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1 Résumé 

Dans les maladies neurodégénératives, on observe des dépôts de produits de dégradations 

considérés souvent comme marqueurs pathologiques. Les mécanismes sous-jacents à ces processus 

sont encore mal connus mais une des hypothèses est que le système ubiquitine-protéasome est 

perturbé dans certaines maladies neurodégénératives. Parmi les facteurs qui jouent un rôle, on 

trouve le vieillissement, l’oxydation et la formation de radicaux libres, ainsi que des mutations 

génétiques qui influencent la fonction des protéines  produisant leur accumulation anormale, les 

aggrésomes. 

La sclérose latérale amyotrophique, dans laquelle une disfonctionnement de l’enzyme sodium 

dismutase perturbe le système redox, est caractérisée par une mort neuronale progressive qui 

découle d’une accumulation d’éléments du cytosquelette dans les motoneurones. Nous supposons 

que dans cette maladie le système ubiquitine-protéasome est déréglé et nous allons essayer de le 

démontrer dans cette étude.  

Dans ce travail nous avons comparé par électrophorèse et Western blot l’ubiquitination dans des 

cerveaux et des moelles épinières des souris transgéniques avec ceux des souris contrôles. Ces NFH-

LacZ-souris, possédant une protéine neurofilament fusionnées à une β-galactosidase développent 

une accumulation des NF-protéines et les neurofilaments ne sont plus transportés dans les axones ni 

les dendrites. L’accumulation de ces agrégats ressemble au phénotype de la sclérose latéral 

amyotrophique. Les autres points d’investigation étaient l’expression des différents neurofilaments 

et leur phosphorylation. 

Les résultats n’ont pas pu démontrer une perturbation du système ubiquitine-protéasome des souris 

transgéniques. Par contre, en concordance avec le mécanisme existant chez les souris NFH-LacZ, une 

diminution des neurofilaments et une hypophosphorylation ont pu être mis en évidence. En 

conclusion, pour éclaircir le mécanisme pathologique de la sclérose latéral amyotrophique et ainsi 

faire un pas vers le  développement de nouveaux traitements ciblés, il nous faut revoir le mécanisme 

pathologique des souris transgéniques et réaliser de nouvelles études en utilisant d’autres modèles 

animaux ou du matériel humain. Une autre possibilité serait d’investiguer d’autres mécanismes de 

dégradation tel que le système endosomal/lysosomal et mieux définir leur rôle dans la sclérose 

latéral amyotrophique. 

1 Abstract 

In neurodegenerative diseases, one can observe deposits of degradation products that represent 

hallmark structures. Actually, the underlying mechanisms are not well understood, but some 

hypotheses claim that the ubiquitin-proteasome system is perturbed in neurodegenerative diseases. 

Some of the influencing factors are aging, oxidation and the formation of free radicals, as well as 

genetic mutations which affect the function of proteins and result in an accumulation and formation 

of aggresomes. The amyotrophic lateral sclerosis, in which a malfunction of the sodium dismutase 

perturbs the redox system, is characterized by the accumulation of elements of the cytoskeleton in 

motor neurons and a progressive neuronal death. We suppose that in these diseases the ubiquitin-

proteasome system is deregulated and try to demonstrate this hypothesis by comparing the 

ubiquitination of different neurofilaments in brain and spinal cord of transgenic and control mice. 

These NFH-LacZ mice with a truncated NF-H protein and a ß-galactosidase marker protein induce an 

accumulation of NF-proteins and neurofilaments are no longer transported into axons or dendrites. 
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The accumulation of such aggregates resembles the phenotype of amyotrophic lateral sclerosis. 

Beside the ubiquitination the neurofilament expression and phosphorylation state was investigated.  

The results cannot demonstrate a perturbation of the ubiquitin-proteasome system of 

neurofilaments in transgenic mice. In contrast, in accordance with the mechanism of the NFH-LacZ 

mice a decrease of high and medium density neurofilaments and a hypophosphorylation were found. 

In conclusion, to elicit the pathological mechanism of amyotrophic lateral sclerosis and to develop 

focused treatments, we have to review the pathological mechanism of the transgenic mice and 

repeat the experiments with other animal models or with human material. Other possibilities would 

be to focus on other degradation mechanisms, such as the endosome/lysosome system, and to 

define their role in the amyotrophic lateral sclerosis more clearly.  

2 Key Words 

Amyotrophic lateral sclerosis, neurodegeneration, ubiquitin-proteasome-system, NFH-LacZ 

transgenic mice, neurofilament, phosphorylation. 

3 Introduction 

3.1 Neurodegenerative diseases 

Several diseases with a common background in pathophysiology and clinical evolution and similar 

histological findings are subsumed by the term of neurodegenerative diseases. Alzheimer disease 

(AD), Huntington disease (HD), Parkinson disease (PD) and amyotrophic lateral sclerosis (ALS) are 

some of the most important members of this group. These diseases are characterized by a 

progressive and selective loss of neurons. Although they are genetically and/or environmentally 

multifactorial, which leads to considerable different clinical patterns and various drug response 

(Katsuno, et al. 2012), they all show a similar accumulation of misfolded proteins and formation of 

aggresomes in particular brain structures. In AD misfolded amyloid β peptides accumulate and form 

senile plaques whereas in inclusions of Lewy body-dementia or Parkinson disease α-synyclein, 

neurofilaments and ubiquitin can be found. These accumulations of amyloid β peptides and α-

synyclein lead to apoptosis by the release of Cytochrom C out of the mitochondria (Hashimoto, et al. 

2003). As new studies show, a non-apoptosis programmed cell death seems also to be involved, but 

the apoptosis pathway remains still an important mechanism for the loss of neuronal structure 

(E.Bredeson et al., 2006). 

The incidence of neurodegenerative diseases increases with extended live expectancy. In the last 

years especially age-related degenerative diseases reached epidemic rates in developed countries. 

There can be found more and more mild cognitive impairment with a higher risk for developing 

dementia (Melo, et al. 2011). 

It seems that one of the common pathophysiological mechanisms in neurodegenerative disease 

development is the generation of reactive oxygen species (ROS) and the accumulation of 

mitochondrial DNA mutations, resulting in oxidation damage (Lin, et al. 2006) (Melo, et al. 2011). 

These irreversible oxidations provoke an activation of chaperones to repair damaged and misfolded 

proteins or to degrade them by the ubiquitin-proteasome system. This is also an argument in favour 

of the increase of neurodegenerative disorders with elderly people, because progressive 
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accumulation of oxidative damage and decrease of protein repair mechanisms lead to ubiquitination 

and formation of aggresomes.  

3.2 Amyotrophic lateral sclerosis 

The amyotrophic lateral sclerosis is, with a prevalence of 3-5 per 100’000, the most frequent motor 

neuron disorder (Longo, et al. 2012). It is characterized by the selective loss of upper and lower 

motor neurons. The motor neuron cytoskeleton is affected and focal enlargements, composed of 

accumulations of neurofilaments and other proteins can be found in proximal motor axons as well as 

proliferation of astroglia and microglia, which always accompanies degenerative processes in the 

central nervous system. With loss of the motor neurons in brainstem and spinal cord the 

corresponding muscle fibres begin to atrophy. The first part of its name is due to the atrophy of the 

muscle hence “amyotrophic”. The other characteristic, the loss of fibres in the lateral columns and 

the resulting fibrillary gliosis, explains the rest of the name: “lateral sclerosis”. 

Remarkable in the development of the disease is the selectivity of neuronal cell death. While there 

occurs a loss of neurons and atrophy of the whole locomotor system, the sensory apparatus, the 

regulatory mechanisms for the control and coordination of movement and the cognitive function 

remain intact, as well as the motor neurons required for ocular motility and the parasympathetic 

neurons controlling sphincter functions of bladder and bowel rest unaffected. 

The first clinical sign of the lower motor neuron dysfunction and denervation is insidiously 

developing asymmetric weakness in distal limbs, progressive wasting and atrophy of muscles and 

frequent observed fasciculation of muscle units. If the neuronal impairment affects the bulbar 

muscles, it results in difficulties to control swallowing and movements of the face and tongue, while 

corticospinal involvement leads to hyperreflexia and spastic resistance to passive movements. 

The evolution of the disease can start with any muscle group, but as time passes, more and more 

muscles become affected until all regions are symmetrically affected. 

ALS is currently untreatable and characterised by a progressive evolution leading to death from 

respiratory paralysis in about 3-5 years. (Longo et al., 2012) So far, there is no established medication 

which can stop the underlying pathologic processes in ALS, but the drug riluzole is used to prolong 

the survival in ALS. Since excitotoxic neurotransmitters, such as glutamate, participate in the death of 

motor neurons in ALS, riluzole reduces excitoxicity by diminishing glutamate release. Other 

treatments are in clinical trials, such as ceftriaxone by increasing astroglial glutamate transport and in 

this way acting antiexcitotoxic, or pramipexole and tamoxifen, two neuroprotective agents. 

Antisense oligonucleotides which diminish expression of mutant SOD1 protein prolong survival in 

transgenic ALS mice and are now in trial for SOD1-mediated ALS. 

Besides the small opportunities of primary therapy there exist a lot of rehabilitive aids. To mention 

are: respiratory support, foot-drop splints, and speech synthesizers. 

3.2.1 Super-oxide dismutase-1 (SOD1) 

About 10% of all ALS cases are familial (FALS) and in another 10 to 20% of these FALS cases, a 

mutation of the superoxide dismutase (SOD1) can be detected. (Kabashi, et al. 2007) It is an 

antioxidant protein that transforms highly reactive superoxide anions into hydrogen peroxide. Except 

for the earlier appearance in a clinical as well as in a pathological way, almost no difference between 

mutant SOD1-induced ALS (1-2% of all ALS cases) and the classic form of ALS can be detected. Studies 

show that posttranslational modifications of SOD1 cause the majority of cases of typical ALS. 
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(Kabashi, et al. 2007) There are more than 120 reported distinct amino acid changes in the SOD1 

protein that cause ALS, which shows that any alteration in the structure of SOD1 will cause it to 

acquire toxic properties that lead to ALS. (Kabashi, et al. 2007) The misfolding of the protein, and not 

a specific nature or localization of the mutation, leads to a gain of function that is specifically toxic to 

motor neurons in cortex and spinal cord, cortical interneurons and dopaminergic neurons. The 

misfolding can be caused by mild oxidation by hydrogen peroxide (the main product of SOD1 

catalysis of superoxide anions himself) or another oxidizing reagent leading to ubiquitination, 

association with chaperones, insolubility and aggregation. Also common in the mutant form, the 

misfolded SOD1 of wild type mice are secreted in the extracellular space, which leads to death of 

motor neurons. The role of the glial cells, which secret the misfolded SOD1 into extracellular space 

seems to be quite important, because reducing levels of SOD1 in motor neurons delays onset but not 

does improve the evolution of ALS, whereas reducing levels of SOD1 in microglial delays progression 

of the disease. Candidate genes, which predisposes for ALS seem to be all gene variants who 

promote oxidation and/or misfolding of SOD1, as well as genes encoding proteins for normal folding 

of SOD1 (protein chaperones) or efficient removing of misfolded SOD1 (ubiquitin-proteasome and 

autophagy components) and finally any genes associated with increased free radical production, thus 

increasing the cellular demand for SOD1 and increasing the production of hydrogen peroxide 

(Kabashi, et al. 2007).  

 

 

Figure 1 I Misfolded/oxidized wild-type superoxide dismutase-1 (wtSOD1) acquires a comparable toxic gain of function to 
mutant SOD1 (mutSOD1). (A) After mild oxidation by hydrogen peroxide or another oxidizing reagent, wtSOD1 has been 
shown to acquire an aberrant conformation that makes it more likely to misfold. The misfolded wtSOD1 dimer can thus 
lose the copper and zinc ions and dissociate into monomeric units. Further, misfolded wtSOD1 has been shown to 
possess many of the features that were thought to be exclusive of the mutant protein (B), including ubiquitination, 
association with chaperones, insolubility, and aggregation. Also, similar to mutSOD1, misfolded/oxidized wtSOD1 may be 
secreted in the extracellular space, where it would initiate the molecular cascades that lead to death of motor neurons, 
as has been described for mutSOD1. (Figure and legend from Kabashi et al., 2007) 
 

One hypothetic therapy strategy lowers or blocks the expression of SOD1, by insertion of a virus with 

RNA against SOD1. Another would be to deliver antisense oligonucleotides to the CNS or the 

injection of monoclonal antibodies that specifically recognize misfolded or mutant SOD1 and 

molecules that inhibit monomerization and so aggregation of the SOD1 dimers. Furthermore some 



6  l  master thesis in medicine  l  manuel vestner 2011-2012 

drugs exist, such as arimoclomol that reduces the amount of secretable misfolded SOD1 by 

upregulating protein-folding chaperones. 

3.3 Background Ubiquitin-Proteasome System 

For the continuous turnover of intracellular proteins there exist two main regulatory systems: the 

lysosomal and the ubiquitin-proteasome system (UPS). The function of the ubiquitin-proteasome 

system (UPS) is to degrade non-useful proteins, such as damaged oxidized, mutant or misfolded 

proteins (Lehman 2009). These proteins are also implicated in signal transduction systems by turning 

off signal proteins, in cell-cell communication during development and at the neuronal synapse, 

regulating of gene transcription via monoubiquitination and deubiquitination of histones, driving 

circadian clocks and the regulation of cell cycle, progression and apoptosis and functioning of the 

MHCI-antigen presentation of the immune system. (Lehman 2009) This mechanism is responsible for 

80-90% of protein breakdown while the lysosomal proteolysis takes about 10-20%. (Riederer, et al. 

2011) 

 

Figure 2 I Ubiquitin activating enzyme (E1) transfer activated ubiquitin to ubiquitin conjugating enzymes (E2) which binds 
at the ubiquitin ligase (E3), where the target protein binds the ubiquitin. E4 is generating the polyubiquitin chains ready 
for transfer to the proteasome for cleavage in small peptides and free amino acids. Deubiquinating proteins at the 
proteasome complex permit recycling of the ubiquitin monomers and reintroduce them into the cycle activating it by E1. 
(Figure from N. Lehmann, 2009) 

The perturbation of the UPS seems to be a cause and a result of neurodegenerative diseases. 

Molecular chaperones, responsible for protein refolding and repair, form the first line of defence 

against protein misfolding and aggregation, and the UPS, essential to reduce level of abnormal 

proteins, is the second line. But a dysfunction of the UPS system may lead to accumulation and an 

aggregation of ubiquitinated proteins. Furthermore ubiquitinated proteins seem to have an 

inhibitory effect on the UPS function and cause accumulations of proteins. (Riederer, et al. 2011) 

In abnormal cellular inclusions such as neurofibrillary tangles and neuritic plaques, hallmark 

structures of Alzheimer disease, an accumulation of ubiquitinated and hyperphosphorylated 

microtubule associated protein tau can be detected. As the p62, a polyubiquitin binding protein that 

interacts with the UPS, plays a role in preventing the aggregation of polyubiquitinated  protein tau in 

delivering it to the lysosome, relative dysfunction or inhibitory overloading of UPS may contribute to 

the abnormal accumulation of phosphorylated and ubiquitinated tau (Lehman 2009). Other 

pathogenic theories exist, such as inflammation of brain tissue leading to oxidative stress and UPS 
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dysfunction, various inhibitory proteins of the UPS or damage of proteins of the UPS itself. For 

example the paired helical filaments seem to inhibit the proteasome activity and cause tau 

accumulation and a general increase in ubiquitinated proteins (Riederer, et al. 2011). 

Another example are the Lewy bodies in Parkinson disease, where the UPS is also disturbed. A defect 

of the parkin, a component of the UPS, seen in familial juvenile onset  Parkinson’s disease,  leads to a 

lesser ubiquitination of aggregated proteins found in Lewy bodies, such  as α-synuclein (α-sp22) and 

parkin-associated endothelin receptor-like receptor (Pael-R).  

In cytoplasmic inclusions in ALS, ubiquitin can also be detected, this suggest dysfunction in ubiquitin 

proteasome together with a disturbance in the endosome/lysosome system, which might play a 

more important role than in other neurodegenerative diseases. 

Also the aggregated, toxic polyglutamine repeat form of protein huntingtin seen in Huntington 

disease is degraded by the UPS. Similar to prion diseases misfolded mutant huntigntin protein 

inhibits the proteasome machinery with the result of toxic over-accumulation of the mutated 

huntigntin and other proteins. 

Finally the UPS is also implicated in the etiology of neurological tumors by missing ubiquitination of 

certain proteins or the interaction with tumor suppressors. 

 

Figure 3 I Anti-ubiquitin immunostaining in neurodegenerative diseases: Ubiquitin positive inclusions are found in 
hippocampal plaques (a), neurofibrillary tangles (b), brain stem (c) and cortical Lewy bodies (d) of Alzheimer disease, as 
well as in the nucleus of cortical neurons in Huntington disease (e) and in the cytoplasm of anterior horn neurons in 
motor neuron disease (f) (Image from L. Lehmann, 2009). 
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3.4 Role of neurofilaments 

Neurofilaments are specific neuronal intermediate filaments and are responsible with other 

members of the cytoskeleton, as microtubules or microfilaments, for structural integrity, cell shape 

and cell and organelle motility. The major function of the neurofilaments is to control the axonal 

calibre related to their phosphorylation state (Q.Liu, et al. 2004). Like all intermediate filaments they 

have a well-organized coil structure, formed by three neurofilament subunits, defined by their 

molecular weight: NF-L (light), NF- M (medium) and NF-H (high). In SDS-Page they show a molecular 

weight as followed: NF-H 200kD, NF-M 160 kD, NF-L 60kD (Q.Liu, et al. 2004). 

NF-L is responsible for the precise assembly of neurofilaments. NF-M establishes crosslinks and 

stabilizes the filament network and has its role in longitudinal extension. NF-H forms cross-bridges as 

well and interacts with other cytoskeletal elements, such as microtubules and microfilaments. 

After their synthesis in the perikaryon the neurofilament-proteins are transported into axons and 

assemble there into the filamentous structure. Entering into axons there are phosphorylated and by 

this way the axonal growth is regulated. But alteration in phosphorylation of NF-M and NF-H tail 

domain is seen in various neurodegenerative diseases as ALS or AD, in which tail domain 

phosphorylation and neurofilament accumulation occur abnormally in perikarya. Protein inclusions in 

axons block the transportation of particles through the axon and seem to lead to neuronal death. In 

contrast, transient phosphorylation of head domain prevents neurofilament assembly and tail 

domain phosphorylation in perikarya, protecting the neuron from abnormal accumulation of 

phosphorylated neurofilament-proteins aggregates in cell bodies. (Q.Liu, et al. 2004) Phosphorylation 

also slows down neurofilament transport within axons and it seems to also have a protective 

function in protecting the neurofilament-proteins from degradation. 

 

Figure 4 I All intermediate filaments consist of an N-terminal head domain, a central α-helical rod domain and C-terminal 
domain. A unique character of NF-M and NF-H is that the carboxy terminus contains multiple repeats of Lys-Ser-Pro 
which are highly phosphorylated. NFH has more than 20 repeats, NFM has 3-4 repeats whereas NFL has 1-2 repeats. 
(Figure from Q. Liu, 2004) 
 

3.5 NFH-LacZ mice 

Transgenic NFH-LacZ mice are created by Eyer and Peterson in 1994 for research in 

neurodegenerative diseases. These mice are expressing a fusion protein of a truncated high-

molecular-weight mouse neurofilament protein (NFH) fused to β-galactosidase (LacZ) of Eschericia 

Coli. This leads to a decrease in neurofilament triplet protein expression and a loss in neurofilament 

assembly and abolished transport into axonal and dendritic processes in spinal cord and brain 
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(Riederer, et al. 2003). In addition, reduced neurofilament phosphorylation may favour increased 

filament degradation (Eyer und Peterson 1994). Consequently, these mice develop inclusions in 

neurons throughout the CNS formed by massive filamentous aggregates of all three endogenous 

neurofilament proteins and the NFH-LacZ fusion protein. These inclusions resemble NF-rich Lewy 

bodies seen in Parkinson disease or Lewy body dementia and the inclusion formed in motoneurons 

can be taken as a prototype for amyotrophic lateral sclerosis. These transgenic mice develop not only 

inclusions in the perikarya and proximal axons of spinal cord motoneurons, but develop also 

muscular weakness and motoneuron loss similar as in human ALS cases (Tu, et al. 1997). 

The accumulation of large neurofilament inclusion leads to a blockage of axonal transport resulting in 

the loss of spinal motoneurons in these mice. Clinically, there are reduced rearing frequency and 

poor performance in motor coordination reported. In addition, a reduced phosphorylation in NF-H 

and NF-M subunits can be detected which is why neurofilaments become less stable and more 

susceptible to degradation because phosphorylation is essential for neurofilament stabilization and 

transport (Riederer, et al. 2003). 

Due to the fact that ubiquitin activity can be detected in inclusions, the UPS seems to have a role in 

limiting the size of the inclusions.  

 

 

 

 

 

 

 

 

 

Figure 5 I A β-Galactosidase of Eschericia coli monomer was matched at the carboxy terminus of the NFH permiting the 
detection of aggregated NFH. (Figure from Eyer and Peterson, 1994) 

4 Aim of the project 

It is well known that protein mutations are identified by chaperone or heat shock proteins that try to 

repair damaged or dysfunctioning proteins. Eventually such proteins are tagged by ubiquitin and so 

destined to degradation via the ubiquitin proteasome system. Under certain circumstances, 

ubiquitinated proteins escape degradation and accumulate in the cell; such aggregates are also called 

aggresomes. The NFH-LacZ mice with a truncated NF-H protein and a ß-galactosidase marker protein 

induce an accumulation of NF-proteins and neurofilaments are no longer transported into axons nor 

dendrites. The accumulation of such aggregates resembles the phenotype of amyotrophic lateral 

sclerosis. In many neurodegenerative diseases one observes the formation of protein aggregates that 

are ubiquitinated (Riederer, et al. 2011) (Al-Chalabi, et al. 2012). The goal of this study is to 

determine whether the ubiquitin-proteasome system is perturbed in NFH-LacZ mice and hence leads 

to the formation of aggregates in the soma of motoneurons. 
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5  Material and Methods 

5.1 Transgenic mice 

For this research we analysed brain and spinal cord tissue of nine transgenic and ten control mice 

with the genetic background of C57Bl/6. There were 10 males and 9 females obtained from J.Eyer, 

Angers France, who describes their generation in Eyer and Peterson, 1994. All animals were 

anesthetized and perfused with phosphate-buffered saline (PBS) and stored at -80C. 

5.2 Preparation of assay  

Brain and spinal cords samples of transgenic and control mice, 10 of each group, were homogenized 

manually and sonicated in PBS + triton 1‰ + tween + Pic (protein inhibitor cocktail). With a Bradford 

Method the concentration of protein was determinated and diluated with a SDS-Mix 5x to a final 

concentration of 2mg/ml. Finally, the samples were heated 10 minutes at 100C and stored at -20C 

for further use.  

5.3 Electrophoresis 

The main function of electrophoresis is the separation of the charged proteins considering molecular 

weights and charges of proteins. The most common use is the qualitative analysis of a mixture of 

proteins. There can be detected differences in molecular weight of a few hundreds of Dalton and 

differences in an isoelectric point less than 0.1 pH unit. (E.Garvin 2003) 

In the Sodium Dodecyl Sulfate Poly Acrylamid Gel Electrophoresis (SDS-PAGE) the goal is to separate 

the proteins only by their molecular weight. (In comparison with the 2D-electrophoresis, in which the 

proteins are separated in function of molecular weight and isoelectric point).  SDS denatures native 

proteins and links electrons to the hydrophobic regions, and therefore results in a negative charge in 

relation to their mass. Because the smaller proteins get faster through the polyacrylamide gel at the 

end they are closer to the anode than the bigger ones. To define the molecular weight we added a 

standard protein mix with known molecular weights. 

Gels were prepared with acrylamide solution (39% acrylamide stock solution (Merck), 1% N,N’-

methylendiacrylamide (Merck)), stacking Buffer (3% Tris (Sigma), 0.2% SDS (BioRad) in a pH of 6.8), 

Separating Buffer (9.1% Tris (Sigma), 0.2% SDS (BioRad) in a pH of 8.8), ammonium persulfate (APS 

solution of 10% (Sigma)) and TEMED (Eurobio). The electrophoresis was running with 140V for about 

3 hours in a running Buffer containing 0.3% Tris (Sigma), 1.44% Glycine (Biosolve), 0.1% SDS (BioRad) 

and deionized water.  Further on, the gels were either stained over night by Coomassie blue for an 

unspecific visualizing of the proteins or transferred to a nitrocellulose membrane by Western blot for 

specific detection by antibodies. 

5.4 Western Blot 

With the Western Blot, also called protein immunoblot, specific proteins in a homogenate of tissue 

samples can be detected. In transferring the proteins from the gel to a nitrocellulose membrane they 

can be detected by attachment of specific antibodies and visualized with secondary antibodies linked 

to enzymes or chemiluminescence. 

The gel from the electrophoresis and the nitrocellulose membrane (Reinforced NC, OptitRan BA-S 85) 

was placed between two filter papers (GB003, Schleicher & Schuell), submerged in the transfer 

buffer (24.9mM Tris (Sigma), 191.8mM Glycine (Biosolve), 20% methanol (Brenntag), 0.01% SDS 

(BioRad), deionized water) and fixed in the blot system (BioRad), assuring that the proteins pass on 
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the nitrocellulose membrane on their way from the gel toward the anode. The transfer was done 

with 90V for 2.5 hours.  

To detect specific proteins the immune staining was used by adding specific antibodies for searched 

proteins. To prevent unspecific binding of the nitrocellulose membrane and to reduce background 

noise and false positives, they were blocked for 30min in 5% dried milk in PBS-Tween.  After some 

washing in PBS the membranes were incubated for 1 hour with a first monoclonal or polyclonal 

antibody (in PBS with 2.5% dried milk and 0.15%Tween20) followed by washing in PBS. (2x3min, 

1x15min, 2x5min). Afterwards, the first antibody was linked with a second, peroxidase-linked 

antibody by incubating for 1 hour (in PBS with 2.5% dried milk and 0.15%Tween20) and washed again 

in PBS (2x5min, 1x15min in PBS, 0.15% Tween20, 3x5min). In order to start the chemiluminescence 

reaction of the peroxidase the membranes were incubated during exactly 1min with a solution of 

two Western blotting reagents (Amersham TM ECL Western Blotting Detection Reagents (GE 

Healthcare). Finally, they were exposed to light sensible films (Kodal Biomax MR) for several seconds 

or a few minutes and developed with the KODAK X-OMAT 1000 Processor. 

5.5 Antibodies 

antibody final dilution second antibody goal structure 

ubiquitin monoclonal 1:2000 anti-rabbit (polyclonal) ubiquitin 

ubiquitin polyclonal 1:2000 anti-mouse (monoclonal) ubiquitin 

BR10 1:100’000 anti-rabbit (polyclonal) NF-M 

M20 1:10 anti-mouse (monoclonal) NF-M 

M9 1:10 anti-mouse (monoclonal) NF-H 

M15 1:10 anti-mouse (monoclonal) NF-L 

SMI-32 1:5000 anti-mouse (monoclonal) NF-H non phosphorylated 

SMI-31 1:5000 anti-mouse (monoclonal) NF-H phosphorylated 

SMI-34 1:5000 anti-mouse (monoclonal) NF-H phosphorylated 

5.6 Quantification 

The intensity of bands was evaluated using quantification software “image J” (Image J 1.41o, Wayne 

Rasband, National Instituts of Health, USA). The films were scanned, the background signal 

subtracted and the values analysed using a student t-test and shown in a simple excel graph.  

6 Results 

6.1 Coomassie Blue 

Although the main goal of colouring with Coomassie Blue was to adjust the amount of proteins in the 

different bands, this can also be used for a first analysis of the general protein composition between 

brain and spine chord samples of NFH-LacZ and controls mice. Colouring of all proteins by 

Commassie Blue does not permit further specification of searched proteins but provides a first 

overview.  

In Coomassie Blue gels, we can observe that NF-M (130kDa) is missing in transgenic animals and NF-H 

is reduced. This is more pronounced in spinal cord and less evident in brain tissue (Figures 6&7).  
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Figure 6 I Spinal cord samples from transgenic and wild type mice were separated on 3.6-15% SDS-PAGE gradient gel and 
proteins were stained with Coomassie Brillant Blue. Reference molecular weights are indicated to the left and the 
expected level of neurofilaments to the right Transgenic samples are indicated with a red line below the following 
samples are from control mice I Signal reduction in 130 kDalton and 200 kDalton in transgenic mice reflect decrease of 
NFM and NFH protein amounts. 

 

 

Figure 7 I Brain samples from transgenic and wild type mice were separated on 3.6-15% SDS-PAGE gradient gel and 
proteins were stained with Coomassie Brillant Blue. Reference molecular weights are indicated to the left and the 
expected level of neurofilaments to the right. Transgenic samples are indicated with a red line below the following 
samples are from control mice I Signal reduction in 130 kDalton and 200kDalton in transgenic mice reflect decrease of 
NFM and NFH protein amounts whereas the difference in brain isn’t that clear than in spinal cord samples. 

6.2 Immunostaining 

The immunostaining method for detecting specific proteins allows to compare specific proteins 

between transgenic and control mice. The first approach was to figure out if our hypothesis that 

there is a difference in ubiquitination levels between transgenic and control mice was true. In a 

second step we compared the expression of the neurofilament proteins and thirdly, we analysed the 
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phosphorylation state of the neurofilament proteins. Listed are only antibodies that show clear 

results.  

6.2.1 Ubiquitination  

In contrast to our hypothesis, there was no clear difference in ubiquitination between transgenic and 

control mice. Having compared the transgenic mice to the control mice, neither in the brain nor in 

the spinal cord a clear difference in ubiquitination of neurofilaments, reporting a perturbation of the 

UPS, was detected. Quantification shows a decreased ubiquitination in transgenic mice possibly due 

to a fast reduction of neurofilaments or a non-recognition of the truncated neurofilaments by the 

UPS (Figures 8&9 and Graph 1). 

 

Figure 8 I Spinal cord proteins from transgenic and wild type mice were separated by electrophoresis, transferred to 
nitrocellulose membrane and specific proteins were detected by Immunoblot. The monoclonal ubiquitin antibody 
detects a specific epitope of ubiquitin. Reference molecular weights are indicated to the left and the expected level of 
neurofilaments to the right. Transgenic samples are indicated with a red line below the following samples are from 
control mice I There cannot be shown a difference in ubiquitination of neurofilament proteins in spinal cord of NFH-LacZ 
and control mice. 

 

Figure 9 I Brain proteins from transgenic and wild type mice were separated by electrophoresis, transferred to 
nitrocellulose membrane and specific proteins were detected by Immunoblot. The polyclonal ubiquitin antibody detects 
different epitopes of ubiquitin. Reference molecular weights are indicated to the left and the expected level of 
neurofilaments to the right. Transgenic samples are indicated with a red line below the following samples are from 
control mice I There cannot be shown a difference in ubiquitination of neurofilament proteins in brain of NFH-LacZ and 
control mice. 
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Graph 1 I Quantification by Image J of an immunoblot of spinal cord stained with ubiquitin polyclonal I We report a 
significant reduction of ubiquitin in transgenic mice possibly due to a fast reduction of neurofilaments or a non-
recognition of the truncated neurofilaments by the UPS. (p-value 0.01) 

 

6.2.2 Neurofilament Expression 

By using specific antibodies for each neurofilament, reduction can be shown in brain and spine cord 

samples. While M20 and BR10 specific for NF-M attest a reduction in NF-M, M15 showed no 

significant difference in NF-L and the M9 antibody selective for NF-H regrettably showed no clear 

result (Figures 10&11 and graph 2&3). With the antibody SMI32, specific for non-phosphorylated NF-

H, a difference in protein composition can be detected. The transgenic mice show a fusion of the 

bands of the NF-H, possibly due to a bigger amount of NF-H with smaller molecular weight, as well as 

a hyperphosphorylation of the bigger NF-H proteins at 250 kD (Figure 12). 

 

Figure 10 I Spinal cord proteins from transgenic and wild type mice were separated by electrophoresis, transferred to 
nitrocellulose membrane and specific proteins were detected by Immunoblot. The BR10 antibody is specific for NF-M. 
Reference molecular weights are indicated to the left and the expected level of neurofilaments to the right. Transgenic 
samples are indicated with a red line below the following samples are from control mice I Fewer signals about 130kD 
show a reduction of NF-M expression in transgenic mice. 
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Graph 2 I Quantification by Image J of an immunoblot of spinal cord  stained with BR10 I There can be shown a  
significant reduction of NF-M in transgenic mice (p-value <0.05) 

 

 

Figure 11 I Brain proteins from transgenic and wild type mice were separated by electrophoresis, transferred to 
nitrocellulose membrane and specific proteins were detected by Immunoblot. The M15 antibody is specific for NF-L. 
Reference molecular weights are indicated to the left and the expected level of neurofilaments to the right. Transgenic 
samples are indicated with a red line below the following samples are from control mice I M15 shows no difference in 
NF-L expressivity. 

 

 
Graph 3 I Quantification by Image J of an immunoblot of brain stained with M15 I M15 shows no significant difference in 
NF-L expressivity (p-value 0.09) 
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Figure 12 I Brain proteins from transgenic and wild type mice were separated by electrophoresis, transferred to 
nitrocellulose membrane and specific proteins were detected by Immunoblot. The SMI32 antibody is specific for non-
phosphorylated NF-H. Reference molecular weights are indicated to the left and the expected level of neurofilaments to 
the right. Transgenic samples are indicated with a red line below the following samples are from control mice I SMI 32, 
detects a fusion of the bands of the NF-H in transgenic mice, because of a bigger amount of NF-H with smaller molecular 
weight, as well as a hyperphosphorylation of the bigger NF-H proteins at 250 kD in transgenic mice. 

 

6.2.3 Phosphorylation 

The SMI31 and SMI34 antibodies are specific for phosphorylated NF-H. They both show a reduced 

signal about 230kD in brain and spinal cord samples of transgenic mice reporting a reduction of 

phosphorylated NF-H. (Figure 13) 

 

Figure 13 I Brain proteins from transgenic and wild type mice were separated by electrophoresis, transferred to 
nitrocellulose membrane and specific proteins were detected by Immunoblot. The SMI34 antibody is specific for-
phosphorylated NF-H. Reference molecular weights are indicated to the left and the expected level of neurofilaments to 
the right. Transgenic samples are indicated with a red line below the following samples are from control mice I The SMI-
34 antibody shows a clear loss of signal in transgenic mice, reporting a lack of phosphorylated NF-H in transgenic mice.  

 

7 Summary 

This work analysed brain and spinal cord samples of 9 NFH/LacZ transgenic and 10 control mice with 

several antibodies specific to ubiquitin and neurofilaments. The Immunoblot analyses revealed: 

 

 There is no clear difference in ubiquitination of neurofilaments between transgenic and 

wildtype mice, neither in brain than in spinal cord. (Figures 8&9 and Graph 1) 

 

 We detected a reduction of NF-H and NF-M expression in transgenic mice, and no difference 

in NF-L. (Figures 10&11 and Graph 2&3) 

 

 A clear hypophosphorylation of NF-H can be shown in transgenic mice, but has not been 

quantified (Figure 13.) 
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8 Discussion 

The hypothesis that the ubiquitination of the neurofilaments in NFH-LacZ transgenic mice increases 

has to be renounced in this sample. Increased ubiquitination of neurofilaments cannot be shown, 

neither in brain nor in spinal cord samples of transgenic mice. This is astonishing because several 

studies reported ubiquitin immunopositive cytoplasmic inclusions in ALS (Lehman 2009), ubiquinated 

neuronal hyaline inclusions which contain SOD1, (Okamoto, et al. 2011) and accumulation of 

ubiquitinated, hyperphosphorylated and truncated fragments of TDP-43 (Neumann, et al. 2007) and 

even detection of ubiquitin immunoreactivity in the NFH-LacZ inclusions (Tu, et al. 1997). 

Different explanations can be given for the negative results. First of all, the NFH-LacZ mice model 

might not be a perfect example to study the amyotrophic lateral sclerosis. The loss of upper and 

lower motor neurons in ALS, caused by toxic properties due to a failure of the SOD1 antioxidant 

protein, may not have the same pathological mechanism as in NFH-LacZ mice, where the loss of 

spinal motor neurons is caused by blockage of axonal transport by accumulation of large 

neurofilament inclusions. Despite the fact that the ubiquitin-proteasome system detects and 

degrades mutant, misfolded, damaged, terminally modified or over-accumulated proteins, it might 

not recognize the fused NFH-LacZ protein as a non-useful protein that is requiring repair or 

ubiquitination. 

None of the studies mentioned above used a NFH-LacZ model mice, but analysed SOD1-knockout 

mice or post-mortem material. 

It has been well established that in ALS the ubiquitin-proteasome system is affected but the results 

presented here suggest that the NFH-LacZ model is not the ideal model to study the UPS deficiency.  

Therefore further investigations with other models are indicated. Recent gene investigations in ALS 

described an X-linked form of ALS with a mutation in a gene encoding for ubiquilin-2, suggesting that 

a malfunction in autophagy and protein recycling plays a role in a minor part of ALS (Al-Chalabi, et al. 

2012). 

Our results suggest that there must be other pathways perturbed than the UPS that lead to the 

accumulation of the neurofilament proteins. Studies show that disturbance in the 

endosome/lysosome system, the other degradation pathway apart the UPS seems to be more 

important in ALS than in other neurodegenerative diseases. (Lehman 2009). 

In contrast, the other findings a decrease of NF-H and NF-M and hypophosphorylation confirm other 

studies. These studies show a reduction of each neurofilament subunit by more than half the amount 

in brain as in spinal cord (Riederer, et al. 2003). The only discordance found in this work is that the 

NF-L expression is unchanged. These findings result of the blockage of axonal transport of 

neurofilaments caused by fused NFH-LacZ protein and the resulting hypophosphorylation. The same 

study shows a massive reduction in phosphorylation of NF-M and NF-H, responsible for increased 

neurofilament degradation, which we confirm with results that show a clear hypophosphorylation of 

NF-H explained by the lack of transport into axon. Because the phosphorylation of neurofilaments 

occurs primarily in the axon, the blockage of axonal growth in NFH/LacZ mice leads to 

hypophosphorylation of mainly NFH (Tu, et al. 1997).  

9 Conclusion and Perspectives 

In this work it was not possible to distinguish between differences in ubiquitination of 

neurofilaments from transgenic and wild type mice. The NFH/LacZ mice model seems to be a good 

model for neurofilament loss and malformative inclusions but might lack congruence in the exact 
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pathological mechanism of ALS. Regardless of the mechanism behind the amyotrophic lateral 

sclerosis should be continuously investigated. Only by understanding the exact pathological pathway 

an effective treatment can be developed to fight the disease.  

Aware of the vulnerability of the laboratory methods, the tests should be repeated with other 

transgenic mice models as SOD1 knockout mice or with human autopsy material affected by ALS to 

confirm the results. Otherwise the focus should be put on other degradation pathways as the 

endosome/lysosome system. Until further knowledge of the pathological mechanism between SOD1 

disturbance and loss of motor neurons, developing therapies should be focused on a SOD1 blockage. 

Another approach is the molecular neuropathology that reported several genetic findings in the 

recent past which allows new therapeutic approaches and advances in disease modelling. (Ludolph, 

et al. 2012) 
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