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Abstract
Infections with Pseudomonas aeruginosa have become a real 
concern in hospital-acquired infections, especially in critically ill 
and immunocompromised patients. The major problem leading 
to high mortality lies in the appearance of drug-resistant 
strains. Therefore, a vast number of approaches to develop 
novel anti-infectives is currently pursued. Diverse strategies 
range from killing (new antibiotics) to disarming (antivirulence) 
the pathogen. In this review, selected aspects of P. aeruginosa 
antimicrobial resistance and infection management will be 
addressed. Many studies have been performed to evaluate the 
risk factors for resistance and the potential consequences on 
mortality and attributable mortality. The review also looks at 
the mechanisms associated with resistance – P. aeruginosa is 
a pathogen presenting a large genome, and it can develop a 
large number of factors associated with antibiotic resistance 

involving almost all classes of antibiotics. Clinical approaches 
to patients with bacteremia, ventilator-associated pneumonia, 
urinary tract infections and skin soft tissue infections are 
discussed. Antibiotic combinations are reviewed as well 
as an analysis of pharmacokinetic and pharmacodynamic 
parameters to optimize P. aeruginosa treatment. Limitations of 
current therapies, the potential for alternative drugs and new 
therapeutic options are also discussed.
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Introduction
One of the most important challenges for physicians is the 
adequate treatment of infections due to Gram-negative 
pathogens because of the increasing antimicrobial resistance in 
the healthcare setting [1].

Among infections caused by Gram-negative rods, Pseudomonas 
aeruginosa has a leading role [2], especially in critically ill and 
immunocompromised patients. Antimicrobial resistance has 
led to a serious restriction in treatment options for P. aeruginosa 
infections, which has become a critical and deadly issue causing 
a total of 51,000 healthcare infections in the USA per year [3–6]. 
Despite this problem, physicians mainly rely on retrospective 
non-randomized controlled studies to derive conclusions about 
the optimal therapeutic management of these infections.

In this review, we aim to address selected aspects of P. aeruginosa 
antimicrobial resistance and infection management. In the 
first part of this review, we will focus on resistance risks factors. 
Many studies have been performed to evaluate the risk factors 

for resistance and the potential consequences on mortality and 
attributable mortality. We will then explore the mechanisms 
associated to resistance. P. aeruginosa is a pathogen presenting 
a large genome that can develop a large number of factors 
associated with antibiotic resistance involving almost all 
classes of antibiotics. We will then specifically focus on clinical 
approaches to patients with bacteremia, ventilator-associated 
pneumonia, urinary tract infections, and skin and soft-tissue 
infections. Specific syndromes such as ecthyma gangrenosum 
will be discussed. In the second part of our work, we will look at 
pharmacokinetic and pharmacodynamic parameters that may 
be exploited to optimize P. aeruginosa treatment. Limitations of 
current therapy, potential alternative drugs and new therapeutic 
options will also be discussed. 

Risk factors for antimicrobial 
resistance in P. aeruginosa
Multi-drug resistance (MDR) has increased dramatically in recent 
years and is now recognized as a major threat worldwide [7]. 
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Risk factors for the development of MDR strains have been 
evaluated in several studies. A case–control study performed 
in Brazil compared 142 patients infected with metallo-β-
lactamases (MBLs) strains to 26 patients infected with non MBLs 
strains [8]. The multivariate analysis showed that ICU stay and 
urinary tract infection were the important factors for MBLs 
infections. MBLs strains were also associated with a faster onset 
of infection and a faster progression to death.

A retrospective study conducted over two years, starting in 
2010, in Brazil evaluated 54 ICU patients with P. aeruginosa 
infections [9]. MDR P. aeruginosa was observed in 37% of the 
cases (20 of 54 patients), 20% of the isolates were positive 
for the blaSPM-1-like gene. Interestingly, MDR occurred in 
patients hospitalized for an average of 87.1 days. A case–
control surveillance study performed in China showed that the 
prevalence of MDR P. aeruginosa was 54% among patients with 
P. aeruginosa infection. Independent risk factors were tracheal 
intubation (odds ratio [OR] 2.21) and use of carbapenems (OR 
3.36). MDR strains were associated with a longer hospitalization 
and a higher mortality (49 versus 20%) [10]. A retrospective 
study on 63 episodes of carbapenems-resistant P. aeruginosa 
(CRPA) showed that the Acute Physiology and Chronic Health 
Evaluation II (APACHE II) score at the time of CRPA bacteremia 
and the capacity of CRPA to form biofilm were independent 
predictive factors for mortality in patients with CRPA 
bacteremia [11]. Another study also found the APACHE II score 
as an independent factor for colonization [12].

In a separate population of immunocompromised patients, 
in a matched case–control study, 31 cases colonized with 
extensively drug-resistant P. aeruginosa were compared with 
93 controls. Four factors were associated with colonization: 
presence of a central venous catheter, presence of a urinary 
catheter, CRP>10 mg/L, and ciprofloxacin administration 
[13]. Another study, this time in a retrospective international 
cohort of P. aeruginosa nosocomial pneumonia, tried to 
determine the risk factors for MDR and attributable mortality 
[14]. From 740 patients, 226 were infected with MDR strains. 
Independent factors predictors of MDR were decreasing age, 
diabetes mellitus, and ICU admission. MDR was independently 
associated with in-hospital mortality (44.7 versus 31.7% 
for non-MDR, p=0.001). A prospective observational study 
compared imipenem-resistant (IR) P. aeruginosa (PA) with or 
without MBL-mediated resistance [15]. The researchers found 
that the most important predictor of prognosis was imipenem 
resistance itself and not MBL production – the higher mortality 
observed in the IR-MBL-PA group was mediated by the 
underlying diseases, Charlson’s index, and other factors (e.g. 
virulence). Another retrospective study evaluated the impact of 
resistance on morbidity, mortality and length of stay with 324 
cases and 676 controls [16]. The authors found that mortality 
from all causes and 30–day mortality after infection were 
higher in patients with a resistant pathogen. Pseudomonas 
was observed in 15.1% of the cases and 19.7% of the controls 
(second place Gram negative after E. coli). A systematic review 

and meta-analysis of the association between resistance 
and mortality was performed in neutropenic patients [17]. 
A total of 30 studies were included; infections related to 
carbapenems-resistant Pseudomonas spp. were reported in 
18 (60%) studies. Globally, mortality ranged from 33 to 71% in 
patients with carbapenems-resistant Pseudomonas infections. 
The results showed an increased mortality in carbapenems-
resistant compared to carbapenems-susceptible infections 
(OR 4.89). This increase in mortality has been described in a 
previous meta-analysis [18]. Besides mortality, resistance is 
also associated with increased cost, using the data from 571 
admissions with bacteremia, MDR P. aeruginosa bacteremia had 
the highest mean incremental cost (€ 44,709) [19].

Globally, these results show that development of resistance 
has several risk factors linked to the severity of the infection 
(Apache II, underlying diseases, intubation, catheter) and that 
resistance itself is associated with increased mortality. 

Mechanisms of antibiotic resistance
Bacteria exhibit multiple resistance mechanisms to antibiotics 
including decreased permeability, expression of efflux systems, 
production of antibiotic inactivating enzymes and target 
modifications. P. aeruginosa exhibits most of these known 
resistance mechanisms through both intrinsic chromosomally 
encoded or genetically imported resistance determinants 
affecting the major classes of antibiotics such as β-lactams, 
aminoglycosides, quinolones and polymyxins (Table 1). Eight 
categories of antibiotics are mainly used to treat P. aeruginosa 
infections including aminoglycosides (gentamicin, tobramycin, 
amikacin, netilmicin), carbapenems (imipenem, meropenem), 
cephalosporins (ceftazidime, cefepime), fluoroquinolones 
(ciprofloxacin, levofloxacin), penicillin with β-lactamase inhibitors 
(BLI) (ticarcillin and piperacillin in combination with clavulanic 
acid or tazobactam), monobactams (aztreonam), fosfomycin and 
polymyxins (colistin, polymyxin B). The strains of P. aeruginosa are 
categorized as follows: (1) MDR when resistance is observed in ≥1 
agent in ≥3 categories; (2) extensively drug-resistant (XDR) when 
a resistance is observed in ≥ agent in all but ≤ categories; and 
(3) pandrug-resistant (PDR) when the strain is non-susceptible 
to all antimicrobial agents [2]. The emergence of MDR, XDR 
and PDR strains occurs in a timely fashion by the modification 
of regulatory mechanisms controlling the expression of 
resistance determinants, by mutations, alteration of membrane 
permeability, and horizontal acquisition of antibiotic-inactivating 
enzymes or enzymes inducing target modifications. Noteworthy, 
is the multi-resistance of many strains conferred by simultaneous 
production of these mechanisms [3].

In Europe, the recent report of the eCDC published in 2016 
showed that 33.9% of P. aeruginosa were resistant to at least one 
of the antimicrobial groups under surveillance (piperacillin ±  
tazobactam, fluoroquinolones, ceftazidime, aminoglycosides 
and carbapenems [20]). This report showed major inter-country 
variations for all antimicrobial groups with generally a higher 
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Table 1.  Chromosomally encoded or imported resistance mechanisms of P. aeruginosa.

Location Resistance mechanisms Targeted antibiotics Type of resistance

Intrinsic 
(chromosomal)

AmpC–type cephalosporinase β-lactams Antibiotic inactivation

Class D oxacillinase OXA-50 β-lactams Antibiotic inactivation

Aminoglycosides inactivating enzymes Aminoglycosides Antibiotic inactivation

Efflux systems (overexpression) Multiple antibiotic 
classes

Efflux systems

Decreased membrane permeability Multiple antibiotic 
classes

Membrane impermeability 
and purines

DNA gyrase and topoisomerase IV Fluoroquinolones Target modification

LPS modification Colistin Target modification

Imported  
(Mobile genetic 
elements)

Class A serine β-lactamases (PSE, CARB, TEM) β-lactams Antibiotic inactivation

Class A serine ESBL (TEM, SHV, CTX-M, PER, VEB, 
GES, IBC)

β-lactams Antibiotic inactivation

Class D ESBL (OXA-types) β-lactams Antibiotic inactivation

Class B Metallo-β-lactamase (IMP, VIM, SPM, GIM) Carbapenems Antibiotic inactivation

Class A serine carbapenemase (KPC) Carbapenems Antibiotic inactivation

Class D carbapenemase (OXA-types: OXA-40) Carbapenems Antibiotic inactivation

Aminoglycosides inactivating enzymes Aminoglycosides Antibiotic inactivation

Ribosomal methyltransferase enzymes Aminoglycosides Target modification

percentage of resistance in southern and eastern parts of 
Europe compared with northern parts. For example, focusing 
on carbapenems resistance, 25 to 50% of invasive isolates are 
resistant in Latvia, Poland, Slovakia, Hungary, Croatia, Serbia, 
Bulgaria or Greece, and more than 50% of the strains are 
resistant in Romania. Looking at combined resistance to three 
or more of the antimicrobials previously cited, 25 to 50% of 
the invasive strains isolated are resistant in Slovakia, Romania, 
Croatia, Bulgaria and Greece.

The β-lactams
P. aeruginosa wild-type strain encodes an inducible molecular 
class C AmpC cephalosporinase not inhibited by BLI such as 
clavulanic acid, tazobactam and sulbactam [4]. The AmpC 
cephalosporinase usually exhibits a low level expression 
which, together with low membrane permeability and 
multiple efflux systems, confers resistance to aminopenicillins 
alone or in combination with BLI, first and second generation 
cephalosporins (C1G, C2G), cephamycins, the two third 
generation cephalosporins (C3G), cefotaxime and ceftriaxone, 
as well as the carbapenem, ertapenem [5,6]. The P. aeruginosa 
wild-type strain remains thus susceptible to carboxypenicillin, 
ureidopenicillin, the C3G ceftazidime, the C4G cefepime, 
aztreonam and to the carbapenems, imipenem, meropenem and 

doripenem (Table 2). However, induced or constitutive AmpC 
overexpression and/or point mutation can provide reduced 
susceptibility to all classes of β-lactamins except carbapenems 
[5,6]. Unlike the AmpC of Enterobacteriaceae, the AmpC of  
P. aeruginosa can also affect cefepime [5,6] (Table 2). P. aeruginosa 
can produce Amber Class A serine β-lactamases of types TEM 
(Bush functional group 2b), PSE or CARB (carbecillinase, Bush 
functional group 2c) [21,22] (Table 2). The substrates of these 
enzymes include mainly carboxypenicillin and ureidopenicillin 
and they can sometimes resist BLI. These enzymes show variable 
susceptibility to cefepime, cefpirome and aztreonam, whereas 
ceftazidime and carbapenem remain always active towards  
P. aeruginosa strains carrying these β-lactamases types [23].

Various Class A serine extended spectrum β-lactamases (ESBL) 
have been described in P. aeruginosa including PER, VEB, GES 
and BEL types [23]. In addition, ESBL Enterobacteriacae types 
of enzymes such as TEM, SHV and CTX-M have been identified 
in P. aeruginosa, likely following horizontal gene transfer 
[24,25]. These Class A types of ESBL enzymes have a low 
genetic identity but share a similar β-lactam hydrolysis pattern 
with the development of resistance to carboxypenicillins, 
ureidopenicillins, C3G and C4G (ceftazidime, cefepime and 
cefpirome), and aztreonam but not to carbapenems. Moreover, 
these enzymes are inhibited at various degrees by the BLI 
clavulanic acid and tazobactam [25].
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such as plasmids, integrons and cassettes that rapidly favor 
their dissemination. MBLs exhibit a wide spectrum of activity 
covering all β-lactams including the carbapenems (imipenem 
and meropenem) and are resistant to BLI (Table 2).

Only the monobactam, aztreonam, is not hydrolyzed by MBLs, 
but the susceptibility of these enzymes to aztreonam is often 
not observed by routine diagnostics, since MBL activities 
are frequently associated with other β-lactam resistance 
mechanisms. In addition, several MBL genes are often located 
on mobile genetic elements such as integrons that also carry 
other resistant genes such as aminoglycoside-modifying 
enzymes [23,35,36] 

Aminoglycosides
Aminoglycosides modifying enzymes (AME) inactivate 
aminoglycosides by attachment of acetyl, phosphate or adenyl 
groups to amino and hydroxyl substituents on the antibiotic 
molecule. These modifications significantly reduce the affinity 
of aminoglycosides for the 30S ribosomal subunit target and 
block their activity [37]. AME are usually plasmid encoded 
and are classified into three families: acetyltransferases (AAC), 
phosphotransferases (APH) and nucleotidyltransferases (ANT) 
[38]. The AME mostly identified in P. aeruginosa belongs to 
the AAC and ANT families [39,40]. These enzymes, acting on 
different targets of the antibiotic molecule, do not confer 
cross-resistance to all aminoglycosides. However, some P. 
aeruginosa strains can carry several AME acting on different 
aminoglycosides substituents, thus providing a possible 
resistance towards all components of this class of antibiotic. 

Table 2.  β -lactamases activity.

WT PENI ESBL CEPH CARBA 

WT TEM 
PSE 
CARB

OXA PER 
VEB 
TEM 
SHV
CTX-M

OXA AmpC IMP 
VIM 
NDM 
KPC

Carboxypenicillins S R R R R R R 

Carboxypenicillins 
+BLI

S S/I I/R S/I I/R R R 

Ureidopenicillins S I/R R I/R R I/R R 

Ureidopenicillins 
+BLI

S S/I I/R S/I I/R I/R R 

Ceftazidime S S S R I/R I/R R 

Cefepime S S I/R R I/R I/R R 

Aztreonam S S S R I/R I/R S 

Imipenem S S S S S S R 

BLI, β-lactamase inhibitor; CARBA, carbapenemase; CEPH, cephalosporinase AmpC; ESBL, extended-spectrum β-lactamase;  
I, intermediate resistance; PENI, penicillinase; R, resistance; S, susceptible; WT, wild type.

Class D β-lactamases, called oxacillinases or OXA-type enzymes 
belonging to the Bush functional group 2d, have been identified 
in P. aeruginosa [21]. OXA-type enzymes are imported in  
P. aeruginosa following horizontal transfer of mobile genetic 
elements except OXA-50, a naturally occurring oxacillinase of  
P. aeruginosa [26]. Classical oxacillinases (OXA-1, OXA-2, OXA-10), 
confer resistance to carboxypenicillins and ureidopenicillins, are 
usually not susceptible to BLI and may be active on cefepime 
[23,27]. Extended-spectrum oxacillinases, derived by point 
mutations from OXA-2 and OXA-10, exhibit an increased spectrum 
of hydrolysis to ceftazidime, cefepime and aztreonam [23,28]. 
Moreover, their activity is usually not suppressed by BLI, rendering 
their identification by conventional laboratory methods difficult. 
Extended-spectrum oxacillinases are usually encoded on mobile 
genetic elements such as plasmids and integrons, which favor 
their dissemination throughout bacterial species [29]. 

Similar to Enterobacteriacae, carbapenemase enzymes have 
been identified in P. aeruginosa strains. P. aeruginosa produces 
carbapenemases belonging to the Class A KPC or GES-2 types 
and MBL of Class B [21,22,29]. GES-2 is a carbapenemase 
deriving from the ESBL GES-1 by point mutation whereas 
the KPC carbapenemase has been acquired by P. aeruginosa 
following horizontal acquisition from Enterobacteriacae [30,31]. 
However, the major class of carbapenemases found in P. 
aeruginosa belongs to the MBL, which comprises five types: 
IMP, VIM, NDM, SPM, and GIM [32–34]. The IMP and VIM types 
comprise several variants whereas only one variant has been 
identified for the other types (NDM-1, SPM-1, GIM-1) [23]. These 
enzymes are mostly encoded on mobile genetic elements 
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Compared to other aminoglycosides, amikacin is usually a poor 
substrate for these enzymes and is known to confer a better 
antibiotic activity towards P. aeruginosa.

Active efflux pumps
The natural resistance of P. aeruginosa to several antibiotics 
classes is partly due to the combination of low membrane 
permeability and active efflux pumps [41]. The efflux systems 
involved in antibiotic resistance in P. aeruginosa belongs to the 
resistance-nodulation-division (RND) family [42,43]. Four main 
efflux systems have been described to confer resistance to 
several antibiotics: MexAB-OprM, MexCD-OprJ, MexEF-OprN  
and MexXY-OprM (Table 3). These systems are composed 
of three proteins: (1) an efflux pump protein located in the 
cytoplasmic membrane (MexB, MexD, MexF and MexY),  
(2) an outer membrane protein acting as a pore (OprM, OprJ, and 
OprN), and (3) a protein located in the periplasmic space that 
bridges the proteins located in the cytoplasmic and the outer 
membrane (MexA, MexC, MexE and MexX). The MexAB-OprM 
and MexXY-OprM are involved in both natural and acquired 
resistance whereas the other two systems are only observed 
in acquired resistance. Acquired resistance is observed upon 
overexpression of these efflux systems following mutations 

in the regulatory systems that can be induced by antibiotic 
pressure and which can confer resistance to all class of antibiotics 
except polymyxins (Table 3) [23]. Exposure to a single antibiotic 
may trigger resistance to several classes of antibiotics that are 
substrates of these efflux systems. Noteworthy, quinolones 
are substrates of all efflux systems and represent an important 
triggering factor that may generate cross-resistance towards 
several important classes of antibiotics for pseudomonal 
treatment, including β-lactams and aminoglycosides [41,44]. 
Efflux systems are known to confer a moderate level of 
resistance, but they usually operate simultaneously with other 
resistance mechanisms, participating thus to the high-level 
resistance that can be observed in P. aeruginosa.

Membrane impermeability and  
porin alteration
Membrane impermeability or reduced permeability is a 
mechanism known to provide resistance towards several 
antibiotic classes including aminoglycosides, β-lactams and 
quinolones [45]. For instance, this resistance mechanism is 
frequently encountered in cystic fibrosis isolates that are 
continuously under antibiotic pressure. Several mechanisms 
can induce membrane impermeability, such as LPS 
modifications, alteration of membranous proteins involved in 
substrate uptakes, and inactivation of enzymatic complexes 
involved in membrane energetic required for the activity of 
transporting systems [23,45]. 

Regarding β-lactams, the porine OprD is known to promote the 
internalization of imipenem and, to some extent, meropenem 
but not of other β-lactams. Thus, the modification of OprD 
structure and/or the reduction of its expression confer a 
reduced susceptibility to imipenem [46,47]. In addition, the 
alteration of OprD is often associated with overexpression 
of efflux systems, thus conferring a high level of resistance 
to imipenem, but also to other classes of antibiotics such as 
quinolones and aminoglycosides [48].

Target modification
Target modification is a resistance mechanism that has 
been described in P. aeruginosa for aminoglycosides with 
the methylation of 16S rRNA, β-lactams with the alteration 
of penicillin binding proteins (PBP), fluoroquinolones with 
mutations of the DNA gyrase and topoisomaerases IV, and 
polymyxins with alteration of the LPS. The methylation 
of 16S rRNA conferring a high level of resistance towards 
aminoglycosides is catalyzed by the RmtA or RmtB methylases 
[49], which are encoded by genes located on mobile genetic 
elements such as plasmids and transposons [23,50]. In contrast, 
resistance to β-lactams and quinolones is arising following 
modification of the target sites encoded by genes located 
on the bacterial chromosome. Altered target resistance of 
β-lactam in P. aeruginosa is rare and has been described 

Table 3.  Active efflux pumps operating in  
P. aeruginosa with known antibiotic 
substrates.

RND system Substrates

MexAB-OprM β-lactams except imipenem

Quinolones

Macrolides

Tetracyclines

Chloramphenicol

MexCD-OprJ Penicillin, cefepime, cefpirome, 
meropenem

Quinolones

Macrolides

Tetracyclines

Chloramphenicol

MexEF-OprN Carbapenems

Quinolones

MexXY-OprM Penicillin, cefepime, cefpirome, 
meropenem

Aminoglycosides

Quinolones

Macrolides

Tetracyclines

Chloramphenicol
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after modification of the penicillin binding protein 4 (PBP4) 
or overexpression of PBP3 [47]. Similar to most bacterial 
species, resistance of fluoroquinolones following target 
modification occurs by point mutations within the quinolone 
resistance determining region (QRDR) of the gyrA and gyrB 
genes encoding subunits of the DNA gyrase and the parC and 
parE genes encoding subunits of the topoisomerase IV [51]. 
DNA gyrase (GyrA) and topoisomerase IV (ParC) are enzymes 
involved in DNA replication and their alteration usually affects 
the activity of the whole quinolones family, resulting in MICs 
usually above susceptibility breakpoints [51].

Polymyxins resistance is observed following modification 
of the bacterial lipopolysaccharides (LPS) which are the 
primary target of polymyxins. The alteration is characterized 
by a modification of the lipid A of the LPS by the addition 
of phosphoethanolamine (PEtN) and 4-amino-4-deoxy-L-
arabinose (L-Ara4N) [52]. The addition of these components 
significantly reduces the negative charge of LPS and thus the 
binding of polymyxin. The synthesis and addition of PEtN and 
L-Ara4N to the lipid A is mediated by two operons, pmrCAB and 
arnBCADTEF, which are mainly regulated by the two component 
systems PhoP/PhoQ, PmrA/PmrB [53,54], but also by ParR/ParS 
[55], ColR/ColS and CprR/CprS [56]. Mutations in these two 
component systems conferring constitutive activation leads 
to overexpression of the LPS-modifying operons and thus to 
polymyxins resistance. In P. aeruginosa, polymyxins resistance 
is mainly conferred by the arnBCADTEF operon involved in 
L-Ara4N modification of the LPS. In addition, the binding of 
polymyxin to LPS is impaired upon overexpression of the outer 
membrane protein OprH [52,57,58]. OprH is a basic protein that 
binds to divalent cation sites of LPS, which protects the LPS 
from binding by polymyxins. Recent studies focusing on the 
characterization of the polymyxins resistome have identified 
additional putative genes that may be involved in resistance, 
such as genes encoding proteins involved in LPS biosynthesis, 
metabolism, transport and regulation [59]. 

Laboratory role
Diagnostic laboratories need to implement several 
methodologies and procedures to identify P. aeruginosa 
strains and rapidly provide antibiotic susceptibility testing 
(AST) for the management of antibiotic regimens. Moreover, 
analytical techniques allowing bacterial typing and detection 
of resistance mechanisms encoded on mobile genetic 
elements are required for the monitoring of epidemiological 
outbreaks in hospital environments and characterization of 
long-term colonization in clinical settings such as cystic fibrosis. 
The identification of P. aeruginosa in routine diagnostics is 
performed with simple procedures based on morphology 
and phenotypic recognition of microbial colonies growing on 
conventional media. The identification of suspected colonies 
can be rapidly performed using modern technologies such a 
matrix-assisted-laser-desorption-ionization time-of-flight mass 
spectrometry (MALDI-TOF) [60]. If needed, selective media, 

such as cetrimide agar, can be used to isolate P. aeruginosa  
from polymicrobial environmental or clinical samples [61].  
P. aeruginosa strain typing, required to monitor epidemiological 
hospital outbreaks to prevent or to document transmission, 
requires additional laboratory technics with a higher 
discriminatory performance than conventional methods used 
for the identification at the species level. Several molecular 
techniques have been used during the past decades including 
pulse field gel electrophoresis, chromosomal restriction 
fragment length polymorphism analysis and multilocus 
sequence typing [62–66]. However, these techniques may 
be gradually replaced by high-throughput sequencing 
technologies allowing rapid genome sequencing with a 
significant higher discriminatory power than conventional 
molecular typing techniques [67]. This novel technology can be 
used in hospital epidemiology settings to prevent transmission 
but also to analyze strains resistomes (genes and operons 
involved in antibiotic resistance) and/or to follow the evolution 
of the population of P. aeruginosa strains in chronic diseases 
such as cystic fibrosis [59].

One of the major challenges of routine diagnostic laboratories 
is to measure antibiotic susceptibility and to identify resistance 
mechanisms. Conventional laboratory procedures of AST include 
automated antibiotic systems such as the Vitek (bioMérieux, 
Marcy-l’Etoile, France) and Phoenix (Becton-Dickinson, Baltimore, 
USA) solutions, disk diffusion (Kirby-Bauer) and Etest. The Etest 
is a strip with a predefined gradient of antibiotic allowing the 
measurement of minimum inhibitory concentrations (MIC) 
on agar plates. The Etest approach can be used to measure 
the MIC of most of the antibiotics. However, some classes of 
antibiotics such as polymyxins (colistin) require an alternative 
approach due to poor agar diffusion and limited accuracy with 
automated systems. Colistin MIC is measured using an antibiotic 
microdilution measurement, a technique less adapted for 
routine diagnostic than disc diffusion or Etests but considered 
as the gold standard for AST measurements. Noteworthy, 
AST are influenced by multiple experimental factors such as 
preparation of bacterial inoculums, culture medium (media 
types, ions concentrations, pH, etc), agar concentration which 
may affect drug diffusion and human-based measurements 
characterized by moderate reproducibility and accuracy. Most 
laboratories are using automated antibiotic systems that monitor 
bacterial growth exposed to different antibiotics at different 
concentrations for several hours to determine extrapolated or 
real MIC by optical density measurements. These automated 
systems exhibit different performances between antibiotics 
with unreliable AST measurement for some components 
such as piperacillin-tazobactam, cefepime, and carbapenems 
that may require confirmation with other AST approaches 
including MIC determination [48]. Resistance mechanisms, 
such as carbapenamase activity, can be detected with rapid 
phenotypic methods such as the CARBA NP test, which detects 
the hydrolysis of carbapenems by production of carboxylic acid 
with the pH indicator, phenol red [68]. Carbapenemase activity 
can also be rapidly documented by MALDI-TOF MS analysis of 
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the antibiotic spectrum and its degradation products that are 
observed following antibiotic hydrolysis by these β-lactamases 
[69,70]. Several rapid molecular-based tests have been recently 
introduced to detect genes encoding carbapenemases and ESBLs 
[71]. The targets detected in the proposed panels cover the most 
common types of carbapenamases identified in Enterobacteriacae 
and P. aeruginsosa (KPC, VIM, NDM, OXA) and ESBLs (CTX-M); 
however, a negative result cannot exclude the presence of other 
less prevalent β-lactams resistant genes that can be found in  
P. aeruginosa (ESBLs PER, VEB, TEM, SHV). Thus, molecular results 
still require to be confronted to phenotypic measurements to 
exclude molecular undetected resistant mechanisms. 

Diagnostic laboratories have to properly understand the 
advantages and limitations of the different techniques used in 
order to avoid the reporting of false raw measurements (disk 
diffusion, MIC, automated systems) that could lead to wrong 
interpretation criteria (Susceptible, Intermediate, Resistance) 
with major errors (false resistant) and very major errors (false 
susceptible). The AST of P. aeruginosa is challenging since (1) 
several resistance mechanisms can operate simultaneously at 
different levels, (2) some systems expressed at low basal level 
are difficult to detect, (3) induced systems may be not detected 
before antibiotic treatment initiation and (4) the inaccuracy of 
some laboratory AST measurement methods can generate false 
susceptible or resistance interpretation results. Moreover, a lack 
of standardization of recommendations on standard operating 
procedures and interpretation criteria between antimicrobial 
committees such as EUCAST (European Committee on 
Antimicrobial Susceptibility Testing; www.eucast.org) and 
CLSI (Clinical and Laboratory Standards Institute; https://CLSI.
org) increases the lack of reproducibility between diagnostic 
laboratories measurements and interpretation reproducibility 
and accuracy. 

Clinical approaches to P. aeruginosa 
bacteremia
P. aeruginosa bloodstream infection (BSI) is a serious disease 
that requires prompt attention and pertinent clinical decisions 
in order to achieve a satisfactory outcome. Currently, 
Pseudomonas spp. represent a leading cause of hospital-
acquired bacteremia, accounting for 4% of all cases and being 
the third leading cause of gram-negative BSI [72]. Several 
studies indicate an increased risk of death among patients 
with P. aeruginosa BSI, as compared with the risk for similar 
patients with other gram-negative or [73] S. aureus BSI [73,74]. 
Therefore, the adequate management of P. aeruginosa should 
be considered as a significant challenge for clinicians.

Once P. aeruginosa is isolated from blood, efforts should be 
made to establish the source of the infection and to choose an 
appropriate empirical antibiotic therapy as soon as possible. As 
for the source of the infection, most patients have an identifiable 
focus of infection at the time of initial evaluation, but the source 
remains unknown in up to 40% of the cases [73,75]. The most 

common sources of P. aeuruginosa BSI are in respiratory (25%) 
and urinary tract (19%) followed by central venous catheter 
and skin and soft tissues [73]. Identification of the source is 
essential because its adequate control represents a critical issue 
in the correct management of P. aeruginosa infection (i.e. early 
CVC removal or surgical drainage of abscess). Accordingly, a 
careful patient history and a physical examination, as well as 
radiological and microbiological work-up are important.

Empirical antibiotic therapy should include two agents from 
different classes with in vitro activity against P. aeruginosa for 
all serious infections known or suspected to be caused by P. 
aeruginosa. The rationale of the so-called ‘double coverage 
effect’ is to increase the likelihood that antibiotic treatment 
will be active against P. aeruginosa, especially in the setting 
of a high-risk of antimicrobial resistance. Once results of 
susceptibility are available, definitive therapy should be 
tailored accordingly, using a single in vitro active agent with 
the highest antimicrobial activity and the lowest propensity 
to select resistance. Indeed, at the time of the present review, 
no convincing data exist demonstrating a mortality benefit to 
combination therapy (Figure 1) [76].

Management of P. aeruginosa VAP
P. aeruginosa is one of the leading causes of ventilator-
associated pneumonia (VAP) in the US and Europe [77–79]. VAP 
due to P. aeruginosa is increasing in incidence and poses unique 
challenges for its clinical management. Risk factors for the 
development of P. aeruginosa-related VAP include prolonged 
mechanical ventilation [80], older age [80], prior P. aeruginosa 
colonization [79], prior antibiotic therapy [79,80], admission to 
a ward with high incidence of P. aeruginosa infections [80], solid 
cancer, and shock [79]. 

Recent data suggest that a diagnosis of P. aeruginosa-related VAP 
is frequently associated with the isolation of MDR pathogens 
[79]. MDR P. aeruginosa-related pneumonia appears to be an 
important determinant of excess length of stay in ICU, and 
prolonged mechanical ventilation, as well as a cause of increased 
in-hospital mortality compared to non-MDR infection [14].

We recommend prescribing two anti-pseudomonal antibiotics 
from different classes as the initial therapy of P. aeruginosa-
related VAP, especially when patients are hospitalized in 
units where >20% of Gram-negative isolates are resistant to 
a ‘backbone’ agent considered for monotherapy. Once the 
antibiotic susceptibility testing is known, monotherapy using an 
antibiotic to which the isolate is susceptible can be considered, 
except for patients who have septic shock or a high risk of death. 
An anti-pseudomonal cephalosporin, or a carbapenem, or an 
anti-pseudomonal β-lactam/BLI represents potential options 
for definitive therapy. Aminoglycosides should not be used as 
monotherapy because success rates for aminoglycosides are low 
[81]. This may be due to the poor penetration of aminoglycosides 
into the lung, which require high peak serum concentrations 
to obtain adequate lung concentrations, thus increasing the 
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risk of nephrotoxicity or ototoxicity [82,83]. However, because 
in Europe fluoroquinolone resistance rate in P. aeuruginosa 
exceeds 30% [84], we suggest the use of combination therapy 
including aminoglycosides for empirical therapy of serious VAP, 
if it is appropriately tailored on the basis of susceptibility data 
(Figure 1). As for aerosol therapy, we do not routinely recommend 
the use of inhaled antibiotics for the treatment of P. aeruginosa 
VAP. However, they may be considered as an adjunctive to 
intravenous therapy in cases of infections due to MDR strains.

Management of P. aeruginosa CAP
P. aeruginosa has been reported as a rare cause of community-
acquired pneumonia (CAP), affecting 1.1–8.3% of the patients 
requiring ICU admission [85–89]. Despite this, P. aeruginosa is 
actually considered the pathogen with the highest attributable 
mortality rate, ranging from 50 to 100% [85–89]. The survival 
of these patients is related to early diagnosis and prompt 
initiation of adequate antibiotic therapy [90]. Since antibiotic 
therapy for P. aeruginosa is completely different from the 
standard therapy to treat common pathogens in CAP, current 
guidelines stratify therapy recommendations on the basis 

of pseudomonal risk factors [91]. CAP due to P. aeruginosa 
should be considered in immunocompromised subjects 
(i.e. HIV patients, solid organ transplant) who received prior 
antibiotic use and with structural abnormalities such as cystic 
fibrosis, bronchiectasis and COPD (especially those requiring 
frequent corticosteroid therapy and/or antibiotic use) [91–93]. 
Additional risk factors include male sex, low C-reactive protein 
and PSI risk class IV and V [90]. Risk factors associated with the 
isolation of MDR P. aeruginosa in CAP have been recently studied 
in a recent article including more than 2000 patients with CAP, 
where the only risk factor was previous antibiotic therapy [90].

Therefore, from a clinical point of view, we suggest use of 
antibiotics covering MDR P. aeruginosa in CAP only when  
P. aeruginosa is highly suspected. 

Management of P. aeruginosa 
urinary tract infection
Patients with P. aeruginosa urinary tract infection (UTI)  
are more likely to have chronic underlying disease  
(e.g. hypertension, cognitive impairment, diabetes 

Figure 1.  Clinical approach to patients with suspected P. aeruginosa infection.
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for high risk severe patients (i.e. neutropenic patients, severe 
immunocompromised patients or patients with septic shock) 
until the causative organism and its susceptibility are identified. 
Surgery is not generally warranted but extensive debridement 
could be required in patients with extensive necrosis (Figure 1) 
[98].

Regarding burn wound infection, P. aeruginosa represents one 
of the most common [99,100] pathogen-causing infection in 
burn injuries. Due to the severity of the patient’s condition 
and frequent antibiotic resistance, P. aeruginosa is a dreaded 
cause of infection in such populations [101–103]. Based on 
previous studies [104], the rate of positive swab or tissue culture 
results due to P. aeruginosa in burn infection was as high as 
57% whereas the proportion of BSI caused by P. aeruginosa 
in burned populations was reported to be approximately 
15% [102,103].

Superficial wound infections due to P. aeruginosa have a 
characteristic yellow or green color with a malodorous smell. 
This infection may evolve to an invasive disease causing blue-
purplish lesion of the skin [105].

Similar to ecthyma gangrenosum, we also suggest, for burns 
wound infections, administration of empirical combination 
therapy until the causative organism and its susceptibility are 
identified. Surgical debridement can be indicated in some 
cases [105].

Role of combination therapy versus 
monotherapy
Early administration of an adequate antibiotic regimen has 
been associated with favorable clinical outcome, especially 
among critically ill patients presenting with severe P. aeruginosa 
infections [1]; conversely, a delay in the prescription of an 
adequate antibiotic therapy has been related to a significant 
increase in mortality.

In recent years, the progressive increase in antibiotic resistance 
among P. aeruginosa has been identified as the main reason 
for antibiotic inadequacy, with a negative impact on patient 
survival [106]. The available evidence suggests that the greatest 
benefit of a combination therapy stems from the increased 
likelihood of choosing an effective agent during empirical 
therapy rather than to prevent the resistance during definitive 
therapy or to benefit of in vitro synergistic activity. Therefore, 
to balance between early antibiotic administration and risk 
of resistance selection, we suggest early administration of 
a combination regimen when P. aeruginosa is suspected, 
followed by a prompt de-escalation when the antimicrobial 
susceptibility testing becomes available. We encourage 
an approach consisting of the prescription of an anti-
pseudomonal β-lactam (piperacillin/tazobactam, ceftolozane/
tazobactam, ceftazidime, cefepime, or a carbapenem) plus 
a second anti-pseudomonal agent (aminoglycoside or a 
fluoroquinolones). 

mellitus) [94], present with healthcare-associated infection and 
recent urinary tract instrumentation and/or chronic indwelling 
urinary catheters. Mortality rates are higher and reported with 
rates up to 20% [94]. Advanced chronic disease and inadequate 
definitive antimicrobial treatment are associated with worse 
prognosis [94]. Standard of care consists of elimination of the 
predisposing condition in combination with a single antibiotic 
therapy that is generally considered adequate for treatment 
[94] in absence of septic shock (Figure 1).

Management of P. aeruginosa skin 
and soft tissue infections
P. aeruginosa causes a variety of skin and soft tissue infections 
ranging from the benign (e.g. cellulitis, post-surgical infections) 
to the immediately life threatening. P. aeruginosa is one of the 
most common pathogen isolated from cellulitis in neutropenic 
patients, surgical site infections (SSI), infections following 
trauma or infections of chronic decubitus ulcers. Although 
combined antimicrobial and surgical debridement should be 
considered as standard of care, medical therapy alone maybe 
sufficient for some patients. For example, in acute cellulitis 
surgery is generally not necessary, whereas a surgical site 
infection or an infection of chronic decubitus ulcers requires 
surgical debridement to remove necrotic tissue. In all cases 
the importance of antimicrobial therapy is unquestioned. The 
optimal antibiotic regimen depends on in vitro susceptibility 
testing and includes an anti-pseudomonal beta-lactam, a 
carbapenem, or a fluoroquinolone. Although the usual duration 
of antibiotic therapy is 10 to 14 days, shorter courses could 
be considered in patients who received an adequate source 
control of infection and/or with prompt resolution of clinical 
signs and symptoms. 

Among skin and soft tissue infection due to P. aeruginosa, two 
clinical syndromes need special considerations: (1) ecthyma 
gangrenosum and (2) burn wound infections. 

Ecthyma gangrenosum, classically reported in the setting of P. 
aeruginosa BSI in neutropenic patients, is a cutaneous vasculitis 
caused by bacterial invasion of the media and adventitia of 
the vessel wall with secondary ischemic necrosis [95]. The 
lesion frequently begins as painless erythematous areas with 
papules and/or bullae that often rapidly progress becoming 
painful gangrenous ulcers [96]. These lesions may be single 
or multiple and, although they can occur at any anatomic 
district, they are preferentially found in the gluteal and perineal 
areas. Once ecthyma gangrenosum is clinically suspected, 
prompt collection of blood cultures, culture of exudates 
from an aspirate or swab of lesion or skin biopsy should be 
collected to isolate P. aeruginosa or other uncommon cause of 
viral, bacterial, mycobacterial or fungal pathogens potentially 
responsible [96,97]. 

As for therapy, we suggest administration of empirical 
combination therapy with beta lactams and aminoglycosides 

https://doi.org/10.7573/dic.212527
http://drugsincontext.com


Bassetti M, Vena A, Croxatto A, Righi E, Guery B. Drugs in Context 2018; 7: 212527. DOI: 10.7573/dic.212527	 10 of 18
ISSN: 1740-4398

REVIEW – How to manage Pseudomonas aeruginosa infections drugsincontext.com

Table 4.  New drugs and usual clinical dosage for new anti-Pseudomonas agents.

Drug Current clinical 
indications

Usual clinical dosage for 
serious infections Other comment

Cephalosporins

Cefiderocol Complicated UTI 2 g intravenous every 8 hours  -

Cephalosporin + β-lactamase inhibitor

Ceftolozane-tazobactam 

Complicated UTI and IAI

Loading dose 1.5 g or 3 g 
intravenous in 1 hour, followed 
by 1.5 g or 3 g intravenous every 
8 hours

Extended infusion (over  
3 h) 1.5 g or 3 g every  
8 hours is recommended

Ceftazidime-avibactam Complicated UTI and IAI,  
HAP and VAP and Gram-
negative infections when 
other treatments might 
not work

Loading dose 2.5 g intravenous 
in 1 hour, followed by 2.5 g 
intravenous every 8 hours 

Extended infusion (over 
3 h) 2.5 g every 8 hours is 
recommended

Carbapenem + β-lactamase inhibitor

Meropenem-vaborbactam
Complicated UTI

2 g/2 g intravenous every  
8 hours 

Not active against MDR 
strains

Imipenem-relebactam Not yet approved by any 
regulatory authority

500 mg/250 mg intravenous 
every 6 hours

Not active against MDR 
strains

Aminoglycoside

Plazomicin Not yet approved by any 
regulatory authority

15 mg/kg every 24 hours -

How to optimize anti-P. aeruginosa 
therapy
Clinicians should be aware that in addition to adequate 
antimicrobial coverage, other factors including optimal dosing, 
interval of drug administration, and duration of therapy are key 
factors influencing clinical outcomes. 

For example, in a recent multinational study performed in ICU 
patients, 16% of the patients did not achieve free antibiotic 
concentrations sufficiently greater than the MIC required 
to ensure a positive clinical outcome [107]. Another recent 
study performed in patients with VAP due to Gram-negative 
bacteria [108] showed that a serum exposure of anti-
pseudomonal cephalosporins greater than 53% fT>MIC was 
significantly associated with a favorable outcome or presumed 
eradication. Therefore, these and other studies [109] support 
the importance of considering adequate exposure-response 
profiles when optimizing drug therapy in these patient groups. 

In our opinion, the best way to optimize beta-lactam 
antibiotic dosing may be the use of prolonged or continuous 
infusion with the use of a loading dose to ensure early 
attainment of target concentration exceeding the MIC 
[110]. Moreover, although it is not available in most clinical 
laboratory, we also suggest the use of therapeutic drug 
monitoring (TDM). 

New systemic drugs
Standard antibiotic therapy may be inferior to some new 
comparator agents in the treatment of serious P. aeruginosa 
infections, especially in the setting of increased antimicrobial 
resistance. Novel antibiotics with activity against  
P. aeruginosa have become available in Europe in recent years 
and others are in advanced stages of clinical development 
(Table 4). In some cases, indirect evidence suggests their 
possible superiority over standard anti-pseudomonal 
regimens (Table 5) [111]. 

Ceftolozane-tazobactam
Ceftolozane-tazobactam is being developed to overcome 
P. aeruginosa antimicrobial mechanisms of resistance, such 
as changes in porin permeability and upregulation of efflux 
pumps. This drug has an intrinsic potent anti-pseudomonal 
activity, because of a greater affinity for all essential PBPs, 
including PBP1b, PBP1c and PBP3 [112]. Ceftolozane/
Tazobactam has proven to have a potent in vitro activity 
against the majority of MDR P. aeruginosa strains (including 
ESBL but not carbapenemase producing strains). The US 
FDA has proposed clinical use of ceftolozane-tazobactam 
in complicated intra-abdominal and urinary tract infections 
[113,114]. In addition, a study for treatment of HAP including 
VAP is currently ongoing. Data belonging to real-world studies 
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using ceftolozane-tazobactam for the treatment of MDR  
P. aeruginosa infections showed positive outcomes in 71% of 
patients with MDR P. aeruginosa infections [115]. 

Ceftazidime-avibactam
Ceftazidime-avibactam is a novel β-lactam/BLI 
combination approved by FDA and EMA for the treatment 
of complicated UTIs and complicated intra-abdominal 
infection. In vitro studies showed that the combination 
of ceftazidime-avibactam is highly effective against 
Enterobacteriaceae producing KPCs, ESBLs OXA and 
AmpC enzymes. However, the drug has no activity 
against metallo-beta lactamases (MBL, VIM and NDM) 
and avibactam offers no enhanced activity against P. 
aeruginosa [116–119]. The effectiveness of ceftazidime-
avibactam against VAP has been analyzed in a phase 
III studies comparing this new drug with meropenem 
(NTC01808092) [120]. The predominant Gram-negative 
pathogens isolated at baseline were K. pneumoniae and P. 
aeruginosa, with 28% of patients having ≥1 ceftazidime  
non-susceptible isolate. In the clinically evaluable population, 
356 patients received ceftazidime-avibactam and 370 
received meropenem. The study met the criteria for non-
inferiority of ceftazidime-avibactam since there was no 

difference between the groups regarding the outcome. 
Moreover, the efficacy of ceftazidime-avibactam against 
ceftazidime-non-susceptible strains was similar to that 
against ceftazidime-susceptible pathogens and was also 
comparable to meropenem. 

Imipenem-cilastatin-relebactam
Relebactam is a diazabicyclooctanes BLI that inhibits the 
activity of class A and C β-lactamase, but does not have any 
activity against metallo- β-lactamase [121]. The combination 
of imipenem-cilastatin with relebactam has shown to have 
synergistic activity against a wide spectrum of MDR Gram-
negative pathogens including P. aeruginosa, KPC-producing K. 
pneumoniae and Enterobacter spp. [122,123]. This drug has been 
mainly studied in patients with IAI [124], complicated UTI and 
pyelonephritis [125] whereas a study on patients with HAP/VAP 
is currently ongoing.

Other new drugs such as plazomycin, meropenem-
vaborbactam and aztreonam-avibactam have a limited effect 
on P. aeruginosa [111].

Future strategies to improve 
patient outcome
There is an urgent need to improve early diagnosis and 
empirical treatment of severe P. aeruginosa infections. 
First, MALDI-TOF and new molecular techniques should 
be systematically implemented to rapidly report the 
identification and susceptibility results for Pseudomonas in 
blood cultures and other clinical relevant cultures. However, 
controlled trials will be necessary to determine whether 
such diagnostic techniques have a real impact on length of 
hospitalization and patient mortality. Second, further studies 
aimed to identify patients at risk of MDR P. aeruginosa 
infections (bloodstream infections, urinary tract infections) 
based on clinical risk factors are urgently needed. Finally, 
clinical response depends on factors such as underlying 
diseases, severity of infection, type of infections, adequate 
source control and response of previous antibiotics. There 
is an urgent need to evaluate the real impact on patient 
outcomes of the new anti-Pseudomonas drugs recently 
approved for the treatment of these infections.

Table 5.  Advantages and disadvantages of new 
drugs for P. aeruginosa infections.

Advantages

  High activity against P. aeruginosa including MDR 
strains

  Predictable PK

  Good safety profile and tolerability 

  Carbapenem sparing 

  Rapid tissue distribution 

Disadvantages

  Increased costs

  No oral formulations to allow step-down therapy

  Superinfection with even more resistant bacteria or 
fungi
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