CI of its estimation and the day-to-day variation of
human performance.
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Supplementary Figure 1. Residuals as function of predicted values for (A) t(s) and two-parameter 
model, (B) d(s) and two-parameter model, (C) t(s) and three-parameter model, (D) d(s) and three-
parameter model, (E) t(s) and three-parameter exponential model, and (F) d(s) and three-parameter 
exponential model. The fitting was performed using weighted least square regression. The four 
symbols represent the set of four exhaustive runs of each runner: 90% (∙), 100% (∎), 110% (o), and 
120% (•) peak speed of the incremental test. 
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Oxygen Uptake at Critical Speed and Power in Running:
Perspectives and Practical Applications

Aurélien Patoz, Thomas Blokker, Nicola Pedrani, Romain Spicher, Fabio Borrani,
and Davide Malatesta

Purpose: Intensity domains are recommended when prescribing exercise, and critical power/speed (CP/CS) was designated the
“gold standard” when determining maximal metabolic steady state. CS is the running analog of CP for cycle ergometry.
However, a CP for running could be useful for controlling intensity when training in any type of condition. Therefore, this study
aimed to estimate external, internal, and total CP (CPext, CPint, and CPtot), obtained based on running power calculations, and
verified whether they occurred at the same percentage of peak oxygen uptake as the usual CS. Furthermore, this study examined
whether selecting strides at the start, half, or end of the exhaustive runs to calculate running power influenced the estimation of the
3 CPs.Methods: Thirteen male runners performed a maximal incremental aerobic test and 4 exhaustive runs (90%, 100%, 110%,
120% peak speed) on a treadmill. The estimations of CS and CPs were obtained using a 3-parameter mathematical model fitted
using weighted least square. Results: CS was estimated at 4.3 m/s while the estimates of CPext, CPint, and CPtot were 5.2, 2.6, and
7.8 W/kg, respectively. The corresponding V̇O2 for CS was 82.5 percentage of peak oxygen uptake and 81.3, 79.7, and 80.6
percentage of peak oxygen uptake for CPext, CPint, and CPtot, respectively. No systematic bias was reported when comparing CS
and CPext, as well as the 3 different CPs, whereas systematic biases of 2.8% and 1.8% were obtained for the comparison among
CS and CPint and CPtot, respectively. Nonetheless, the V̇O2 for CS and CPs were not statistically different (P = .09). Besides, no
effect of the time stride selection for CPs as well as their resulting V̇O2 was obtained (P ≥ .44). Conclusions: The systematic
biases among V̇O2 at CS and CPint and CPtot were not clinically relevant. Therefore, CS and CPs closely represent the same
fatigue threshold in running. The knowledge of CP in running might prove to be useful for both athletes and coaches, especially
when combined with instantaneous running power. Indeed, this combination might help athletes controlling their targeted
training intensity and coaches prescribing a training session in any type of condition.

Keywords: hyperbolic model, mechanical work, intensity domains, fatigue, critical intensity

The importance of exercise intensity in training adaptations is
well established.1 The intensity is often prescribed based on the
percentage of maximal oxygen uptake (V̇O2max) or maximal heart
rate.1–3 However, due to a large intersubject variability, the rec-
ommendation of exercise intensity based on these parameters has
been criticized by several authors.4–6 Indeed, inequivalent meta-
bolic responses were obtained for the same given percentage.
Instead, exercise intensity domains have been recommended7
and shown to trigger targeted adaptations.8 Among several possi-
bilities,9–12 critical power/speed (CP/CS)11–14 can be used, which is
described as the highest power/speed output at which metabolic
homeostasis is achieved,15 and may be considered the most impor-
tant fatigue threshold in exercise physiology.16

The CP/CS is considered a better individualization method for
training, provides a useful insight in the best possible performance for
a given work/distance and power/speed for athletes,17 and permits the
separation of heavy from severe intensity domains.12,15 For this
reason, the calculation of CP/CS was designated the “gold standard”
when determiningmaximalmetabolic steady state.12 CP/CS is usually
obtained by the typical CP/CS test, that is, several exhaustive cycling/
running tests between 90% and 130% V̇O2max.18

The CS is considered as the running analog of CP for cycle
ergometry.18 However, speed could become a nonrelevant metric
for separating between intensity domains, for example, when
training on a variable terrain with uphill, flat, and downhill parts,
or in a very windy condition, where air resistance starts playing an
important role. In these cases, controlling running power sounds
more suitable. Such metrics are available from several commercial
power meters (eg, Runscribe [Scribe Lab Inc, Half Moon Bay,
CA], Stryd [Stryd Inc Boulder, CO], or Myotest [Myotest SA,
Sion, Switzerland]), which are based on inertial measurement
units.19 Nonetheless, training that targets a specific power-based
intensity domain requires an estimation of a running CP. Fortu-
nately, performing the CP/CS test on an instrumented treadmill
provides the measure of ground reaction forces, which allow
calculating positive external work (Wext) and thus external power
(Pext).20 Besides, internal power (Pint) can be derived from the
equation proposed by Nardello et al21 and summing these 2 leads to
the total power (Ptot). Each of these 3 different powers could be
used to estimate a corresponding running CP: CPext, CPint, and
CPtot. These calculations had, to the best of our knowledge, never
been investigated so far, therefore constituting the first aim of this
study. Moreover, this study verified whether CPs and CS were at
the same physiological state, for example, the same percentage of
peak V̇O2 (%V̇O2peak). As it sounds mechanically logical, we
hypothesized that (1) each CP and CS would occur at the same
%V̇O2peak, that is, no systematic bias would be reported between
V̇O2 (%V̇O2peak) at CS and at each of the 3 different CPs.
Moreover, this would also be true for the different pairs of CPs
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because V̇O2 at CP represents a specific metabolic rate (ie, specific
parameter of aerobic function) achieved at different combinations
of Pext and Pint outputs as previously reported in cycling at different
pedaling frequency.22 Therefore, we hypothesized that (2) no
systematic bias would be reported among V̇O2 at the 3 differ-
ent CPs.23

AlthoughCP/CS technically ought to be a defined precise value,
research has established that determining that value may not be as
accurate as theoretical beliefs.23–27 More specifically, a day-to-day
intrasubject variability of up to 5% to 6% when defining CP/CS was
highlighted.23 In addition, a decrease of CP was obtained when it
was assessed using a 3-minute all-out test (up to 10%) on a cycle
ergometer following a prolonged (120 min) submaximal exercise.25
Besides, a decrease in the internal work (Wint), due to a decrease of
both stride frequency and contact time, was observed close to the end
of an exhaustive run at a speed corresponding to 95% V̇O2max.24
Similarly, Candau et al26 observed a slight decrease of the step
frequency at the end of an exhaustive treadmill run performed at a
speed corresponding to the participants’ personal record over
3000 m, thus supporting the idea of a decrease in Wint. On the
contrary, Avogadro et al27 obtained no difference inWint at the third
and last minute of an exhaustive run at a speed corresponding to 90%
V̇O2max. As for Wext, no change during the exhaustive run was
reported by Borrani et al24 and by Avogadro et al,27 while Candau
et al26 observed its increase at the end of the run. Therefore, these
results depict conflicting evidence in the scientific literature about the
changes in Wext and Wint, and thus in total work (Wtot), through the
time course of an exhaustive run. Moreover, it might be that a
different exercise intensity, that is, a supramaximal intensity, is also
affecting the changes in Wext, Wint, and Wtot through the exhaustive
run. Altogether, this could ultimately lead to different estimations of
CPint, CPext, and CPtot when calculated using strides selected at
different time points of the exhaustive run. Hence, the second aim of
this study was to examine whether selecting strides at the start, half,
and end of the exhaustive runs influenced the estimation of the 3
different CPs. We hypothesized that (3) time stride selection would
influence the estimation of the 3 different CPs.

Methods
Subjects
Thirteen male runners gave written informed consent to participate
in the present experiment (age 25.7 [4.4] y; height 179 [5] cm; body
mass 68 [5] kg). For study inclusion, participants were required to
be in good self-reported general health with no symptoms of
cardiovascular disease or major coronary risk factors, no current
or recent lower-extremity injury that could prevent them from
giving 100% of their capacity during the test, and to meet a certain
level of running performance. More specifically, runners were
required to have a speed associated with V̇O2max greater or equal
to 4.44 m/s (16 km/h). The study protocol was approved by the
Commission cantonale d’éthique de la recherche sur l’être humain
(CER-VD 2018-01814) and adhered to the latest Declaration of
Helsinki of the World Medical Association.

Design
Each participant completed 5 experimental sessions interspersed by
at least 2 days in the laboratory. All participants were advised
to avoid strenuous exercise the day before a test but to maintain
their usual training program otherwise. During the first session,

participants completed a maximal incremental aerobic test on
an instrumented treadmill (Arsalis T150—FMT-MED; Arsalis,
Louvain-la-Neuve, Belgium). This test consisted of a 10-minute
warm-up at 2.78 m/s followed by an incremental increase in the
running speed of 0.28 m/s every 2 minutes until exhaustion.
Throughout the test, participants breathed into a mask connected
to a gas analyzer (Quark; COSMED, Rome, Italy). Pulmonary gas
exchange variables (expired minute ventilation, V̇O2, and carbon
dioxide output) were measured breath-by-breath and subsequently
averaged over 10-second intervals throughout the test. Before each
test, the O2 and CO2 analyzers were calibrated using room air and
known concentrations of calibration gas (16.00%O2, 5.02%CO2,
and balanced N2), and the turbine was calibrated using a 3-L
syringe (Hans Rudolph, Shawnee, KS).

This test was used, first, to determine the peak speed (PS) of
the maximal incremental aerobic test of each participant. PS is
defined as the running speed of the last fully completed increment
(slast-inc) plus the fraction of time spent in the following uncom-
pleted increment (α) multiplied by the running speed increment
(Δs = 0.28 m/s)28: PS = slast-inc þ αΔs. Second, the V̇O2peak was
defined as the highest measured VO2.

The other 4 tests were performed in a randomized order and
consisted of exhaustive runs at a given percentage of the partici-
pant’s PS (90%, 100%, 110%, and 120%). These tests were as
follows: after a 10-minute warm-up at 2.78 m/s and a 5-minute rest
period, the running speed was increased to a given percentage of
PS, and the participant had to maintain the pace until exhaustion.
The time to exhaustion was collected for each of the 4 sessions. No
information about the timings or running speed was given to any of
the participants, who were strongly encouraged, during any of the 5
experimental sessions. All participants were familiar with running
on a treadmill.

Ground reaction forces (1000Hz) were collected using the force
plate embedded into the treadmill during the last 30 seconds of each
minute passed in each of the 4 exhaustive runs, as well as in the
maximal incremental aerobic test. Forces were subsequently low-
pass filtered at 20 Hz using a fifth-order Butterworth filter. From
these data, 10 successive strides were selected and chosen to be at the
first (start), middle (half), and last (end) minute of each exhaustive
run and at every 2 minutes (corresponding to the timing of the speed
increment) of the maximal incremental aerobic test. This allowed
assessing running biomechanics. More specifically,Wext, that is, the
sum of positive potential and kinetic works,20 Wint,21 and Wtot were
computed (in joule per kilogram per meter) using the 3-D force plate
software (Arsalis), which further facilitated obtaining Pext, Pint, and
Ptot (ie, by multiplying work with running speed).

Methodology
The estimations of CPs and CS were obtained from the 3-parameter
model formulation proposed by Morton,29 that is, by expressing
power (Pext, Pint, and Ptot)/speed as function of time:

PðtÞ = CPþ W0

t þ W0

Pmax −CS

,

sðtÞ = CSþ d0

t þ d0
smax −CS

, (Equation 1)

where Pmax/smax are the maximal instantaneous power/running
speed. However, time being the dependent variable, error minimi-
zation was performed on this variable, that is, on the x-axis,30 using
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weighted least square (iteratively using Levenberg–Marquardt
algorithm)31,32 with weights proportional to the inverse of the
time to exhaustion, as suggested by Morton and Hodgson.18

To obtain the V̇O2 at the CS estimates for each participant, first
the V̇O2 recorded during the maximal incremental aerobic test was
averaged during the last 30 seconds of each 2-minute increment.
Then, a linear relation between these V̇O2’s and corresponding
running speeds was constructed. Finally, the V̇O2 at the CS
estimates was simply given by placing these CSs on the previously
computed linear regressions. Similarly, to obtain the V̇O2 at the CP
estimates for each participant, a linear regression of V̇O2 as
function of power (both obtained during the maximal incremental
aerobic test) was computed. Then, the V̇O2 at the CP estimates
were given by inserting these CPs into the previously mentioned
linear regressions. Data analysis was performed using Python
(version 3.7.4; Python Software Foundation. available at http://
www.python.org).

Statistical Analysis
All data are presented as mean (SD). Comparison among the V̇O2
at CS and CPs calculated using strides selected at the start of the
exhaustive runs and between pairs of CPs were performed using a
Bland–Altman analysis. Corresponding 95% confidence intervals
were calculated. Besides, after having inspected residual plots and
having observed no obvious deviations from homoscedasticity and
normality, these V̇O2’s were compared using 1-way repeated-
measures analysis of variance (RM-ANOVA) with Mauchly cor-
rection for sphericity and employing Holm corrections for pairwise
post hoc comparisons. Then, 1-way RM-ANOVA were used
to investigate the effect of the time stride selection (start, half,
and end) on the estimation of CPext, CPint, and CPtot, and their
corresponding V̇O2. Finally, the effect of the time stride selection
and percentage of PS (%PS) on the calculation of Pext, Pint, and Ptot
were investigated using 2-way ([start, half, end time stride selec-
tion] × [90%PS, 100%PS, 110%PS, 120%PS]) RM-ANOVA. Sta-
tistical analysis was performed using Jamovi (version 1.6.18;
[computer software], retrieved from https://www.jamovi.org)
with a level of significance set at P ≤ .05.

Results
The variables determined by the maximal incremental aerobic test
were V̇O2peak: 64.2 (4.2) mL/min/kg, Slast-inc: 5.2 (0.3) m/s, and
PS: 5.3 (0.3) m/s. The average R2 obtained for the linear regression
of the V̇O2 as a function of time relationship recorded during the
maximal incremental aerobic test was 0.98 (0.03), while those for
the linear regressions of Pext, Pint, and Ptot as function of V̇O2 were
0.97 (0.04), 0.95 (0.05), and 0.97 (0.04), respectively.

The regression analyses for one representative participant and
for the 3 powers as function of time, speed as function of time, V̇O2
as function of time of the maximal incremental aerobic test, and
powers as function V̇O2 recorded during the maximal incremental
aerobic test are presented in Figure 1, together with the V̇O2
corresponding to the 3 CPs as well as CS.

Bland–Altman plots comparing the V̇O2 (%V̇O2peak) at CS
with the one at the 3 CPs calculated using strides selected at the
start of the exhaustive runs and between pairs of CPs are depicted in
Figures 2 and 3, respectively.

No systematic bias (the zero line lies between the 95%
confidence interval) was reported when comparing CS and CPext,
that is, 1.1% (−1.0% to 3.3%), whereas small systematic biases of

2.8% (95% CI, 1.2% to 4.3%) and 1.8% (0.6% to 3.0%) were
obtained for the comparison among CS and CPint and CPtot,
respectively. No significant systematic biases were reported
when comparing the different CPs, that is, CPext versus CPint:
1.6% (−1.1% to 4.3%); CPtot versus CPext: −0.7% (−2.4% to 0.9%);
and CPtot versus CPint: 0.9% (−0.2% to 2.0%). The 1-way RM-
ANOVA reported no significant difference among the V̇O2 for CS
and CPs at the start (P = .09; Table 1).

The CS and CPs estimated using strides recorded at the start,
half, and end of the exhaustive runs as well as their corresponding
V̇O2 (%V̇O2peak) are given in Table 1. There was nomain effect of
the time stride selection when estimating the 3 CPs as well as for
their resulting V̇O2 (P ≥ .44).

Table 2 depicts the time to exhaustion corresponding to the 4
exhaustive runs performed at 90%, 100%, 110%, and 120% of the
participant’s PS as well as Pext, Pint, and Ptot computed at the start,
half, and end of the exhaustive runs. There was no significant main
effect of the time stride selection on the calculation of the 3 powers
(P ≥ .11), while there was a significant main effect of %PS
(P < .001), with each of the 3 powers being statistically higher
at a higher %PS than at previous one, as reported by post hoc tests
(P < .001). A significant interaction effect was obtained only for
Ptot (P = .03), leading to a statistically higher Ptot at the end than at
the start (P = .03) and half (P = .05) for 110%PS as well as a
statistically higher Ptot for all comparisons between a higher %PS
and a lower one (P < .001; 54 comparisons).

Discussion
Conventional statistical approaches demonstrated no systematic
bias between the V̇O2 at CS and CPext, whereas systematic biases
were obtained among the V̇O2 at CS and at CPint and CPtot, which
partly refuted the first hypothesis. In accordance with the second
hypothesis, no systematic biases were reported among the V̇O2 at
the 3 different CPs. Besides, the 4 V̇O2’s (at CS, CPext, CPint, and
CPtot) were not statistically different. In addition, this study
observed no effect of the time stride selection when estimating
CPs, their resulting V̇O2, as well as the underlying powers used for
the CPs calculations, which refuted the third hypothesis.

On the one hand, the V̇O2 at CS and CPs were not statistically
different. Moreover, no systematic bias was reported between the
V̇O2 at CS and CPext. However, systematic biases were obtained
among the V̇O2 at CS and CPint and CPtot (Table 1 and Figure 2).
Nonetheless, these differences were reasonably small, that is,
smaller than 3%, and thus not clinically relevant. Furthermore,
these differences might be explained by the accuracy of the linear
regressions used to estimate the relation between V̇O2 and running
speed as well as between V̇O2 and each of the 3 different powers. In
fact, even though the R2 were quite high (≥ .95 [.05]), they were not
perfect and could have led to these small discrepancies. These
differences might also be explained by the mathematical model
employed to estimate CS and CPs (Equation 1). Indeed, these
estimations were based on a model simplifying a more complex
system, hence necessarily introducing some errors. In addition, the
highest difference was obtained between the V̇O2 at CS and CPint,
which might be explained by the fact that Pint was calculated using
a model equation21 and not using the motion of the body segments
relative to the center of mass, further introducing some errors.
Therefore, these results suggest that CS and CPs closely represent
the same fatigue threshold in running. Nonetheless, the message of
Jones et al,33 which states that CS and CP should not be grouped
together under a nebulous “critical intensity” term but that the

Oxygen Uptake at Critical Speed/Power 3

(Ahead of Print)

http://www.python.org
http://www.python.org
https://www.jamovi.org


proper term (CS, CP, critical force, critical tension, or critical
torque) should be used depending on the corresponding measured
quantity, must continue to spread. Indeed, the similarity between
CS and CPs reported in the present study may only be true because

CS and CPs were both determined during running and thus
represent a specific intensity threshold for the same exercise
mode. On the contrary, CS and CP assessed during 2 different
exercise modes (ie, running and cycling, respectively) do not

Figure 2 — Bland–Altman plots comparing V̇O2 (expressed as a%V̇O2peak) at CS with (A) CPext, (B) CPint, and (C) CPtot. CP indicates critical power;
CPext, external CP; CPint, internal CP; CPtot, total CP; CS, critical speed; V̇O2, oxygen uptake; %V̇O2peak, percentage of peak rate of oxygen uptake.

Figure 1 — Regression analyses of 1 representative participant for (A) the 3 different Pext, Pint, and Ptot as function of t obtained using powers
calculated using strides selected at the start of the time trials and corresponding times to exhaustion (3-parameter model); (B) s as function of time obtained
using fixed speeds (90%PS, 100%PS, 110%PS, and 120%PS) and corresponding times to exhaustion (3-parameter model); (C) V̇O2 averaged during the
last 30 seconds of each 2-minute increment of the maximal incremental aerobic test as function of corresponding running speed (linear regression); and
(D) V̇O2 averaged during the last 30 seconds of each 2-minute increment of the maximal incremental aerobic test as function of corresponding powers
calculated using strides selected at every 2-minutes of the maximal incremental aerobic test (linear regression). In addition, V̇O2 corresponding to internal,
external, and total critical powers (CPint, CPext, and CPtot) as well as CS are depicted in (C) and (D), respectively. CP indicates critical power; CPext,
external CP; CPint, internal CP; CPtot, total CP; CS, critical speed; P, power, Pext, external P; Pint, internal P; PS, peak speed; Ptot, total P; s, speed; t, time;
V̇O2, oxygen uptake.

4 Patoz et al

(Ahead of Print)



necessarily correspond to the same specific intensity threshold for
everyone.

On the other hand, consistent V̇O2 were obtained among the 3
different CPs (Table 1), and no systematic biases were reported
(Figure 3), which proved that using Pext, Pint, and Ptot to estimate
corresponding CPs led to similar V̇O2. Our findings corroborate
those of Barker et al,22 who report that CP represents a specific
V̇O2, which can be achieved at different combinations of Pext and
Pint (pedaling frequencies) outputs in cycling. Therefore, the
present study is the first to show that V̇O2 at CP represents a
specific metabolic rate independent of the type of power output
considered (internal vs external vs total) in running. Practically, this

means that if one is only interested in the V̇O2 associated with CP,
it can be obtained simply by using an inertial sensor. Indeed, this
sensor would provide the spatiotemporal parameters required to
calculate Pint during the 4 exhaustive runs, that is, ground contact
time, stride frequency, and duty factor. These Pints would then be
used to estimate CPint, which would finally be matched to the Pints
computed during the maximal incremental aerobic test to obtain the
V̇O2 associated to CPint. Therefore, this would avoid the need for
an expensive instrumented treadmill as well as the more compli-
cated analysis of the ground reaction force to obtain Pext to estimate
CPext. However, typical power meters19 provide Pext or Ptot but not
Pint, which makes the estimation of CPext or CPtot essential to
perform training based on power-based intensity domains. Besides,
Vassallo et al34 recently estimated a running CPtot from a 3-minute
all-out test performed on an outdoor athletic track. The authors
obtained a CPtot of 6.64 W/kg (assuming a body mass of 68 kg),
which is 15% smaller than the one reported in the present study.
Nonetheless, the difference might be explained by the different
methodology employed: CPtot was given by the running power
averaged during the last 30 seconds of the 3-minute test and
running power was computed from speed data recorded using
a global positioning system sampling at 10 Hz. Moreover, parti-
cipants were less trained, that is, they reported a 20% smaller
V̇O2peak (51.1 mL/kg/min) than in the present study, which
obviously lead to a smaller CP.

No effect of time stride selection was obtained when estimat-
ing CPext, CPint, and CPtot, as well as for their resulting V̇O2
(Table 1). Indeed, using the first, half, or last minute of the
exhaustive runs to calculate Pext, Pint, and Ptot were equivalent,
except for the 110%PS intensity, though the difference could be
assumed negligible (0.15 W/kg, ie, 10 W for a 70-kg person;
Table 2). Therefore, using the average of the powers calculated at
the first, half, and last minute of the exhaustive runs would have led
to similar estimations of CPs than when using these time stride
selections separately. Besides, the similar Pext, Pint, and Ptot
obtained in this study within each exhaustive run and indepen-
dently of the intensity of the run (submaximal or supramaximal) is
consistent with the observations of Avogadro et al,27 which
depicted similar Wext, Wint, and Wtot at the third and last minute
of an exhaustive run at a speed corresponding to 90% V̇O2max and
with similar Wext at the end of an exhaustive run at 95% V̇O2max
than at the beginning of the slow component of V̇O2 (∼120 s).24
However, these results disagreed with the fact that the same

Table 1 Mean (SD) of CS Estimated Using Time to
Exhaustion and CPext, CPint, and CPtot Estimated Using
Strides Recorded During First (Start), Middle (Half), and
Last (End) Minute of Each Time to Exhaustion, As Well
As V̇O2 (Expressed as a %V̇O2peak) at the CS/CPs

Critical
intensity

Critical intensity value,
m/s or W/kg V̇O2, %V̇O2peak

CS 4.27 (0.40) 82.5 (5.3)
CPext

Start 5.16 (0.56) 81.3 (7.6)
Half 5.26 (0.46) 82.6 (5.2)
End 5.28 (0.49) 83.1 (6.0)

CPint
Start 2.60 (0.54) 79.7 (6.0)
Half 2.53 (0.62) 78.9 (6.9)
End 2.53 (0.43) 78.9 (4.2)

CPtot
Start 7.78 (1.01) 80.6 (6.3)
Half 7.77 (0.94) 80.5 (5.6)
End 7.81 (0.79) 80.8 (3.9)

Abbreviations: CP, critical power; CPext, external CP; CPint, internal CP; CPtot,
total CP; CS, critical speed; RM-ANOVA, repeated-measures analysis of vari-
ance; V̇O2, oxygen uptake;%V̇O2peak, percentage of peak rate of oxygen uptake.
Note: One-way RM-ANOVA reported no significant difference between the V̇O2
for CS and CPs at the start (P = .09). One-way RM-ANOVA reported no sig-
nificant main effect of the time stride selection when estimating CPext, CPint, and
CPtot, as well as for the resulting V̇O2 (P ≥ .44).

Figure 3 — Bland–Altman plots comparing V̇O2 (expressed as a %V̇O2peak) between (A) CPext and CPint, (B) CPtot and CPext, and (C) CPtot and
CPint. CP indicates critical power; CPext, external CP; CPint, internal CP; CPtot, total CP; V̇O2, oxygen uptake; %V̇O2peak, percentage of peak rate of
oxygen uptake.
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authors24 as well as Candau et al26 observed a lowerWint at the end
of the exhaustive run than at its beginning and that a largerWext was
obtained right before exhaustion.26 Although these discrepancies
with previous findings may be due to methodological differences
associated with the device used to assess the mechanical power
output (kinematic arm vs instrumented treadmill) and the running
speed tested (submaximal vs supramaximal), the present study
depicted no effect of the time stride selection when calculating
running powers at intensities ranging from 90%PS to 120%PS.
Thus, these results further extended the knowledge of the effect of
the time stride selection on power calculations, especially at
supramaximal intensities.

Practical Applications
Power is becoming a widely used external metric in running, and is
especially useful when speed is no longer a relevant metric to
separate between intensity domains (running on a variable terrain
or in a very windy condition). In such case, commercial systems
(eg, Runscribe, Stryd, or Myotest) provide coaches and athletes an
easy-to-use tool to monitor running power.19 Thereby, combining
this outcome with the knowledge of CP could allow athletes to
control their targeted training intensity and coaches to prescribe a
training session in any type of condition.

Conclusions
To conclude, the present study estimated the usual CS as well as
CPext, CPint, and CPtot in running. The V̇O2 at CS and CPs were not
statistically different. No systematic bias was reported between the
V̇O2 at CS and CPext as well as among the V̇O2 at the 3 different
CPs, whereas systematic biases were obtained among the V̇O2 at
CS and internal and total CP. Nonetheless, these differences were
small (≤3%) and thus not clinically relevant. Therefore, these

results suggest that CS and CPs closely represent the same fatigue
threshold in running. Furthermore, this study reported no effect of
the time stride selection when calculating Pext, Pint, and Ptot, when
estimating CPext, CPint, and CPtot, as well as when calculating their
resulting V̇O2, which further extends the knowledge of the effect of
the time stride selection on power calculations.
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A Multivariate Polynomial Regression
to Reconstruct Ground Contact and
Flight Times Based on a Sine Wave
Model for Vertical Ground Reaction
Force andMeasured Effective Timings
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Effective contact (tce) and flight (tfe) times, instead of ground contact (tc) and flight (tf ) times,
are usually collected outside the laboratory using inertial sensors. Unfortunately, tce and tfe
cannot be related to tc and tf because the exact shape of vertical ground reaction force is
unknown. However, using a sine wave approximation for vertical force, tce and tc as well as
tfe and tf could be related. Indeed, under this approximation, a transcendental equation
was obtained and solved numerically over a tce x tfe grid. Then, a multivariate polynomial
regression was applied to the numerical outcome. In order to reach a root-mean-square
error of 0.5 ms, the final model was given by an eighth-order polynomial. As a direct
application, this model was applied to experimentally measured tce values. Then,
reconstructed tc (using the model) was compared to corresponding experimental
ground truth. A systematic bias of 35ms was depicted, demonstrating that ground
truth tc values were larger than reconstructed ones. Nonetheless, error in the
reconstruction of tc from tce was coming from the sine wave approximation, while the
polynomial regression did not introduce further error. The presented model could be
added to algorithms within sports watches to provide robust estimations of tc and tf in real
time, which would allow coaches and practitioners to better evaluate running performance
and to prevent running-related injuries.

Keywords: running, biomechanics, sensors, inertial measurement unit, machine learning

INTRODUCTION

Ground contact (tc) and flight (tf) times are key temporal parameters of running biomechanics.
Indeed, Novacheck (1998) postulated that the presence of tf allowed distinguishing walking from
running gaits. In other words, the duty factor (the ratio of tc over stride duration) is under 50% for
running (Minetti, 1998; Folland et al., 2017). Moreover, tc was shown to be self-optimized to
minimize themetabolic cost of running (Moore et al., 2019). These two parameters are obtained from
foot-strike (FS) and toe-off (TO) events. More specifically, tc represents the time from FS to TO of the
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same foot, while tf is the time from TO of one foot to FS of the
contralateral foot. Therefore, tc and tf rely on the accuracy of FS
and TO detections, for which the use of force plates is considered
the gold standard method. However, force plates could not always
be available and used (Abendroth-Smith, 1996; Maiwald et al.,
2009). In such case, alternatives would be to use a motion capture
system (Lussiana et al., 2019; Patoz et al., 2020) or a light-based
optical technology (Debaere et al., 2013). Nevertheless, even
though these three systems can be used outside the laboratory
(Purcell et al., 2006; Hébert-Losier et al., 2015; Ammann et al.,
2016; Lussiana and Gindre, 2016), they suffer a lack of portability
and are restricted to a specific and small capture volume, that is,
they do not allow continuous temporal gait data collection
throughout the entire training or race. To overcome such
limitations, techniques to identify FS and TO events were
developed using portative tools such as inertial measurement
units (IMUs), which are easy to use, low cost, and suitable for field
measurements and very practical to use in a coaching
environment (Camomilla et al., 2018).

Different techniques to identify gait events are available and
depend on the placement of the IMU on the human body (Moe-
Nilssen, 1998; Lee et al., 2010; Flaction et al., 2013; Giandolini
et al., 2014; Norris et al., 2014; Giandolini et al., 2016; Gindre
et al., 2016; Falbriard et al., 2018; Falbriard et al., 2020). Among
them, when the IMU is positioned near the sacrum, that is, close
to the center of mass, the vertical acceleration signal can be used
to determine effective contact (tce) and flight (tfe) times, instead
of tc and tf (Flaction et al., 2013; Gindre et al., 2016). To delineate
these effective timings, the vertical force is calculated based on
Newton’s second law using the body mass (m) of individuals and
the vertical acceleration data. Then, these effective timings are
based on effective FS (eFS) and effective TO (eTO) events. More
precisely, eFS and eTO correspond to the instants of time where
the vertical force increases above and decreases below body
weight (mg), respectively (Cavagna et al., 1988). The authors
(Flaction et al., 2013; Gindre et al., 2016) did not mention why a
20 N threshold was not used to determine FS and TO events from
their IMU data, even though this is the reference when using force
plates data for event detection (Smith et al., 2015). However, the
vertical acceleration recorded by an IMU during tf is usually
negative (Gindre et al., 2016), while a force plate measure gives
exactly zero. Therefore, it could be suspected that a 20 N
threshold would not be reliable to obtain FS and TO events
when dealing with IMU data, while the time at which the vertical
force is equal to body weight would be equivalent between IMU
and force plate data.

Using effective timings or tc and tf provide the same step
duration, that is, it is given by either the sum of tc and tf or tce
and tfe. Thus, this temporal information is not lost. As for the
effect of running speed, tce and tc both decrease with increasing
running speed, even though the decrease is much more
important for tc than tce (Cavagna et al., 2008; Da Rosa
et al., 2019). Concerning tfe and tf, their trend with
increasing running speed is not similar. Indeed, tfe tends to
slightly decrease, while tf increases almost up to a plateau with
increasing running speed (Cavagna et al., 2008; Da Rosa et al.,
2019). In addition, tce and tfe cannot directly be related to tc and

tf, the reason being that the fraction of time spends below body
weight during tc depends on the shape of the vertical ground
reaction force, which is not precisely known when using IMUs
(see above). Thus, tc and tf, parameters that are directly related
to them, for example, duty factor (Minetti, 1998; Folland et al.,
2017), as well as parameters that can be estimated from them,
for example, vertical oscillation and vertical stiffness (Morin
et al., 2005), cannot be obtained. Hence, the assessment of
running biomechanics is restricted when using tce and tfe.

Nonetheless, the vertical ground reaction force can be
approximated using a sine wave as Fz(t) ! Fz,max sin(πt/tc),
where, based on momentum conservation law, Fz,max !
mgπ(tf/tc + 1)/2 (Alexander, 1989; Kram and Dawson, 1998;
Dalleau et al., 2004; Morin et al., 2005). In such case, the vertical
ground reaction force is symmetric around tc/2, whichmeans that
the time duration between FS and eFS as well as between eTO and
TO, called tg in what follows, are the same. Thereby, under the
sine wave assumption, tc and tf can be obtained from tce and tfe
using tc ! tce + 2tg and tf ! tfe − 2tg, if tg is known. These
timings and the sine wave vertical ground reaction force are
depicted in Figure 1 for a typical running stride. Recognizing that
Fz(tg) ! mg ! Fz,max sin(πtgtc ), and using the definition of Fz,max

given before, the following equation is obtained:

csc( πtg
tce + 2tg

) ! π
2
(tfe − 2tg
tce + 2tg

+ 1), (1)

which could not be solved analytically for tg (transcendental
equation; Supplementary File) using Mathematica v12.1
(Wolfram, Oxford, UK), that is, no closed-form solution
exists. Therefore, a numerical solution is required for any pair
of tce and tfe. Ultimately, a mathematical modeling of tg over the

FIGURE 1 | Vertical ground reaction force (Fz) under the sine wave
approximation, peak vertical force (Fz,max), foot-strike (FS) and toe-off (TO)
events together with their corresponding effective events (eFS and eTO), as
well as contact (tc), flight (tf ), effective contact (tce), and effective flight
(tfe) times, and time to reach body weight (tg), for a typical running stride.
Noteworthy, step duration is the same when using effective or usual timings.
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numerical tce x tfe grid could be performed, and its accuracy
could be evaluated using advanced data analysis techniques like
machine learning. Indeed, supervised machine learning models
like linear regressions have been used to model relationships
between biomechanical measures and clinical outcomes (Halilaj
et al., 2018; Backes et al., 2020; Alcantara et al., 2021). However, to
the best of our knowledge, no attempt to provide such a model
equation for tg has been made so far.

Hence, the purpose of this study was to obtain a mathematical
modeling of tg under the sine wave approximation of the vertical
ground reaction force so that tc and tf can be reconstructed from
tce and tfe. As a direct experimental application, the proposed
model was applied to experimentally measured tce values. Then,
the reconstructed tc values were compared to their corresponding
experimental ground truth (gold standard).

MATERIALS AND METHODS

Numerical Analysis
Brent’s method (also known as van Wijngaarden Dekker Brent
method) (Brent, 1973; Press et al., 1992) was used to find the zeros
of Eq. 1 for any pair of tce and tfe. The zero of interest for a given
tce and tfe pair was considered to lie between 0 and the minimum
of Eq. 1, which was minimized using the Broyden Fletcher
Goldfarb Shanno method (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970). The numerical analysis was
carried out using tce and tfe values varying between 2.5 and
505 ms and using a grid spacing of 7.5 ms (4,624 grid points). The
grid limits were chosen due to the fact that running requires 1)
both a ground contact and a flight phase, that is, tce and tfe cannot
be 0 and 2) tc belongs to the interval [100ms, 400ms] and tf

belongs to the interval [0 ms, 250 ms] (Cavagna et al., 2008; Da
Rosa et al., 2019; Lussiana et al., 2019), and to include any atypical
tce and tfe pair, that is, atypical runners. Noteworthy, the
justification of the grid spacing is provided in Appendix. The
grid spacing was dependent on the error threshold set to the
mathematical modeling.

Mathematical Modeling
Boundary Relationship Between tce and tfe
The numerical analysis showed that a linear boundary
relationship is present between tce and tfe (see Results
Figure 2), that is, there is no solution for tg if tfe is higher
than a certain percentage of tce. This boundary relationship was
computed by extracting the boundary points, that is, the smallest
existing tfe values for every tce grid point (68 pair of points).
Then, a linear regression using ordinary least square was
performed on a training set consisting of 85% of the entire set
of boundary points. The y-intercept of the fitted linear model was
held fixed at 0, the reason being that a null tce necessarily ensures
a null tfe. The linear model was tested on the remaining 15%
points (testing set) and evaluated using the coefficient of
determination (R2) and root-mean-square error (RMSE).

Modeling a tg Surface as Function of tce and tfe
The numerical analysis showed that tg could be described by a
smoothly increasing surface when increasing tce and tfe (see
Results Figure 2). Therefore, a multivariate polynomial
regression using ordinary least square was performed on a
training set consisting of tg values corresponding to 85% of
the points within the boundary limits (i.e., the non-discarded
grid points). The regression was performed using polynomials of
order 1 to 15 and including intercept and interaction terms.

FIGURE 2 |Contour plots depicting a) the numerically calculated time (tg) necessary to reach body weight and B) the corresponding percentage (ptg) of time under
body weight during ground contact time (tc). The numerical simulation assumed a sine wave model for vertical ground reaction force and was performed over the tce x
tfe grid.
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RMSE on the remaining 15% points (testing set) was computed
for each fitted polynomial.

Experimental Application
Participant Characteristics
One hundred recreational runners (Honert et al., 2020), 75
males (age: 31 ± 8 years, height: 180 ± 6 cm, body mass: 70 ±
7 kg, and weekly running distance: 37 ± 24 km) and 25
females (age: 30 ± 7 years, height: 169 ± 5 cm, body mass:
61 ± 6 kg, and weekly running distance: 20 ± 14 km),
voluntarily participated in the present study. For study
inclusion, participants were required to be in good self-
reported general health with no current or recent lower
extremity injury (≤1 month), to run at least once a week, and
to have an estimated maximal aerobic speed ≥14 km/h. The
study protocol was approved by the Ethics Committee (CER-
VD 2020–00334) and adhered to the latest Declaration of
Helsinki of the World Medical Association.

Experimental Procedure
After providing written informed consent, each participant
performed a 7-min warm-up run on an instrumented
treadmill (Arsalis T150—FMT-MED, Louvain-la-Neuve,
Belgium). Speed was set to 9 km/h for the first 3 min and
was then increased by 0.5 km/h every 30 s. This was
followed, after a short break (<5 min), by three 1-min runs
(9, 11, and 13 km/h) performed in a randomized order (1-min
recovery between each run). 3D kinetic data were collected
during the first 10 strides following the 30-s mark of running
trials. All participants were familiar with running on a treadmill
as part of their usual training program and wore their habitual
running shoes.

Data Collection
3D kinetic data (1,000 Hz) were collected using the force plate
embedded into the treadmill and using Vicon Nexus software

v2.9.3 (Vicon, Oxford, UK). The laboratory coordinate system
was oriented such that x-, y-, and z-axes denoted mediallateral
(pointing toward the right side of the body), posterioranterior,
and inferiorsuperior axis, respectively. Ground reaction force
(analog signal) was exported in .c3d format and processed in
Visual3D Professional software v6.01.12 (C-Motion Inc,
Germantown, MD, United States). 3D ground reaction force
signal was low-pass–filtered at 20 Hz using a fourth-order
Butterworth filter and down-sampled to 200 Hz to represent a
sampling frequency corresponding to typical measurements
recorded using a central inertial unit.

Data Analysis
For each running trial, eFS and eTO events were identified within
Visual3D by applying a body weight threshold to the z-
component of the ground reaction force (Cavagna et al.,
1988). More explicitly, eFS was detected at the first data point
greater or equal to mg within a running step, while eTO was
detected at the last data point greater or equal to mg within the
same running step. tce and tfe were defined as the time from eFS
to eTO of the same foot and from eTO of one foot to eFS of the
contralateral foot, respectively.

In addition, FS and TO events were also identified within
Visual3D. These events were detected by applying a 20 N
threshold to the z-component of the ground reaction force
(Smith et al., 2015). More explicitly, FS was detected at the
first data point greater or equal to 20 N within a running step,
while TO was detected at the last data point greater or equal to
20 N within the same running step. tc and tf were defined as the
time from FS to TO of the same foot and from TO of one foot to
FS of the contralateral foot, respectively.

The recorded vertical ground reaction force permitted to
precisely measure tc and tf as well as tce and tfe. Then, each
tce and tfe pair was fed to the best multivariate polynomial model
to compute tg, which ultimately allowed to obtain tc. An
instrumented treadmill was used to measure tce and tfe (gold

FIGURE 3 | Boundary relationship between tce and tfe. A linear
regression (solid line) was obtained using 85% of the entire boundary points
(training set, small gray dots) and validated on the remaining 15% points
(testing set, large black dots). Predictions are given by the black circles
and led to a root-mean-square error of 3.2 ms (R2 ! 99.9%) .

FIGURE 4 | Root-mean-square error (RMSE) computed on the testing
set (15% points) for polynomial fits of order 1 to 15 performed on the training
set (85% points). The red circle denotes the final model of choice, an eighth-
order polynomial model (RMSE ! 0.43 ms; R2 ! 99.99%), and the gray
line depicts the RMSE threshold of 0.5 ms.
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standard), instead of an IMU to remove any potential
measurement error that would come from the IMU itself.
Hence, the error obtained when comparing the reconstructed
tc (obtained using the mathematical model and tce and tfe) to its
corresponding experimental ground truth (obtained from FS and
TO events) could solely be coming from the sine wave
assumption and the mathematical modeling but not from the
measurement of tce and tfe.

Statistical Analysis
All data are presented as mean ± standard deviation. The
reconstructed tc values were compared to corresponding
experimental ground truth tc values using a BlandAltman plot
(Bland and Altman, 1995; Atkinson and Nevill, 1998).
Noteworthy, as step time is conserved, differences between
measured and reconstructed tf values depicted the opposite
behavior compared with the differences between measured and
reconstructed tc values.

Systematic bias, lower and upper limit of agreements, and 95%
confidence intervals (CI) were computed as well as RMSE. The
difference between reconstructed and ground truth tc values was
quantified using Cohen’s d effect size and interpreted as very
small, small, moderate, and large when |d| values were close to
0.01, 0.2, 0.5, and 0.8, respectively (Cohen, 1988). Statistical
analysis was performed using Jamovi (v1.2, retrieved from
https://www.jamovi.org), with the level of significance set at
p ≤ 0.05.

RESULTS

Numerical Analysis
The numerically calculated tg values over the tce x tfe grid are
provided in Figure 2A, while Figure 2B depicts the
corresponding percentage of time (ptg) spent under body
weight during tc, [ptg ! 100p2tg/(tce + 2tg)].

Mathematical Modeling
Boundary Relationship Between tce and tfe
The linear regression gave the model (Eq. 2):

tfe ! 0.795 tce. (2)

Applying this model to the testing set led to anR2 of ! 99.9%
and RMSE of 3.2 ms. The linear regression, training, and testing
sets as well as predicted values are depicted in Figure 3.

Modeling a tg Surface as Function of tce and tfe
The grid points which did not satisfy the previously obtained
boundary relationship (Eq. 2) were discarded (1814 discarded
points). RMSE computed for each multivariate polynomial
regression (order 1–15) is depicted in Figure 4. The
polynomial which provided an RMSE smaller than 0.5 ms was
kept as the final model of choice (RMSE ! 0.43 ms; R2 ! 99.99%)
and corresponded to a polynomial model including up to
eighth-order terms [P8(tce, tfe), Eq. 3]. The coefficients (αij,

where 0≤ i + j≤ 8) of the multivariate polynomial model are
given in Table 1.

P8(tce, tfe) ! ∑8
i!0

∑8−i
j!0

αi,jticet
j
fe (3)

Noteworthy, the threshold on RMSE ensured an error smaller
than 1ms on the reconstructed tc. The differences between tg values
computed numerically and using the eighth-order polynomial
model for the testing set (15% points) are depicted in Figure 5.

Experimental Application
Reconstructed tc values were compared to corresponding
experimental ground truth tc values using a BlandAltman plot,
which is depicted in Figure 6. A systematic positive bias of
34.3 ms (95% CI [33.8 ms, 34.7 ms]) was obtained. The lower
and upper limits of agreements were 0.0 ms (95% CI [−0.8 ms,
0.8 ms]) and 68.6 ms (95% CI [67.8 ms, 69.3 ms]), respectively.
The RMSE between reconstructed and measured tc was 38.5 ms
(7.6%), and Cohen’s d effect size was large (d ! 1.1).

DISCUSSION

The proposed eighth-order multivariate polynomial model (Eq.
3) could be used to obtain tc and tf when an IMU is used to
measure tce and tfe. Thereby, important parameters to assess
running biomechanics such as duty factor (Lussiana et al., 2019;
Patoz et al., 2020), as well as vertical oscillation and vertical
stiffness (Morin et al., 2005), could be calculated more precisely.
Having these parameters would allow coaches and practitioners
to better evaluate running performance outside the laboratory
such as in a coaching environment and during an entire training
or race, and to prevent running-related injuries.

In the case where an algorithm based on effective timings is
running on the fly to provide live feedbacks, such as in sports
watches, one could simply add the proposed model in the end of the
algorithm chain, right before computing the biomechanical
outcomes. However, many operations should be performed in a
very small amount of time, where the number of operations is
directly related to the order of the polynomial. Indeed, knowing that
the number of terms in an nth-order polynomial composed of two
variables is given by Cn+2

2 , then Cn+2
2 − 3 calculations are required to

compute the polynomial features, that is, tice and t
i
fe, where 2≤ i≤ n.

In addition, Cn+2
2 − 1 multiplications and Cn+2

2 − 1 additions are
necessary to calculate tg. Therefore, such a large number of
operations could be problematic for the small computing power
available in sports watches. If this is really an issue, the order of the
polynomial could be decreased. For instance, a third-order
polynomial model gave an RMSE of 2.5 ms (Figure 4), which,
depending on the application, might already be sufficient. In this
case, the number of operations would be reduced from 130 (eighth
order) to 25 (third order), leading to a 5 times speedup, assuming
sequential calculations (no parallelization).

The multivariate polynomial model (Eq. 3) was applied to
experimentally measured tce values. These results permitted us to
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show that the experimental ground truth tc was, on average,
34.3 ms higher than the reconstructed one. Since the multivariate
polynomial regression reported an RMSE of 0.43 ms, the large
systematic bias obtained here was inherently due to the sine wave

approximation of the vertical ground reaction force. To further
justify the previous statement, the polynomial depicting the
smallest RMSE, that is, the 14th-order polynomial (RMSE !
0.12 ms; Figure 7), was used to compute tc based on tce. Doing so,
the following results were obtained: RMSE ! 38.6 ms (7.6%), d !
1.1 (large effect size), and systematic bias ! 34.2 ms [95% CI
(33.7 ms, 34.6 ms)]. Therefore, to go beyond the scope of this
study, future research should focus on defining a more accurate
model of the vertical ground reaction force. Indeed, the sine wave
approximation constituted the main limitation of the novel
multivariate polynomial model proposed in this study.

CONCLUSION

To conclude, in the present study, an eighth-order multivariate
polynomial model was constructed based on the numerical solution
of the transcendental equation given by Eq. 1. The proposed model
permitted to compute tc and tf from effective timings (tce and tfe)
using the sine wave approximation of the vertical ground reaction
force. The model was chosen so that RMSE was smaller than 0.5 ms.
Therefore, the error in the computation of tc and tf was coming

TABLE 1 | Coefficients (αij , where 0≤ i + j ≤8) of the eighth-order multivariate polynomial model given by Eq. 3.

j(exponent of tfe)
0 1 2 3 4 5 6 7 8

j(exponent of tfe) 0 −5.17E-5 −6.18E-2 2.73E0 −4.41E1 3.532 −1.55E3 3.783 −4.83E3 2.513
1 2.84E-1 −1.41E1 2.64E2 −2.45E3 1.234 −3.38E4 4.834 −2.78E4
2 1.17E1 −3.12E2 3.91E3 −2.49E4 8.434 −1.43E5 9.534
3 8.26E1 −2.25E3 2.20E4 −1.01E5 2.155 −1.72E5
4 5.13E2 −9.73E3 6.68E4 −1.90E5 1.865
5 1.63E3 −2.32E4 9.82E4 −1.22E5
6 3.41E3 −2.76E4 4.65E4
7 3.15E3 −8.66E3
8 4.62E2

FIGURE 7 | Root-mean-square error as a function of grid size ranging
from 36 to 40,804 total points and for each polynomial regression (1st to 15th
order). The red circle denotes RMSE corresponding to a polynomial (eighth
order) chosen in Section 3.2 (0.43 ms), and the gray line depicts an
RMSE threshold of 0.5 ms.

FIGURE 5 | Differences between tg values (Δtg) computed numerically
(Section 2) and using the eighth-order polynomial model for the testing set (15%
points). A difference larger than 2 ms was depicted for only two points (green and
yellow circles) in the testing set, which were close to the boundary limit.

FIGURE 6 | BlandAltman plot comparing experimentally measured and
reconstructed tc using the multivariate polynomial model given byEq. 3, which
reports a systematic bias of 34.3 ms (95% confidence intervals [33.8 ms,
34.7 ms]). Δtc: measured tc − reconstructed tc and tc: average of
measured and reconstructed tc.
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from the sine wave approximation, while the polynomial regression
did not introduce further error.
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APPENDIX: JUSTIFICATION OF THE
CHOICE OF THE tce X tfe GRID

To justify the grid choice, a similar numerical analysis was carried
out but using different grid spacings (2.5, 5, 7.5, 10, 25, 50, 75, and
100 ms). tce and tfe values were varied between 2.5 and 505 ms,
which led to 6 to 202 points for both tce and tfe and grid sizes
ranging from 36 to 40,804 total grid points. The boundary
relationship between tce and tfe was computed on each grid.
RMSE on the testing set (15% points) as a function of the number
of points along tce is depicted in Figure A1. Noteworthy, as for
grid spacings of 75 and 100 ms, using a 15% size for the testing set
did not provide at least two points in such set. Therefore, two
random points were forced to be attributed to the testing test (29
and 33% points in the testing set). As expected, RMSE decreased
with decreasing grid spacing. Besides, it can be noticed that using
a grid spacing of 10 ms did not seem to impact RMSE for the
boundary relationship compared to the 7.5-ms grid spacing used
before (RMSE ∼3.5 ms). However, the polynomial regression
should also be performed on these different grids to observe
any additional features.

For this reason, a multivariate polynomial regression
(polynomial order from 1 to 15) was performed on 85% of
the points composing these different grids, after having
discarded the points which were not within the
corresponding boundary relationship. RMSE on the testing
set (15% points) as a function of grid size is depicted for
each polynomial order in Figure A1. It can be noticed that

the eighth-order polynomial is the lowest order polynomial,
leading to an RMSE smaller than 0.5 ms on the testing set. In
addition, the smallest grid to obtain such an RMSE threshold is
given by a grid using a spacing of 7.5 ms, that is, 4,624 grid
points. As for the grid spacing of 10 ms, it requires a polynomial
of order 10 to achieve the requested RMSE threshold, which is
less convenient as it requires 21 extra coefficients than the
eighth-order polynomial. Therefore, these previous
statements justify the grid choice used to construct the
multivariate polynomial model (Eq. 3).

FIGURE A1 | Root-mean-square error (RMSE) as a function of the
number of points along tce and ranging from 6 to 202. The red circle denotes
RMSE corresponding to the boundary relationship computed in Section 3.1
(3.2 ms).
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������ SolveCsc(π * tg)  tce + 2 * tg ==

π  2 * tfe - 2 * tg  tce + 2 * tg + 1, tg
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There Is No Global Running Pattern More Economic Than Another
at Endurance Running Speeds

Aurélien Patoz, Thibault Lussiana, Bastiaan Breine, Cyrille Gindre, and Kim Hébert-Losier

Purpose: The subjective Volodalen® score (V®score) and the objective duty factor metric can both assess global running
patterns. The authors aimed to investigate the relation between running economy (RE) at endurance running speeds and the
global running pattern quantified using both subjective and objective measures. Methods: RE and 3-dimensional whole-body
kinematics were acquired by indirect calorimetry and an optoelectronic system, respectively, for 52 trained runners during
treadmill runs at 10, 12, and 14 km/h.Results:Correlations between RE and V®score and RE and duty factor were negligible and
nonsignificant across speeds tested (P ≥ .20), except for a low and significant correlation between RE and V®score at 10 km/h.
Conclusions: These findings suggest there is no global running pattern more economic than another at endurance running speeds.
Therefore, there is no advantage of choosing, favoring, or prescribing one specific global running pattern along a continuum
based on V®score or duty factor metrics, and coaches should not try to modify the spontaneous running pattern of runners at
endurance running speed to improve RE.

Keywords: gait analysis, motion analysis, biomechanics, duty factor, Volodalen® score

As early as 1985, the running pattern was suggested to be
multifactorial, and foot placement, arm swing, body angle, rear leg
lift, and stride length should be considered together.1 Following
this concept, a subjective method allowing global definition of self-
selected running patterns was created.2 This method considers
runners as global systems in which the change or alteration of
one variable is likely to affect another. Runners are classified based
on visual observations of 5 key elements where each element is
scored on a 1 to 5 scale. The 5 individual scores are summed to
provide a global score, the Volodalen® score (V®score), ranging
from 5 to 25.2 The resulting subjectively based score is used to
classify runners in 2 groups: aerial (V®score > 15) and terrestrial
(V®score ≤ 15).2 The authors observed that runners in each group
present similar running economy (RE) characteristics but employ
different strategies to lower their energetic cost, with terrestrial
runners relying more on forward propulsion strategies and aerial
runners more on rebound strategies.2

Runners have also been categorized in 2 groups using the duty
factor (DF),3,4 that is, an objective variable representing the ratio
of ground contact time (tc) to stride time [tc + swing time (ts)],
with a higher DF reflecting a greater relative contribution of tc
to the running stride.5 DF was thought to be representative of a
global biomechanical behavior, considering the duration of force

production (tc) in relation to stride duration.3,4 Runners with a
low DF exhibited a more symmetrical running step, anterior
(midfoot and forefoot) strike pattern, and extended lower limb
during tc than runners with a high DF, whereas the latter runners
exhibited greater lower limb flexion during tc, more rearfoot strike
pattern, and less work against gravity to generate forward propul-
sion.3,4 Therefore, runners with high and low DF values used
different running strategies. Despite these kinematic differences,
the 2 groups demonstrated similar RE values, indicating the 2
strategies are energetically equivalent at endurance running
speeds.3

Given that the V®score and DF are continuous variables, the
global running pattern of individuals could be defined along a
continuum rather than categorized into 2 or more groups. However,
the relation between RE and global running patterns along a
continuum has, to the best of our knowledge, not been investigated
so far. Hence, we aimed to investigate the relation between RE
and global running pattern, assessed using either the subjective
V®score or the objective DF metric. We hypothesized that RE
would not be related to either V®score or DF.

Methods
Subjects
A total of 52 trained runners, 31 males (mean [SD]; age = 31 [8] y,
height = 174 [7] cm, body mass = 66 [10] kg, 21.1 km recent
running performance = 91 [9] min, running experience = 8 [6] y,
weekly running distance = 55 [19] km) and 21 females (age = 32
[9] y, height = 162 [4] cm, body mass = 52 [5] kg, 21.1 km recent
running performance = 102 [9] min, running experience = 7 [4] y,
weekly running distance = 50 [21] km) participated in this study.
Participants were required to be in good self-reported general
health, with no current or recent (<3 mo) musculoskeletal injuries,
and to have competed in a road race in the last year with finishing
times of 10 km ≤ 50min, 21.1 km ≤ 110min, or 42.2 km ≤ 230min.
The ethical committee of the National Sports Institute of Malaysia
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approved the study protocol (ISNRP: 26/2015), which adhered to
the latest Declaration of Helsinki.

Design
Each participant completed one experimental laboratory session.
After providing written informed consent, participants ran 5
minutes at 9 km/h on a treadmill (h/p/cosmos mercury®; h/p/
cosmos sports & medical gmbh, Nussdorf-Traunstein, Germany)
as warm-up. Participants then completed three 4-minute runs at
10, 12, and 14 km/h (with 2-min recovery between runs) on the
treadmill, during which time RE was assessed (Appendix A). RE
was expressed as the oxygen cost per mass to the power of 0.75
per kilometer (in milliliter per kilometer per kilogram0.75) to
minimize the influence of body mass per se on oxygen consump-
tion during running.6 A higher RE value indicates a less econom-
ical runner.

Retroreflective markers were subsequently positioned on
individuals to assess running kinematics (Appendix B). For
each participant, a 1-second static calibration trial was recorded,
which was followed by three 30-second runs at 10, 12, and 14 km/
h (with 1-min recovery between runs) to collect 3-dimensional
(3D) kinematic data in the last 10 seconds segment of these runs.
RE and biomechanics were assessed separately given laboratory
constraints and interference with data quality (eg, presence of
testing equipment that occluded markers). All participants were
familiar with running on a treadmill as part of their usual training
programs and wore their habitual running shoes during testing
(shoe mass = 223 [36] g, shoe stack height = 25 [3] mm, and shoe
heel-to-toe drop = 8 [3] mm).

Methodology
The 5 elements of the V®score were objectively retrieved from
3D kinematic data (Appendix C). Each element was converted to
a score from 1 to 5 using the 20th, 40th, 60th, 80th, and 100th
percentiles. The V®score was subsequently obtained by summing
these 5 objectively measured elements.

ts and tc were defined as the time from toe-off to foot strike
and from foot strike to toe-off of the same foot, respectively, to
calculate DF as5:

DF =
tc

tc þ ts
:

The biomechanical variables extracted from the 10-second data
collection for each participant were averaged for subsequent
statistical analyses.

Statistical Analysis
Descriptive statistics are presented using mean (SD). As all data
were normality distributed based on Kolmogorov–Smirnov tests
(P ≥ .08), we extracted Pearson correlation coefficients (r) with
95% confidence intervals and corresponding P values to explore
the relationship between RE and V®score and RE and DF at the 3
running speeds separately. Correlations were considered very high,
high, moderate, low, and negligible when absolute r values were
between .90 and 1.00, .70 and .89, .50 and .69, .30 and .49, and
.00 and .29, respectively.9 Statistical analyses were performed
using Jamovi (version 1.6.23; https://www.jamovi.org) with a level
of significance set at P ≤ .05.

Results
Correlations between RE and V®score and between RE and DF
were negligible and nonsignificant at all tested speeds (|r| ≤ .18;
P ≥ .20), except for a low and significant correlation between RE
and V®score at 10 km/h (r = .30; P = .03; Figure 1).

Discussion
In line with our hypothesis, RE was not related to either V®score
or DF, except at 10 km/h where a low correlation was observed
between RE and V®score. This single low correlation suggests
little clinical relevance and a potential spurious finding
(Figure 1A). Similarly, no significant relation between RE and
DF was detected (Figure 1B). This suggests that runners with a
global running pattern at either ends of the subjective spectrum
(most terrestrial, V®score = 5; vs most aerial, V®score = 25), or
objective DF spectrum (highest vs lowest DF) exhibit similar RE
at endurance running speeds. Therefore, there is no advantage of
choosing, favoring, or prescribing one specific global running
pattern along a continuum based on V®score or DF metrics. These
results confirm previous findings of similar RE between runners
categorized as terrestrial and aerial,2 or as high and low DF
runners.3

The subconscious fine-tuning of running biomechanics,
known as self-optimization, was first introduced by Williams
and Cavanagh10 and extended upon by Moore.11 The concept of
self-optimization might explain the null relationship found between
RE and global running pattern. Indeed, RE was proposed to result
from a weighted influence of several variables.10 Moreover, run-
ners appear to naturally adopt a running biomechanics (eg, stride
length, stride frequency, contact time, leg stiffness) that is ener-
getically optimal, or at least near optimal.11,12 This altogether
suggests that the relative importance of these underlying variables
might differ along the spectrum of global running patterns as
defined using the V®score or DF metric but that all these different
global running patterns lead to a similar RE. Determining the
global running pattern of a runner might nonetheless inform which
variables are contributing the most to RE and not yet optimized for
a given individual. Hence, slight alterations in suboptimal and
interconnected variables might confer RE advantages at an indi-
vidual level, notwithstanding that most biomechanical fine-tuning
to improve RE may have already occurred in trained and experi-
enced runners.11

Practical Applications
There is no advantage of choosing, favoring, or prescribing one
specific global running pattern along a continuum based onV®score
or DF metrics. Therefore, coaches should not try to modify the
spontaneous running pattern of runners at endurance running speed
to improve RE.

Conclusions
The current study findings suggest there is no significant or
meaningful relation between RE and global running pattern, as-
sessed using either the V®score or the DF metric, meaning that
any spontaneous self-selected running style might be energetically
optimal. In other words, there is no global running pattern more
economic than another at endurance running speeds.
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Appendix A: Gas Exchange Analysis

Gas exchange was measured using TrueOne 2400 (ParvoMedics,
Inc, Sandy, UT) during the three 4-minute runs. Prior to the
experiment, the gas analyzer was calibrated using ambient air
(O2: 20.93% and CO2: 0.03%) and a gas mixture of known
concentration (O2: 16.00% and CO2: 4.001%). Volume calibra-
tion was performed at different flow rates with a 3-L calibration
syringe (5530 series; Hans Rudolph, Shawnee, KS). Oxygen
consumption, carbon dioxide production, and respiratory

exchange ratio values were averaged over the last minute of
each 4-minute run. Steady state was confirmed through visual
inspection of the oxygen consumption and carbon dioxide
production curves. Respiratory exchange ratio had to remain
below unity during the trials for data to be included in the
analysis; otherwise, the corresponding data were excluded as
deemed to not represent a submaximal effort. No trial was
excluded on this basis.

Appendix B: Kinematic Analysis

The 3D kinematic data were collected at 200 Hz using 7 infrared
Oqus cameras (5 Oqus 300+, one Oqus 310+, and one Oqus 311+)
and Qualisys Track Manager software (version 2.1.1) build 2902
together with the Project Automation Framework Running package
(version 4.4; Qualisys AB, Göteborg, Sweden). A virtual labora-
tory coordinate system was generated such that the x–y–z axes
denoted the mediolateral (pointing toward the right side of the
body), posterior–anterior, and inferior–superior directions, respec-
tively. A total of 35 retroreflective markers of 12 mm in diameter
were used for static calibration and dynamic running trials and were
affixed to the skin and shoes of individuals over anatomical
landmarks using double-sided tape following standard guidelines
from the Project Automation Framework Running package, as
already reported elsewhere.3 The 3D marker data were exported in
.c3d format and processed in Visual3D Professional software
(version 5.02.25; C-Motion Inc, Germantown, MD). More explic-
itly, the 3D marker data were interpolated using a third-order
polynomial least-square fit algorithm, allowing a maximum of
20 frames for gap filling, and subsequently low-pass filtered at
20 Hz using a fourth-order Butterworth filter.

From the marker set, a full-body biomechanical model with
6 degrees of freedom at each joint and 15 rigid segments was
constructed. The model included the head, upper arms, lower
arms, hands, thorax, pelvis, thighs, shanks, and feet. Segments
were assigned inertial properties and center of mass (COM)
locations based on their shape and relative mass. Kinematic
parameters were calculated using rigid-body analysis and whole-
body COM location was calculated from the parameters of all 15
segments.

Running events were derived from the trajectories of the 3D
marker data using similar procedures to those previously reported
elsewhere.3 More explicitly, a midfoot landmark was generated
midway between the heel and toe markers. Foot-strike was de-
fined as the instance when the midfoot landmark reached a local
minimal vertical velocity prior to it reaching a peak vertical
velocity reflecting the start of swing. Toe-off was defined as
the instance when the toe marker attained a peak vertical acceler-
ation before reaching a 7-cm vertical position. All events were
verified to ensure correct identification and were manually
adjusted when required.

Appendix C: Objective Measure of the 5 Elements of the V®score

The range of vertical displacement of the head COM, range of
horizontal displacement of the elbow joint centers (ie, minimum to
maximum horizontal position during each cycle), vertical position
of the pelvis COM at foot strike, horizontal distance between
the heel marker and pelvis COM at foot strike, and foot strike
angle at ground contact were extracted. The first 4 elements were

normalized to participants’ height. The foot strike angle was
normalized to the foot-ground angle recording during the static
trial following procedures described in Altman and Davis.7 These
objective measures extracted from 3D data largely relate to their
subjective Volodalen® counterparts8 and were herein used to
calculate the V®score.

4 Patoz et al

(Ahead of Print)

http://www.ncbi.nlm.nih.gov/pubmed/33344976?dopt=Abstract
https://doi.org/10.3389/fspor.2019.00053


Annexes 

305  

9.6 Different plantar flexors neuromuscular and mechanical characteristics 

depending on the preferred running form  
 

Sidney Grosprêtre1,* , Philippe Gimenez1, Adrien Thouvenot2,3, Aurélien Patoz4, Thibault  

Lussiana2,3, Laurent Mourot3,5 

 
1 EA4660-C3S Laboratory - Culture, Sports, Health and Society, Univ. Bourgogne Franche-

Comté, Besançon, France 
2 Research and Development Department, Volodalen, Chavéria, France 
3 EA3920-Prognostic Markers and Regulatory Factors of Heart and Vascular Diseases, and 

Exercise Performance, Health, Innovation Platform, Univ. Bourgogne Franche-Comté, 

Besançon, France  
4 Research and Development Department, Volodalen Swiss Sport Lab, Aigle, Switzerland  
5 National Research Tomsk Polytechnic University, Tomsk, Russia  

 
* Corresponding author 

 

Published in Journal of Electromyography and Kinesiology 

DOI: 10.1016/j.jelekin.2021.102568 

 

 
 

 
  



Annexes 

306  



Journal of Electromyography and Kinesiology 59 (2021) 102568

Available online 16 June 2021
1050-6411/© 2021 Elsevier Ltd. All rights reserved.

Different plantar flexors neuromuscular and mechanical characteristics 
depending on the preferred running form 

Sidney Grosprêtre a,*, Philippe Gimenez a, Adrien Thouvenot b,c, Aurélien Patoz d, 
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A B S T R A C T   

Two main types of endurance runners have been identified: aerial runners (AER), who have a larger flight time, 
and terrestrial runners (TER), who have a longer ground contact time. The purpose of this study was to assess the 
neuromuscular characteristics of plantar flexors between AER and TER runners. Twenty-four well-trained run-
ners participated in the experiment. They were classified either in a TER or AER group according to the Volo-
dalen® scale. Plantar flexors’ maximal rate of force development (RFD) and maximal voluntary contraction force 
(MVC) were assessed. Percutaneous electrical stimulation was delivered to the posterior tibial nerve to evoke 
maximal M-waves and H-reflexes of the triceps surae muscles. These responses, as well as voluntary activation, 
muscle potentiation, and V-waves, were recorded by superimposing stimulations to MVCs. RFD was significantly 
higher in AER than in TER, while MVC remained unchanged. This was accompanied by higher myoelectrical 
activity recorded in the soleus muscle. While M-waves and other parameters remained unchanged, maximal H- 
reflex was significantly higher in AER than in TER, still in soleus only. The present study raised the possibility of 
different plantar flexors’ neuromuscular characteristics according to running profile. These differences seemed to 
be focused on the soleus rather than on the gastrocnemii.   

1. Introduction 

Sport practice has several long-term effects on the musculoskeletal 
system and neural network. When comparing athletes from untrained 
individuals, athletes showed greater force production capacity, as evi-
denced by higher rates of force development (RFD) (Tillin et al., 2010) 
and higher central activation (Ahtiainen and Häkkinen, 2009). 
Regarding some specific neural parameters, such as spinal excitability, 
the direction of the change depends upon the type of physical activity. 
Indeed, while power athletes usually exhibit lower values than un-
trained people, endurance athletes show greater spinal excitabilities 

(Maffiuletti et al., 2001). 
In most of the previous literature, endurance athletes from various 

sports (e.g., cycling, running, triathlon, cross-country skiing) have been 
pooled together and compared to power athletes (mixing sprinters, 
jumpers, or throwers). However, it could be hypothesized that different 
neuromuscular profiles also exist when considering a narrower portion 
of the continuum between endurance- and power-type athletes, i.e. 
targeting inter-individual differences within the same activity. Specif-
ically, endurance running appears to be an activity for which various 
running forms may exist among its practitioners, e.g., ranging from 
“Groucho” to “Pose” running styles (Arendse et al., 2004; McMahon 

Abbreviations: AER, Group of aerial runners; TER, Group of terrestrial runners; MVC, Maximal Voluntary Contraction; V®score, Global Subjective Score; VAL, 
Voluntary Activation Level; SOL, Soleus muscle; GM, Gastrocnemius Medialis; GL, Gastrocnemius Lateralis; TA, Tibialis Anterior; VL, Vastus Lateralis; HMAX, Maximal 
H-reflex at rest; HSUP, Maximal superimposed H-reflex (evoked during the MVC); MatHmax, M-wave accompanying Hmax; MatHsup, M-wave accompanying Hsup; MMAX, 
Maximal M-wave at rest; MSUP, Maximal superimposed M-wave (evoked during the MVC); RFD, Rate of Force Development; RMS, Root Mean Square of muscle 
electromyographic activity (EMG); EME, Electro-mechanical Efficiency; PT, Peak of the single twitch. 
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et al., 1987). 
Objective (Hoerzer et al., 2015; Lussiana et al., 2019; Phinyomark 

et al., 2015) and subjective (Lussiana et al., 2017b) kinematic and 
spatio-temporal differences between endurance runners have then been 
revealed. The terms Terrestrial (TER) and Aerial (AER) runners have 
been proposed to characterize these different running forms (Gindre 
et al., 2016). These TER and AER runners have been shown to have the 
same running economy (Lussiana et al., 2019, 2017a). To minimize the 
cost of movement, TER favour a long contact time associated with a 
rearfoot strike pattern, whereas AER favour a long flight time together 
with a forefoot strike pattern (Lussiana et al., 2019, 2017a). These ob-
servations were accompanied by an earlier activation of the gastrocne-
mius lateralis (GL) in preparation for landing in AER compared to TER 
(Lussiana et al., 2017a). Hence, the plantar flexor muscles group seems 
to be a key muscle group affected by the type of running pattern. 
Moreover, these muscles are one of the main investigated muscle groups 
in neuromuscular studies (Tucker et al., 2005). Early works using a 
similar approach at the ankle joint already identified links between ki-
nematic variables and structural / neural properties of the plantar 
flexors of short and long-distance runners (Bach et al., 1983). The au-
thors concluded that both neural and mechanical factors were key fac-
tors in determining the running pattern. Therefore, the purpose of the 
present study was to compare the neuromuscular and mechanical 
properties of the plantar flexors between AER and TER during a non- 
specific task. As AER have shorter ground contact time and forefoot 
strike pattern, we hypothesized that they would exhibit greater spinal 
excitability compared to TER that have longer ground contact time, 
possibly reflecting higher mechanical load on the plantar flexor muscles. 

2. Material and methods 

2.1. Participants 

Twenty-four well-trained healthy participants (7 women and 17 
men) gave written informed consent to participate in the present 
experiment (Table 1). None of them reported neurological, physical 
disorders, or previous lower-limb injury in the previous six months. All 
experimental procedures were performed in accordance with the latest 
version of the Declaration of Helsinki and approved by the Regional 
Ethics Committee (CPP Est I 2016-A00511-50). 

2.2. Experimental design 

The experiment was carried out in a single session (1 h 45 min), 
which included two parts performed randomly: an evaluation of the 
participant’s running form (15 min) and a neuromuscular and me-
chanical evaluation (1 h 30 min). Both parts were performed in separate 
rooms with different operators, in a double-blind set-up : participants 
and operators were not informed of the results of the other experimental 
part (neuromuscular and runner’s classification). 

2.3. Runner’s classification 

Participants performed a 5-min running warm-up at a self-selected 
speed, followed by a 10-min running trial at 12 km⋅h−1 on a treadmill 
(Training Treadmill S1830, HEF Techmachine, Andrézieux-Bouthéon, 
France). Two running coaches with several years of experience using the 
Volodalen® scale focused on the overall movement form of participants 
as they ran. The coaches paid attention to five key elements: vertical 
oscillation of the head, antero-posterior motion of the elbows, pelvis 
position at ground contact, antero-posterior foot position at ground 
contact, and foot strike pattern (Gindre et al., 2016; Lussiana et al., 
2017a). The intra- and inter-rater reliability of this method has been 
shown recently (Patoz et al., 2019). Each element was scored from one 
to five, leading to a global subjective score (V®score) that ultimately 
allows the classification of runners into TER (V®score ≤ 15) or AER 
(V®score > 15) group. 

2.4. Force recordings 

Participants seated in a comfortable experimental chair with hip, 
knee and ankle joints at 90◦. The ankle was firmly strapped to a pedal 
equipped with a constraint gauge (PCE instruments, Soultz-Sous-Forets 
France). They were instructed to keep their hands free and to maintain 
the trunk against chair’s back. The recording of one antagonist (i.e., 
tibialis anterior, TA) and one knee extensor (i.e., vastus lateralis, VL) 
allowed to monitor the contribution of other muscle groups to the 
developed force. 

Participants were first asked to warm-up by performing eight to ten 
sub-maximal isometric plantar flexions at a progressive force level. 
Then, they performed eight isometric plantar flexion maximal voluntary 
contractions (MVC) of about 4 s, separated by one-minute rest. During 
the plateau of each MVC, one nerve stimulation was triggered. The 
recording of RFD was assessed separately from MVC, as previously 
recommended (Maffiuletti et al., 2016). Participants were asked to 
“push hard and fast” up to their maximal force, without maintaining it. A 
total of eight to ten trials was performed, with 30 s rest in-between. 
Trials with countermovement (dorsi-flexion preceding the start of the 
plantar flexion) were excluded. 

The mechanical signals were digitized on-line (sampling frequency: 
2 kHz) and simultaneously recorded with electromyography of the tar-
geted muscles. Signals were stored for analysis in Labchart software 
(LabChart 8, ADInstruments, Sydney, Australia). 

2.5. Electromyographic activity 

Electromyographic activity (EMG) was recorded from four muscles 
of the right leg (soleus, SOL; gastrocnemius medialis, GM; gastrocnemius 
lateralis, GL; TA; VL). The skin was first shaved and dry-cleaned with 
alcohol to keep low impedance (<5 kΩ). EMG signals were recorded 
with Trigno sensors (Delsys, Natick, Massachusetts, USA), firmly strap-
ped to the leg with a skin rubber. Sensors were placed according to 
SENIAM recommendations (Hermens et al., 2000). EMG signals were 
amplified with a bandwidth frequency ranging from 0.3 Hz to 2 kHz 
(gain: 1000) and digitized on-line (sampling frequency: 2 kHz) with 
Labchart software (LabChart 8, ADInstruments, Sydney, Australia). 

2.6. Electrical nerve stimulation 

The posterior tibial nerve was stimulated through single rectangular 
pulses (1-ms duration) delivered by a constant-current stimulator 
(Digitimer DS7A, Hertfordshire, UK). Stimulations were elicited with a 
self-adhesive cathode (8-mm diameter, Ag-AgCL) placed in the popliteal 
fossa and an anode (5 × 10 cm, Medicompex SA, Ecublens, Switzerland) 
placed over the patella. Once the optimal spot was determined, the 
stimulation electrode was firmly fixed to this site with straps. The in-
tensity of the stimulation was then progressively increased from SOL, 

Table 1 
Participant characteristics for Terrestrial (TER) and Aerial (AER) groups. 
Note: Data are means ± S.D. M: Male, F: Female, and NA: statistical test not 
applicable.   

TER AER P value 

Age (y) 29.6 ± 10.5 25.4 ± 8.0 0.286 
Height (m) 1.71 ± 0.07 1.76 ± 0.06 0.213 
Mass (kg) 64.2 ± 9.2 62.1 ± 7.5 0.551 
Training experience (y) 5.9 ± 3.8 6.8 ± 5.9 0.658 
Running time (h/week) 4.9 ± 1.9 7.1 ± 3.6 0.072 
Running distance (km/week) 42.5 ± 12.1 51.7 ± 16.5 0.136 
Maximum aerobic speed (km/h) 17.2 ± 1.3 18.4 ± 1.8 0.084 
V®score 11.7 ± 1.9 20.2 ± 2.2 NA 
Sex M = 6; F = 6 M = 11; F = 1 NA  
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GM and GL H-reflex threshold with 2 mA increment to maximal H-reflex 
(HMAX) and then with 5 mA increment until M-wave of the three muscles 
no longer increased. This last stimulation-intensity was then increased 
by 20% to record maximal M-wave (MMAX). Four stimulations were 
performed at each intensity. 

2.7. Data analyses 

All data were stored, synchronized and analyzed in LABCHART 8 
software (LabChart 8, ADInstruments, Sydney, Australia). 

2.8. Mechanical data 

The RFD was analysed as the derivate of the mechanical signal (in 
N⋅sec-1) during the contraction ramp, i.e., from the baseline to the peak 
of force produced. The mean of the best three trials was analysed. 

Maximal isometric force was taken as the peak of the mechanical 
signal obtained during the plateau of MVC prior to the stimulus artefact. 
Voluntary activation level (VAL) was determined using the twitch 
interpolation technique by using the following formula 

VAL = 100
[

1−
(PTS

PTP

)]
,

where PTS is the superimposed force amplitude induced by the stimu-
lation at MMAX intensity during the MVC. PTP is the potentiated twitch 
force amplitude taken as the mechanical peak evoked at MMAX following 
MVC. 

Triceps surae potentiation was expressed as the change (%) between 
the amplitude of the resting twitch (PTR) and PTP 

Potentiation = 100
[
(PTP − PTR)

PTR

]

2.9. Electrophysiological data 

The root mean square (RMS) value of SOL, GM and GL muscles EMG 
signals were determined with an integration time of 500 ms over the 
plateau during plantar flexion MVCs, prior to the stimulus artifacts. SOL 
and GM RMS were normalized by the corresponding MSUP. During these 
RFDs, the contribution of each triceps surae muscle was calculated as the 
percentage of the sum of RMS/MSUP of SOL, GM, and GL. 

Peak-to-peak amplitudes of electromyographic responses at rest 
(HMAX, MMAX) and during MVC (HSUP, MSUP, V) were measured for 
quantitative analysis. It can be noticed that maximal H-reflex, reflecting 
spinal excitability, is generally associated with a small M-wave (noted 
MatHmax at rest and MatHsup during MVC), which was also measured. 
Contrary to rest, it can be noticed that MSUP is followed by a reflexive 
response, called V-wave, which was used as an index of the supra-spinal 
descending neural drive (Grospretre and Martin, 2014). For each mus-
cle, all responses were normalized to maximal M-wave evoked in the 
same condition. Thus, HMAX/MMAX, MatHmax/MMAX, HSUP/MSUP, 
MatHsup/MSUP, V/MSUP, were considered as dependent variables and 
compared between TER and AER. 

Finally, the total electro-mechanical efficiency (EME) was deter-
mined by the ratio of the peak twitch evoked at Mmax (PT) over the sum 
of SOL and GM M-waves. EME reflects the excitation–contraction 
coupling efficiency. 

2.10. Statistical analyses 

All data are presented as the mean ± standard deviation (S.D.). The 
normality of the data and the homogeneity of variances were confirmed 
through the Shapiro-Wilk and Levene’s tests, respectively. Participant 
characteristics and dependent variables (mechanical and electrophysi-
ological data) between AER and TER were analyzed through two-tailed 

unpaired Student’s t-tests. A separate analysis was performed for each 
muscle, except for the percentage of muscle contributions during the 
RFD, which were gathered for analysis, by means of a two-way ANOVA 
with factor group (AER vs. TER) and muscle (SOL vs. GM vs. GL). Main 
effects and interactions were followed-up by post hoc HSD Tukey’s tests. 
Statistical analysis was performed using STATISTICA (8.0 version, 
Statsoft, Tulsa, Okhlaoma, USA). The level of significance was set at P <
0.05. 

3. Results 

3.1. Characteristics of Aerial and Terrestrial runners 

The participant characteristics for TER and AER are given in Table 1. 
All baseline characteristics were similar between both groups. 

3.2. Mechanical data 

There was no between-group difference observed in MVC (P = 0.541; 
Fig. 1A), mechanical twitches (P = 0.454; Fig. 1B) or activation levels (P 
= 0.888; Fig. 1C). However, muscle potentiation was significantly 
higher for TER than for AER (P = 0.030; Fig. 1D). No difference in EMG 
RMS recorded during MVC was found in any of the tested muscles be-
tween TER and AER (data not shown for the sake of clarity). 

RFD was higher in AER than in TER (P = 0.030, Fig. 2A). This greater 
RFD in AER was accompanied by greater normalized EMG RMS 
observed in SOL muscle, while no differences were observed in gastro-
cnemii (Fig. 2B, C and D). When expressed as a percentage of the total 
activation (sum of all RMS/MSUP), significant group × muscle interaction 
has been found for the relative contributions of each muscle to the RFD 
(P = 0.007), AER showing a significantly greater SOL (P = 0.010) and a 
significantly lower GM (P = 0.047) muscles contribution to the RFD than 
TER (Fig. 2E). 

3.3. Electrophysiological data 

Firstly, no inter-group differences were found in muscle compound 
action potentials, for rest response (MMAX) as for superimposed one 
(MSUP), in any of the tested muscles. In addition, the submaximal M- 
waves that accompanied H-reflexes (MatHmax and MatHsup) did not differ 
between groups for all muscles. 

Secondly, normalized maximal H-reflex at rest (HMAX/MMAX) was 
significantly higher in AER than TER for SOL muscle (P = 0.040; 
Fig. 3A), but not for GM (P = 0.475; Fig. 3B) and GL (P = 0.804, Fig. 3C). 
No significant differences were observed in superimposed H-reflexes 
(HSUP/MSUP) (SOL: P = 0.346; GM: P = 0.170; GL = 0.711, Fig. 3). Since 
V/MSUP did not significantly differ between both groups for each tested 
muscle (SOL: P = 0.573; GM: P = 0.509; GL: P = 0.533, Fig. 3), no 
significant differences were found at the supraspinal level. 

4. Discussion 

The present study aimed to compare the neuromuscular and me-
chanical properties of the plantar flexors between two groups of 
endurance runners with different preferred running forms. AER 
exhibited higher RFD compared to TER despite a similar maximal peak 
force. This was accompanied by greater changes in SOL EMG activity 
and H-reflex for AER, whereas peripheral (M-waves) and supraspinal (V- 
waves) electrophysiological indexes were not different among groups. 
On the other hand, TER exhibited greater muscle potentiation, partly 
validating our hypothesis regarding this group. 

4.1. Different muscle contributions 

Leg muscles’ contributions during running were different between 
AER and TER, as already shown during the running stance (Lussiana 
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et al., 2017a). Concomitantly, it was shown that AER landed in a more 
plantar flexed position than TER. This suggests a greater contribution of 
the plantar flexor muscles in AER compared to TER, given its essential 
contribution at the ankle level. Accordingly, the results of the present 
study showed that AER exhibited a higher plantar flexor RFD compared 
to TER and the associated myoelectrical activities also argued in favor of 
a greater SOL contribution in such performance. AER is used to run with 
short contact time and large vertical oscillations. Therefore, for the same 
force production, AER could be able to support a greater RFD. 

Given the fact that the tested performance was not running-specific, 
this result highlights a difference in general neural strategy. Our results 
showed that AER exhibited greater spinal excitability than TER in SOL 
muscle but not in gastrocnemii muscles. It has been shown that training 
of the plantar flexors can induce different adaptation in spinal excit-
abilities of SOL compared to GM (Duclay et al., 2008). These different 
adaptations can be attributed either to i) the different spinal network of 
SOL and gastrocnemii as a result of their different type of motor units, i. 
e. slow versus fast (Johnson et al., 1973) or ii) their difference in muscle 
spindles density, those which mediates the stretch reflex (Tucker et al., 
2005). One interesting fact to notice is that one of the most effective 
modalities to induce such changes in spinal excitability and such 
discrepancy between muscles is eccentric training (Duclay et al., 2008). 
It was shown that SOL and gastrocnemii muscles exhibited different 
behavior in muscle fascicle stretch during plantar flexors eccentric ac-
tions but not always during concentric actions (Chino et al., 2008). 
These clues are in favor of greater eccentric load undertaken by AER. 

Indeed, plantar flexors being in eccentric modality during the first part 
of the stance, a larger aerial phase and vertical oscillation during the gait 
cycle leads to a higher load to support at landing, especially because AER 
favored a forefoot strike pattern (Lussiana et al., 2019, 2017a). Finally, 
although no significant inter-group difference in RMS/MSUP was 
observed for the gastrocnemii, it should be noted that the relative con-
tributions of GM displayed a difference, while GL did not (Fig. 3). This 
result raises the fact that GM is the only muscle to compensate for a 
greater activation of SOL since GL exhibited a similar contribution be-
tween AER and TER. 

4.2. Underlying mechanisms 

First of all, the lack of changes in MVC force, nor in VAL and V-wave 
amplitude, excludes a potential contribution of supraspinal levels to 
demonstrate the differences between the two groups. However, this does 
not preclude a more qualitative difference at a cortical level, such as 
different brain activations. 

Regarding the RFD, a common opinion is to attribute a high per-
formance to a high fast fibre proportion in the considered muscle group, 
being a marker of explosive muscle strength (Folland et al., 2014). 
Intersetingly, although slightly superior in power athletes, the plantar 
flexors’ RFD did not exhibit any differences between endurance- and 
power-type athletes. (Kyröläinen and Komi, 1994). These authors sug-
gested that the global muscle mass or typology, could not be the unique 
factor to affect maximal RFD. For instance, despite conflicting results 

Fig. 1. Plantar flexors’ mechanical data of Aerial (AER) and Terrestrial (TER) runners. Data are depicted as mean ± SD. A. Maximal voluntary contraction 
(MVC) force. B. Peak-to-peak amplitude (PT) of the mechanical twitch associated with maximal M-wave. C. Voluntary activation level (VAL). D. Potentiation (POT) 
between the twitch evoked before the MVC and the twitch evoked after. *: significant inter-group difference at P < 0.05. 
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(Buckthorpe and Roi, 2018; Buckthorpe and Roi, 2018; Buckthorpe and 
Roi, 2018; Buckthorpe and Roi, 2018; Buckthorpe and Roi, 2018; 
Buckthorpe and Roi, 2018; Buckthorpe and Roi, 2018) a close link be-
tween plantar flexors RFD and musculo-tendinous stiffness has been 
observed (Driss et al., 2012). Hence, our previous observations of 
greater leg stiffness in AER as compared to TER (Gindre et al., 2016; 
Lussiana et al., 2017a) could partly explain this greater RFD in AER. But 
more importantly, several neural aspects, such as the synchronicity of 
motor unit recruitments and the efficiency of the neural drive, could also 
significantly impact RFD performance (Maffiuletti et al., 2016). In the 
present study, the difference observed in EMG activities recorded during 
RFD between AER and TER is the first clue that such plantar flexors’ 
discrepancy also has a nervous origin. This is not surprising since a 
strong link is often established between an increase in RFD after training 
and an increase in the associated EMG activity of the considered muscle 
group (DelBalso and Cafarelli, 2007). Interestingly, a positive correla-
tion between H-reflex and RFD increase has also been established after 

plantar flexors training (Holtermann et al., 2007), raising the link be-
tween those neural factors and such performances. It was argued pre-
viously that the spinal efficiency was a primary factor in enhancing the 
discharge rate of the motor units needed to improve RFD performance 
(VanCutsem et al., 1998). In addition, early works of Capaday and Stein 
(Capaday and Stein, 1987) demonstrated that H-reflexes of the soleus 
muscles were lower during running than during walking, independently 
of the level of motor units activity. In other words, differences in H-re-
flexes can also occur between two different locomotor activities at a 
given similar EMG activity. Other central mechanisms such as presyn-
aptic inhibition, closely related to muscle lengthening (Duchateau and 
Enoka, 2008), may be involved. This could also partly explain that the 
long-term use of different running patterns of AER and TER, and espe-
cially the fact that AER runners land in a more plantar flexed position 
than TER, would lead to long-term changes in spinal excitability. It is 
admitted that the type of training has a particular influence on medullar 
network plasticity (Grosprêtre et al., 2018), including interneuronal 

Fig. 2. Plantar flexors’ rate of force 
development of Aerial (AER) and Terres-
trial (TER) runners. Data are depicted as 
mean ± SD. A. Rate of force development 
(RFD) in plantar flexion. B, C and D, shows 
the associated peak in electromyographic 
activities, expressed as the root mean square 
of the activity (RMS) normalized by the 
maximal active M-wave (MSUP), for the so-
leus muscle (SOL), gastrocnemius medialis 
(GM) and gastrocnemius lateralis (GL), 
respectively. Panel E depicts the relative 
contribution of each muscle to the RFD, in % 
of total muscle activity. *: significant inter- 
group difference at P < 0.05.   
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circuitry that controls and mediates the reflex pathway (Koceja et al., 
2004). As a consequence, a greater SOL spinal excitability is usually 
observed in endurance- as compared to power athletes (Maffiuletti et al., 
2001). 

At muscle level, no electrophysiological differences have been 
observed, as evidenced by similar maximal muscle compound potentials 
(i.e. M-waves) between AER and TER. However, different muscle po-
tentiations have been observed. Such twitch potentiation is attributed to 
intracellular muscle properties, such as the electrogenic Na+-K+

pumping efficiency (Cupido et al., 1996) or the intramuscular Ca2+

concentration (Klass, 2004). The fact that TER runners exhibit greater 
twitch potentiation than AER runners could indicate different intra-
muscular processes, although the twitch technique is not sufficiently 
accurate to discriminate one or the other cellular mechanisms. 

4.3. Study limitations 

Such a transversal study does not allow the genetic factor that could 
have led to recruit participants with particular profiles in the different 
trained groups to be distinguished. The constitution of groups, in terms 
of age, level of performance or anthropometric factors, is one of the 
primary key points of such inter-group comparison. Here, particular care 
was taken to keep both groups as homogenous as possible, particularly 
in terms of running experience. The lack of significant inter-group dif-
ferences in participants’ characteristics, limited the drawback of group 
constitutions. However, it should be noted that the different repartition 
of males and females between AER and TER could possibly interfere 
with the results. Some neuromuscular parameters were found to be 
higher in women than men, such as HMAX/MMAX ratio (Hoffman et al., 
2018). However, the fact that more women were included in TER but 
greater HMAX/MMAX was observed in AER, highlights that gender dif-
ference did not affect the observed neuromuscular differences, or at 
worst should have minimized the differences. Overall, due to the lack of 
a significant global effect of sex on the several tested variables, we 

suppose that the gender difference had a limited impact on the present 
results. It should be emphasized that most of the literature investigating 
sex differences in the previously mentioned performances and neuro-
muscular characteristics recruited untrained individuals. 

Another consequence of such transversal study is the inability to 
decipher which parameter influences the other. In other terms, the 
question of whether neuromuscular characteristics determines the 
running profile or whether using a certain running profile during a long 
training period shapes the neuromuscular properties as part of a process 
of adaptation remains open. Previous studies using inter-group com-
parisons of several types of athletes involved also a control group of 
untrained participants, with similar characteristics (age, weight, etc) as 
a “baseline level” regarding neuromuscular parameters (Grosprêtre 
et al., 2018; Maffiuletti et al., 2001; Tillin et al., 2010). These previous 
studies tended to show that long term practice of one modality led to 
significant differences with the control group, in one direction or 
another. For instance, while triceps surae H-reflex is shown to be 
reduced in power athletes as compared to control, it is enhanced for 
endurance athletes (Maffiuletti et al., 2001). Finally, the best to un-
derstand the possible links between running profiles and neuromuscular 
parameters would be a longitudinal approach. Performing a long-term 
analysis of the neuromuscular parameters evolution with one or the 
other modality of running could help answering this key question. 

5. Conclusion 

Here, the differences observed between AER and TER runners raised 
a close link between running forms and neuromuscular and mechanical 
parameters. AER exhibited higher RFD accompanied by greater SOL 
EMG activity and H-reflex than TER. The mechanisms underlying 
different neuromuscular and mechanical profiles of AER and TER 
depicted a bottom-to-top gradient, significant effects being observed at 
muscle and spinal levels while no effect were found for any of the 
supraspinal indexes investigated. These differences seemed to be 

Fig. 3. Electrophysiological ratios of the 
triceps surae muscles of Aerial (AER) and 
Terrestrial (TER) runners. Data are depic-
ted as mean ± SD. Maximal rest H-reflex 
(HMAX), maximal reflex evoked during 
maximal contraction (MSUP) and voluntary 
wave (V) are normalized by their corre-
sponding maximal M-wave (MMAX or MSUP). 
Results are depicted for the three muscles of 
the triceps surae: soleus (A, SOL), Gatrocne-
mius Medialis (B, GM) and Gastrocnemius 
Lateralis (C, GL). D shows the EMG traces of 
two representative participants. Signals are 
depicted for maximal H-reflex (HMAX) of 
SOL, GM and GL. Vertical arrows represent 
the time of stimulation. *: significant inter- 
group difference at P < 0.05.   
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muscle-specific, SOL being the most important muscle to differentiate 
AER and TER. Therefore, our results extended previous studies showing 
neuromuscular and mechanical properties differences in different sports 
by highlighting that neuromuscular and mechanical variability also 
exists within the same sport, in runners with the same level of expertise 
and performance that spontaneously chose different running forms. This 
could be of great importance for training and prophylactic purpose and 
open new areas of research. 
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This study aimed to determine if concurrent endurance and strength training that
matches the global running pattern would be more effective in increasing running
economy (RE) than non-matched training. The global running pattern of 37 recreational
runners was determined using the Volodalen R� method as being aerial (AER) or terrestrial
(TER). Strength training consisted of endurance running training and either plyometric
(PLY) or dynamic weight training (DWT). Runners were randomly assigned to a matched
(n = 18; DWT for TER, PLY for AER) or non-matched (n = 19; DWT for AER, PLY for
TER) 8 weeks concurrent training program. RE, maximal oxygen uptake V̇O2max) and
peak treadmill speed at V̇O2max (PTS) were measured before and after the training
intervention. None of the tested performance related variables depicted a significant
group effect or interaction effect between training and grouping (p � 0.436). However,
a significant increase in RE, V̇O2max, and PTS (p  0.003) was found after the
training intervention. No difference in number of responders between matched and non-
matched groups was observed for any of the performance related variables (p � 0.248).
In recreational runners, prescribing PLT or DWT according to the global running pattern
of individuals, in addition to endurance training, did not lead to greater improvements
in RE.

Keywords: running, plyometric training, dynamic weight training, concurrent training, sports biomechanics

INTRODUCTION

Running economy (RE), which refers to the steady-state of oxygen consumption at a given running
speed, is a critical factor of running performance (Conley and Krahenbuhl, 1980). RE improves
after years of endurance running training, and especially if high volume, high intensity interval,
or uphill running training are undertaken (Barnes and Kilding, 2014). Beyond running, di�erent
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training strategies have been shown to potentially improve RE
(Mikkola et al., 2007; Taipale et al., 2013; Barnes and Kilding,
2014). Among them, concurrent training, i.e., the use of strength
training such as plyometric training (PLT) or dynamic weight
training (DWT) in parallel with endurance running training, has
been shown to further benefit RE (Barnes and Kilding, 2014).
For instance, several studies that used this concurrent training
method reported an improvement of RE ranging from 0 to 4.7%
(Pellegrino et al., 2016; Meszler et al., 2019). However, the exact
mechanisms leading to an improvement of RE after PLT or DWT
remained unclear (Trowell et al., 2020).

PLT involves eccentric-concentric contraction cycles to allow
the muscle-tendon unit to e�ciently store and release elastic
energy. During such cycle, there is a focus on a short ground
contact time (tc) and a high leg sti�ness (kleg) (Anderson,
1996). Common PLT exercises for runners are repeated rebound
jumps or drop jumps. On the other hand, DWT involves a
greater focus on concentric contractions aiming to produce a
maximal power output, which is a compromise between speed
and force generation (Kawamori andHa�, 2004). CommonDWT
exercises are, e.g., squats jumps and dynamic lunges. From a
kinematic point of view, PLT implies shorter tc than DWT, de
facto theoretically more in line with the mechanical demands
of running. Indeed, running is characterized by a short contact
phase (dependent on the running speed but generally smaller
than 400 ms) followed by a flight phase. Therefore, the running
pattern is a succession of plyometric contractions showing a
spring like behavior, as suggested by the spring mass model
(Blickhan, 1989). However, all runners do not share a running
pattern that equally resembles to a spring.

Indeed, some runners were shown to exhibit a more
asymmetric contact phase (i.e., a longer duration of the
propulsion phase than the braking phase) and less vertical
oscillation of their center of mass during the flight time (tf )
than would be predicted by the spring-mass model (Lussiana
et al., 2019). Thus, these running patterns are less accurately
modeled by the spring-mass model. Following such ideas, it has
been show that individuals could be classified into two categories
termed aerial (AER) and terrestrial (TER) using the subjective
Volodalen R� scale (Gindre et al., 2015). Shorter tc and greater kleg
are exhibited in AER than TER, while greater leg compression
during stance is observed in TER compared to AER (Gindre
et al., 2015). These kinematic di�erences might indicate that
theoretically certain training modalities such as PLT or DWT
might better suit AER or TER, respectively.

It is well established that individual di�erences exist in
response to training, where high responders show large responses
whereas low responders show small responses or no responses
at all (Mann et al., 2014). Interestingly, Hautala et al. (2006)
reported that low responders to an endurance based training
program could become high responders to a strength based
training program. Unfortunately, this variability in training
responsiveness is not well understood and might be attributable
to various factors including the absence of definition for high
and low responders in the scientific literature and a one size
fits all approach to exercise prescription (Mann et al., 2014).
It has been purported that a more “personalized approach”

to exercise prescription based on factors such as genotype,
baseline phenotype, pre-training autonomic activity, individual
homeostatic stress responses, recovery, and nutrition should
improve training responsiveness (Mann et al., 2014). However,
more research is still needed to clarify and quantify the role
of these parameters. Also, for coaches, these factors are often
hard to assess. In line with this view, Gindre et al. (2015) made
the assumption that AER and TER could respond preferentially
to di�erent types of training interventions to improve RE.
In other words, the knowledge of the global running pattern
might provide useful indications for the prescription of training
modalities toward an improvement in RE.

Hence, the purpose of the present study was to verify the
e�ectiveness (i.e., mean increase in RE) and responsiveness (i.e.,
number of participants with a significant increase in RE) of two
strength training modalities (i.e., PLT and DWT) on top of a
standard endurance running training program to improve RE
in runners with di�erent global running patterns (i.e., AER and
TER). We hypothesized that a training program that matches the
underlying kinematics of the global running pattern (i.e., PLT for
AER and DWT for TER) would be more e�cient and thus would
trigger a greater increase in RE and a lower rate of low-responders
than a non-matched training program.

MATERIALS AND METHODS

Participants
The study has been conducted over a 3 months period, which
permitted to test 37 recreational and regular runners among
which there were 5 females (age: 29.0 ± 9.0 years, height:
168 ± 6 cm, body mass: 59.3 ± 3.0 kg, weekly training hours:
2.0 ± 1.2 h) and 32 males (age: 29.4 ± 9.3 years, height:
177 ± 8 cm, body mass: 73.4 ± 12.4 kg, weekly training hours:
2.6 ± 1.3 h). For study inclusion, voluntary participants were
required to be in good self-reported general health with no
current or recent (<3 months) musculoskeletal injuries, and to
have not previously undertaken any structured PLT or DWT.
Two groups of runners were set up. The matched group consisted
of AER following PLT and TER following DWT (n = 18). The
non-matched group consisted of AER following DWT and TER
following PLT (n = 19). As assessed by two-tailed non-matched
t-tests, there were no significant di�erences in age, height, body
mass, and weekly training hours between both groups (Table 1).

TABLE 1 | Mean ± SD of baseline participant characteristics for matched and
non-matched groups.

Matched
(15 men,

3 women)

Non-matched
(17 men,

2 women)

p

Age (y) 30.8 ± 8.4 28.0 ± 9.8 0.350

Height (cm) 177 ± 8 175 ± 8 0.499

Body mass (kg) 72.2 ± 10.7 70.8 ± 14.3 0.730

Weekly training hours (h·week�1) 2.50 ± 1.25 2.55 ± 1.31 0.901

No significant differences (p  0.05) were reported between both groups.
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Participants were informed of the benefits and risks of
the investigation prior to signing an institutionally approved
informed consent document to participate in the study. They
were informed that the data and results were confidential,
and that they could withdraw at any time during the study,
that was approved by an Institutional Review Board of the
University of Bourgogne, Franche-Comté (CPP: 2014-A00336-
41) and adhered to the latest Declaration of Helsinki of theWorld
Medical Association (World Medical Association, 2013).

Experimental Approach to the Problem
After providing written informed consent, participants
performed an initial baseline experimental session including
a series of tests. These tests consisted of the assessment of
the global running pattern using the Volodalen R� scale to
classify a runner as AER or TER, jump tests to evaluate the
explosive concentric capacity and plyometric characteristics
of the lower limb, a submaximal running test to determine
RE, and a maximal incremental running test to determine
peak treadmill speed (PTS) and maximal oxygen uptake
(V̇O2max) (Gindre et al., 2015). Tests were interspersed by a
5-min passive recovery in a seated position. After that, each
participant was randomly assigned to one of two 8 week
concurrent training modalities, i.e., a standard endurance
running training program combined with either PLT or DWT.
After this assignment, participants were regrouped for statistical
analysis based on whether their running pattern (AER or TER)
was matched or non-matched with their prescribed strength
training (DWT or PLT).

Procedures
Global Running Pattern Assessment
During the warm-up of the initial baseline experimental
session (5 min on a treadmill at 9 km·h�1), two running
coaches with more than 3 years of experience using the
Volodalen R� method (CG and TL) paid attention to five key
elements: vertical oscillation of the head, antero-posterior
motion of the elbows, pelvis position at ground contact,
foot position at ground contact, and foot strike pattern.
Each element was scored from one to five, leading to a
global subjective score (V R� score) that represents the global
running pattern of participants. This score ultimately allows
the classification of runners into the two di�erent categories
(i.e., AER if V R� score > 15 and TER otherwise). The
Volodalen R� method was fully described and studied elsewhere
(Gindre et al., 2015) and was shown to be a reliable
method to assess running pattern (Patoz et al., 2019). The
two coaches disagreed in their assessment of 3 individuals
(8.1%). In these cases, the two coaches adopted a consensus
following a discussion.

Endurance Running Training
All participants followed a basic endurance running training in
line with what they were used to do before the study. Noteworthy,
participants were not following a proper periodization training
before starting the given training, i.e., they were not in a
specific phase of a global periodization training. Training

was divided into three di�erent intensities based on their
PTS: below 80%, between 80 and 95%, and between 95 and
105% of PTS. These percentages were chosen as to represent
an aerobic, threshold and high intensity zone, respectively.
The prescribed time in each of these three training zones
during the 8 weeks training is described in Table 2. Main
training volume (70–80%) was spent at running speeds
below 80% of PTS.

Basic endurance sessions consisted of continuous running for
45–75 min, predominantly at a running speed below 80% of
PTS with some unstructured bouts of faster running at 80–95%
of PTS between 10 and 25 min per session. Interval sessions
consisted of a 15 min easy warm-up at a running speed below
80% of PTS and involved repeated interval bouts ranging from
30 s to 2 min at 95–105% of PTS for an accumulated total of
6–12 min of fast running per session. In the beginning of the
8 weeks training plan, an example interval session consisted
of 2 times 6 min of (30 s at 100% of PTS—30 s below 80%
of PTS) with 2 min recovery between each 6 min block while
at the end of the 8 weeks training plan, an example interval
session consisted of 3 blocks of 2 repetitions of (2 min at 100%
of PTS—1 min 30 s below 80% of PTS) with 5 min recovery
between each block.

Plyometric or Dynamic Weight Training
Participants were asked to perform a predetermined circuit
training composed of six exercises and designed as PLT or
DWT (Figure 1). Details of the 8 weeks training are given in
Table 2. Participants performed the same circuit training during
the entire protocol but with progressive changes in the number
of cycles and the exercise/rest ratio. Hence, despite di�erent
exercises, the total training load (total duration of e�ort and
resting periods) was aimed to be equivalent between groups.
Also, as the participants had no previous experience in resistance
training, only body weight was used.

Jump Test
The squat jump test (SJ) was used to evaluate the explosive
concentric capacity of the lower limbs (Bosco et al., 1983).
Participants were required to jump vertically as high as possible
from a static squat position and to start the landing with knees
straight and ankles plantar-flexed. The depth of the squat was self-
selected. Participants had to maintain the static squat position
for two seconds prior to the jump. Squat jump height (SJ-h, in
cm) was calculated from flight time (tf ) (Eq. 1) as measured by
an optical measurement system (Optojump Next R�, MicroGate
Timing and Sport, Bolzano, Italy) sampling at 1,000 Hz.

SJ � h =
g t2f
2

(1)

Following the SJ, a five-repetition rebound jump test (5RJ) was
used to evaluate the plyometric characteristics of the participants’
lower limbs (Bosco et al., 1983; Dalleau et al., 2004). Participants
were required to jump vertically as high as possible while
minimizing ground contact time (tc) and maximizing flight
time (tf ). Participants were also instructed to minimize knee
actions (i.e., flexion and extension) during the test. tf and tc
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TABLE 2 | Characteristics of the 8 weeks training program.

Weeks 1 2 3 4 5 6 7 8

Endurance training

Volume (min) 130 135 145 150 160 165 170 175

Intensity < 80% PTS (min) 104 (80%) 106 (79%) 113 (78%) 114 (76%) 121 (76%) 121 (73%) 122 (72%) 123 (70%)

80% < Intensity < 95% PTS (min) 17 (13%) 19 (14%) 21 (14%) 24 (16%) 27 (17%) 30 (18%) 33 (19%) 35 (20%)

95% < Intensity < 105% PTS (min) 9 (7%) 10 (7%) 11 (8%) 12 (8%) 13 (7%) 14 (9%) 16 (9%) 17 (10%)

Strength training (PLT and DWT)

Volume (min) 40 40 62 62 62 62 80 80

Session * cycle (per week) 1 * 4 1 * 4 1 * 4 + 1 * 2 2 * 4 + 1 * 2 3 * 4 + 1 * 2 4 * 4 + 1 * 2 2 * 4 2 * 4

Warm up (min) 7 7 7 7 7 7 7 7

Time per exercise (sec) 20 25 30 30 35 35 40 40

Rest between exercise (sec) 40 35 30 30 25 25 20 20

Rest between cycle (min) 3 3 3 3 3 3 3 3

PTS, Peak treadmill speed; PLT, plyometric training; DWT, dynamic weight training.

FIGURE 1 | Circuit training protocol for the plyometric training (A) and dynamic weight training (B).

were measured by the Optojump Next R� system. The average
mechanical power during the positive (concentric) work per body
mass (5RJ-P, in W·kg�1) was then calculated on the basis of the
methods described by Bosco et al. (1983) using the following
formula (Eq. 2).

5RJ � P = g2 tf (tc + tf )
4tc

(2)

All jumps were performed with hands placed on the hips and
participants were wearing their habitual running shoes. After five
practice trials of each jump, three repetitions of each jump test
were performed with a 30 s rest between repetitions and a 2 min
rest between the SJ and 5RJ tests. The best repetition of the SJ
(based on the longest tf ) and 5RJ (based on the highest average
mechanical power) was used for statistical analysis.

Submaximal Running Test
Participants ran for 5 min on a treadmill at 12 km·h�1. Gas
exchange was measured breath-by-breath using a gas analyser
(Cortex Metamax 3B, Cortex Biophysik, Leipzig, Germany) and
subsequently averaged over 10 s intervals throughout the test.
Before each test, the gas analyzer was calibrated following the
manufacturer’s recommendations using ambient air (O2: 20.93%
and CO2: 0.03%) and a gas mixture of known composition (O2:
15.00% and CO2: 5.00%). The spirometer was calibrated using
a 3 L syringe. Respiratory exchange ratio (RER), oxygen uptake
(V̇O2), and carbon dioxide output (V̇O2) were averaged over the
last minute of the 5 min running trial. RER had to remain below
1.0 during the trials for the data to be included in the analysis,
otherwise the corresponding data were excluded as deemed to
not represent a submaximal e�ort. In such case, the selected
submaximal speed was lowered iteratively by 1 km·h�1 until an
RER below 1.0 was achieved. This resulted in submaximal testing
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speeds of 9 (n = 1), 10 (n = 6), 11 (n = 5), and 12 km·h�1

(n = 25). These speeds were kept the same for the post testing.
RE was calculated from the running velocity divided by net V̇O2
normalized to individual body mass (m·ml�1·kg�1) where net
V̇O2 = V̇O2�restV̇O2, with rest V̇O2 given by the average over
the last minute of a 5 min upright stance measure prior to the
submaximal running test. This choice of units for RE have a
conceptual advantage that numerical values are directly related
to RE (i.e., the larger the numerical value, the better the RE)
(Turner et al., 2003).

Maximal Incremental Test
Following the submaximal test, participants performed a
maximal incremental running test on the treadmill. Starting at
8 km·h�1, the treadmill speed was increased by 0.5 km·h�1 every
minute until volitional exhaustion. The participants received
strong verbal encouragement to ensure attainment of maximal
values during the test. V̇O2max, averaged over 30 s, was said
attained when two or more of the following criteria were met:
an increase in V̇O2 less than 2.1 ml·kg�1·min�1 between two
consecutive stages, an RER greater than 1.1, and a heart rate
(RS810, Polar Electro Oy, Kempele, Finland) of ±10 beats per
minute of the predictedmaximal heart rate value (i.e., 220 � age),
as done by Howley et al. (1995). PTS is defined as the running
speed of the last fully completed increment (MAS) plus the
fraction of time spent in the following uncompleted increment
(a) multiplied by the running speed increment (1s = 0.5 km·h�1)
(Kuipers et al., 2003): PTS MAS + a 4s.

Statistical Analyses
Assuming a medium e�ect size [partial eta squared (!2

p) = 0.06]
in RE improvement between matched and non-matched training
groups, an a error of 0.05, and a power of 0.8, sample size
calculations resulted in the requirement of 34 participants (Faul
et al., 2007). However, the 37 participants were kept to slightly
increase statistical power. Test-retest reliability coe�cients
ranged from r = 0.805 to 0.954 (p < 0.001) indicating good
to excellent reliability of measurements. Descriptive statistics
are presented using mean ± standard deviation. E�ect sizes
are reported as !2

p values. The normality of the data and
homogeneity of variances were verified using Shapiro-Wilk (p
range: 0.163–0.943) and Levene’s test (p range: 0.162–0.880),
respectively. Unpaired two-sided Student’s t-tests were used to
compare participant characteristics between matched and non-
matched groups at baseline. Statistical analysis was performed
using Jamovi [version 1.0.8 (Computer Software), retrieved
from https://www.jamovi.org] with a level of significance set at
p  0.05.

Effectiveness of the Training Interventions
A pre-post experimental design was used with two training
groups (matched vs. non-matched). E�ectiveness of the training
protocol on performance parameters (primary criteria RE;
secondary criteriaV̇O2max, PTS, SJ-h, and 5RJ-P) was assessed
by repeated measures ANOVA (RM-ANOVA) with pre vs. post
testing as within-subject factor and matched vs. non-matched

grouping as between subject factor, and employing Bonferroni
procedures for pair-wise post-hoc comparisons.

High Responders vs. Low Responders
Participants were all labeled as a responder or non-responder for
the three performance variables that were significantly influenced
(significant pre-post e�ect reported by the RM-ANOVA) by the
protocol (i.e., RE, V̇O2max, and PTS) based on set % changes
derived from the literature. A participant was determined as
responder when RE increased by more than 2.6% (Barnes and
Kilding, 2015), V̇O2max by more than 5.9% (Dalleck et al.,
2016), and PTS by more than 4% (arbitrary cut-o�). Chi-squared
analyses ($2) were performed on the number of responders
and non-responders to assess if there was a di�erence of
responsiveness for any of the three performance variables within
matched and non-matched groups.

RESULTS

Effectiveness
No significant group e�ect or interaction e�ect were found
between the training (pre-post) and grouping (matched vs. non-
matched) for any of the tested performance related variables.
These results indicate that the e�ect of the applied training
intervention on the performance related variables did not
significantly di�er between the matched and non-matched
groups (p � 0.436; Table 3). However, we found a significant
increase in RE, PTS, and V̇O2max after the training intervention
(p  0.003; Table 3). Noteworthy, post-hoc comparisons were not
investigated as no interaction e�ect was reported.

Responsiveness to Training
No statistical di�erence in the responsiveness to training
intervention were found between matched and non-matched
groups for any of the performance related variables that were
significantly influenced (significant pre-post e�ect reported by
the RM-ANOVA; Table 3) by the protocol (p � 0.248; Table 4).
Individual responses are shown in Figure 2.

DISCUSSION

This study aimed at determining the e�ectiveness and
responsiveness to two strength training modalities (i.e.,
PLT and DWT) combined with standard endurance training
to improve RE in recreational runners. Identifying the global
running pattern (i.e., TER or AER) and matching it to a
PLT or DWT type of strength training prescription resulted
in similar RE improvements and response to training than
if no matching had been performed. As such, the results of
the present study could not support our hypotheses. The
following discussion is elaborating on possible explanations
for the rejection of our hypothesis and directions for
future research.

When following a certain training intervention, some
individuals show a large positive response while others a small
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TABLE 3 | Mean ± SD for running economy (RE), maximal oxygen uptake
(V̇O2max), peak treadmill speed (PTS), squat jump height (SJ-h), and average
mechanical power during the positive (concentric) work per body mass of five
repeated rebound jumps (5RJ-P) per training group, pre and post the training
intervention as well as main effects (pre-post and group) and interaction effect
(pre-post ⇥ group) for these five performance related variables.

Pre Post

RE
(m·ml�1·kg�1)

Matched 5.09 ± 0.44 5.18 ± 0.53

Non-matched 5.18 ± 0.35 5.32 ± 0.39

Main effect group p = 0.398 !2
p = 0.020

Main effect pre-post p = 0.003 !2
p = 0.223

Interaction pre-post x group p = 0.565 !2
p = 0.010

V̇O2max
(ml·min�1·kg�1)

Matched 53.4 ± 8.27 55.6 ± 7.35

Non-matched 54.9 ± 8.14 56.3 ± 7.54

Main effect group p = 0.663 !2
p = 0.005

Main effect pre-post p = 0.002 !2
p = 0.244

Interaction pre-post x group p = 0.465 !2
p = 0.015

PTS
(km·h�1)

Matched 15.1 ± 1.83 15.8 ± 1.67

Non-matched 15.7 ± 1.63 16.2 ± 1.48

Main effect group p = 0.353 !2
p = 0.025

Main effect pre-post p < 0.001 !2
p = 0.598

Interaction pre-post x group p = 0.436 !2
p = 0.017

SJ-h
(cm)

Matched 30.9 ± 5.3 31.8 ± 5.4

Non-matched 31.0 ± 5.6 31.7 ± 5.1

Main effect group p = 0.996 !2
p = 0.000

Main effect pre-post p = 0.064 !2
p = 0.095

Interaction pre-post x group p = 0.888 !2
p = 0.001

5RJ-P
(W)

Matched 35.7 ± 6.6 36.0 ± 7.6

Non-matched 36.6 ± 7.9 37.1 ± 5.7

Main effect group p = 0.647 !2
p = 0.006

Main effect pre-post p = 0.606 !2
p = 0.008

Interaction pre-post ⇥ group p = 0.952 !2
p = 0.000

Significant effects (p  0.05) are reported in bold font. Effect size is reported as

partial eta squared (!2
p) values.

TABLE 4 | Results of Chi-squared ($2) tests on the number of responders and
non-responders for running economy (RE), maximal oxygen uptake (V̇O2max), and
peak treadmill speed (PTS) within the matched and non-matched training groups.

Matched Non-matched

Responder Non-
responder

Responder Non-
responder

$2 p

RE 7 11 9 10 0.271 0.603

V̇O2max 8 10 5 14 1.33 0.248

PTS 8 10 9 10 0.032 0.858

No significant difference (p  0.05) was observed.

or even no response (Mann et al., 2014). Moreover, individual
responsiveness to training can vary by training mode (Hautala
et al., 2006). Likewise, in the present study we aimed at
improving RE and found a significant increase of 2.3% at
groups level, but with individual e�ect ranging from a 4.8%
decrease to a 13.8% increase. This was concomitant with an
average PTS increase of 4.3% (ranging from a 3.8% decrease
to a 12.5% increase) and a V̇O2max increase of 3.8% (ranging
from a 10.6% decrease to a 14.8% increase). This wide range

FIGURE 2 | Individual response (in % change) for (A) running economy (RE),
(B) maximal oxygen uptake (V̇O2max), and (C) peak treadmill speed (PTS).
Dark gray and light gray bars indicate the matched and non-matched groups,
respectively. The horizontal line represents the threshold for identification of a
participant as a (non-)responder. Participants are ranked for each variable
from least (left) to most (right) desired effect.

of individual responses highlights the importance of taking into
account individual responses and not only the training e�ect
on a group level (see Figure 2). It has been reported that
average group level increases in RE ranged from 0 to 4.7%
using heavy weight strength training (Johnston et al., 1997)
and 0–4% using explosive training (Pellegrino et al., 2016;
Meszler et al., 2019), which is in line with the current findings.
Nevertheless, several studies reported no significant increase in
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RE following concurrent endurance and strength training in
recreational athletes despite improvements in muscle strength
(Ferrauti et al., 2010; Mikkola et al., 2011; Taipale et al., 2013;
Damasceno et al., 2015).

A possible explanation for the relatively small improvements
in RE in our study can be found in the duration of the training
period. A review by Denadai et al. (2017) highlighted that
longer training periods (>8–21 weeks) are likely to result in
greater RE improvements than shorter programs (6–8 weeks)
due to the time-course of neuromuscular adaptations following
concurrent training. A review on this topic by Rønnestad
and Mujika (2014) stated that the possible mechanisms of
how concurrent endurance and strength training can improve
RE are related to a delayed activation of less e�cient type
II muscle fibers, an improved neuromuscular e�ciency, the
conversion of fast-twitch type IIx fibers into more fatigue
resisted type IIa fibers, and an improved musculo-tendinous
sti�ness. During a short to medium term training period
(up to 8 weeks), as was the case in the current study, the
expected neuromuscular adaptations are an increased neural
activation and a smaller relative proportion of type IIx than
type IIa fibers, while an optimized musculo-tendinous sti�ness
is only achieved after longer training periods (>8–21 weeks).
The absence of significant e�ects on any of the jumping
performance parameters (SJ-h and 5RJ-P) in this study confirms
a possible lack of musculo-tendinous adaptations after the 8
weeks training period. Therefore, when aiming at improving
RE by strength training, longer training periods (>8–21 weeks)
are advised.

Another possible explanation for unachieved RE
improvement through concurrent training in some studies
is that because the exact mechanisms behind RE improvement
are still unknown, or the appropriate stimulus is not used. Some
studies were able to induce neuromuscular adaptations (i.e.,
increase in maximal and explosive strength) through heavy
weight training, while the intended e�ects on RE remained
absent (Taipale et al., 2013; Vikmoen et al., 2016). A recent
review on the e�ect of strength training on biomechanical
and neuromuscular adaptations concluded that evidences
that neuromuscular e�ects obtained by strength training
transfer to running biomechanics are lacking (Trowell et al.,
2020). In this study we tried to match the concurrent strength
training to the global running pattern in order to obtain
individualized neuromuscular adaptation in an attempt to
maximize RE improvements. However, as we did not obtain
better results, it seems that more insights are needed regarding
the interaction between neuromuscular stimuli, its resulting
adaptations, their transfer to the running pattern and their
impact on RE.

A possible limitation to the current study might be that
executed training sessions were unsupervised. Indeed, after
an initial supervised strength training session, athletes were
instructed to perform the training sessions on their own.
Moreover, as runners were novice to strength training, the load
of the training sessions was kept submaximal to avoid injuries.
Higher training load might lead to greater RE improvements.
Therefore, the adherence, intensity, order, and organization of

the training sessions was not strictly controlled and could partly
explain the low mean training responses as well as the large inter-
individual di�erences. On the other hand, it represents real-life
conditions. In addition, even though runners were used to do
interval trainings before starting the endurance training, the fact
that they were now following a structured endurance training
instead of their own “unstructured” one might partly explain the
increase of V̇O2max, PTS, and RE. Finally, RE was assessed at
a fixed running speed (12 km·h�1), which was obviously not
individualized for each participant. An alternative could have
been to determine RE at di�erent running speeds, as long as
they fall below the respiratory compensation point and that
a steady-state of oxygen consumption was reached within 3–
15 min (Barnes and Kilding, 2015). These speeds could have
been chosen to correspond to theoretical optimal running speeds
to run 5, 10, 21, and 42 km races for each individual or to
participants personal best on these distances. However, obtaining
these speeds would have required to perform the maximal
incremental running test before the submaximal one and to
perform several submaximal tests, which would have increase the
duration of the overall testing.

Future research should continue to focus on how
neuromuscular adaptations, induced by individualized
concurrent strength and endurance training, relate to changes
in running biomechanics and improvement in performance
(Trowell et al., 2020). Specific attention should go to the
time-course of these adaptations to reveal if improvements
are mainly made during the initial training period or if more
long-term progress can be made, depending on the intervention.
As well, a specific evaluation of the individually di�erent
responses to strength training, including PLY and DWT,
should be done. Understanding these mechanisms should help
predetermining which runner (i.e., global running pattern) needs
which additional strength training to optimize performance.
Such an individualized approach remains the ultimate goal for
coaches and athletes.

As practical guidelines we can conclude that inter individual
di�erences in training response to concurrent training are
substantial (Figure 2). We encourage coaches and athletes to
regularly evaluate the e�ectiveness of the prescribed training
program and to keep looking for ways to individualize and
optimize training responses. An initial assessment of the global
running pattern as being rather AER or TER using the Volodalen
method can be used as a way to identify the runners’ preferences
and be a guideline for training individualization.

CONCLUSION

As a conclusion, prescribing PLT or DWT strength training
based on global running pattern, in addition to regular
endurance training, did not lead to greater improvements in
RE for recreational runners. In order to be able to optimize
strength training prescription and its individualization in
endurance runners, future research should aim to understand
the exact mechanisms relating strength training to the resulting
neuromuscular and biomechanical adaptations while running.
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Despite the wealth of research on injury prevention and biomechanical risk factors

for running related injuries, their incidence remains high. It was suggested that injury

prevention and reconditioning strategies should consider spontaneous running forms in

a more holistic view and not only the injury location or specific biomechanical patterns.

Therefore, we propose an approach using the preferred running form assessed through

the Volodalen® method to guide injury prevention, rehabilitation, and retraining exercise

prescription. This approach follows three steps encapsulated by the PIMP acronym. The

first step (P) refers to the preferred running form assessment. The second step (I) is

the identification of inefficiency in the vertical load management. The third step (MP)

refers to the movement plan individualization. The answers to these three questions are

guidelines to create individualized exercise pathways based on our clinical experience,

biomechanical data, strength conditioning knowledge, and empirical findings in uninjured

and injured runners. Nevertheless, we acknowledge that further scientific justifications

with appropriate clinical trials and mechanistic research are required to substantiate

the approach.

Keywords: rehabilitation, exercise, running, clinical evaluation, biomechanics

INTRODUCTION

Despite the wealth of research on injury prevention and biomechanical risk factors for running
related injuries (RRI), their incidence remains high (1). Inconsistent associations between
biomechanical factors and RRI have been observed, both in science and practice (2). As a
result, injury prevention and strengthening, reconditioning, or rehabilitation programs in clinical
management of runners can be challenging. Recently, Jauhiainen et al. (3) concluded that injury
prevention and reconditioning strategies should consider spontaneous running forms in a more
holistic view and not only the injury location or specific biomechanical patterns. Other authors
suggested that the higher prevalence of soft tissue injuries and lacerations observed in cerebral
palsy athletes compared to other disabled athletes could be explained by their moving and walking
patterns (4). Herein, we suggest an approach using the preferred running form assessed through
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the Volodalen R© method (5) to guide injury prevention,
rehabilitation, and retraining exercise prescription. The approach
is based on biomechanical concepts from the scientific literature,
as well as our clinical experiences, and evaluates potential
discrepancies between spontaneously chosen running forms,
biomechanical abnormalities, and the natural tendency for
biological systems to self-optimize (6). In using this approach,
clinicians need to answer three questions, following three
steps, encapsulated by the PIMP acronym. The first step
is P, which stands for Preferred running form assessment,
with the question “Where is the runner on the terrestrial-
aerial running form continuum?”. The second step is I, which
stands for identification of Inefficiency in the vertical load
management, with the question “Is the running stride too soft,
too hard, or deems appropriate?”. The third step is MP, which
stands for Movement Plan individualization, with the question
“Would the runner benefits from extension- or flexion-based
exercises?”. The answers to these three questions are guidelines
to create individualized exercise pathways based on our clinical
experience, acknowledging that clinical studies are required to
support our approach.

THE FIRST STEP OF THE PIMP APPROACH

The first step in our approach is to determine the preferred
running pattern. A wide range of running styles exists, with no
unique style shown to be superior to another in terms of running
endurance performance or injury risk (3, 6–8). Our research
team has developed the Volodalen R© method which allows
placing a runner’s spontaneous running form along a continuum
ranging from pronounced terrestrial to pronounced aerial. The
Volodalen R© method comes from field observation and the
principle of self-optimized movements. The method evaluates
and scores five items to obtain a global V R©score: vertical
head oscillation, anterior-posterior motion of the elbows, pelvis
position at ground contact, foot position at ground contact, and
foot strike pattern (5) (Figure 1). These five items are subjectively
scored by an expert from 1 to 5 and summed to obtain a
quantitative V R©score. In other words, a pronounced terrestrial
running form shows limited vertical oscillation, pronounced arm
movement, a pelvis position close to the ground, a foot strike
position in front of the center of mass, and a rearfoot strike
pattern. A pronounced aerial running pattern is characterized
by the opposite. Based on the V R©score, four categories can
be determined: pronounced terrestrial (V R©score range: 5–10),
terrestrial (V R©score range: 11–15), aerial (V R©score range: 16–
20), and pronounced aerial (V R©score range: 21–25). The validity
of the Volodalen R© method is supported by previous research
(9, 10). Indeed, the visual observations of global running forms
was shown to reflect quantifiable objective parameters (9).
In addition, the method was shown to be a reliable tool to
subjectively assess global running patterns, independently of the
degree of expertise, whereas the subjective assessment of a single
item of the V R©score was rater-dependent (10). Alternatively, our
research team showed that the duty factor (DF), the proportion
of time spent in contact with the ground during a running

stride (11), can be used as a laboratory-based and objective
alternative to the subjective V R©score (12). To summarize, a
pronounced aerial running form is characterized by a spring-
like running pattern with pronounced vertical oscillations and
a more anterior (midfoot and forefoot) strike pattern than a
terrestrial running form. In contrast, a pronounced terrestrial
running form shows small vertical oscillations, as well as longer
contact times, and a more rearfoot strike pattern than an aerial
running form. Although the categorization and dichotomization
of running forms always involve simplification, this practice is
useful from a clinical perspective. For the PIMP approach, we
propose clustering individuals into four categories (Figure 2):
pronounced terrestrial—terrestrial—aerial—pronounced aerial.
This categorization can be obtained using either the subjective
V R©score or the objective DF (Figure 1).

The importance of determining the preferred running pattern
can be demonstrated by its relationship with metabolic cost.
When comparing a group of aerial and terrestrial runners,
both groups showed similar metabolic costs despite distinct
running kinetics and kinematics (7, 13), in accordance with
findings of similar metabolic costs for different running styles,
as summarized elsewhere (6). This supports the idea that self-
selected running forms are often the most economical (6), and
that humans tend to self-optimize movement patterns to reduce
metabolic cost. Another factor that shows the importance of
preferred running pattern is its relationship with vertical load
management, which leads to step 2.

THE SECOND STEP OF THE PIMP
APPROACH

The second step in our approach is to identify whether the runner
or patient shows an inefficiency in the vertical load management.
As running is a weight bearing activity, the way vertical load is
handled is a key factor in RRI (2, 14). An efficient running stride
comes from a compromise between compliance—the acceptance
of joint deformation—and stiffness—the resistance against joint
deformation. A terrestrial runner needs a certain degree of
joint compliance to show a running pattern with less vertical
oscillation and a smooth foot unroll. An efficient rearfoot strike
needs sufficient ankle and knee range of motion to generate
a smooth foot unroll during early stance (7, 14–16). On the
contrary, an aerial runner needs a certain amount of leg stiffness
to be able to perform a vertically oscillating stride. An efficient
forefoot strike needs a sufficiently stiff ankle joint to be able
to withstand the external ankle dorsiflexion moment during
early stance (17, 18). However, both the aerial and terrestrial
running pattern can become suboptimal in the vertical load
management, which could lead to injury. Such inefficiencies
can be categorized as either being “too soft”—an excessive
compliance—or “too hard”—an excessive stiffness. Kinematic,
kinetic, and spatiotemporal risk factors, as determined in a
recent systematic review by Ceyssens et al. (2) were categorized
according to the inefficiency identified by the PIMP approach
(Table 1). Almost each risk factor could be interpreted as a sign
of a too soft or too hard running pattern. For more details about
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FIGURE 1 | Schematic illustration of the Volodalen® method used to evaluate the runner’s running form and which attributes a global score ranging between 5 and 25

based on five criteria. Each of these five criteria is scored from 1 to 5. A global score smaller or equal to 15 indicates a terrestrial runner while a global score larger than

15 indicates an aerial runner. Illustration of posture and vertical ground reaction force during a running stride at 10 km/h in a typical flexed terrestrial runner (left picture

and red curve) and a typical extended aerial runner (right picture and blue curve).

FIGURE 2 | Schematic representation of the three steps (to be read vertically) of the PIMP approach. Exercises are ranked by their degree of flexion (left; red) or

extension (right; blue) into four levels, with the fourth level showing the greatest degree of flexion or extension. This ranking allows individualizing the movement plan

(step 3) based on the positioning of the runner along the terrestrial-aerial continuum (step 1) and the presence of a possible inefficiency in the vertical load

management (step 2). Colored zones indicate if either flexion-based or extension-based are advised and too which degree (level 1–4). Gray areas indicate the

proposed exercises for runners with efficient running forms (neither too soft nor too hard).
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TABLE 1 | Kinematic, kinetic, and spatiotemporal risk factors as determined by a systematic review by Ceyssens et al. (2) and categorized according to the inefficiency

identified by the PIMP approach.

Inefficiency Risk factor Injured runner Non-injured runner Sex

Too hard ↓ ankle eversion range of motion (◦) 16.7 (2.5) 20.4 (3.7) ♀ / ♂

↓ peak ankle eversion velocity (◦/s) 326 (95) 479 (157) ♀ / ♂

↑ knee joint stiffness (Nm/◦) 6.89 (2.65) 6.72 (2.03) ♀ / ♂

↑ vertical instantaneous loading rate (BW/s) 88.0 (13.9) 73.1 (15.9) ♀

127 (40) 97 (31) ♂

↑ vertical average loading rate (BW/s) 78.2 (11.1) 60.7 (12.8) ♀

↑ vertical impact peak (BW) 1.72 (0.21) 1.51 (0.22) ♀

↑ peak braking force (BW) <-0.27 >-0.23 ♀

↓ step rate (over-striding) (steps/min) <166 >178 ♀ / ♂

↓ ground contact time (s) 0.213 (0.040) 0.237 (0.026) ♂

Too soft ↑ peak hip adduction angle (◦) (contralateral hip drop) 12.8 (2.8) 8.1 (4.5) ♀

↑ internal knee abduction moment impulse (Nms) 9.2 (3.7) 4.7 (3.5) ♀ / ♂

↑ peak external knee adduction moment (Nm/kg) 1.32 (1.08–1.56) 0.93 (0.78–1.08) ♀ / ♂

↑ peak knee internal rotation angle 3.9 (3.7) 0.0 (4.6) ♀

↑ peak ankle eversion velocity (◦/s) 360 (271–449) 261 (212–310) ♀ / ♂

↑ peak ankle eversion angle (◦) 8.1 (3.0) 4.4 (4.2) ♀ / ♂

Other ↓ asymmetry in vertical impact peak (symmetry angle) 1.89 (1.88) 2.75 (2.48) ♀ / ♂

↑ asymmetry in ground contact time (symmetry angle) 1.53 (1.04) 1.50 (2.06) ♀ / ♂

Each risk factor is categorized as “too hard”, “too soft”, or other according to the inefficiency identified by the PIMP approach. Presented risk factors were found to have at least limited

evidence of being related to running related injuries. Variables with very limited or no statistical relation with injury were not included. For each variable, mean (standard deviation) or

mean (95% confidence interval) for the injured and non-injured runners were presented where possible. If not, cut-off values for high- and low-risk groups were given. In the last column,

a male (♂) or female (♀) symbol was used to indicate whether evidence exists for male, female, or both.

the experimental conditions in which these data were collected,
we refer the readers to the review and associated original articles.

In running forms that are too hard, tissue vibrations
or “noisy” strides linked to an excessive impact at ground
contact are observed. For example, a runner that over-strides
can be defined as having a too hard running pattern. Such
a running pattern is characterized by a low step rate, an
increased impact intensity, and large braking forces; all of
which have been related to RRI (2). In contrast, inconsistencies
in mobilities between transverse and coronal plane motion
(especially at the feet, knees, and hips) and RRI conceptually
underpin the too soft running form. In this case, the non-
sagittal plane movements considerably contribute to impact
attenuation. For instance, RRI such as the iliotibial band
syndrome, can be associated with large ranges of non-sagittal
motion, such as peak hip adduction (contralateral hip drop
during stance) or knee internal rotation (19, 20). The excess
of “softness” characteristics are more frequent in female
runners, with a less clear association between non-sagittal
plane biomechanics and RRI when considering both males and
females (19).

These too soft and too hard characteristics can be observed
in both aerial and terrestrial runners. The real challenge is to
be able to observe these characteristics in a clinical setting.
Most of these variables are only measurable in a laboratory
setting, using equipment which most coaches, physiotherapists,
or health clinicians do not have access too. However, it
is possible to assess such motor inefficiency visually or by

using cheaper technologies such as wearable sensors or video
analyses. It must be noted that there is no clear threshold
to define what constitutes too much or too little for any
given biomechanical parameter. Besides, the values associated
with the risk factors presented in Table 1 are speed, gender,
method, and injury dependent. Hence, clinical judgment is
essential in our proposed PIMP approach. Expertise in such
clinical judgment can only be obtained through years of
experience in assessing running gait parameters in uninjured
and injured runners. The too soft or too hard concept should
provide easy to interpret concepts for practitioners to develop
such competence.

THE THIRD STEP OF THE PIMP
APPROACH

The third step in our approach consists in designing an
individualized movement plan (Figure 2). Extension-based
strengthening exercises promote short ground contact times,
pushing the center of mass forward and upward, stiffness, and
body alignment, i.e., shoulder-hip-knee-ankle, and activation of
the posterior muscular chains. Such exercises correspond with
how aerial runners manage the vertical load during running.
Therefore, these exercises are suggested for aerial runners or
any runners presenting a too soft running pattern. In contrast,
flexion-based strengthening exercises promote long ground
contact times, pushing the center of mass backward and
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TABLE 2 | Four examples of the application of the PIMP approach.

Complaint or injury Step 1

Preferred

running form

Step 2

Identify inefficiency

Step 3

Movement plan

Lower back pain Pronounced terrestrial Too hard: overstriding Level 4 flexion-based exercises e.g.,: core stability

in flexed position

Proximal hamstring pain Terrestrial Too soft: increased transversal and

frontal plane pelvic rotation

Level 2 extension-based exercises e.g.,: step

downs with external hip rotation

Iliotibial band syndrome Aerial Too soft: knee valgus Level 3 extension-based exercises e.g.,:

skipping drills

Achilles tendinopathy Pronounced aerial Too hard: pronounced forefoot strike

and increased flight times

Level 1 flexion-based exercises e.g.,: quarter-squats

downward, large ranges of motion, and activation of the anterior
muscular chains. Such exercises correspond with how terrestrial
runners manage the vertical load during running. Therefore,
these exercises are recommended for terrestrial runners or any
runners presenting a too hard running pattern. In other words,
the preferred running form, as classified along the terrestrial-
aerial continuum, determines the starting point of strengthening
exercises (from flexion-based to extension-based). With these
individualized exercises, we aim to allow the runners to PIMP
their running form toward becoming less hard or less soft. The
approach can be clarified with four examples, as presented in
Table 2.

Both a too soft or too hard running pattern have been
linked independently with the same RRI (21). This highlights
the importance of setting up a movement plan starting from the
preferred running pattern and any inefficiency in the vertical load
management, rather than only considering the type of injury. For
instance, plantar fasciopathy has been related to both excessive
pronation (too soft) and increased impact intensity (too hard)
(21), warranting a different movement plan.

STRENGTHS AND LIMITATIONS

The PIMP approach presented herein proposed to understand
and analyze the running form from both a global and local point
of view to enhance the ability of practitioners to individualize
prescription, rehabilitation, and retraining programs, with the
goal of minimizing the recurrence of running-related injuries.
Such multiscale (global and local movements reading) approach
could allow a better understanding of clinical, scientific, and
social issues linked to recurrent running-related injuries. Indeed,
physical and rehabilitation medicine is a real challenge in the
21st century (22) but the ease of use of the subjective approach
presented herein makes it replicable in resource limited settings.

Nonetheless, the scientific validation of the effectiveness of
the proposed approach is still needed. Indeed, the method is
based on our clinical experience, biomechanical data, strength
and conditioning knowledge, and empirical observations in
both injured and uninjured runners. We acknowledge that
further scientific justifications with appropriate clinical trials and

mechanistic research are required to substantiate the approach
and therefore constitute the main limitation of the method in
its current form. Moreover, determining the preferred running
pattern of injured runners might be a difficult task because of
possible gait modifications due to pain. In that case, indirect
information could be obtained, e.g., by looking at the wear
patterns of the shoes, by assessing the antero-posterior position
of the quiet standing center of pressure (23), or by asking how
runners perceive their running form.

PERSPECTIVES

In addition to strengthening exercises, gait retraining, e.g.,
stride frequency or foot strike pattern manipulations, can be an
important part of the rehabilitation program (24). The PIMP
approach can also be used to guide gait retraining strategies and
recommendations but elaborating on this PIMP application is
beyond the scope of the current opinion and warrants a separate
discussion.We believe the presented approach provides a general
framework for practitioners to evaluate preferred running forms,
identify inefficiency in vertical load management, and design an
individualized movement plan.
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Non‑South East Asians have 
a better running economy 
and different anthropometrics 
and biomechanics than South East 
Asians
Aurélien Patoz1,2*, Thibault Lussiana2,3,4, Bastiaan Breine2,5, Cyrille Gindre2,3, 
Laurent Mourot4 & Kim Hébert‑Losier6,7

Running biomechanics and ethnicity can influence running economy (RE), which is a critical factor 
of running performance. Our aim was to compare RE of South East Asian (SEA) and non‑South East 
Asian (non‑SEA) runners at several endurance running speeds (10–14 km/h) matched for on‑road 
racing performance and sex. Secondly, we explored anthropometric characteristics and relationships 
between RE and anthropometric and biomechanical variables. SEA were 6% less economical 
(p = 0.04) than non‑SEA. SEA were lighter and shorter than non‑SEA, and had lower body mass 
indexes and leg lengths (p ≤ 0.01). In terms of biomechanics, a higher prevalence of forefoot strikers 
in SEA than non‑SEA was seen at each speed tested (p ≤ 0.04). Furthermore, SEA had a significantly 
higher step frequency (p = 0.02), shorter contact time (p = 0.04), smaller footstrike angle (p < 0.001), 
and less knee extension at toe‑off (p = 0.03) than non‑SEA. Amongst these variables, only mass 
was positively correlated to RE for both SEA (12 km/h) and non‑SEA (all speeds); step frequency, 
negatively correlated to RE for both SEA (10 km/h) and non‑SEA (12 km/h); and contact time, 
positively correlated to RE for SEA (12 km/h). Despite the observed anthropometric and biomechanical 
differences between cohorts, these data were limited in underpinning the observed RE differences at 
a group level. This exploratory study provides preliminary indications of potential differences between 
SEA and non‑SEA runners warranting further consideration. Altogether, these findings suggest 
caution when generalizing from non‑SEA running studies to SEA runners.

Running economy (RE), which refers to steady-state oxygen consumption at a given submaximal running speed, 
is a critical factor of running  performance1. RE has been shown to di!er between ethnic  groups2–5. Indeed, 
Weston, et al.2 noted greater RE in African than Caucasian distance runners though not elucidating the origin 
of these di!erences. Similarly, elite Kenyans were found more economical than their Caucasian  counterparts3–5. 
#is di!erence was attributed to body dimensions, with longer legs (~ 5%), thinner and lighter calf musculature, 
as well as lower body mass and body mass index (BMI) in Kenyans than Caucasians, but not to di!erences in 
muscle $bre  type3–6. #ese $ndings may partially explain the success of African runners at the elite level. Indeed, 
the longer, slenderer legs of Kenyans could be advantageous when running as RE is correlated with leg  mass6. 
However, the precise mechanisms underpinning anthropometric and economy relationships are not  clear7.
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Research into running and ethnic di!erences has mostly compared Caucasian and African  runners2–5,8–13. 
#ese studies highlight di!erences in  physiological2–5,12,  anthropometrical9,14,  neuromuscular15, and running 
gait  patterns8,10,11 between ethnicities. Altogether, these results indicate caution in the generalization of results 
from one ethnic group to another.

#ere exists only limited inclusion of Asian cohorts in running  studies14–16 and, to the best of our knowledge, 
no study comparing their RE to another ethnic group. Nonetheless, road race participation continues to grow in 
Asia despite a decline in the number of participants since 2016 outside of  Asia17. #erefore, the relative underrep-
resentation of Asian runners in research is of concern, especially when considering their unique anthropometric 
 features18,19, autonomic responses to  exercise20, muscle–tendon unit  properties15, walking gait  characteristics21, 
and footstrike  patterns16 compared to other ethnic groups.

Although running biomechanics can in%uence  RE1, the relationships between select biomechanical vari-
ables and RE are unclear and even con%icting in the scienti$c literature. For instance, Gruber, et al.22 observed 
no di!erence in RE between rearfoot (RFS) and non-rearfoot (non-RFS) strike patterns, while both  RFS23 and 
non-RFS24 patterns were suggested as more economical than the other. Similarly, superior RE has been linked 
with both  long25 and  short26 ground contact times (tc), while Williams and  Cavanagh27 found no signi$cant 
relation between RE and tc. #ese divergent $ndings might be due to di!erences between the cohorts examined, 
including ethnic di!erences.

For these reasons, our primary aim was to explore whether South East Asian (SEA) and non-South East Asian 
(non-SEA) runners demonstrate similar RE at several endurance running speeds when matched for on-road 
running performance and sex. Secondly, we aimed to explore anthropometric di!erences between groups and 
potential relationships between RE and anthropometric and biomechanical variables in these groups.

Materials and methods
Participants. An existing database of 54 runners was explored to match SEA and non-SEA runners based 
on sex and on-road running performance on 21.1  km28. #e matching led to the inclusion of 34 trained run-
ners, 20 males (variable: mean ± standard deviation, age: 36 ± 6 years, mass: 68 ± 11 kg, height: 176 ± 7 cm, leg 
length: 92 ± 5 cm, BMI: 22 ± 2 kg/m2, running distance: 56 ± 20 km/week, running experience: 9 ± 7 y, and best 
half-marathon time: 93 ± 9 min) and 14 females (age: 36 ± 6 y, mass: 53 ± 6 kg, height: 162 ± 4 cm, leg length: 
84 ± 3 cm, BMI: 20 ± 2 kg/m2, running distance: 58 ± 17 km/week, running experience: 7 ± 5 years, and best half-
marathon time: 100 ± 9 min) in this study. For study inclusion, participants were required to be in good self-
reported general health with no current or recent (< 3 months) musculoskeletal injuries and to meet a certain 
level of running performance. More speci$cally, runners were required to have competed in a road race in the 
last year with $nishing times of ≤ 50 min for 10 km, ≤ 1 h 50 min for 21.1 km or ≤ 3 h 50 min for 42.2 km. #e 
ethical committee of the National Sports Institute of Malaysia approved the study protocol prior to participant 
recruitment (ISNRP: 26/2015), which was conducted in accordance with international ethical  standards29 and 
adhered to the latest Declaration of Helsinki of the World Medical Association.

Runners were classi$ed in two ethnic groups based on their nationality: SEA and non-SEA, which led to a 
total of 17 participants per group. SEA runners were from China (n = 12), Malaysia (n = 14), and Indonesia (n = 1); 
while non-SEA runners were from England (n = 7), Sweden (n = 2), Australia, Brazil, Canada, Denmark, France, 
Norway, Poland, and Scotland (n = 1 each). All non-SEA runners identi$ed as “white”.

Experimental procedure. Each participant completed one experimental laboratory session. A'er provid-
ing written informed consent, the right leg length of participants was measured (from anterior superior iliac 
spine to medial malleolus in supine). Participants then ran 5 min at 9 km/h on a treadmill (h/p/cosmos mer-
cury®, h/p/cosmos sports & medical gmbh, Nussdorf-Traunstein, Germany) as a warm-up. Participants then 
completed 3 × 4-min runs at 10, 12, and 14 km/h (with 2-min recovery periods between runs) on the tread-
mill, during which time RE was assessed. Retro-re%ective markers were subsequently positioned on individuals 
(described in Data Collection section) to assess running kinematics. For each participant, a 1-s static calibration 
trial was recorded, which was followed by 3 × 30-s runs at 10, 12, and 14 km/h (with 1-min recovery periods 
between each runs) to collect three-dimensional (3D) kinematic data in the last 10-s segment of these runs 
(30 ± 2 running steps), resulting in at least 25 steps being  analysed30. RE and biomechanics were assessed sepa-
rately given laboratory constraints and interference with data quality (e.g., presence of testing equipment that 
occluded markers). All participants were familiar with running on a treadmill as part of their usual training 
programs and wore their habitual running shoes during testing.

Data collection. Gas exchange was measured using TrueOne 2400 (ParvoMedics, Sandy, UT, USA) during 
the 3 × 4-min runs. Prior to the experiment, the gas analyzer was calibrated using ambient air  (O2: 20.93% and 
 CO2: 0.03%) and a gas mixture of known concentration  (O2: 16.00% and  CO2: 4.001%). Volume calibration was 
performed at di!erent %ow rates with a 3 L calibration syringe (5530 series, Hans Rudolph, Shawnee, KS, USA). 
Oxygen consumption ( V̇O2 ), carbon dioxide production ( V̇CO2 ), and respiratory exchange ratio (RER) values 
were averaged over the last minute of each 4-min run. Steady state was con$rmed through visual inspection of 
the V̇O2 and V̇CO2 curves for all running trials. RER had to remain below unity during the trials for data to be 
included in the analysis, otherwise the corresponding data were excluded as deemed to not represent a submaxi-
mal e!ort. No trial was excluded on this basis. RE was expressed as the oxygen cost per mass to the power of 
0.75 per kilometer (ml/kg0.75/km) to minimize the in%uence of body mass per se on V̇O2 during  running31. RE 
expressed in ml/kg/km was also computed for reference and is provided as supplementary materials. A higher 
RE value indicates a less economical runner.
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3D kinematic data were collected at 200 Hz using seven infrared Oqus cameras ($ve Oqus 300+, one Oqus 
310+, and one Oqus 311+) and Qualisys Track Manager so'ware version 2.1.1 build 2902 together with the Pro-
ject Automation Framework Running package version 4.4 (Qualisys AB, Göteborg, Sweden). A virtual laboratory 
coordinate system was generated such that the x–y–z axes denoted the medio-lateral (pointing towards the right 
side of the body), posterior-anterior, and inferior-superior directions, respectively. #irty-$ve retro-re%ective 
markers (Fig. 1) of 12 mm in diameter were used for static calibration and running trials, and were a)xed to 
the skin and shoes of individuals over anatomical landmarks using double-sided tape following standard guide-
lines from the Project Automation Framework Running  package32. #e 3D marker data were exported in .c3d 
format and processed in Visual3D Professional so'ware version 5.02.25 (C-Motion Inc., Germantown, MD, 
USA). More explicitly, the 3D marker data were interpolated using a third-order polynomial least-square $t 
algorithm, allowing a maximum of 20 frames for gap $lling, and subsequently low-pass $ltered at 20 Hz using 
a fourth-order Butterworth $lter.

Biomechanical variables. From the marker set, a full-body biomechanical model with six degrees of free-
dom at each joint and 15 rigid segments was constructed. #e model included the head, upper arms, lower 
arms, hands, thorax, pelvis, thighs, shanks, and feet. Segments were assigned inertial properties and centre 
of mass (COM) locations based on their  shape33 and attributed relative mass based on standard regression 
 equations34. Kinematic variables were calculated using rigid-body analysis and whole-body COM location was 
calculated from the parameters of all 15 segments. Ankle ( θankle ) and knee ( θknee ) joint angles were de$ned 
as the orientation of the distal segment relative to the proximal  one35. Angles were computed using an x–y–z 
Cardan  sequence36,37 equivalent to the joint coordinate  system36,38, leading to rotations with functional and ana-
tomical meaning (%exion–extension, abduction–adduction, and internal–external rotation). Noteworthy, only 
the %exion–extension Cardan angle was considered for analysis due to possible errors linked with kinematic 
 crosstalk39–41. Joint angles were calculated at footstrike and toe-o! events. Footstrike angle (FSA) was calculated 
following the procedure described in Altman and  Davis42. FSA was normalized by taking the angle of the foot 
at footstrike and subtracting the angle of the foot during standing trial. #e mean FSA was used to categorise 
footstrike patterns of runners in two categories: RFS when the FSA was greater than 8°, and non-RFS when 8° 
or  less42. Among all running trials, 5% and 7% were borderline (within 1°) RFS and non-RFS, respectively. #ese 
borderline footstrike patterns were only present in SEA runners. Visual inspection con$rmed the footstrike pat-
tern classi$cations were correct.

Running events were derived from the trajectories of the 3D marker data using similar procedures to those 
previously reported 43,44. All events were veri$ed to ensure correct identi$cation and were manually adjusted 
when required.

Swing time (ts) and tc were de$ned as the time from toe-o! to footstrike and from footstrike to toe-o! of the 
same foot, respectively. Flight time (tf) was de$ned as the time from toe-o! to footstrike of the contralateral foot. 
Step frequency (SF) was calculated as SF = 1

tc+tf
 , and step length (SL) as SL = s/SF , where s represents running 

speed. In addition to raw units, SL was expressed as a percentage of participant’s leg length. #e spring-mass 
characteristics of the lower limb were estimated using a sine-wave model following the procedure de$ned by 
Morin, et al.45. More explicitly, leg sti!ness (kleg) was calculated as [Eq. (1)]

Figure 1.  Retro-re%ective markers (N = 35) placed on anatomical landmarks of participants for biomechanical 
data collection. R and L at the start of the acronyms denote right and le', respectively.
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where Fz,max represents the maximal vertical force and was estimated using Fz,max = mg π
2

(

tf
tc
+ 1

)

 , !L is the 
maximal leg length deformation, i.e., the leg spring compression and given by !L =

√

z2COM,FS + s2t2b − zCOM,MS , 
where s de$nes running speed, tb denotes the braking time, i.e., the time from footstrike to mid-stance, and 
 zCOM,FS and  zCOM,MS are the COM heights at footstrike and mid-stance, respectively. For all biomechanical meas-
ures, the values extracted from the 10-s data collection for each participant were averaged for subsequent statisti-
cal analyses.

Statistical analysis. Descriptive statistics are presented using mean ± standard deviation (SD). Data nor-
mality and homogeneity of variances were veri$ed using Kolmogorov–Smirnov and Levene’s test, respectively. 
Participant characteristics between SEA and non-SEA runners were compared using unpaired two-sided Welch’s 
t-tests when homogeneity of variance assumptions were violated and unpaired two-sided Student’s t-tests oth-
erwise. #e e!ect of group (SEA, non-SEA) and running speed on RE and biomechanical variables was evalu-
ated using a linear mixed e!ects model $tted by restricted maximum likelihood. #e within-subject nature was 
controlled for by including random e!ects for participants (individual di!erences in the intercept of the model). 
#e $xed e!ects included group and running speed (both categorical variables). Cohen’s d e!ect size was calcu-
lated when a signi$cant group e!ect was  observed46, and classi$ed as small, moderate, and large when d values 
were larger than 0.2, 0.5, and 0.8,  respectively46. Footstrike distribution between SEA and non-SEA runners were 
compared at all running speeds using Fisher exact tests given that some of the expected frequencies were less 
than $ve.

A correlation matrix between anthropometric characteristics (mass and height, leg length, BMI, and ratio of 
leg length over height) was generated to identify unrelated anthropometric characteristics. Pearson correlation 
coe)cients (r) between RE and the identi$ed independent anthropometric variables were computed using RE 
values at the three running speeds separately, as well as with and without subgrouping of participants based on 
ethnicity. Similarly, Pearson correlation coe)cients (r) between RE and biomechanical variables were computed 
at the three running speeds separately, as well as with and without subgrouping of participants based on ethnicity. 
Correlations were considered very high, high, moderate, low, and negligible when absolute r values were between 
0.90–1.00, 0.70–0.89, 0.50–0.69, 0.30–0.49, and 0.00–0.29,  respectively47. Given the number of correlations and 
exploratory nature of these analyses, only signi$cant correlations reaching the moderate threshold were deemed 
meaningful. Statistical analyses were performed using Jamovi (version 1.2.17, Computer So'ware, retrieved from 
https:// www. jamovi. org) and R (version 3.5.0, #e R Foundation for Statistical Computing, Vienna, Austria) 
with a level of signi$cance set at p ≤ 0.05.

Results
Participant characteristics. Non-SEA runners were signi$cantly heavier and taller, had a larger BMI and 
longer legs, had footwear with a larger heel-to-toe drop, and were more experienced than SEA runners (p ≤ 0.02; 
Table 1). Otherwise, demographic and footwear characteristics of non-SEA and SEA runners were similar (see 
Table 1).

Running economy. SEA runners were signi$cantly less economical (6%) than non-SEA runners (average 
across speeds: 522.6 ± 47.4 vs 492.4 ± 42.2 ml/kg0.75/km), with a moderate main e!ect of group on RE (p = 0.04, 

(1)kleg =
Fz,max

!L

Table 1.  Participant and footwear characteristics for South East Asian (SEA) and non-South East Asian (non-
SEA) runners. Signi$cant di!erences (p ≤ 0.05) identi$ed by Student’s or Welch’s t-tests are reported in bold. M 
male, F female, BMI body mass index, and NA not applicable.

Characteristics SEA Non-SEA p
Sex M = 10; F = 7 M = 10; F = 7 NA
Age (y) 34 ± 4 38 ± 7 0.08
Mass (kg) 56 ± 9 68 ± 12 0.002
Height (cm) 167 ± 8 175 ± 9 0.01
Leg length (cm) 86 ± 4 91 ± 6 0.01
BMI (kg/m2) 20 ± 2 22 ± 2 0.004
Leg length over height (%) 52 ± 1 52 ± 1 0.54
Running distance (km/week) 60 ± 19 54 ± 18 0.32
Running experience (y) 6 ± 3 11 ± 7 0.02
Running performance on 21.1 km (min) 96 ± 9 96 ± 10 0.81
Shoe mass (g) 231 ± 32 215 ± 39 0.22
Shoe stack height (mm) 25 ± 3 25 ± 3 0.83
Shoe heel-to-toe drop (mm) 8 ± 3 6 ± 3 0.01

https://www.jamovi.org
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d = 0.67; Fig.  2). #ere was no signi$cant main e!ect of speed (p = 0.27) or group x speed interaction e!ect 
(p = 0.89) on RE. Larger di!erences were seen between SEA and non-SEA runners when expressing RE in ml/
kg/km instead of ml/kg0.75/km (see section S1 of supplementary materials).

Biomechanical characteristics. #ere was a signi$cant main e!ect of group on SF, SL, and tc (p ≤ 0.04; 
Table 2), with SEA having a higher SF (moderate e!ect; d = 0.75), smaller SL (small e!ect; d = 0.36), and shorter 
tc (moderate e!ect; d = 0.67) than non-SEA runners. #ere was no group e!ect on normalized SL, tf and kleg 
(p ≥ 0.23; Table 2). A signi$cant speed e!ect was observed for all temporal variables (p ≤ 0.01; Table 2). SF, SL, and 
tf increased with increasing speed, whereas tc and kleg decreased with increasing speed. None of these variables 
demonstrated a group x speed interaction (p ≥ 0.32; Table 2).

#ere was a signi$cant group e!ect on θankle at footstrike and θknee at toe-o! (p ≤ 0.03; Table 3), with SEA 
having less ankle dorsi%exion than non-SEA at footstrike (large e!ect; d = 1.20) and less knee extension at toe-o! 
(moderate e!ect; d = 0.75). A signi$cant speed e!ect was observed for θankle and θknee at toe-o! (p ≤ 0.02; Table 3), 
with greater %exion at footstrike and extension at toe-o! with increasing speed. None of these variables showed 
a group x speed interaction except θankle at footstrike (p = 0.007; Table 3), with SEA decreasing dorsi%exion with 
increasing speed while non-SEA increased dorsi%exion with increasing speed.

Footstrike angle and pattern. SEA had a signi$cantly lower FSA than non-SEA runners (large e!ect; 
d = 1.67), as depicted by the group e!ect on FSA (p < 0.001; Table  4). A speed e!ect was observed on FSA 
(p < 0.001; Table 4), indicating an increase of FSA with increasing running speed, while no signi$cant group x 
speed interaction e!ect was noted (p = 0.13; Table 4). Footstrike distribution between SEA and non-SEA runners 
di!ered signi$cantly at all speeds, with non-SEA being more commonly RFS (p ≤ 0.04; Table 4).

Figure 2.  Running Economy (RE) of South East Asian (SEA) and non-South East Asian (non-SEA) runners at 
several endurance running speeds. Linear mixed e!ects modelling identi$ed a signi$cant group e!ect (p ≤ 0.05).

Table 2.  Step frequency (SF), step length (SL), contact time (tc), %ight time (tf), and spring-mass 
characteristics of the lower limb as given by leg sti!ness (kleg) for South East Asian (SEA) and non-South East 
Asian (non-SEA) runners at endurance running speeds. Signi$cant di!erences (p ≤ 0.05) identi$ed by linear 
mixed e!ects modelling are indicated in bold. SL was expressed as a percentage of participant’s leg length in 
addition to raw units. a Step length normalized to leg length.

Running speed (km/h) Group SF (steps/min) SL (cm) SL (%)a tc (ms) tf (ms) kleg (kN/m)

10
SEA 176 ± 9 95 ± 5 110 ± 7 268 ± 24 78 + 21 12.3 ± 2.5
Non-SEA 168 ± 9 100 ± 5 110 ± 6 287 ± 31 84 + 23 13.5 ± 2.8

12
SEA 181 ± 10 111 ± 6 128 ± 8 237 ± 22 96 ± 21 12.3 ± 2.4
Non-SEA 173 ± 10 116 ± 7 127 ± 6 253 ± 23 98 ± 25 13.5 ± 3.0

14
SEA 187 ± 11 125 ± 7 145 ± 9 215 ± 20 107 ± 19 12.0 ± 2.2
Non-SEA 179 ± 11 131 ± 8 144 ± 7 231 ± 21 107 ± 23 12.8 ± 2.7

Group e!ect 0.02 0.03 0.78 0.04 0.67 0.23
Running speed e!ect  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001 0.009
Interaction e!ect 0.93 0.48 0.68 0.81 0.44 0.32
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Relationship between RE and anthropometric characteristics. High positive correlations were 
identi$ed between mass and height (r ≥ 0.83; p < 0.001), mass and leg length (r ≥ 0.74; p < 0.001), and mass and 
BMI (r ≥ 0.84; p < 0.001), while the correlation between mass and ratio of leg length over height was negligible 
and not signi$cant (r ≤ 0.17; p ≥ 0.35). Hence, relationships between RE and mass and ratio of leg length over 
height were further explored (Table 5). For SEA runners, a high positive correlation was observed between RE 
and mass at 12 km/h (r = 0.69, p < 0.001; Table 5), while high positive correlations were observed between RE and 
mass for non-SEA runners at all speeds (r ≥ 0.65, p ≤ 0.005; Table 5). For runners combined, the strongest cor-
relations were low. Table 6 presents all correlations, including the low and negligible ones. Relationships between 
RE expressed in ml/kg/km and anthropometric characteristics are provided in section  S1 of supplementary 
materials.

Table 3.  Flexion–extension angle of the lower limb for South East Asian (SEA) and non-South East Asian 
(non-SEA) runners at endurance running speeds. Signi$cant di!erences (p ≤ 0.05) identi$ed by linear mixed 
e!ects modelling are indicated in bold. θankle : ankle joint angle, θknee : knee joint angle, FS: footstrike, and TO: 
toe-o!.

Running speed (km/h) Group
θankle(°) θknee(°)
FS TO FS TO

10
SEA 9 ± 5  − 12 ± 8 17 ± 2 27 ± 4
Non-SEA 14 ± 6  − 9 ± 3 18 ± 3 24 ± 7

12
SEA 8 ± 5  − 14 ± 8 17 ± 3 24 ± 4
Non-SEA 15 ± 6  − 11 ± 3 18 ± 4 21 ± 5

14
SEA 8 ± 6  − 14 ± 9 18 ± 3 24 ± 4
Non-SEA 15 ± 6  − 11 ± 4 18 ± 4 20 ± 4

Group e!ect 0.001 0.18 0.57 0.03
Running speed e!ect 0.31 0.02 0.65  < 0.001
Interaction e!ect 0.007 0.95 0.09 0.65

Table 4.  Footstrike angle (FSA) and footstrike distribution [rearfoot strike (RFS) for FSA > 8° and non-
rearfoot strike (non-RFS)  otherwise42] for South East Asian (SEA) and non-South East Asian (non-SEA) 
runners at endurance running speeds. Signi$cant di!erences (p ≤ 0.05) identi$ed by linear mixed e!ects 
modelling and by Fisher exact tests are indicated in bold.

Running speed (km/h) Group FSA (°) RFS—non-RFS p

10
SEA 6 ± 4 4–13  < 0.001
Non-SEA 13 ± 5 16–1

12
SEA 7 ± 4 6–11  < 0.001
Non-SEA 15 ± 5 16–1

14
SEA 9 ± 4 10–7 0.04
Non-SEA 17 ± 6 16–1

Group e!ect  < 0.001 NA
Running speed e!ect  < 0.001 NA
Interaction e!ect 0.13 NA

Table 5.  Pearson correlation coe)cients between running economy and anthropometric characteristics (mass 
and ratio of leg length over height), together with their corresponding p-values underneath for South East 
Asian (SEA), non-South East Asian (non-SEA), as well as all runners pooled together (ALL). Note. Only the 
relationships between running economy and mass and ratio of leg length over height were considered because 
mass was highly and signi$cantly correlated to height, leg length, and body mass index. Statistical signi$cances 
(p ≤ 0.05) gray shaded boxes denote correlation coe)cients above an absolute value of 0.5 (moderate).
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Relationships between RE and biomechanics. For SEA runners, a high positive correlation was seen 
between RE and tc at 12 km/h (|r|≥ 0.70, p ≤ 0.002; Table 6). SF and θankle at footstrike at 10 km/h were moderately 
and negatively correlated to RE, whereas SL (10 km/h) was moderately and positively correlated to RE (|r|≥ 0.50, 
p ≤ 0.04; Table 6).

For non-SEA runners, a moderate and negative correlation was observed between RE and SF at 12 km/h 
(|r|≥ 0.51, p ≤ 0.04; Table 6). Besides, moderate positive correlations between RE and SL (12 km/h) and kleg 
(10 km/h) were identi$ed (|r|≥ 0.51, p ≤ 0.04; Table 6).

For runners combined, the strongest correlations were low. Table 6 presents all correlations, including the low 
and negligible ones. Relationships between RE expressed in ml/kg/km and biomechanics are given in section S1 
of supplementary materials.

Discussion
Di!erences in RE were observed between SEA and non-SEA runners despite being matched for recent (< 1 year) 
road running performance and sex. SEA runners were less economical than non-SEA runners at endurance 
running speeds. Anthropometric di!erences were observed between groups, depicting that SEA were lighter 
and shorter than non-SEA runners, and had a lower BMI and shorter legs. Di!erences in running biomechan-
ics between cohorts were also observed, but correlations between anthropometric and biomechanical variables 
and RE measures at a group-level were of small magnitudes at best, and provided limited explanations of the 
underlying di!erences in RE.

Non-SEA were 6% more economical than SEA runners at endurance running speeds (Fig. 2). #e lower 
RE in SEA than non-SEA runners could in part be due to anthropometric di!erences. We observed that SEA 
were lighter and shorter than non-SEA runners, and had a lower BMI and shorter legs (Table 1). Mass was 
signi$cantly related to RE in both ethnic groups, with more economical runners having lower body mass. Mass 
was highly related to RE in SEA runners at 12 km/h and non-SEA at all speeds, but correlations became low 
or non-signi$cant when pooling all runners together (Table 5). Previous studies showing that elite Caucasian 
runners were less economical than Kenyans attributed RE di!erences to longer legs (~ 5%), thinner and lighter 
calf musculature, and lower mass and BMI of Kenyan than Caucasian  runners3–6. Indeed, RE being correlated 
with leg mass, Kenyan runners could bene$t from their long, slender  legs6. In our case, the ratio of leg length 
over height was not related to RE (Table 5) and was similar between SEA and non-SEA, indicating similar lower 
limb proportions in these two groups (Table 1). In fact, due to both smaller mass and shorter legs (Table 1), SEA 
might have had a proportionally similar leg mass than non-SEA runners.

Table 6.  Pearson correlation coe)cients between running economy and biomechanical variables [step 
frequency (SF), step length (SL), contact time  (tc), %ight time  (tf), spring-mass characteristics of the lower limb 
as given by leg sti!ness  (kleg), footstrike angle (FSA), and %exion–extension ankle ( θankle ) and knee ( θknee ) joint 
angle at footstrike (FS) and toe-o! (TO)], together with their corresponding p-values underneath for South 
East Asian (SEA), non-South East Asian (non-SEA), as well as all runners pooled together (ALL). Statistical 
signi$cances (p ≤ 0.05) are indicated in bold. Gray shaded boxes denote correlation coe)cients above an 
absolute value of 0.5 (moderate). SL was expressed as a percentage of participant’s leg length in addition to raw 
units. a Step length normalized to leg length.
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Participants wore their own running shoes during testing similar to previous research exploring di!erences 
in running mechanics between ethnic  groups10. Given that di!erences in footwear characteristics can underpin 
di!erences in running  biomechanics48 and  RE49, using a standardised shoe might have led to di!erent study 
outcomes. Noteworthy, however, is that there were no signi$cant di!erence in shoe mass or stack height between 
groups, with the 2 mm di!erence in heel-to-toe drop between groups likely having limited biomechanical or 
performance  implications50. Recreational runners are more comfortable wearing their own  shoes51, and show 
individual responses to novel  footwear51,52 and cushioning  properties53. A recent meta-analysis indicates rec-
reational runners demonstrate improved RE when wearing more comfortable  shoes54, supporting the appropri-
ateness of participants wearing their own footwear for this investigation. Nevertheless, it is possible that other 
footwear characteristics not assessed as part of this study di!ered between groups, such as midsole cushioning 
and/or the longitudinal bending  sti!ness50, and contributed to the biomechanical and RE di!erences observed.

Among all correlations between biomechanical variables and RE, only SF and SL were signi$cantly related to 
RE in both ethnic groups. #e SF and SL variables were moderately related to RE in SEA runners at 10 km/h and 
non-SEA at 12 km/h, but correlations became low and non-signi$cant when all runners were pooled together 
(Table 6). Noteworthy, correlations between SL and RE were smaller and became non-signi$cant when normal-
ized to leg length. In addition, tc was highly and positively related to RE for SEA runners at 12 km/h. #e identi-
$ed correlations between SF (and SL) and RE and between tc and RE suggest that individuals with higher SF 
(and shorter SL) and smaller tc (for SEA runners) are more economical. However, SEA had intrinsically higher 
SF (and shorter SL) and shorter tc, but worse RE than non-SEA runners (Table 2); therefore, contradicting the 
observed correlations. Based on the cost-of-generating-force hypothesis, one requires less metabolic energy with 
increased tc and longer leg  lengths55–57, both observed in non-SEA (Table 1). #e longer tc in non-SEA suggests 
that muscles had more time to shorten and produce the necessary forces to move the body than SEA runners. 
Based on the force–velocity relationship, if a muscle is shortening slower but only a given force is necessary (i.e., 
running on a treadmill), it could be speculated that the activation levels of the muscles were lower to reach the 
target force. #ese theories might partially explain the reduced metabolic cost in non-SEA than SEA runners, 
i.e., a longer tc, lower SF, and longer leg lengths are more economical.

Nevertheless, studies indicate that increasing SF above self-selected ones in novice (156 ± 6 steps/min, 
9.6 km/h) and trained (169 ± 11 steps/min, 12.6 km/h) runners acutely improves RE (+ 2%)58, as does undertak-
ing a 10-day training programme to increase SF (from 166 ± 4 to 180 ± 1 steps/min, 12.3 km/h)59. At 12 km/h, 
mean SF values were 173 (range: 151 to 185) in non-SEA and 181 (range: 159 to 200) in SEA. Further increasing 
SF in runners with an intrinsically high SF might not be energetically optimal, but has yet to be examined. An 
extremely high SF might be suboptimal at endurance speeds given the greater mechanical power associated with 
increased frequency of reciprocal movements, which may require a greater reliance on less economical type II 
muscle  $bers60. Indeed, Kaneko et al.60 suggested that SF and RE could be related through muscle $ber recruit-
ment. Besides, given the shorter stature of our SEA vs non-SEA runners, their higher SF aligns with $ndings of 
moderate correlations between leg lengths and SF (r = −0.53, p < 0.001; 12 km/h), in agreement with previous 
literature (r = −0.45, p < 0.001) 61, whereby individuals with shorter legs tend to adopt higher SF.

Alongside their higher SF and smaller SL, SEA had shorter tc, smaller FSA (more forefoot strike pattern), 
and smaller θankle at footstrike than non-SEA runners (Tables 2, 3, 4). Previous studies observed that running 
at a higher SF led to smaller tc

62 and  FSA63, which is consistent with our $ndings. In addition, the prevalence 
of RFS was shown to be lower in Asian than North American recreational  runners16, aligning with the $ndings 
of the present study. A smaller tc might be associated with smaller braking and propulsion phases. Although 
short braking phases are considered important for economical  running64, SEA runners were less economical. 
Braking forces were not recorded herein due to unavailability of instrumented treadmills. Shorter braking times 
does not necessarily equate minimising braking forces, which is important in the context of  RE65. Moreover, 
it could be that the orientation of the ground reaction forces in SEA runners was suboptimal. Indeed, Moore, 
et al.66 observed that a better alignment of the leg axis during propulsion and resultant ground reaction force 
improved RE, mainly via a more horizontal application of the ground reaction force. #is idea is supported by 
our data, which show less extension of θknee at toe-o! (Table 3), and thus potentially less horizontal propulsion 
for SEA than non-SEA runners. Nevertheless, θknee at toe-o! was not correlated to RE (Table 6). #ough SF, SL 
and tc signi$cantly di!ered between groups, no di!erence in kleg was identi$ed (Table 2), contradicting previous 
$ndings that kleg relates to the aforementioned  variables67–69. #ese studies were all within-subject comparisons 
rather than between-subject ones; hence, at an individual level, the relationship might still hold within SEA and 
non-SEA participants. #e lack of di!erence in kleg between groups despite di!erences in SF, SL, and tc potentially 
relates to the body mass di!erence between groups that is counterbalancing the spatiotemporal di!erences in the 
biomechanical variables [see Eq. (1)]. #ese biomechanical data were not clearly able to explain the variances in 
RE between groups, and support that RE improvements in various groups might need individualized training 
and considerations. A similar conclusion was made by Santos-Concejero, et al.10 when assessing RE di!erences 
between Eritrean and European runners. Moreover, these divergent $ndings overall suggest there is no unique 
or ideal running pattern that is the most economical amongst  runners1. #e running pattern of an individual 
results from a complex interaction between several biomechanical factors 70 that are interconnected and interact 
in a global and dynamic  manner71 to optimize RE.

A few limitations to the present study exist. Although the e!ect size was moderate (d = 0.67), the between-
group di!erence in RE units was rather small (mean di!erence = 30.1 ml/kg0.75/km; p = 0.04). In addition, the 
within-group variability in RE and biomechanical variables at a given running speed were relatively small. #ere-
fore, observed correlations between RE and biomechanical variables might have been greater in more heterogene-
ous groups. Given the exploratory nature of this investigation, several variables were compared, leading to a high 
likelihood of $nding a spurious di!erence or correlation. Nonetheless, our research provides preliminary indica-
tions of potential di!erences between SEA and non-SEA runners warranting further consideration. Moreover, 
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an underpinning factor to the di!erences in RE might be the running experience given that experienced runners 
self-optimize their running patterns better than novice  runners1. Non-SEA runners were more experienced (years 
running) than SEA runners (Table 1), but all runners trained regularly and had a minimum of 2 years running 
experience, indicating they were all "experienced" and not "novice" runners. Nonetheless, a gradual improvement 
in RE (+ 15%) over an 11-year time span has been reported for a former world record holder in the women’s 
 marathon72. #erefore, an e!ect due to running experience cannot be ruled out. Besides, several morphological 
factors which were not measured in this study might have partly explained di!erences in RE between SEA and 
non-SEA  runners18,19,73–78 (more details are provided in section S2 of supplementary materials). Furthermore, 
although all SEA runners identi$ed as “white”, the numerous nationalities of the non-SEA group potentially 
increased the heterogeneity of our cohort and in%uenced our results. Lastly, RE and biomechanics were collected 
within the same experimental session, but the two were not collected simultaneously (as common in running 
 research79). Although possible that participants altered their runs, research indicates that metabolic equipment 
does not a!ect sagittal plane running kinematics and are comparable to running without metabolic  testing80.

Conclusion
SEA and non-SEA runners were di!erent in terms of RE, with SEA runners being less economical than non-SEA 
runners at endurance running speeds. Di!erences in anthropometric characteristics and running biomechanics 
between cohorts were also observed, but explained di!erences in RE to a limited extent. Other factors, which 
could be related to ethnicity, might be underpinning such di!erences. Unfortunately, these factors were not 
measured in this study. Nonetheless, caution must be taken when generalizing from non-SEA running studies 
to SEA runners.

Data availability
#e dataset supporting this article is available on request to the corresponding author.
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Supplementary Materials for: 

Non-South East Asians have a better running economy and different anthropometrics 

and biomechanics than South East Asians. 

 

S1. Running economy between South East Asians and non-South East Asians expressed 

in ml/kg/km 

 

Expressing running economy (RE) in ml/kg/km resulted in larger differences between South 

East Asians (SEA) and non-SEA runners than in the main manuscript. SEA runners were 

significantly less economical (10%) than non-SEA runners (average across speeds: 191.7 ± 

14.9 vs 171.9 ± 10.8 ml/kg/km), with a large main effect of group on RE (p < 0.001, large 

effect size: d = 1.52; Figure S1). There were no significant main effect of speed (p = 0.28) and 

group x speed interaction effect (p = 0.89) on RE.  

 
Figure S1. Running Economy (RE; in ml/kg/km) of South East Asian (SEA) and non-South 

East Asian (non-SEA) runners at several endurance running speeds. Linear mixed effects 

modelling identified a significant group effect (p ≤ 0.05). 

 

Relationships between RE and anthropometric characteristics unrelated to other 

anthropometric characteristics (mass and ratio of leg length over height) were computed and 

reported in Table S1. All correlations were negligible or low, and non-significant. 
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Table S1. Pearson correlation coefficients between running economy (in ml/kg/km) and 

anthropometric characteristics (mass and ratio of leg length over height), together with their 

corresponding p-values underneath for South East Asian (SEA), non-South East Asian (non-

SEA), as well as all runners pooled together (ALL). Statistical significances (p ≤ 0.05) are 

indicated in bold.  

 

Note. Only the relationships between running economy and mass and ratio of leg length over 

height were considered because mass was highly and significantly correlated to height, leg 

length, and body mass index. 

 

For SEA runners, a high positive correlation was seen between RE and contact time (tc) at 12 

km/h (|r| ≥ 0.76, p ≤ 0.001; Table S1). Step frequency (SF) and ankle angle (!!"#$%) at footstrike 

at 10 km/h were moderately and negatively correlated to RE, whereas step length (SL) was 

moderately and positively correlated to RE at 10 km/h (|r| ≥ 0.54, p ≤ 0.02; Table S1). At 12 

km/h, SF, kleg, and !!"#$% at footstrike and toe-off were moderately and negatively correlated 

to RE, whereas SL was moderately and positively correlated to RE (|r| ≥ 0.54, p ≤ 0.03; Table 

S1). 

 

For non-SEA runners, there was no moderate or high correlations between RE and any 

biomechanical variables.  

 

For runners combined, footstrike angle (FSA) and !!"#$% at footstrike were moderately and 

negatively correlated to RE at 10 and 12 km/h ((|r| ≥ 0.50, p ≤ 0.003; Table S1). Table S1 

presents all correlations, including the low, negligible, and non-significant ones. 

 

  

Group SEA non-SEA ALL 

Running speed 
(km/h) 

10 12 14 10 12 14 10 12 14 

Mass (kg) 0.26 
0.32 

0.27 
0.29 

-0.06 
0.82 

0.47 
0.06 

0.35 
0.17 

0.16 
0.54 

-0.06 
0.74 

-0.13 
0.46 

-0.29 
0.10 

Leg length over  
height (%) 

0.01 
0.98 

-0.17 
0.53 

-0.07 
0.80 

0.20 
0.44 

0.05 
0.86 

-0.04 
0.87 

0.00 
0.99 

-0.13 
0.46 

-0.12 
0.50 



Table S2. Pearson correlation coefficients between running economy (in ml/kg/km) and 

biomechanical variables [step frequency (SF), step length (SL), contact time (tc), flight time 

(tf), spring-mass characteristics of the lower limb as given by leg stiffness (kleg), footstrike angle 

(FSA), and flexion-extension ankle (!&'()*) and knee (!('**) joint angle at footstrike (FS) and 

toe-off (TO)], together with their corresponding p-values underneath for South East Asian 

(SEA), non-South East Asian (non-SEA), as well as all runners pooled together (ALL). 

Statistical significances (p ≤ 0.05) are indicated in bold. Gray shaded boxes denote correlation 

coefficients above an absolute value of 0.5 (moderate). SL was expressed as a percentage of 

participant's leg length in addition to raw units. 

a Step length normalized to leg length. 
 

  

Group SEA non-SEA ALL 

Running speed (km/h) 10 12 14 10 12 14 10 12 14 
SF (steps/min) -0.68 

0.003 
-0.66 
0.004 

-0.11 
0.67 

-0.20 
0.43 

-0.22 
0.40 

-0.12 
0.65 

-0.10 
057 

-0.07 
0.70 

0.14 
0.42 

SL (cm) 0.69 
0.002 

0.67 
0.003 

0.13 
0.63 

0.23 
0.38 

0.21 
0.41 

0.10 
0.69 

0.10 
0.56 

0.07 
0.70 

-0.13 
0.46 

SL (%)a 0.29 
0.26 

0.38 
0.14 

0.09 
0.72 

-0.35 
0.17 

-0.17 
0.50 

-0.11 
0.67 

0.05 
0.76 

0.15 
0.39 

0.06 
0.74 

tc (ms) 0.25 
0.34 

0.78 
<0.001 

0.29 
0.27 

-0.06 
0.82 

0.28 
0.28 

0.41 
0.10 

-0.11 
0.52 

0.18 
0.32 

0.01 
0.94 

tf (ms) 0.10 
0.72 

-0.25 
0.33 

-0.21 
0.43 

0.26 
0.32 

-0.02 
0.95 

-0.18 
0.48 

0.05 
0.77 

-0.14 
0.43 

-0.16 
0.36 

kleg (kN/m) -0.26 
0.31 

-0.54 
0.03 

-0.38 
0.13 

0.38 
0.14 

0.11 
0.69 

-0.07 
0.78 

-0.12 
0.51 

-0.30 
0.09 

-0.28 
0.11 

FSA (°) -0.42 
0.10 

-0.38 
0.13 

-0.06 
0.81 

0.05 
0.85 

0.02 
0.94 

-0.11 
0.66 

-0.50 
0.003 

-0.52 
0.001 

-0.45 
0.007 

!!"#$% at FS (°) -0.54 
0.02 

-0.55 
0.02 

-0.07 
0.78 

-0.12 
0.66 

0.00 
1.00 

-0.09 
0.74 

-0.54 
<0.001 

-0.51 
0.002 

-0.38 
0.03 

!!"#$% at TO (°) -0.30 
0.25 

-0.62 
0.008 

-0.24 
0.35 

0.00 
0.99 

-0.07 
0.78 

-0.31 
0.23 

-0.33 
0.06 

-0.48 
0.004 

-0.32 
0.06 

!#"%% at FS (°) 0.01 
0.98 

0.04 
0.89 

0.00 
1.00 

-0.08 
0.76 

0.08 
0.77 

0.13 
0.63 

-0.12 
0.48 

-0.03 
0.84 

0.03 
0.87 

!#"%% at TO (°) -0.01 
0.97 

0.03 
0.90 

0.18 
0.50 

0.16 
0.53 

0.30 
0.25 

0.31 
0.23 

0.23 
0.20 

0.35 
0.04 

0.43 
0.01 



S2. Morphological factors potentially explaining differences in running economy between 

South East Asians and non-South East Asians 

 

Asian and non-Asian individuals have been shown to differ morphologically1-3. For instance, 

the shape of the forefoot of Japanese and Korean males differs from North American males1; 

Chinese knees (mediolateral and anteroposterior size of the femur) are generally smaller than 

Caucasian ones2; and pelvic parameters (e.g., pelvic tilt and incidence) also differ between 

Asian, Mexican, and Caucasian individuals3. These specific parameters were not examined 

and, although most likely not associated with RE directly, can potentially play a role in the 

biomechanical and physiological differences we observed.  

 

Achilles tendon moment arms and foot-lever ratios are two additional parameters that relate to 

RE. Indeed, a previous study found a strong correlation between the moment arm of the 

Achilles tendon and RE, where smaller muscle moment arms correlated with lower rates of 

metabolic energy consumption4. Hunter et al.5 also observed that longer lower limb tendons 

(especially Achilles tendon) and less flexible lower limb joints were linked with improved RE. 

Recently, Ueno et al.6 proposed that longer Achilles tendons may be advantageous to achieve 

superior running endurance performance associated with better RE, in support of previous 

findings. In addition, longer moment arms and shorter feet (smaller foot-lever ratio) of elite 

Kenyan than Japanese runners were associated with better RE7. However, discrepancies exist 

in the scientific literature, as smaller moment arms have been associated with greater RE in 

high-level Kenyan distance runners8. Clearly, more research is needed on this subject as these 

parameters were not measured in this study, but could have partly explained differences in RE 

between SEA and non-SEA runners. 
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The Nike Vaporfly 4%: a game changer to improve performance without
biomechanical explanation yet
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ABSTRACT
In a recent article published in Footwear Science, the teeter-totter effect was indirectly observed
with the Nike Vaporfly 4% (VP4) running shoe. This mechanism was attributed to the presence
of a curved carbon-fibre (stiff) plate, and potentially causes runners to propel forward during
push-off. It was suggested that such mechanism should explain the 4% improvement of per-
formance of the VP4 compared to regular shoes. However, there was, to the best of the authors’
knowledge, no attempt to associate this VP4-specific mechanism to the change in running econ-
omy and personal best time yet. Furthermore, a recent article published in the Journal of Sport
and Health Science observed that the stiffening effect of the curved carbon-fibre plate plays a
limited role in the energy savings, which therefore questions the presence of the teeter-totter
effect in the VP4 shoe. In our view, the better running economy and personal best time
obtained with the VP4 shoe cannot be currently explained from a biomechanical standpoint.
With this letter, we would like to (1) summarise the specificities of the VP4 shoe, (2) report the
observed improvements in running economy and personal best time, and (3) point out the
absence of any biomechanical explanation to the better performance yet.

ARTICLE HISTORY
Received 3 February 2022
Accepted 10 May 2022

KEYWORDS
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1. The specificities of the Nike Vaporfly
4% shoe

The VP4 shoe is lighter than comparable marathon
racing shoes (Hoogkamer et al., 2018; Nigg et al.,
2020). This shoe has a curved carbon-fibre plate,
which increases the longitudinal bending stiffness
(Burns & Tam, 2020; Hoogkamer et al., 2018; Nigg
et al., 2020), embedded in a thick foam midsole
made in polyether block amide (Pebax; Nike
ZoomX, Nike Inc., Beaverton, OR), which is less
dense, lighter, and more resilient than traditional
foams (Burns & Tam, 2020; Hoogkamer et al.,
2018). The low-density foam allows for more highly
resilient material without adding mass and thus
allows for a higher heel thickness (shoe-heel height
¼ 31mm) than habitual marathon shoes, which
also provides an increased cushioning and a rock-
ing effect (Burns & Tam, 2020). It was first thought
that the midsole thickness should be regulated to
have a fair competitive footwear (Burns & Tam,

2020). However, Frederick (2020) and Hoogkamer
(2020) suggested that there was insufficient scien-
tific evidence to support a proposal to regulate the
stack height of marathon racing shoes. Hence, the
VP4 shoe was considered as a valid shoe for com-
petition by the International Association of
Athletics Federations for road races (International
Association of Athletics Federations. Book of Rules.
Available: https://www.worldathletics.org/about-
iaaf/documents/book-of-rules).

2. The improvements in running economy and
personal best time

According to recent research, the VP4 shoe is a
viable mechanical ergogenic aid that improves run-
ning economy in elite (Barnes & Kilding, 2019;
Hoogkamer et al., 2018; Hunter et al., 2019) and
recreational (H!ebert-Losier et al., 2020) runners by
up to 4.4% compared with established track spikes
(Barnes & Kilding, 2019), marathon racing

CONTACT Aur!elien Patoz aurelien.patoz@unil.ch
! 2022 Informa UK Limited, trading as Taylor & Francis Group

FOOTWEAR SCIENCE
https://doi.org/10.1080/19424280.2022.2077844
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(Hoogkamer et al., 2018; Hunter et al., 2019), and
habitual running shoes (H!ebert-Losier et al., 2020).
Additionally, by wearing the VP4 shoe instead of
their habitual running shoes, recreational runners
improve their 3-km time-trial by 2.4% (H!ebert-
Losier et al., 2020) and elite runners improve their
marathon racing time by 0.7% (Rodrigo-Carranza
et al., 2021). Hence, the VP4 shoe provides advan-
tageous technological assistance, especially because
it does not involve any increase in the training
load, which is a risk factor for overuse injury (van
Poppel et al., 2021). Nonetheless, large interindivid-
ual variations were reported (Barnes & Kilding,
2019; H!ebert-Losier et al., 2020). For instance,
changes in running economy and 3-km time-trial
in recreational runners ranged from "8.6% to

13.3% and "3.8% to 8.2%, respectively, when wear-
ing the VP4 shoe instead of their habitual running
shoes (H!ebert-Losier et al., 2020). In addition, non-
rearfoot strikers respond less favourably to the VP4
shoe than rearfoot strikers (H!ebert-Losier et al.,
2020; Hoogkamer et al., 2019). These observations
might partly be explained by the fact that each run-
ner adopts a spontaneous running style (Gindre
et al., 2016; van Oeveren et al., 2021) and hence
responds differently to footwear, but this warrant
further investigation.

3. The absence of any biomechanical
explanation yet

Running with the VP4 shoe led to several conflict-
ing evidence in terms of kinetic-kinematic running

Figure 1. Infographic summarising the specificities of the Nike Vaporfly 4% running shoe, reporting the observed improvements
in running economy and personal best time, and pointing out the absence of any biomechanical explanation to the better per-
formance yet.
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adaptations, which were, if any, small (Barnes &
Kilding, 2019; Hoogkamer et al., 2018; 2019; Hunter
et al., 2019). Ground contact time, flight time, and
step frequency decreased, increased, or did not
change (Barnes & Kilding, 2019; Hoogkamer et al.,
2018; 2019; Hunter et al., 2019) when using the
VP4 shoe compared to other marathon shoes
while the peak vertical force either increased or
did not change (Hoogkamer et al., 2018; 2019;
Hunter et al., 2019). All these variables could not
explain the better performance (Barnes & Kilding,
2019; Hoogkamer et al., 2018).

Hoogkamer et al. (2019) observed that the dorsi-
flexion and work rate at the ankle and metatarsopha-
langeal (MTP) joint were reduced in the VP4 shoe
compared to other marathon shoes. Similarly, Healey
and Hoogkamer (2021) reported biomechanical dif-
ferences in the MTP joint with decreased MTP
dorsiflexion angle, angular velocity, and negative
power in the VP4 compared to cut (six medio-lateral
cuts through the carbon-fibre plate in the forefoot to
reduce its stiffness) VP4 shoe. Additionally, using a
curved-carbon fibre plate reduced the MTP joint
work without increasing the mechanical demand at
the ankle (Farina et al., 2019). However, none of
these studies attempted to associate these VP4-spe-
cific biomechanical adaptations to the better
observed performance.

The teeter-totter effect, which should result in a
force acting on the heel during push-off that acts at
the right location and time and with the right fre-
quency (2–4Hz), and which could potentially
explain the 4% improvement of performance (Nigg
et al., 2020, 2021), was explored and indirectly
observed in the VP4 shoe (Subramanium & Nigg,
2021). This effect was attributed to the presence of
a curved carbon-fibre (stiff) plate in the VP4 shoe
(Nigg et al., 2020, 2021). Further, the thickness of
the heel seems important because a thicker heel
allows the stiff plate to be more curved, hence per-
mitting to increase the teeter-totter effect (Nigg
et al., 2020, 2021). However, Subramanium and
Nigg (2021) did not report any relation between
the presence of the teeter-totter effect and the
improvement of performance, most likely because
the results were obtained from a pilot study con-
ducted on only two participants (the authors fairly
mentioned that a larger study involving #20 partic-
ipants will be conducted). Nevertheless, as the

stiffening effect of the curved carbon-fibre plate
was shown to play a limited role in the energy sav-
ings of the VP4 shoe (Healey & Hoogkamer, 2021),
the presence of a teeter-totter effect in the VP4
shoe could be questioned.

Altogether, as no VP4-specific biomechanical
adaptations were associated to the better running
economy and personal best time obtained with the
VP4 shoe, the better performance cannot be cur-
rently explained from a biomechanical standpoint
(Figure 1).

4. Conclusion

The VP4 shoe is a game changer to improve run-
ning economy and personal best time. The energy
savings of the VP4 shoe are likely from the com-
bination and interaction of the highly compliant
and resilient midsole, curved carbon-fibre plate,
and shoe geometry (Healey & Hoogkamer, 2021;
Ortega et al., 2021). However, there is a lack of
understanding of this footwear as there is no bio-
mechanical explanation to the better performance
yet. Future studies should try to associate the VP4-
specific biomechanical adaptations to the improve-
ment in running economy and personal best time
to decipher why the VP4 shoe is such a game chan-
ger. Keeping in mind that the running pattern is a
dynamic system with several interconnected varia-
bles (Novacheck, 1998), the energy savings might
be due to the combination of many but small bio-
mechanical adaptations. Moreover, as large interin-
dividual variations were reported in terms of
running economy in response to the VP4 shoe
(Barnes & Kilding, 2019; H!ebert-Losier et al.,
2020), pooling all runners together might mask an
effect that would be observed when only consider-
ing high responders, e.g., runners with an improve-
ment in running economy greater than 2.6%
(Barnes & Kilding, 2015), or subgroups of runners
determined using their spontaneous running style
(Gindre et al., 2016; van Oeveren et al., 2021).
Hence, we suggest that the relation between the
VP4-specific biomechanical adaptations and
improvement in running economy should be multi-
factorial, consider only high responders, and take
into account the running style.
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1  |  INTRODUCTION

Running offers many health benefits. However, between 
19% and 79% of recreational runners are expected to con-
tract a running related injury each year.1,2 Therefore, the 
incidence of these injuries is high. The magnitude of the 
peak of the vertical ground reaction force (Fv,max; active 
peak force)3,4 is related to an increased risk for various 
running musculoskeletal injuries.5– 7 In addition, the peak 
axial tibial compressive force was shown to be moderately 

correlated with Fv,max.8 Hence, Sasimontonkul et al.4 sug-
gest that the risk of tibial stress fracture is most closely as-
sociated with the forces acting during midstance, and that 
adopting a running technique to reduce Fv,max may reduce 
the risk of tibial stress fracture. These observations make 
Fv,max to be a biomechanical variable of major interest that 
needs to be accurately measured.

To measure Fv,max, the gold standard method (GSM) is 
to use a force plate, which could unfortunately not always 
be affordable or at hand.9,10 In such case, a first alternative 
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This study aimed to (1) construct a statistical model (SMM) based on the duty 
factor (DF) to estimate the peak vertical ground reaction force (Fv,max) and (2) 
to compare the estimated Fv,max to force plate gold standard (GSM). One hun-
dred and fifteen runners ran at 9, 11, and 13 km/h. Force (1000 Hz) and kinematic 
(200 Hz) data were acquired with an instrumented treadmill and an optoelec-
tronic system, respectively, to assess force- plate and kinematic based DFs. SMM 
linearly relates Fv,max to the inverse of DF because DF was analytically associated 
with the inverse of the average vertical force during ground contact time and the 
latter was very highly correlated to Fv,max. No systematic bias and a 4% root mean 
square error (RMSE) were reported between GSM and SMM using force- plate 
based DF values when considering all running speeds together. Using kinematic 
based DF values, SMM reported a systematic but small bias (0.05BW) and a 5% 
RMSE when considering all running speeds together. These findings support the 
use of SMM to estimate Fv,max during level treadmill runs at endurance speeds if 
underlying DF values are accurately measured.
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would be to use a sacral- mounted inertial measurement 
unit (IMU),11– 13 which is low- cost and practical to use 
in a coaching environment.14 For instance, Alcantara 
et al.12 predicted Fv,max using machine learning and re-
ported a root mean square error (RMSE) of 0.15 body 
weight (BW). Moreover, weak to moderate correlations 
were obtained between Fv,max measured using GSM and 
estimated using IMU data.11 These authors observed an 
effect of the low- pass cutoff frequency used for the IMU 
data, where a better correlation was depicted for a 10 Hz 
than a 5 or 30 Hz cutoff frequency. A second alternative 
would be to assume a sine- wave model for the vertical 
ground reaction force.15– 17 Doing so, Fv,max (expressed in 
BW units) could be estimated based on contact (tc) and 
flight (tf ) times.17 This method reported a 7% bias com-
pared to GSM for treadmill running.17 A third alternative 
would be to construct a statistical model relating Fv,max 
to the duty factor (DF),18,19 that is, the ratio of tc to stride 
duration (Equation 3). Ultimately, this model (statistical 
model method: SMM) could estimate Fv,max only using a 
temporal parameter, that is, DF. Such SMM model would 
prove to be useful if the measurement system provides an 
accurate estimation of DF (or tc and tf , that is, its subcom-
ponents) but does not provide an estimation of Fv,max, as 
it is often the case for foot- worn20 or ankle- worn21 inertial 
sensors. However, SMM has, to the best of our knowledge, 
never been constructed so far.

Hence, the first purpose of this study was to construct 
a statistical model relating Fv,max to DF, where both vari-
ables were obtained from force plate data, and to compare 
Fv,max estimated by this model to GSM. Then, as a prac-
tical application, the second purpose of this study was 
to use SMM with kinematic based DF values to estimate 
Fv,max and to compare these estimations to GSM. We hy-
pothesized that (1) Fv,max estimated by SMM using force- 
plate based DF values should report a similar RMSE than 
in Alcantara et al.,12 that is, ~0.15BW and (2) Fv,max esti-
mated by SMM using kinematic based DF values should 
also report an RMSE of ~0.15BW.

2  |  MATERIALS AND METHODS

2.1 | Participant characteristics

An existing database of 115 recreational runners, 87 males 
(age: 30 ± 8 years, height: 180 ± 6 cm, body mass: 70 ± 7 kg, 
and weekly running distance: 38 ± 24 km) and 28 females 
(age: 30 ± 7 years, height: 169 ± 5 cm, body mass: 61 ± 6 kg, 
and weekly running distance: 22 ± 16 km), was used in the 
present study.22 For study inclusion, participants were re-
quired to not have current or recent lower- extremity in-
jury (≤1 month), to run at least once a week, and to have 

an estimated maximal aerobic speed ≥14 km/h. The study 
protocol was approved by the local Ethics Committee 
(CER- VD 2020- 00334).

2.2 | Statistical model method

First, in what follows, DF is shown to be analytically 
proportional to the inverse of the mean vertical ground 
reaction force during tc (Fv,mean), that is, the integral of 
the vertical ground reaction force during tc divided by tc 
(Fv,mean = ∫ TOFS Fv(t)dt∕ tc, where FS, TO, and Fv(t) represent 
foot- strike, toe- off, and vertical ground reaction force sig-
nal, respectively). Starting from vertical momentum con-
servation law during a running step, which states that the 
vertical momentum at FS is the same than the one at con-
tralateral FS, or, in other words, that the integral of the 
vertical external forces during a running step is null, one 
can easily obtain that:

where mg represents BW. Solving Equation 1 for tf  leads to

where the definition of Fv,mean was used in the last step. 
Ultimately, by expressing DF as (the stride duration is as-
sumed to be equal to two times tc + tf):

one can get that:

which proves that when DF is computed using Equation 3, 
DF is analytically proportional to the inverse of Fv,mean.

Then, assuming that Fv,mean is linearly related to Fv,max 
(linearity assumption), as it is analytically the case when 
using a sine- wave model for the vertical ground reaction 
force,17 DF should be linearly related to the inverse of 
Fv,max. Therefore, rearranging for Fv,max should lead to a 
statistical model relating Fv,max to DF (see Equation 5 in 
the Results section), for which the accuracy should de-
pend on the validity of the linearity assumption.

SMM could then be used to estimate Fv,max but using 
DF values obtained from any measurement systems (IMU, 
motion capture system, light- based optical technology, 
etc.), which is a direct practical application of SMM. 

(1)∫
TO

FS

(

Fv(t) −mg
)

dt −mgtf = 0

(2)tf =
∫ TOFS Fv(t)dt

mg
− tc = tc

Fv,mean
mg

− tc

(3)DF =
tc

2
(

tc + tf
)

(4)DF =
mg

2 Fv, mean
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Indeed, using SMM with force- plate based DF values to 
estimate Fv,max does not prove to be useful because, in 
this case, a force- plate based Fv,max (gold standard) is di-
rectly provided, but this was required to construct SMM. 
However, using SMM with DF values obtained, for in-
stance, from a motion capture system (kinematic data) 
allows estimating Fv,max when no force plate is available.

2.3 | Experimental procedure, data 
collection, and data processing

The experimental procedure, data collection, and data pro-
cessing have been described in more detail elsewhere.22 
Briefly, after providing written informed consent, 43 ret-
roreflective markers of 12.5 mm diameter were affixed to 
skin and shoes of individuals over anatomical landmarks 
using double- sided tape following standard guidelines.23 
Then, a 7- min warm- up run (9– 13 km/h) was performed 
on an instrumented treadmill (Arsalis T150 –  FMT- 
MED). This was followed, after a short break (<5  min), 
by a 1- s static trial on the same treadmill for calibration. 
Then, four retroreflective markers were removed (medial 
epicondyle of femur and apex of medial malleolus), and 
three 1- min runs (9, 11, and 13 km/h) were performed in 
a randomized order (1- min recovery between each run). 
Three- dimensional (3D) kinematic and kinetic data were 
collected during the last 30 s following the 30- s mark of 
running trials (40 ± 9 running steps), resulting in at least 
25 steps being analyzed.24 All participants wore their ha-
bitual running shoes and were familiar with running on a 
treadmill as part of their usual training program.

Motion capture (eight cameras, Vicon) and Vicon Nexus 
software v2.9.3 (Vicon) were used to collect whole- body 
3D kinematic data at 200 Hz. The force plate embedded 
into the treadmill was used to collect synchronized kinetic 
data (1000 Hz). 3D marker and ground reaction force (an-
alog signal) were exported in .c3d format and processed in 
Visual3D Professional software v6.01.12 (C- Motion Inc.). 
Ground reaction force data were down sampled to 200 Hz 
to match the sampling frequency of marker data. Then, 
3D marker and ground reaction force data were low- pass 
filtered at 20 Hz using a fourth- order Butterworth filter.25

2.4 | Biomechanical variables obtained 
from force plate data

For each running trial, force- plate based tc and tf  were ob-
tained from FS and TO events identified using the vertical 
ground reaction force and implemented within Visual3D. 
These events were detected by applying a 20 N threshold 
to the vertical component of the ground reaction force.26 

tc was defined as the time from FS to TO of the same foot 
while tf  was given by the time from TO of one foot to FS 
of the contralateral foot. Then, force- plate based DF was 
given by Equation 3.

Force- place based Fv,max and Fv,mean were given by the 
maximum vertical ground reaction force between FS and 
TO events and by the integral of the vertical ground re-
action force between FS and TO events divided by tc. The 
integration was carried out numerically using a second- 
order method known as trapezoidal rule. Fv,max and Fv,mean 
were expressed in BW while DF was given in percent.

2.5 | Biomechanical variables obtained 
from kinematic data

tc, tf , and DF were calculated from FS and TO events 
identified using kinematic data. The kinematic algo-
rithm which permitted to obtain FS and TO events has 
been implemented within Visual3D and was based only 
on the foot markers. This algorithm has been described 
elsewhere and reported systematic biases and root mean 
square errors (RMSE) ≤12 ms compared to gold standard 
events at running speeds ranging from 9 to 13 km/h.27 The 
kinematic based DF could then be inserted into SMM to 
estimate Fv,max when no force plate is available. Systematic 
biases of 6 ms, −6 ms, and 0.9% were reported for tc, tf , 
and DF when considering all running speeds together (see 
Section S1 of Appendix S1).

All force- plate and kinematic based biomechanical 
variables extracted from the 10 analyzed strides were aver-
aged for each participant for subsequent analyses.

2.6 | Data analysis

The error of SMM based on both force plate and kinematic 
based DF to estimate Fv,max was calculated using RMSE 
(in absolute and relative units, that is, normalized by the 
corresponding mean value over all participants and ob-
tained using GSM) considering each running speed sepa-
rately and all running speeds together. Data analysis was 
performed using Python (v3.7.4, http://www.python.org).

2.7 | Statistical analysis

All data are presented as mean ± standard deviation. Since 
all data were normally distributed based on Kolmogorov– 
Smirnov tests (p ≥ 0.13), Pearson correlation coefficients 
(r) between DF and F−1

v,mean, Fv,mean and Fv,max, and F−1
v,max 

and DF as well as corresponding p- values were extracted 
considering each running speed separately and all running 
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speeds together. Correlations were considered very high, 
high, moderate, low, and negligible when absolute r values 
were between 0.90– 1.00, 0.70– 0.89, 0.50– 0.69, 0.30– 0.49, 
and 0.00– 0.29, respectively.28 Coefficient of determination 
(R2) was given by the square of r.

Bland– Altman plots were constructed to examine the 
presence of systematic bias on Fv,max between GSM and 
SMM.29 Corresponding lower and upper limit of agree-
ments and 95% confidence intervals (CI) were calculated. 
Systematic biases have a direction, that is, positive values 
indicate overestimations of SMM while negative values 
indicate underestimations. Then, after having inspected 
residual plots and having observed no obvious deviations 
from homoscedasticity or normality, Student's t- tests were 
used to compare GSM and SMM. Differences between 
GSM and SMM were quantified using Cohen's d effect size 
and interpreted as very small, small, moderate, and large 
when |d| values were close to 0.01, 0.2, 0.5, and 0.8, re-
spectively.30 The analyses comparing SMM to GSM were 
performed considering each running speed separately 
and all running speeds together and two times (1) using 
force- plate based and (2) using kinematic based DF val-
ues. Statistical analysis was performed using Jamovi (v1.6, 
https://www.jamovi.org) with a level of significance set at 
p ≤ 0.05.

3  |  RESULTS

Considering all running speeds together, DF was very 
highly correlated to F−1

v,mean (r = 1.00, p < 0.001, Figure 1A), 
Fv,mean was very highly correlated to Fv,max (r  =  0.90, 
p < 0.001, Figure 1B), and F−1

v,max was very highly correlated 

to DF (r = 0.91, p < 0.001, Figure 1C), which led to the fol-
lowing SMM (obtained using a linear least- squares regres-
sion; Equation 5):

Considering each running speed separately, DF was very 
highly correlated to F−1

v,mean (r = 1.00, p < 0.001), Fv,mean was 
highly correlated to Fv,max (r ≥ 0.88, p < 0.001), and F−1

v,max was 
highly correlated to DF (r ≥ 0.88, p < 0.001).

Using force- plate based DF to estimate Fv,max, RMSEs 
of 4% and up to small effect sizes (Table 1) were reported 
between GSM and SMM when considering each run-
ning speed separately and all running speeds together. 
No systematic biases were obtained at 11 km/h and when 
considering all running speeds together while small 
but systematic biases were reported at 9 and 13 km/h 
(Figure  2A and Table  1). Fv,max estimated using SMM 
based on force- plate DF values was significantly different 
than Fv,max obtained using GSM at 9 and 13 km/h (P ≤ 0.03; 
Table 2).

Using kinematic based DF to estimate Fv,max, system-
atic biases were obtained between GSM and SMM at each 
speed employed (though very small at 13 km/h) as well as 
when considering all running speeds together (Figure 2B 
and Table  1). RMSEs were up to 6% and effect sizes up 
to moderate (Table  1) when considering each running 
speed separately and all running speeds together. Fv,max 
estimated using SMM based on kinematic DF values was 
significantly different than Fv,max obtained using GSM at 
9 and 11 km/h as well as when considering all running 
speeds together (p < 0.001; Table 2).

(5)Fv,max =
1

0.0097 DF + 0.0635

F I G U R E  1  Linear relation obtained using Pearson correlation between (A) duty factor (DF) and the inverse of the mean vertical ground 
reaction force during contact time (Fv,mean), (B) Fv,mean and peak vertical ground reaction force (Fv,max), and (C) the inverse of Fv,max and 
DF, together with their corresponding coefficient of determination (R2), and considering all running speeds together (9, 11, and 13 km/h). 
Ground reaction force variables were expressed in body weight (BW). Each dot represents the average over the 10 analyzed strides for one 
subject at a particular running speed.

(A) (B) (C)
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4  |  DISCUSSION

In line with our first and second hypotheses, RMSEs of 0.09 
and 0.12BW (4% and 5%) were obtained for SMM based on 
force plate and kinematic data, respectively. Conventional 
statistical approaches demonstrated no systematic bias of 
Fv,max between GSM and SMM based on force plate data 
when considering all running speeds together while sys-
tematic but small bias (−0.05BW) was obtained between 
GSM and SMM based on kinematic data. These results 
suggest SMM to be a valid method to estimate Fv,max if un-
derlying DF values are accurately measured.

The linear relation between DF and the inverse of 
Fv,mean, which has been analytically derived (Equation 4) 
when DF is computed using Equation 3, was confirmed by 
the very high correlation reported in this study (R2 = 1.00; 
Figure  1A). Nonetheless, several points did not exactly 
fall on the regression line (Figure 1A). This might be ex-
plained by several reasons. First, the integration of the ver-
tical ground reaction force encompasses errors due to its 
numerical nature (second- order trapezoidal rule). Second, 
even though the raw vertical ground reaction force signal 
was filtered (fourth- order Butterworth low- pass filter at 
20 Hz), it still contains some noise, thus affecting the out-
come of its numerical integration. Third, the calibration 
of the force plate may be not 100% accurate, thus affecting 
the values of the force signal. It is also worth mentioning 
that similar results would have been obtained when using 
the exact definition of DF, that is, the ratio of tc over stride 
time.18,19 Indeed, RMSE ≤0.12% were obtained when 
comparing DF calculated using Equation  3 to its exact 
definition (see Section  S2 of Appendix  S1). This result 
corroborates the small symmetry indices ≤4% previously 
reported for the step time of competitive, recreational, 
and novice runners at running speeds ranging from 8 to 

12 km/h.31 The authors reported similar symmetry indices 
for DF (≤4%), the reason being that the stride time was 
close to perfectly symmetric (≤1%), reflecting that the 
symmetry of DF was mostly affected by the symmetry of 
tc (~3%).31

SMM reported no systematic bias and an RMSE of 
4% when using force plate DF values and considering all 
running speeds together (Figure 2A and Tables 1 and 2), 
which permitted to validate the proposed statistical model 
(Equation 5). However, using SMM with force- plate based 
DF values to estimate Fv,max does not prove to be useful 
because, in this case, a gold standard Fv,max is directly pro-
vided. Therefore, as a direct practical application, SMM 
was used with DF values obtained from kinematic data 
to estimate Fv,max. A systematic bias of −0.05BW and an 
RMSE of 5% were reported when considering all running 
speeds together (Figure  2B and Tables  1 and 2). Fv,max 
estimated using sacral- mounted IMUs reported similar 
differences11 [≤20 N (≤0.03BW for a 70 kg person) at 14– 
19 km/h] and RMSE12 (0.15BW at 13.5– 19.5  km/h) with 
respect to GSM than SMM used in the present study. In 
addition, a 6% error on Fv,max (6– 21 km/h) was reported 
using an IMU placed on the leg along the tibial axis32 
while a 3% error (10– 14 km/h) was achieved using three 
IMUs (two on lower legs and one on pelvis) and two arti-
ficial neural networks.33 Thus, estimated Fv,max depicted 
similar error (~5%) than previous estimations which used 
IMUs.

Fv,max was estimated using SMM, a statistical model 
solely based on DF (Equation 5) and reported a 5% RMSE 
(Table  1). The only requirement to obtain an accurate 
estimation of Fv,max is that DF, or the two variables de-
fining it, that is, tc and tf , should be accurately measured 
(see Section  S1 of Appendix  S1). Therefore, SMM could 
be combined with any measurement system accurately 

T A B L E  1  Systematic bias, lower limit of agreement (lloa), upper limit of agreement (uloa), root mean square error [RMSE; both in 
absolute (body weight; BW) and relative (%) units], and Cohen's d effect size between peak vertical ground reaction force (Fv,max) obtained 
using statistical model (SMM) and gold standard (GSM) method, considering each running speed separately (9, 11, and 13 km/h) and all 
running speeds together.

Running 
speed

Systematic bias 
(BW) Lloa (BW) Uloa (BW) RMSE (BW) d (−)

GSM vs. force- plate 
based SMM

9 km/h −0.03 [−0.04, −0.01] −0.20 [−0.22, −0.17] 0.14 [0.11, 0.17] 0.09 (4%) 0.15
11 km/h 0.00 [−0.02, 0.01] −0.18 [−0.21, −0.15] 0.17 [0.15, 0.20] 0.09 (4%) 0.02
13 km/h 0.02 [0.00, 0.04] −0.16 [−0.19, −0.13] 0.20 [0.17, 0.23] 0.09 (4%) −0.11
All together 0.00 [−0.01, 0.01] −0.18 [−0.20, −0.17] 0.18 [0.16, 0.19] 0.09 (4%) 0.02

GSM vs. kinematic 
based SMM

9 km/h −0.09 [−0.11, −0.07] −0.07 [−0.29, −0.33] 0.11 [0.08, 0.15] 0.14 (6%) 0.50
11 km/h −0.05 [−0.07, −0.03] −0.26 [−0.29, −0.23] 0.16 [0.13, 0.19] 0.12 (5%) 0.27
13 km/h −0.01 [−0.03, 0.01] −0.22 [−0.25, −0.18] 0.20 [0.16, 0.23] 0.11 (4%) 0.06
All together −0.05 [−0.06, −0.04] −0.27 [−0.29, −0.25] 0.17 [0.15, 0.19] 0.12 (5%) 0.23

Note: 95% confidence intervals are given in square brackets. SMM based on both force plate and kinematic data were used to estimate Fv,max. For systematic 
bias, positive and negative values indicate that SMM overestimated and underestimated Fv,max, respectively.
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providing DF or its underlying variables, such as an 
IMU,11,12 a motion capture system,27,34,35 or a light- based 
optical technology.36 Day et al.11 reported that a 5 Hz low- 
pass filtering of the vertical acceleration recorded using a 
sacral- mounted IMU was resulting in the best correlation 
between tc obtained from GSM and their method while a 
10 Hz low- pass filter produced the best estimated Fv,max. 
These results demonstrated that different cutoff frequen-
cies were required for different biomechanical parame-
ters, agreeing with previous observations that the low- pass 
cutoff frequency affected biomechanical outcomes.37,38 

However, using two different filters is not very practical. 
In this case, SMM could be advantageous as it could avoid 
using the second filter, which is computationally more ex-
pensive than using SMM, without losing accuracy. Indeed, 
SMM could be applied using estimated tc and tf  from the 
IMU to directly obtain Fv,max.

A few limitations to this study exist. SMM was con-
structed using running trials between 9 and 13 km/h and 
using treadmill runs. Therefore, this study could not con-
clude that SMM would correctly estimate Fv,max at faster 
running speeds and overground. Hence, further studies 

F I G U R E  2  Comparison of peak vertical ground reaction force [Fv,max; in body weight (BW)] obtained using gold standard method and 
statistical model method (SMM) [differences (∆) as function of mean values together with systematic bias (black solid line) as well as lower 
and upper limit of agreements (black dashed lines), that is, Bland– Altman plots] considering each running speed separately (9, 11, and 
13 km/h) and all running speeds together. The estimation of Fv,max using SMM was based on (A) force plate data and (B) kinematic data. 
Positive and negative ∆ values indicate an overestimation and underestimation of Fv,max by SMM. Each dot represents the average over the 
10 analyzed strides for one subject at a particular running speed.

(A)

(B)

T A B L E  2  Peak vertical ground reaction force [Fv,max; in body weight (BW)] obtained using gold standard (GSM) and statistical model 
(SMM) methods, considering each running speed separately (9, 11, and 13 km/h) and all running speeds together.

Running speed 9 km/h 11 km/h 13 km/h All together
Fv,max using GSM 2.36 ± 0.19 2.50 ± 0.19 2.61 ± 0.19 2.49 ± 0.22
Fv,max using force- plate based SMM 2.34 ± 0.16 2.50 ± 0.15 2.63 ± 0.15 2.49 ± 0.20
p 0.001 0.76 0.03 0.49
Fv,max using kinematic based SMM 2.27 ± 0.17 2.45 ± 0.17 2.60 ± 0.17 2.44 ± 0.22
p <0.001 <0.001 0.29 <0.001

Note: SMM based on both force plate and kinematic data were used to estimate Fv,max. Significant differences (p ≤ 0.05) between Fv,max obtained using GSM and 
SMM as determined by Student's t- tests are depicted in bold.
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should record running trials at faster running speeds and 
overground to obtain the accuracy of SMM in these condi-
tions. However, although controversial,39 SMM might per-
form well overground, at least at similar running speeds 
than the ones used to construct the statistical model (9– 
13 km/h), because spatiotemporal parameters between 
treadmill and overground running are largely compara-
ble.40 Moreover, SMM tries to estimate Fv,max as if it was 
obtained using the vertical ground reaction force signal re-
corded by the specific instrumented treadmill used in the 
present study. Though the choice of filter and frequency 
used to filter the vertical ground reaction force (20 Hz and 
fourth- order Butterworth filter herein) should be chosen 
to remove as much noise as possible without altering the 
force signal, that is, everyone should have a similar force 
signal independently of the underlying force plate, there 
might still be small discrepancies in the force signals re-
corded by different instrumented treadmills. Hence, using 
another instrumented treadmill might affect the integra-
tion of the vertical ground reaction force signal and the 
determination of FS and TO events, and thus the coef-
ficients of the statistical model (Equation  5). Therefore, 
further studies investigating if the choice of the other in-
strumented treadmill affects the coefficients of the statis-
tical model are needed and would allow generalizing to 
a statistical model that estimates Fv,max independently of 
the instrumented treadmill employed.

4.1 | Perspective

A simple statistical model solely based on DF was con-
structed to estimate Fv,max (Equation  5). This model 
was shown to provide an accurate estimation of Fv,max 
if underlying DF values or its subcomponents (tc and tf ; 
Equation 3) are accurately measured. Hence, this model 
could be implemented in any measurement system that 
accurately provides DF values (e.g., a smartwatch and/
or smartphone). This would allow to monitor Fv,max and 
loading in real time and could therefore help for prevent-
ing running related injuries.

5  |  CONCLUSION

To conclude, this study proposed to construct a statisti-
cal model only using the DF to estimate Fv,max, because 
DF is analytically related to Fv,mean and the latter is very 
highly correlated to Fv,max. Considering all running speeds 
together and using force- plate based DF values for SMM, 
no systematic bias and a 4% RMSE were reported between 
GSM and SMM. Using kinematic based DF values, SMM 

reported a systematic but small bias (−0.05BW) and a 
5% RMSE when considering all running speeds together. 
Therefore, the findings of this study support the use of 
SMM to estimate Fv,max during level treadmill runs at 
endurance speeds if underlying DF values are accurately 
measured.
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