
HideMyApp : Hiding the Presence of Sensitive Apps on Android

Anh Pham
EPFL, Switzerland

Italo Dacosta
EPFL, Switzerland

Eleonora Losiouk
University of Padova, Italy

John Stephan
EPFL, Switzerland

Kévin Huguenin
University of Lausanne, Switzerland

Jean-Pierre Hubaux
EPFL, Switzerland

Abstract

Millions of users rely on mobile health (mHealth) apps to
manage their wellness and medical conditions. Although the
popularity of such apps continues to grow, several privacy and
security challenges can hinder their potential. In particular,
the simple fact that an mHealth app is installed on a user’s
phone can reveal sensitive information about the user’s health.
Due to Android’s open design, any app, even without per-
missions, can easily check for the presence of a specific app
or collect the entire list of installed apps on the phone. Our
analysis shows that Android apps expose a significant amount
of metadata, which facilitates fingerprinting them. Many third
parties are interested in such information: Our survey of 2917
popular apps in the Google Play Store shows that around 57%
of these apps explicitly query for the list of installed apps.
Therefore, we designed and implemented HideMyApp (HMA),
an effective and practical solution for hiding the presence
of sensitive apps from other apps. HMA does not require any
changes to the Android operating system or to apps yet still
supports their key functionalities. By using a diverse dataset
of both free and paid mHealth apps, our experimental eval-
uation shows that HMA supports the main functionalities in
most apps and introduces acceptable overheads at runtime
(i.e., several milliseconds); these findings were validated by
our user-study (N = 30). In short, we show that the practice of
collecting information about installed apps is widespread and
that our solution, HMA, provides a robust protection against
such a threat.

1 Introduction

Mobile health (mHealth), the use of technologies such as
smartphones and wearable sensors for wellness and medical
purposes, promises to improve the quality of and reduce the
costs of medical care and research. An increasing number of
people rely on mHealth apps to manage their wellness and to
prevent and manage diseases.1 For instance, more than a third
of physicians in the US recommend mHealth apps to their

patients [23], and there are around 325,000 mHealth apps
available in major mobile app stores.2

Given the sensitivity of medical data, the threats of pri-
vacy leakage are one of the main hindrances to the success of
mHealth technologies [37]. In this area, a serious and often
overlooked threat is that an adversary can infer sensitive infor-
mation simply from the presence of an app on a user’s phone.
Previous studies have shown that private information, such as
age, gender, race, and religion, can be inferred from the list of
installed apps [22, 29, 47]. With the increasing popularity of
mHealth apps, an adversary can now infer even more sensitive
information. For example, learning that a user has a diabetes
app reveals that the user probably suffers from this disease;
such information could be misused to profile, discriminate, or
blackmail the user. When inquired about this threat, 87% of
the participants in our user-study expressed concern about it
(Section 10.6).

Due to Android’s open design, a zero-permission app can
easily infer the presence of specific apps, or even collect the
full list of installed apps on the phone [55]. Our analysis
shows that Android exposes a considerable amount of static
and runtime metadata about installed apps (Section 4); this
information can be misused by a nosy app to accurately finger-
print these apps. In 2014, Twitter was criticized for collecting
the list of installed apps in order to offer targeted ads.3 But
Twitter is not the only app interested in such information. Our
static and dynamic analysis of 2917 popular apps in the US
Google Play Store shows that approximately 57% of these
apps include calls to API methods that explicitly collect the
list of installed apps (Section 5). Our analysis, corroborating
the findings of previous studies [29, 32], also shows that free
apps are more likely to query for such information and that
third-party libraries (libs) are the main requesters of the list of
installed apps. As users have on average 80 apps installed on
their phones,4 most of them being free, there is a high chance
of untrusted third-parties obtaining the list of installed apps.

Since 2015, Android has classified as potentially harmful
apps (PHA)5 the apps that collect information about other
apps without user consent [1]. To avoid this classification,

developers simply need to provide a privacy policy that de-
scribes how the app collects, uses, and shares user data.6

We find it interesting that only 7.7% of the evaluated apps
clearly declared that they collect the list of installed apps in
their privacy policies, and some even claim that such a list
is non-personal information (Section 5.4). Also, few users
read privacy policies [41], as our user study also confirmed
(Section 10.6).

Android does not provide mechanisms to hide the use of
sensitive apps on a phone; a few third-party tools, designed
for other purposes, can provide only partial protection to some
users (Section 6). Android announced that their security ser-
vices will display warnings on apps that collect without con-
sent users’ personal information, including the list of installed
apps.7 This is a welcomed step, but the effectiveness of secu-
rity warnings is known to be limited [30, 49] and it is unclear
how queries by third-party libraries will be handled. It is also
unclear if such an approach will be able to prevent more sub-
tle attacks, where a nosy app checks for the existence of a
specific app or a small set of sensitive apps by using more
advanced fingerprinting techniques (Section 4).

We propose HideMyApp (HMA), the first system that enables
organizations and developers to distribute sensitive apps to
their users while considerably reducing the risk of such apps
being detected by nosy apps on the same phone. Apps pro-
tected by HMA expose significantly less identifying metadata,
therefore, it is more difficult for nosy apps to detect their pres-
ence, even when the nosy apps have all Android permissions
and debugging privileges. With HMA, an organization such as a
consortium of hospitals sets up an HMA app store where autho-
rized developers collaborating with the hospitals can publish
their mHealth and other sensitive apps. Users employ a client
app called HMA Manager to anonymously (un)install, use, and
to update the apps selected from the HMA app store; an the
HMA App Store does not learn about the set of apps that a
user has installed from the store. HMA transparently works on
stock Android devices, it does not require root access, and
it preserves the app-isolation security model of the Android
operating system (OS). Still, HMA preserves the key functional-
ities of mHealth apps, e.g., connecting to external devices via
Bluetooth, sending information over the Internet, and storing
information in databases.

With HMA, users launch a sensitive app inside the context
of a container app, without requiring the sensitive app to be
installed. A container app is a dynamically generated wrapper
around the Android application package (APK) of the sensi-
tive app, and it is designed in such a way that the sensitive
app cannot be fingerprinted yet still can support inter-process
communication between the sensitive app and other installed
apps. To launch the APK from the container app, HMA relies on
techniques described in existing work: the dynamic loading of
compiled source code and app resources from the APKs and
user-level app-virtualization techniques, e.g., [24, 25]. How-
ever, note that app virtualization alone is insufficient in provid-

ing robust protection against fingerprinting attacks, as many of
the information leaks uncovered by our analysis are still pos-
sible when just app virtualization is used. Therefore, our main
contribution is the design and evaluation of mechanisms built
on top of app-virtualization in order to reduce the information
leaks that could be exploited to fingerprint sensitive apps. HMA
provides multiple tiers of protection: For baseline protection
against current threats, HMA obfuscates static meta-data of sen-
sitive apps (e.g., their package names and components). To
provide more advanced protection (e.g., against side-channel
attacks), HMA can add an additional layer of obfuscation for
sensitive apps (e.g., randomizing memory access). In some
cases, app developers might need to be involved to make
changes to the apps. Moreover, we are the first to identify the
security and functional limitations of using app virtualization
for the purpose of hiding apps.

Our evaluation of HMA on a diverse set of both free and paid
mHealth apps on the Google Play Store shows that HMA is
practical, and that it introduces reasonable operational delays
to the users. For example, in 90% of the cases, the delay
introduced by HMA to the cold start of an mHealth app by
a non-optimized proof-of-concept implementation of HMA is
less than one second. At runtime, the delay introduced is of
only several milliseconds. Moreover, our user-study (N = 30)
suggests that HMA is user-friendly and of interest to users.

Our main contributions in this work are as follows.

• Systemized knowledge: We are the first to investigate
the techniques that an app can use to fingerprint another
app.8 Also, through our static and dynamic analysis on
apps from the Google Play Store, we gain understanding
about the prevalence of the problem of apps fingerprint-
ing other installed apps.

• Design and implementation of a solution for hiding sen-
sitive apps: We present HMA, a practical system that pro-
vides robust defense against fingerprinting attacks that
target sensitive apps on Android. HMA works on stock
Android, and no firmware modification or root privilege
is required.

• Thorough evaluation of HMA: The evaluation of HMA’s
prototype on apps from the Google Play Store suggests
that HMA is practical. Also, our user study suggests that
HMA is perceived as usable. HMA’s source code is available
at https://github.com/lca1/HideMyApp.

2 Related Work

Researchers have actively investigated security and privacy
problems in the Android platform. Existing works show
that third-party libs often abuse their permissions to collect
users’ sensitive information [35, 48], and that apps have sus-
picious activities e.g., collecting call logs, phone numbers,
and browser bookmarks [29, 42]. Zhou et al. [55] show that

2

https://github.com/lca1/HideMyApp

Android’s open design has made publicly available a num-
ber of seemingly innocuous phone resources, including the
list of installed apps; these resources could be used to infer
sensitive information about their users, e.g., users’ gender
and religion [40, 46]. Similarly, Chen et al. [27] show how to
fingerprint Android apps based on their power consumption
profiles. A significant research effort has been devoted to fin-
gerprinting Android apps based on their (encrypted) network
traffic patterns [28, 51, 54]. Researchers have also shown that
re-identification attacks are possible using a small subset of
installed apps [22, 33]. Demetriou et al. [29], in the same line
as our work, used static analysis to quantify the prevalence
of the collections of the list of installed apps and their meta-
data by third-party libs. We go beyond their work, however,
by systematically investigating all possible information leaks
that nosy apps can exploit to fingerprint other apps and by
performing a dynamic analysis and privacy-policy analysis.

Existing mechanisms for preventing apps from learning
about the presence of another app are not sufficient (Section 6).
As we will show in Section 8, user-level virtualization tech-
niques that enable an app (called target app) to be encapsu-
lated within the context of another app (called container app)
can be used as a building block for HMA. These techniques are
used to sandbox untrusted target apps (e.g., [24,25]) or to com-
partmentalize third-party libs from the host apps (e.g., [34]).
As they were designed for a different problem, however, they
do not directly help hide the presence of a sensitive target
app: They either require the target app to be first installed,
thus exposing them to nosy apps through public APIs, or they
run multiple target apps inside the same container app, thus
violating the Android’s app-isolation security model. They
also do not provide any insight into the possible information
leaks that can be exploited to fingerprint apps and how their
techniques can be used for hiding the presence of apps.

3 Background on Android

Android Security Model. Android requires each app to have
a unique package name defined by its developers and cannot
be changed during its installation or execution. Upon instal-
lation, the Android OS automatically assigns a unique user
ID (UID) to each app and creates a private directory where
only this UID has read and write permissions. Additionally,
each app is executed in its dedicated processes. Thus, apps
are isolated, or sandboxed, both at the process and file levels.

Apps interact with the underlying system via methods de-
fined by the Java API framework and the shell commands
defined by the Linux-layer interface. Some API methods re-
quire users to grant apps certain permissions. Android defines
three main protection levels for apps: normal, signature, and
dangerous permissions.9 Apps can have special permissions;
users are required to grant these permissions to apps through
the Settings app. Any app can execute shell commands; how-

ever, depending on its privilege, i.e., default app privilege,
debugging (adb)10 or root, the outputs of the same shell com-
mands are different.

Android Apps and APK Files. An Android app must con-
tain a set of mandatory information: a unique package name,
an icon, a label, a folder containing resources, and at least
one of the following components: activity, service, broadcast
receiver and content provider. An activity represents a screen,
and a service performs long-running operations in the back-
ground. A broadcast receiver enables an app to subscribe and
respond to specific system-wide events. A content provider
manages the sharing of data between components in the same
app or with other apps. Apps can optionally support other
features such as implicit or explicit intents, permissions, and
some customized app configurations. Apps are distributed
in the form of APK files. An APK is a signed zip archive
that contains the compiled code and resources of the app.
Each APK also includes a manifest configuration file, called
AndroidManifest.xml; this file contains a description of
the app (e.g., its package name and components).

4 Fingerprintability of Android Apps

Here, we demonstrate that an app, depending on its capabili-
ties (its granted permissions and/or privileges), can retrieve
information about other installed apps. This includes static
information (i.e., information available after apps are installed
and that typically does not change during apps’ lifetimes), and
runtime information (i.e., information generated or updated
by apps at runtime). Our analysis was conducted on Android
8.0. Its findings are summarized in Table 1.

Without Permissions. An app can easily check if a spe-
cific app is installed on the phone. This can be done
by invoking two methods getInstalledApplications()
and getInstalledPackages() (hereafter abbreviated as
getIA() and getIP(), respectively); they return the
entire list of installed apps. An app can also reg-
ister broadcast receivers (e.g., PACKAGE_INSTALLED) to
be notified when a new app is installed. It can also
use various methods of the PackageManager class
(e.g., getResourcesForApplication()) as an oracle to
check for the presence of a specific app. These methods take
a package name as a parameter and return null if the package
name does not exist on the phone.

If Android restricts access to package names of installed
apps (e.g., by requiring permissions), an app can still retrieve
other static information about installed apps for fingerprinting
attacks. This includes their mandatory information: the names
of their components, their icons, labels, resources, developers’
signatures and signing certificates. This also includes cus-
tom features used by installed apps: their permissions, apps
configurations (themes, styles, and supported SDK). Such
information can be obtained through a number of methods in

3

Without Permissions With Permissions Default App Privilege Debugging Privilege (adb)
Static Core attributes: (*) See note + Package names + Package names

Information + Package name + APK path
+ Component’s names + APK file
+ Resources
+ Icon, label
+ Developers’ signatures
Customizations:
? Permissions
? Themes
? Phone configurations

Runtime Dangerous Permissions: � UI states† ? Files in external storage
Information None ? Files in external storage � Power consumption† ? System log

� Network traffic � Memory footprints† ? System diagnostic outputs
Special Permissions: + Running processes
� Storage consumption � Network consumption
+ Running processes - Screenshots
- Layouts and their content

Table 1: Identifying information about installed apps that an app can learn, w.r.t. its permissions and privileges, through the Java
API framework and the Linux-layer kernel. Analysis was conducted on Android 8.0. Superscript † means that the information
can be learnt only in older versions of Android (e.g., Android 8.0 requires the calling app to have adb privilege). (*) Note:
Granting permissions to a zero-permission app does not enable it to obtain more static information about other installed apps.
The notations +,? and � indicate the resources that our system (HMA, see Section 8) can protect by default, by collaborating with
app developers or by randomizing runtime information of the container apps, respectively. Resources marked with the − sign
cannot be protected by HMA.

the PackageManager class, e.g., getPackageInfo(). Note
that this can be done even when apps are installed with the
forward-lock option enabled (option -l in the adb install
command). We tested this in Android 6.0; Android 8.0 threw
an exception for this -l option. A nosy app cannot retrieve
the list of intent filters declared by other apps. However, it
can learn the names of the components of installed apps that
can handle specific intent requests, by using methods such as
resolveActivity().

With Permissions. An app granted with the
READ_EXTERNAL_STORAGE permission, a frequently re-
quested dangerous-permission, can inspect for unique folders
and files in a phone’s external storage (a.k.a. SD card). Apps
with VPN capabilities (permission BIND_VPN_SERVICE)
can intercept network traffic of other apps; existing work
shows that network traffic, even encrypted, can be used to
fingerprint apps with good accuracy [50, 51, 54].

With special permissions, an app can obtain certain iden-
tifying information about other apps at their runtime. For
instance, the PACKAGE_USAGE_STATS permission permits
an app to obtain the list of running processes (method
getRunningAppProcesses()), and statistics about network
and storage consumption of all installed apps, includ-
ing their package names, during a time interval (method
queryUsageStats()). In addition, accessibility services11

(with the BIND_ACCESSIBILITY_SERVICE permission) can
have access to the layouts and the layouts’ contents of other
apps.

With Default App-Privilege. An app can retrieve the list
of all package names on the phone. This can be done by ob-

taining the set of UIDs in the /proc/uid_stat folder and
using the getNameForUid() API call to map a UID to a pack-
age name. An app can also infer the UI states (e.g., knowing
that another app is showing a login screen) [26], memory
footprints (sequences of snapshots of the app’s data resident
size) [36] and power consumption [27] of other apps. Note
that access to this information has been restricted in recent
versions of Android (e.g., Android 8.0 requires the app to
have adb privilege).

With Debugging Privilege (adb). An app can retrieve the
list of package names (command pm list packages) and
learn the path to the APK file of a specific app (command
pm path [package name]). Moreover, the adb privilege en-
ables an app to retrieve the APK files of other apps (command
pull [APK path]); the app can then use API methods such
as getPackageArchiveInfo() to extract identifying infor-
mation from the APK files. Also an app can learn about run-
time behaviors of other apps by inspecting the system logs and
diagnostic outputs (commands logcat and dumpsys). More-
over, with the adb privilege, apps can directly retrieve the list
of running processes (command ps), take screenshots [38] or
gain access to statistics about network usage of other apps
(folder /proc/uid_stat/[uid]).

Our analysis shows that Android’s open design exposes
a significant amount of information that facilitates app-
fingerprinting attacks. App developers themselves cannot
obfuscate most of the aforementioned information for the
purpose of hiding sensitive apps. For example, by design, the
package name of an app is a global identifier in the Google
Play Store. As a result, the obfuscation of apps’ package

4

names has to be done per user, i.e., for each user, the same app
needs to be uploaded to the Google Play Store with a different
package name. Similarly, the names of the app’s components
also need to be obfuscated per user, hence this approach is
not practical. To mitigate app-fingerprinting attacks, Android
could follow an approach similar to iOS, i.e., to remove or
restrict API methods and OS resources that leak identifying
information of apps. However, such an approach would be
difficult to implement in Android, as most of these methods
and resources have valid use cases and are widely used by
apps. For instance, methods getIA() and getIP(), are used
by many popular apps with millions of users, e.g., launcher,
security/antivirus, and storage/memory manager apps. Re-
moving or restricting such methods would break many apps
and anger both developers and users. Such an approach would
also negatively affect the competitive advantages of Android,
i.e., its customizability and rich set of features, over iOS. In
addition, restricting API methods would not solve the problem
completely, as more subtle fingerprinting attacks would still
be possible. For example, in iOS, the canOpenURL() method
can be used to check if a particular app is on the phone. Since
iOS 9.0, in order to have an arbitrarily high number of calls to
this method, an app has to declare beforehand the set of apps
that it wants to check. Otherwise, it can only call this method
at most 50 times.12 This restriction reduces the risks of finger-
printing attacks, but negatively affects both developers and
users, e.g., apps need to be updated frequently to update the
list of apps. More importantly, even with 50 queries, a nosy
app can still check if a specific app or small set of apps are
installed on the phone.

A possibly better approach is for Android to include a new
"sensitive" flag that enables users to hide sensitive apps from
other apps in the same phone, i.e., other apps will not be able
to use Android API methods to infer the existence of apps
flagged as sensitive. Moreover, Android can include a new per-
mission that users can grant to certain apps in order to enable
these apps to detect apps flagged as sensitive. This approach,
however, requires significant modifications and testing of An-
droid’s APIs. Therefore, our goal is to design a solution that
does not require changes to Android or sensitive apps and that
can be available to users immediately.

5 Apps Inquiring about Other Apps

We analyze apps from the Google Play Store to estimate
how common it is for apps to inquiry about other installed
apps. Our analysis focuses on API calls that directly retrieve
the list of installed apps (hereafter called LIA): getIA() and
getIP(), because these two methods clearly show the intent
of developers to learn about other apps, whereas the other
methods presented in Section 4 can be used in valid use cases.
Therefore, the results presented in this section is a lower-
bound on the number of apps that fingerprint other apps.

5.1 Data Collection
We gathered the following datasets for our analysis.

APK Dataset. We collected APK files of popular free apps
in the Google Play Store (US site). For each app category in
the store (55 total), we gathered the 60 most popular apps.
After eliminating duplicate entries, default Android apps, and
brand-specific apps, we were left with 2917 apps.

Privacy-Policy Dataset. We collected privacy policies that
corresponded to the apps in our dataset. Out of 2917 apps, we
gathered 2499 privacy policies by following the links included
in the apps’ Google Play Store pages.

5.2 Static Analysis
For our static analysis, by using Apktool,13 we decompiled the
APKs to obtain their smali code, a human-readable representa-
tion of the app’s bytecode. We searched in the smali code for
occurrences of two methods getIA() and getIP().14 API
calls can be located in three parts of the decompiled code:
in the code of Android/Google libs and SDKs, in the code
of third-party libs and SDKs, or in the code of the app itself.
To differentiate among these three origins, we applied the
following heuristic. First, methods found in paths contain-
ing the “com/google”, “com/Android” or “Android/support”
substrings, are considered part of Android/Google libs and
SDKs. Second, methods found in paths containing the name
of the app are considered part of the code of the app. We
believe this is a reasonable heuristics, because package names
of Android apps follow the Java package-name conventions
with the reversed internet domain of the companies, gener-
ally two words long. If the methods do not match the first
two categories, then they are considered part of the code of
a third-party lib or SDK. Note that this approach, also used
in previous work [29], cannot precisely classify obfuscated
code or code in paths with no meaningful names. Such cases,
however, represent only a small fraction in our analysis (less
than 5%).

Table 2 shows the proportions of apps that invoke getIA()
and getIP() w.r.t. different call origins. Of the 2917 apps
evaluated, 1663 apps (57.0%) include at least one invocation
of these two methods in the code from third-party libs and the
apps. These results show a significant increase in comparison
with the results presented in 2016 by Demetriou et al. [29].
These results also show that most sensitive requests come
from third-party libs or SDKs; app developers might not be
aware of this activity, as has been the case for other sensitive
data such as location.15

Static analysis has two main limitations. First, methods
appearing in the code might never be executed by the app.
Second, it is possible that the sensitive methods do not appear
in the code included in the APK, rather in the code loaded
dynamically at runtime. To address these issues, we also per-
formed a dynamic analysis of the apps in our dataset.

5

Analysis method Call origin getIA() (%) getIP() (%) getIA() or getIP() (%)
Static Third-party libs + Apps 36.4 43.6 57.0
Static Apps only 8.1 8.4 13.9

Dynamic Third-party libs + Apps 6.5 15.0 19.2

Table 2: Proportion of free apps that invoke getIA() and getIP(), to collect LIAs w.r.t. different call origins.

5.3 Dynamic Analysis

For our dynamic analysis, by using XPrivacy16 on a phone
with Android 6.0, we intercepted the API calls from apps.
For the analysis to scale, for each app, we installed it and
granted it all the permissions requested. Next, we launched
all the runnable activities declared by the app for 10 minutes.
Although this approach has limitations, as it only has a short
period of time per app and it cannot emulate all the activities
a user could do, it is sufficient to estimate a lower-bound on
the number of apps that query for LIAs at runtime, as shown
in our results.

Our results, shown in Table 2, show that 190 apps (6.54%)
called getIA(), 436 apps (15.0%) called getIP(), and 19.2%
of the apps called at least one of these two methods. Because
XPrivacy does not provide information about the origin of
the request, we performed some additional steps. For each
app, we used the results of our static analysis and searched for
occurrences of getIA() and getIP() in the code belonging
to Google/Android libs. We found that most apps did not
include calls to these sensitive methods in the code belonging
to Google/Android libs: 181 out of 190 for getIA() and
412 out of 436 for getIP(). Hence, we conclude that these
sensitive requests came mainly from third-party libs or from
the code of the apps.

Interestingly, we found 49 apps that called at least one of
the two sensitive methods in our dynamic analysis, but not
in our static analysis. This could be because the decompiler
tool produced incorrect smali code, or because these requests
were dynamically loaded at runtime. Still, this represents only
a small number of the apps found through our analysis.

Our static and dynamic analysis shows that a significant
number of free apps actively queries for LIAs: between 19.2%
(dynamic analysis) and 57% (static analysis) of the tested
apps.17 This shows that many third parties are interested in
knowing about the installed apps on users’ phones, and that,
if Android blocked getIA() and getIP(), they would likely
attempt to use other methods (see Section 4).

5.4 Analysis of Privacy Policies

Google’s privacy-policy guidelines require apps that handle
personal or sensitive user data to comprehensively disclose
how they collect, use and share the collected data. An example
of a common violation, shown in these guidelines, is “An
app that doesn’t treat a user’s inventory of installed apps as
personal or sensitive user data".18 Next, we explain what
developers understand about the guidelines.

As mentioned in Section 5.1, out of 2917 apps in our
dataset, we found 2499 privacy policies. From the 1674 nosy
apps found in the static and dynamic analysis, 1524 apps have
privacy policies. We semi-automated the policy analysis as
follows. We built a set of keywords consisting of nouns and
verbs that might be used to construct a sentence to express
the intention of collecting LIAs: retrieve, collect, fetch, ac-
quire, gather, package, ID, installed, app, name, application,
software, and list. For each privacy policy, we extracted the
sentences that contain at least one of the keywords. From
the extracted sentences, we manually searched for specific
expressions such as “installed app", “app ID" and “installed
software". Thereafter, we read the matched sentences and the
corresponding privacy policy.

From the set of 2499 policies, we found 162 policies that
explicitly mention the collection of LIAs. Among these, 129
belong to the set of 1674 nosy apps (7.7%). Some apps have
exactly the same privacy policies, even though they are from
different companies (e.g., [20] and [6]). 33 apps mentioned
the collection of LIAs, but we did not find these apps in both
static and dynamic analyses. For these apps, we performed a
more thorough dynamic analysis: we used them as a normal
user would, while intercepting API calls. We did not capture,
however, any calls to the two sensitive methods. This might
be because developers copy the privacy policies from other
apps, or because the apps will make these calls in the future.

Besides the generic declared purposes of the collections of
LIAs by apps, e.g., for improving the service (e.g., [14, 21]),
some apps explicitly state that they collect LIAs for targeted
ads (e.g., [3, 12]), and targeted ads by third-party ad networks
(e.g., [15]). Unexpectedly, we found that of the 162 policies
that mention the collections of LIAs, 76 categorize LIAs as
non-personal, whereas Google defines this as personal infor-
mation. This shows a misunderstanding between developers
and Google’s guidelines.

6 Existing Protection Mechanisms

To the best of our knowledge, there are no existing robust
mechanisms for hiding sensitive apps. Below, we present
some mechanisms that can offer partial protection.

6.1 Mechanisms by Google

Android does not provide users with a mechanism to hide the
existence of apps from other apps. But users can repurpose
existing Android mechanisms for partially hiding apps.

6

Multiple Users. Android supports multiple users on a single
phone by separating user accounts and app data.19 This fea-
ture could be used to prevent fingerprinting of sensitive apps
by installing sensitive apps in one or more secondary accounts,
thus isolating sensitive apps from nosy apps. However, a key
disadvantage of using multiple users for this purpose is that it
prevents inter-app communications (e.g., intent-based inter-
actions) among apps in different user accounts. As a result,
sensitive apps’ functionalities can be significantly reduced
because they cannot delegate tasks to other apps. For instance,
a sensitive app will not have access to a user’s calendar or
contacts (unless the user replicates them on each account)
or access to other apps for certain tasks, e.g., sending a mes-
sage or picture via Whatsapp or Facebook, accessing files in
Dropbox, sending an e-mail or SMS, and authenticating users
with Google or Facebook accounts. In section 10.5, we show
that popular mHealth apps use inter-app communications not
only for delegating tasks but also for sharing their resources
with other apps. Therefore, a solution that hides sensitive
apps and that still supports inter-app communications is more
desirable.

Multiple user accounts could also introduce new security
and privacy issues [45]. Using multiple users will signifi-
cantly affect the user experience, as users will have to switch
back and forth among accounts to access different types of
apps and data, introducing significant delays and confusion.
While the primary account is in the foreground, apps on sec-
ondary accounts are put in the background and they cannot
use Bluetooth services (important for mHealth apps). Another
important problem is that some popular phone manufacturers
(e.g., Samsung, LG, Huawei, Asus) disable multiple users in
some of their devices,20 thus affecting the availability of this
solution to many users.

We have also found experimentally that the implementa-
tion of multiple users in the latest (Android 9) and earlier
versions of Android does not effectively prevent nosy apps
from learning what other apps are installed in different user
accounts. To bypass this protection, a nosy app could do any
of the following:

• On Android 7 or earlier, including an additional param-
eter flag (MATCH_UNINSTALLED_PACKAGES) in methods
getIA() and getIP() will reveal the apps installed in
secondary user accounts.

• On Android 9 or earlier, a nosy app can
use multiple PackageManager methods, such
as getPackageUid(), getPackageGidS(),
checkPermission(), checkSignatures(), or
getApplicationEnabledSetting(), as oracles to
check if an app is installed on a secondary account or
on a work profile. The nosy app only needs to include
the package name of the targeted sensitive app as a
parameter to these methods. Android’s source code
shows that these methods check the user ID of the app

calling the method to show only information of apps in
the same user profile, but our experimental evaluation
shows that currently deployed versions of Android do
not enforce such checks. This approach was tested on
Android 9.

• A nosy app can guess the UIDs of the apps installed
on all the accounts and work profiles, by looking at the
/proc/uid directory to learn the ranges of current UIDs
in the system. It then guesses the UIDs of other apps and
uses the getNameForUid() method to learn the package
name. This method will return a package name given a
UID as a input parameter; if the app does not exist, it
returns null. As a result, it can be used as an oracle to
retrieve the list of installed apps on the device. This was
tested on Android 6, 8.1 and 9.

• A nosy app with adb privilege can easily verify if a
sensitive app is running on the device, independently of
the account or profile it was installed on, by using the
shell command: pidof <PackageName>. This approach
was tested on Android 9.

• A nosy app with adb privilege can obtain the list of in-
stalled apps, which includes apps on secondary accounts
and work profiles, by using the shell command dumpsys.
This approach was tested on Android 9.

Android for Work. Android supports an enterprise solution
called Android for Work; this solution separates work apps
from personal apps.21 Our tests, using similar methods as
with multiple users, also confirmed that, as with multiple
users accounts, it is easy to identify which apps are in the
work profile. In addition, Android for Work is only available
to enterprise users.

Recently, Android introduced a new feature called Instant
Apps;22 this feature enables users to run apps instantly with-
out installing them. Such an approach could be used to hide
sensitive apps, however, it only supports a limited subset of
permissions, and it does not support features that are crucial
for mHealth apps such as storing users’ data or connecting to
Bluetooth-enabled devices.23

Google classifies the list of installed apps as personal in-
formation hence requires apps that collect this information to
include in their privacy policies the purpose of their collec-
tion. Apps that do not follow this requirement are classified as
Potentially Harmful Apps (PHAs) or Mobile Unwanted Soft-
wares (MuWS) [1, 2]. Android security services, e.g., Google
Play Protect [10], periodically scan users’ phones and warn
users if apps behave as PHAs or MuWS. Such mechanisms,
however, do not seem to effectively protect against the unau-
thorized collection of the list of installed apps. Our analyses
show that only 7.7% of the apps declare their collections of
such information in their privacy policies, and some claim that
a list of installed app is non-personal information (Section 5).

7

Furthermore, these mechanisms might fail to detect targeted
attacks, e.g., a nosy app might want to check if a small subset
of sensitive apps exists on the phone.

6.2 Mechanisms by Third Parties
Samsung Knox24 relies on secure hardware to offer isolation
between personal and work-related apps, similar to Android
for Work. Unfortunately, we were not able to evaluate the
robustness of the protection offered by Knox w.r.t. hiding
apps, because Samsung discontinued its support for work and
personal spaces for private users; only enterprise users can use
such a feature. Nevertheless, this solution is device specific
and only hides apps from other apps in a different isolated
environment, but not from apps in the same environment (apps
in the same isolated environment can come from different,
untrusted sources). That is, a solution that provides per-app
isolation is preferable.

There are apps on the Google Play Store that help users to
hide the icons of their sensitive apps from the Android app
launcher (e.g., [16]). Even though they help hide the presence
of the sensitive apps from other human users (e.g., nosy part-
ners), these sensitive apps are still visible to other apps. Along
the line of user-level virtualization techniques, on the Google
Play Store, we found apps that use these techniques to enable
users to run in parallel multiple instances of an app on their
phones and to partially hide the app, (e.g., [11, 17, 18]). How-
ever, these solutions require the hidden app to be installed first
on the phone before protecting it, thus triggering installation
and uninstallation broadcast events that can be detected by
a nosy app. These apps provide only a single isolated space,
i.e., they do not protect apps from other apps in the same
environment. Our preliminary evaluation of these apps also
shows that their protection is limited, e.g., the names of the
hidden apps can be found in the list of running processes.

7 Our Solution: HideMyApp

We propose HideMyApp (HMA), a system for hiding the pres-
ence of sensitive apps w.r.t. to a nosy app on the same phone.
In this section, we will present our system model, adversarial
model, design goals and a high-level overview of the solution.

7.1 System Model
The scenario envisioned for HMA is as follows. A hospital or a
hospital consortium (hereafter called hospitals) sets up an app
store, called HMA App Store, where app developers working
for the hospitals publish their mHealth apps. Hospitals want
their patients to use their mHealth apps without disclosing
their use to other apps on the same phone. Note that such
organizations and their own app stores already exist, e.g., the
VA App Store set up by the U.S. Department of Veterans
Affairs.

To enable the users to manage the apps provided by
the HMA App Store, the HMA App Store provides the users
with a client app called HMA Manager. This app can be dis-
tributed through any available app stores, e.g., the Google Play
Store. To allow the HMA Manager app to install apps down-
loaded from the HMA App Store, similarly to other Google
Play Store alternatives e.g., Amazon25 and F-Droid [9], users
need to enable the “allow apps from unknown sources" set-
ting on their phones. Since Android 8.0, Google made this
option more fine-grained by turning it into the “Install un-
known apps" permission [19]. That is, users only need to
grant this permission to the HMA Manager app to enable it to
install apps from the HMA App Store.

7.2 Adversarial Model

We assume the Android OS on the user’s phone to be trusted
and secure, including its Linux kernel and its Java API
framework. We assume that the HMA App Store and the
HMA Manager app are trusted and secure, and that they follow
the prescribed protocols of the system. We discuss mecha-
nisms to relax the trust assumptions on the HMA App Store
and HMA Manager app in Section 9.2.

We assume there is a nosy app that wants to learn if
a specific app is present on the phone. The nosy app has
the default app-privilege, and it is granted all dangerous
permissions by its user – these are the typical capabilities
of apps that users often install on their phones. In Sec-
tion 9, we discuss mechanisms for preventing more ad-
vanced fingerprinting attacks by malicious apps; a mali-
cious app has more capabilities than a nosy app, i.e., it can
have special permissions (e.g., PACKAGE_USAGE_STATS or
BIND_ACCESSIBILITY_SERVICE) and the debugging privi-
lege (adb), thus it can perform more advanced attacks, such
as fingerprinting apps using their runtime information.

We assume that apps belonging to hospitals are nosy,
i.e., these apps are also curious about what other apps are
installed on the user’s device.

7.3 Design Goals

The purpose of HMA is to effectively hide the presence of
sensitive apps, yet preserve their usability and functionality.

• (G1) Privacy protection. It should be difficult for a nosy
app to identify sensitive apps on the same phone.

• (G2) No firmware modifications. The solution should
run on stock Android phones. That is, it should not re-
quire the phones to run customized versions of Android
firmware, e.g., extensions to Android’s middleware or the
Linux kernel. This also means that the solution should
not require the phones to be rooted.

8

• (G3) Preserving the app-isolation security model of An-
droid. Each app should have its own private directory
and run in its own dedicated process.

• (G4) Few app modifications. For baseline protection
against nosy apps, the solution should not require app
developers to change their apps. For protection against
malicious apps, apps might need to be changed or some
features might not be supported.

• (G5) Usability. The solution should preserve the usability
and the key functionalities of sensitive apps.

7.4 HMA Overview
From a high-level point of view, HMA achieves its aforemen-
tioned design goals by enabling its users to install a container
app for each sensitive app (as illustrated in Fig. 1). Each con-
tainer app has a generic package name and obfuscated app
components. As a result, nosy apps cannot fingerprint a sen-
sitive app by using the information about its container app.
At runtime, the container app will launch the APK file of the
sensitive app within its context by relying on user-level virtu-
alization techniques. That is, the sensitive app is not registered
in the OS.

To do so, HMA requires the hospitals to bootstrap the sys-
tem by setting up the HMA App Store and distributing the
HMA Manager app to users (Section 8.1 and 8.2). Through
the HMA Manager app, users can (un)install, open, and update
sensitive apps without being discovered by the OS and other
apps. We detail these operations in Section 8.3.

8 HMA System Description

Here, we detail the components and operations of HMA.

8.1 HMA Manager App
Recall, to hide their presence, sensitive apps are not regis-
tered in the OS; instead, their container apps are registered.
Thus, if users open their default Android app launcher, they
will only see container apps with generic icons and random
names. To solve this usability issue, at installation time, the
HMA Manager app keeps track of the one-to-one mappings
between sensitive apps and their container apps. Using the
mappings, the HMA Manager app can display the container
apps to the users with the original icons and labels of their sen-
sitive apps. To provide unlinkability between users and their
sensitive apps w.r.t. the HMA App Store, the HMA Manager
app never sends any identifying information of the users to
the HMA App Store, and all the communications between the
HMA App Store and the HMA Manager are anonymous. This
is a reasonable assumption because the HMA Manager app can
be open-sourced and audited by third parties. Also, in most

cases, users do not have fixed public IP addresses; they access
the Internet via a NAT gateway offered by cellular providers.
If needed, a VPN proxy or Tor could be used to hide network
identifiers.

8.2 HMA App Store

The HMA App Store receives app-installation and app-update
requests from HMA Manager apps and returns container
apps to them. To reduce the delays introduced to the app-
installation and app-update requests, the HMA App Store de-
fines a set of P generic package names for container apps,
e.g., app-1, . . . , app-P. This set of generic names is shared
by all sensitive apps, thus there is no one-to-one mapping
between a sensitive app and a generic name or a subset of
generic names.26 For each sensitive app, the HMA App Store
can generate beforehand P container apps corresponding to
P predefined generic package names and store them in its
database. Below, we explain the procedure followed by the
HMA App Store to create a container app. Details about the
app-installation and update requests from the HMA Manager
apps are explained in Section 8.3.

HMA Container-App Generation. To generate a container
app for a sensitive APK, the HMA App Store performs the
following steps. Note that this operation cannot be performed
by the HMA Manager app, because Android does not provide
tools for apps to decompile and compile other apps.

• The HMA App Store creates an empty app with a
generic app icon, a random package name and label,
and it imports into the app the lib and the code for the
user-level virtualization, i.e., to launch the APK from
the container app. Note that the lib and the code are
independent from the APK.

• The HMA App Store extracts the permissions declared
by the sensitive app and declares them in the manifest
file of the container app.

• To enable the container app to launch the sensitive APK,
app components (activities, services, broadcast receivers,
and content providers) declared by the sensitive app need
to be declared in the manifest file of the container app.
This information, however, can be retrieved by nosy apps
to fingerprint sensitive apps (Section 4). To mitigate this
problem, the container app declares activities, services
and broadcast receivers of the sensitive app with random
names. At runtime, the container app will map these ran-
dom names to the real names. The intent filters declared
in the components of sensitive apps are also declared in
the manifest file of their sensitive apps. In Section 9, we
will discuss the case of content providers.

• The HMA App Store compiles the container app to ob-
tain its APK and signs it.

9

HMA App Store (1) Request mHealth app

(2) A container app for mHealth APK

App-3

App-1

App-2

Nosy App 2

Nosy App 1

Third-party servers

HMA Manager

Play Store
List of installed apps:

- Nosy App 1
- Nosy-App 2
- Play Store
- HMA Manager
- App-1
- App-2
- App-3

Figure 1: Overview of the HMA architecture. Nosy apps only learn the generic names of the container apps.

Note that for the sake of simplicity, here we only present
a solution that protects mandatory features of Android apps.
A malicious app might try to fingerprint sensitive apps based
on, for instance, the runtime information produced by their
container apps. We discuss this in Section 9.

HMA User-Level Virtualization. To launch the APK of a
sensitive app without installing it, its container app generates
a randomly named child-process in which the APK will run,
i.e., the APK is executed under the same UID as its container
app. Thereafter, the container app loads the APK dynamically
at runtime, and it intercepts and proxies the interactions be-
tween the sensitive app and the underlying system (the OS
and the app framework). To do so, we rely on an open-source
lib for app-virtualization called DroidPlugin [8].

8.3 HMA Operations

In this section, we detail the procedure followed by a user
when she (un)installs, updates, or uses sensitive apps.

App Installation. To install a sensitive app, the user opens
her HMA Manager app to retrieve the set of apps provided by
the HMA App Store. Once she selects a sensitive app, the
HMA Manager app sends to the HMA App Store an installa-
tion request consisting of the name of the sensitive app and
her desired generic package name for the container app. The
HMA App Store correspondingly finds in its database or cre-
ates a container app, and it sends the container app, together
with the original label and icon of the sensitive app, to the
HMA Manager. The HMA Manager prompts the user for her
confirmation about the installation. Once the user accepts, the
installation occurs as in standard app installation on Android.
Also, the HMA Manager saves, in its private directory, a record
of the package name of the container app and the package
name, the original icon and the label of the sensitive app.

App Launch. To launch a sensitive app, the user opens her
HMA Manager app to be shown with the set of container apps
installed on her phone. Using the information stored in its
database about the mappings between container apps and
sensitive apps (Section 8.3), the HMA Manager displays to
the user the container apps with the original labels and icons
of the corresponding sensitive apps. Therefore, the user can
easily identify and select her sensitive apps.

The first time a container app runs, it needs to obtain the
sensitive APK from the HMA App Store; then it stores the
APK in its private directory. This incurs some delays to the
first launch of the sensitive app. However, it is needed to
prevent the sensitive app from being fingerprinted: If the sen-
sitive APK was included in the resources or assets folders
of its container app so that the container app could copy and
store the APK in its private directory at installation time, a
nosy app would be able to obtain the sensitive APK. Recall,
any app can obtain the resources and assets of other apps (Sec-
tion 4). Also, Android does not permit apps to automatically
start their background services upon installation.

At runtime, the container app dynamically loads the sensi-
tive APK. Thereafter, it intercepts and proxies API calls and
system calls between the sensitive app and the underlying
system. If the version of the Android OS is at least 6.0, per-
missions requested by the sensitive app will be prompted by
its container app at runtime. Thus, they will be shown with
the generic package name of the container app. This, how-
ever, does not affect the comprehensibility of the permission
requests, as shown by our user study (Section 10.6). Addi-
tionally, when an app sends an implicit intent with an action
supported by the sensitive app, the operating system will show
the sensitive app as an option for the user to choose to handle
the requested action. This introduces a usability problem: the
icon of the sensitive app presented to the user is a generic
icon. This, however, can be solved by using the direct share
targets feature in Android – a feature that enable apps to show
finer-grained internal content in the chooser dialog window.27

App Update. When a sensitive app on the HMA App Store
has an update, for each predefined generic container-app
package name, the HMA App Store generates a correspond-
ing container app for the updated sensitive app. This step
is needed, because the configuration file of the container
app needs to be updated w.r.t. the updates introduced by the
sensitive app. The HMA App Store then sends a push no-
tification to all HMA Manager clients to notify them about
the update. If a user has the sensitive app on her phone, her
HMA Manager sends the package name of its existing con-
tainer app to the HMA App Store. In return, it receives the cor-
responding updated container app from the HMA App Store.
It then prompts the user to confirm the installation. Once the
user accepts, the updated container app is installed, similarly

10

to the standard app-update procedure on Android.

App Uninstallation. To uninstall a sensitive app, the user
opens her HMA Manager app to be shown with the set of
her container apps. Once she selects the container app, the
HMA Manager prompts her to confirm the uninstallation.
Thereafter, the uninstallation occurs similarly to the standard
app-uninstallation procedure on Android.

9 Privacy and Security Analysis

Here, we present an analysis of HMA to show that it effectively
achieves its privacy and security goals w.r.t. different capa-
bilities of the nosy apps (i.e., their granted permissions and
privileges) as shown in Table 1.

9.1 Privacy

Nosy Apps without Permissions. HMA effectively protects,
by default, the core attributes of sensitive apps. First, a nosy
app cannot obtain the package name of a sensitive app, be-
cause the sensitive app is never registered on the system;
instead, its container app with a generic package name is in-
stalled. Second, the resources, shared libraries, developers’
signatures and developers’ signing certificates of the sensitive
app cannot be learnt by the nosy app, because they are not
declared or included in the container-app’s APK; instead they
are dynamically loaded from the sensitive APK at runtime.
Third, the nosy app cannot learn the components’ names of
the sensitive app, because these names are randomized. To
prevent fingerprinting attacks based on the number of com-
ponents declared in the container app, the HMA App Store
adds dummy random components during the generation of
the container app such that all the container apps declare the
same number of components.

A nosy app might try to fingerprint sensitive apps by using
the sets of permissions declared by their container apps. This
can be mitigated if all container apps declare a union of per-
missions requested by sensitive apps in the HMA App Store.
Note that for devices with Android 6 or later, the container
app requests at runtime only the permissions needed by its
sensitive app, and users can grant or decline these requests.
This makes it difficult for nosy apps to fingerprint a sensitive
app using the set of permissions granted to its container app.
HMA needs collaboration from app developers to prevent

fingerprinting attacks based on the customized configurations
of some sensitive apps, e.g., themes and screen settings. The
HMA App Store can define a guideline for app developers to
follow such that all apps have the same configurations. This
will affect the look and feel of the sensitive apps, but it is a
trade-off between usability and privacy. Note that the same
approach has been used in other deployed systems, e.g., in
the Tor browser where all the versions have the same default
window size and user-agent strings.28 To facilitate guideline

compliance, the HMA App Store can also provide developers
with IDE plugins to help them write guideline-compliant
code; such an approach has been proposed in existing work
(e.g., [43] and [31]).

App developers might want to use custom features, such
as custom permissions, custom actions for the intent filters of
their apps’ components. These features, however, can be used
to fingerprint their sensitive apps, hence should not be used
by app developers. An app might want to support a content
provider for sharing data between its components or for shar-
ing data with other apps. HMA can support the former case; the
container apps do not need to declare the content provider in
its manifest file, but it handles the requests from the compo-
nents of the sensitive apps internally. HMA, however, cannot
support the case of sensitive apps using content providers to
share data with other apps. This is because in order to do so,
the container apps need to declare the URIs of their content
providers in their manifest files, and these URIs can uniquely
identify apps. These are limitations of HMA, however, from
our analysis, only a small number of apps is affected by these
limitations (Section 10.5).
Nosy Apps with Permissions. A nosy app can fingerprint
sensitive apps based on their use of the external storage (SD
card), e.g., unique directories and files. To prevent this, con-
tainer apps can intercept and translate calls from sensitive
apps associated with the creation or access of files in external
storage. However, note that apps are not recommended to store
data there, especially mHealth apps. To prevent an app with
VPN capabilities from fingerprinting sensitive apps based on
the IP addresses in the header of the IP packages, the sensi-
tive apps can relay their traffic through the HMA App Store
servers; this protection is provided at the cost of additional
communication delays for the apps and it requires collabora-
tion with app developers.

A malicious app cannot fingerprint a sensitive app by using
the list of running processes, because the sensitive app runs
inside the child process of its container app with a random
name. To prevent malicious apps from abusing its special
permissions to fingerprint sensitive apps using their runtime
statistics, e.g., resources consumed by their container apps,
the container apps can randomly generate dummy data to
obfuscate the usage statistics of sensitive apps. Note that this
does not require changes to the sensitive apps. In future work,
we will evaluate techniques against these side-channel attacks
such as [52] and [26]. HMA cannot prevent malicious apps,
with permission to accessibility services, from fingerprinting
sensitive apps. Accessibility services enable access to apps’
unique layout information, and it is not practical to require
all sensitive apps to use a generic layout. However, Google
currently bans the use of accessibility services for purposes
not related to helping users with disabilities.29 Users should
grant this permission only to apps they trust.
Nosy Apps with Default App Privileges. Recall, HMA, by
default, hides the package name of the sensitive apps. To pre-

11

vent nosy apps from fingerprinting sensitive apps by using
their UI states, the container apps can also obfuscate the UI
states by overlaying transparent frames on the real screens of
the sensitive apps. Similarly to the case of other runtime statis-
tics discussed above, the container apps can also randomly
generate dummy data to obfuscate the memory footprints and
power consumptions of the sensitive apps.

Malicious Apps with the Debugging Privilege (adb). Re-
call, HMA protects the package name and the process names
of the sensitive apps by default. Also recall, the container
apps can randomize runtime statistics of the container apps.
In addition, the paths to the APK files of the container apps
do not reveal any information about the sensitive apps. Also,
the malicious app cannot retrieve the APK files of the sen-
sitive apps, because the APKs are stored inside the private
directories of their container apps.

To prevent advanced attacks by malicious apps, e.g., fin-
gerprinting sensitive apps by reading the log of the phone,
HMA requires collaboration from app developers. Developers
should not write identifying information about their sensitive
apps to the log. Apps with adb privilege can take screenshots
of the phone and infer apps’ names from the screenshots.
HMA cannot prevent this attack. However, note that this at-
tack requires the malicious app to do extra and error-prone
operations (e.g., image processing) to identify sensitive apps.

9.2 Security
By using user-level virtualization techniques to launch an

APK, HMA does not require users to modify the OS of the
phone. The Android’s app-isolation security model is also
preserved, because each APK runs inside the context of its
container app. Thus, it is executed in a process under the same
UID as its container app, and it uses the private data direc-
tory of its container app. Similarly to other third-party stores
(e.g., Amazon or F-Droid), HMA requires users to enable the
“allow apps from unknown sources" setting on their phones.
However, apps installed from these sources are still scanned
and checked by Android security services for malware [10].
Also, recently, this setting was converted to a per-app per-
mission [19]. As a result, granting the HMA Manager app the
permission to install apps from unknown sources will not give
other apps on the phone the same permission.

As on the Google Play Store, with HMA, app developers reg-
ister their public keys on the HMA App Store, and sign their
apps before they submit to the HMA App Store. Moreover,
the HMA App Store signs the container apps that it generates
to vouch for the integrity of the container apps and the sen-
sitive apps. This mechanism, however, introduces a security
issue for sensitive apps: Apps from different developers are
signed by the same private key of the HMA App Store, hence
a dishonest app developer might exploit this same-signature
property to access signature-protected components of other
apps.30 Note that requesting or declaring signature-protection

permissions will facilitate fingerprinting of sensitive apps,
hence HMA does not support this feature. As a result, this
attack is not possible in HMA. Also note that few apps use
signature-protected permissions (see Section 10.5). In future
work, we will explore mechanisms for enabling container
apps to verify the signatures of sensitive apps at runtime, in
order to prevent unauthorized access to signature-protected
components of their sensitive apps.
HMA container apps prompt users only for permissions re-

quested by sensitive apps. To relax the trust assumptions on
the HMA App Store and HMA Manager, the HMA App Store
can provide an API so that anyone can implement her own
HMA Manager app, or the HMA Manager app can be open-
source, i.e., anyone can audit the app and check if it follows
the protocols as prescribed. Therefore, assuming that the meta-
data of the network and the lower communication layers can-
not be used to identify users, e.g., by using a proxy or Tor, the
HMA App Store cannot link a set of sensitive apps to a user.

10 Evaluation

To evaluate HMA, we used a real dataset of free and paid
mHealth apps on the Google Play Store. We looked into three
evaluation criteria: (1) overhead experienced by mHealth apps,
(2) HMA runtime robustness and its compatibility with mHealth
apps, and (3) HMA usability.

10.1 Dataset

We selected 50 apps from the medical category on the Google
Play Store, of which 42 apps are free and 8 apps are not. To
have a significant and diverse dataset, we selected apps based
on their popularity (more than 1000 downloads), their medi-
cal specialization, and their supported functionality. From the
50 apps, we filtered out apps that make calls to APIs that we
did not support in our prototype implementations, including
Google Mobile Services (GMS), Google Cloud Messaging
(GCM) and Google Play Services APIs. Note that these ser-
vices could be supported, similarly to other services, at the
cost of additional engineering efforts. We also filtered out
apps that use Facebook SDKs, because such SDKs often use
custom layouts that are not yet supported by the user-level vir-
tualization lib that HMA uses. Exploring the interaction mecha-
nisms between custom layouts with the Android framework
is an avenue for future work.

After filtering, we obtained a set of 30 apps (24 free
apps and 6 paid apps) (see the Appendix B of our techni-
cal report at [44]) for 15 medical conditions. Also, these
apps support features that are crucial for mHealth apps,
e.g., a Bluetooth connection with external medical devices
(e.g., Beurer HealthManager app [4]) and an internet con-
nection (e.g., Cancer.Net app [5]).

12

10.2 Implementation Details

Our prototype features the main components of HMA, in-
cluding the HMA App Store and the HMA Manager app. To
measure the operational delay introduced by HMA, we imple-
mented a proof-of-concept HMA App Store on a computer
(Intel Core i7, 3GHz, 16 GB RAM) with MacOS Sierra. Our
HMA App Store dynamically generated container apps from
APKs and relied on an open-source lib called DroidPlugin [8]
for user-level virtualization. Our prototype container apps dy-
namically loaded the apps’ classes and resources from the
mHealth APKs and supported the interception and proxy of
API calls commonly used by mHealth apps, e.g., APIs related
to Bluetooth connections and SQLite databases.

10.3 Performance Overhead

In this section, we present the delays introduced by HMA to
sensitive apps during app-installation and app-launch op-
erations.31 For the evaluation of delays added by the user-
level virtualization to commonly used API methods and sys-
tem calls at runtime, we refer the readers to existing work,
e.g., Boxify [24] shows that such overhead is negligible (open-
ing a camera introduces an overhead of 1.24 ms).

Results presented in this section were measured on a
Google Nexus 5X phone running Android 7.0. In our ex-
periments, the HMA App Store was connected to the phone
through a micro-USB cable, hence network delays were not
considered. Yet, compared to the standard use of apps, HMA
incurs negligible network-delay overheads, because the only
bandwidth overhead introduced by HMA is the container-app
payload whose size is only several hundreds of kilobytes.

10.3.1 App Installation

When a user wants to install an mHealth app, the
HMA App Store first creates a container app for it. Based on
our experiments, assuming the HMA App Store decompiles
the mHealth APKs beforehand, for 90% of the cases, generat-
ing a container app takes, on average, 5 s. Note that a large
part of the delay comes from the compilation of the container
app, and the measurement was performed on a laptop com-
puter. Also note that the HMA App Store can always prepare
in advance container apps for each mHealth app, as presented
in Section 8.2. The size of the container app is only several
hundreds of kilobytes, which takes less than a second for the
HMA Manager app to download using a 3G or 4G Internet
connection. As a result, the total delay overhead introduced
by HMA would be less than 5 s in the worst-case scenario, and
less than a second if container apps are generated beforehand,
which is acceptable.

10.3.2 App Launch

On Android, apps can be launched from two different states:
cold starts where apps are launched for the first time since
the phone was booted or since the system killed the apps,
and warm starts where the apps’ activities might still reside
in memory, and the system only needs to bring them to the
foreground, hence faster than cold starts.

Experiment Set-Up. For cold-start delays, we rely on An-
droid’s official launch-performance profiling method [13].
For each app, we installed its container app, copied its APK
file to its container app’s private directory, and launched the
container app through adb. We then extracted the time infor-
mation from the Displayed entry of the logcat output. To
simulate a first launch, before we launched an app, we used the
command adb shell pm clear [package-name] to bring
the app back to its initial state. To simulate a cold start, be-
fore we launched an app, we used the command adb shell
am force-stop [package-name] to kill all the foreground
activities and background processes of the app. For each app,
we collected 50 measurements per launch setting. For a base-
line, we measured the delays when the mHealth apps were
executed without HMA.

To measure warm-start delays, due to the lack of Android
supports for profiling warm starts, we have to instrument
the source code of the sensitive apps to log the time that
the app enters different stages in its lifecycle. Because apps
in our dataset are closed source, we used an open-source
app.32 To simulate a warm start, we used the command input
keyevent 187 to bring the app to the background, and then
we used the monkey command to bring the app back to the
foreground. By subtracting the time when the onResume()
method is successfully executed with the time before the
monkey command is sent, we know the warm-start delay
experienced by the app. We measured the warm-start delays
experienced by the app in both settings (w/ and w/o HMA), 50
measurements per setting.

Results. Intuitively, in HMA, the first launch of an mHealth
will experience longer delays than the subsequent cold starts,
because the container app has to process the APK and store the
information needed for user-level virtualization. Our experi-
ments show that the median of this process takes 6.5 ± 0.16 s
(as compared to 0.74 ± 0.07 s if the mHealth apps were
launched w/o HMA). Note that this occurs only once, hence it
is negligible w.r.t. the lifetime of the app.

Fig. 2 shows the bar plot of subsequent cold-start delays,
with and without HMA, experienced by mHealth apps; the
heights of the bars represent the mean values, and the er-
ror bars represent one standard deviation. It can be seen that
the average delays are at most 3.0 ± 0.5 s and 1.3 ± 0.05 s
if the apps are executed with and without HMA, respectively.
For 90% of the cases, the average delay with HMA is less than
2.0 ± 0.3 s. Note that our prototype is a proof-of-concept
hence not optimized. Still, the observed delays are under the

13

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30
mHealth apps

0

500

1000

1500

2000

2500

3000
La

un
ch

 ti
m

e
(m

s)
w/o HMA
w/ HMA

Figure 2: Cold-start delays experienced by mHealth apps when they are executed with and without HMA. Note that our HMA
implementation is a proof-of-concept, hence not-optimized. The heights of the bars represent mean values and the error bars
represent the standard deviation. For each setting, we collected 50 measurements per app. The full names of the apps can be
found in Table ?? of the Appendices.

delay limit of 5 s suggested by Android [13]. Also, in our user
study, 97% of participants agreed that a launch delay of 5 s is
acceptable (Section 10.6).

Regarding warm-start delays, we found that the average
delay experienced by our tested app, when it was launched
with and without HMA, was ∼0.55 s. This is intuitive, because
the app’s processes were still running and the activities still
resided in the phone’s memory. In case the garbage collector
evicts the activities from the phone’s memory, warm-start
delays can be longer, due to the overheads of activity initial-
izations. We cannot simulate this case, because Android does
not provide methods to control the garbage collector. How-
ever, in this case, the delay will still be less than cold-start
delays (i.e., at most 3 s).

10.4 HMA Robustness and Compatibility

In this section, we present the evaluation of HMA in terms of
its robustness and its compatibility with Android versions.

Runtime Robustness. Following the approach used in previ-
ous work, (e.g., [35] and [53]), we manually tested each app
in our dataset with HMA. For each mHealth app, we extracted
its APK, created a container app using HMA App Store,
and installed the container app on the phone. Thereafter,
we used the HMA Manager to launch the app. We manu-
ally used most of the functionality of the mHealth app, and
checked if it had crashed during its execution. We found
that all of the apps in our dataset worked normally, except
one app that threw an error when making an SQLite con-
nection. To determine the cause of this error, we ran an ex-
ample app33 that uses the official Android API for database
access (i.e., Android.database.sqlite) to insert and re-
trieve records from an SQLite database, and the example
app ran successfully. We suspect that the mHealth app threw
an error because it specifies the full path to the database
(i.e., /data/data/package-name/db-name). Hence, when
running the app inside of the HMA container app, the hard-
coded path is not longer valid. To avoid this problem, de-
velopers should specify the relative path to the database
(i.e., ./db-name) instead of its full path.

Compatibility. We ran HMA on a series of smartphones with
Android OS from version 5.0 to 8.0, which accounts for 89%
of the current Android version distribution [7]. We found that
HMA can be successfully deployed on mainstream commercial
Android devices. But, there are two apps (Mole Mapper and
Alzheimer’s Speed of Processing Game) that initially
failed to run on our Nexus 5X (Android 7.1.1) due to the in-
compatibility between 32-bit and 64-bit systems. We fixed the
problem by enabling the option -abi armeabi-v7a when in-
stalling them. From the list of 20 apps that we filtered out, we
found that 3 apps (Hearing Aid, What’s Up and Cardiac
diagnosis) successfully ran on Android 5.0 and 6.0, but they
failed to run in later versions of Android. We investigated the
log of the three apps and found that API methods related
to GMS services that we do not support were called in the
later versions of Android. This problem could be solved if
these services are hooked, as we discussed in Section 10.2.
Note that, with the recent release of Android 9, Google has
restricted the use of Java reflection34 – the programming in-
terface that all user-level virtualization techniques rely on.
Therefore, for HMA to work seamlessly in Android 9, new
user-level virtualization techniques need to be explored. Still,
Android 9 has only less than 1% market share [7], which
means HMA will be compatible with most Android devices
in the coming years. Alternatively, HMA could work with
rooted Android 9 devices by using dynamic customization
frameworks, e.g., Xposed.35

10.5 Inter-App Communication Support

Sharing resources with other apps via customized features
(e.g., custom permissions and custom intent-filters) and pub-
licly exposing components (e.g., activities, services and con-
tent providers) could facilitate fingerprinting attacks. HMA can
partially support inter-app communications, but it is prefer-
able to avoid such features to guarantee robust fingerprinting
protection. Avoiding inter-app communication, however, can
affect apps’ functionality and backward compatibility. To
estimate the effect of using HMA and avoiding inter-app com-
munication on existing apps, we analyzed a set of popular

14

sensitive apps from the Google Play Store. Our results show
that a small number of apps use inter-app communication fea-
tures that are not supported by HMA and, in many cases, such
features are not directly related to apps’ key functionalities.

Dataset. We collected a total of 1045 APK files from the
most popular free apps in the Medical and Health&Fitness
categories in the US Google Play Store. By checking the apps’
descriptions, we found that approximately 60% directly match
HMA’s use case (i.e., health- and fitness-related apps). The rest
of the apps are less related to HMA’s use case, e.g., apps for
medical doctors and nurses, apps for managing accounts with
health providers, and apps for managing gym subscriptions.
From the APK files, we extracted the manifest file using the
apktool.

Custom Permissions. Permissions defined by apps to con-
trol access to their components can be use to fingerprint them
(e.g., they typically include the app name), as any app can
list the permissions of other apps. Hence, custom permis-
sions should be avoided. We found that a total of 531 apps
declared custom permissions. However, most of these permis-
sion declarations are related to deprecated services (Google
Cloud Messaging and Android Maps API v2)36 and can be
replaced with newer alternatives that do not require custom
permissions. Therefore, ignoring permissions associated with
these deprecated services, we found that only 68 apps (6.5%)
declared valid custom permissions.

Signature-Level Permissions. Signature permissions37 are
a subset of custom permissions, hence they can be used to
fingerprint apps. Given that HMA container apps are all signed
by the same key, a malicious app inside a container app could
abuse signature permissions to access resources of sensitive
apps in other container apps. Therefore, HMA currently does
not declare signature permissions in the container apps. Our
analysis shows that only 113 apps (10.8%) declared signature
permissions and, as explained before, many of these permis-
sions are associated with deprecated services (e.g., Google
Cloud Messaging and Android Maps API).

Content Providers. Any app can list the content providers
of other installed apps and use this information to fingerprint
them. Therefore, HMA obfuscates this information in the con-
tainer app. This means that public content providers (used
to share data with other apps) are not currently supported
by HMA. Our analysis shows that only 84 apps (8%) declare
public content providers. From these apps, 68% declare pub-
lic content-providers associated with third-party frameworks
(e.g., Seattle Clouds) for services such as file sharing and
authentication, and approximately 23% require permission to
access the provider.

Intent Filters. Custom intent filters, i.e., intent filters with
app-specific actions, could be used to fingerprint apps. Apps
cannot list the intent filters of other apps, but they can list all
the activities of other apps that can be performed by a par-
ticular intent. Hence, developers should avoid using custom

intent filters in their apps’ activities. Our analysis shows that
this is not a problem, as only 38 apps (3.6%) have activities
with custom intent filters.

Activities and Explicit Intents. Explicit intents are currently
not supported by HMA because container apps obfuscate the
activities’ names of sensitive apps; thus, direct reference to
sensitive apps’ activities is not possible. However, it is recom-
mended to use only explicit intents to launch internal activ-
ities; not activities of other apps (implicit intents should be
used instead). Our analysis shows that 170 apps (16.2%) de-
clare activities that can be launched by other apps via explicit
intents only, i.e., no intent filters. We noticed that many apps
(67) declared this type of activities to support Google’s Fire-
base authentication services. Yet, Firebase’s official documen-
tation does not seem to mention this approach to support its
services. Hence, to be compatible with HMA, these apps could
evaluate alternative (official) approaches to support Firebase
services or rely on other services for user authentication.

Services and Explicit Intents. Explicit intents are recom-
mended to access services offered by other apps. But, as stated
before, it is not possible to use explicit intents with HMA. Our
analysis show that 367 apps (35.1%) declare public services
that require explicit intents. This is a significant number, yet
we noticed that a large number of apps (252) use services
with explicit intents to support Google Play services for au-
thentication (Google Sign-In user revocation). Hence, these
apps could use alternative user authentication services to be
compatible with HMA. We also notice that only 44 apps de-
clared services that belong to the app itself; this indicates that
most of these services are associated with third-parties and
probably are not part of apps’ main functionalities.

Broadcast Receivers. Whereas any app can list the broad-
cast receivers of other apps, HMA container apps obfuscate
the names of the receivers to defend against fingerprinting
attacks. The container app can declare the same intent filters
for receivers that the sensitive app declares (including custom
intent filters) because other apps cannot list these intent filters.
As broadcast receivers offer asynchronous communication,
nosy apps cannot use API methods to check if an app is receiv-
ing a particular broadcast intent. In short, broadcast receivers
are supported by HMA.

10.6 HMA Usability and Desirability

To evaluate the usability of HMA and the users’ interest for it,
we conducted a user study that was approved by our institu-
tional ethical committee. It involved 30 student subjects (19
males, 11 females, 22 ± 4.5 years old) from 18 areas of study.
The participants were experienced Android users: 87% of
them have used an Android phone for at least a year. Also, they
were relatively concerned about their privacy; using the stan-
dard metric for measuring privacy perception (IUIPC) [39],
we found that, on a scale from 1 to 5, 97% of participants

15

graded at least 3.0 and an average of 4.1.
We began the study with an entry survey about demo-

graphic information, privacy postures, users’ awareness and
concerns about the problem of LIA collections. Then, we pro-
vided each participant with a fresh phone and asked them to
install and use two apps: a popular public-transportation app
for our city and an mHealth app called Cancer.Net. To pre-
cisely measure the users’ perceptions of the delay introduced
by HMA, the participants were asked to use the two aforemen-
tioned apps with and without HMA; detailed instructions were
provided to them. 67% of the participants had used the trans-
portation app before, whereas only 7% of them had used the
Cancer.Net app or an mHealth app. We finished the user
study with an exit survey containing questions related to the
usability of HMA and the users’ levels of interest in HMA. The
user-study session took ∼45 minutes, and we paid each partic-
ipant ∼$25 (i.e., 25 CHF). The transcript of survey questions
and the instructions can be found at 38.

Our study shows that the participants are concerned about
the privacy of health-related data: 90% of the participants
would be at least concerned if their health-related informa-
tion were collected by apps installed on their phones and
shared with third parties, and 87% of participants would be
at least concerned if third parties learned that they had used
health-related apps. Indeed, our study confirms the findings
from previous works (e.g., [41]) that the majority of people
never read privacy policies. Therefore, the current solution of
using privacy policies by Google for LIA collections is not
satisfactory. These findings make clear the case for HMA.

Regarding the usability of HMA, only 30% of the participants
noticed a difference when the two apps ran with and without
HMA. Note that the delays that users experienced in the user
study were the first-launch delays, which are 4.2 ± 0.06 s and
5.1 ± 0.07 s for the transportation app and the Cancer.Net
app, respectively. From the open-ended question in our exit
survey, we found that the observed differences are mainly
about the launching delay of the apps and the change in the
app names in permission prompts. From the close-ended
questions, which were coded using a five-point Likert scale,
we observe the following. Almost all participants agree that
these changes and delays are acceptable (97% and 93% of the
participants, respectively). 93% of the participants also agree
that the use of an HMA Manager to install and launch apps is
at least somewhat acceptable. Also, 90% of the participants
agreed that HMA does not affect the user experience of the apps
that it protects, and that they are at least somewhat interested
in using HMA. These results suggest that HMA is usable and
desirable.

11 Conclusion

In this work, we have shown that apps can collect a significant
amount of static and runtime information about other apps,
to fingerprint them. Our analysis has shown that many third

parties are interested in learning about the apps installed on
people’s phones. Moreover, we have shown that there are no
existing mechanisms for hiding the presence of an app from
other apps. We have proposed HMA, the first solution that ad-
dresses this problem. HMA does not require any modifications
to the Android OS and preserves the key functionalities of
apps. The results of our evaluation and user study suggest that
HMA is usable and of interest to users.

References

[1] Android Security 2015 Year In Review. https:
//source.android.com/security/reports/Google_
Android_Security_2015_Report_Final.pdf. Visited:
Sep. 2018.

[2] Android Security 2016 Year In Review. https:
//source.android.com/security/reports/Google_
Android_Security_2016_Report_Final.pdf. Visited:
Sep. 2018.

[3] Angry Birds. https://play.google.com/store/apps/
details?id=com.rovio.angrybirds. Visited: Sep. 2018.

[4] Beurer HealthManager. https://play.google.
com/store/apps/details?id=com.beurer.connect.
healthmanager. Visited: Sep. 2018.

[5] Cancer.Net Mobile. https://play.google.com/store/
apps/details?id=com.fueled.cancernet. Visited: Sep.
2018.

[6] DH Texas Poker - Texas Hold’em. https://play.google.
com/store/apps/details?id=com.droidhen.game.
poker. Visited: Sep. 2018.

[7] Distribution dashboard. https://developer.android.
com/about/dashboards/. Visited: Sep. 2018.

[8] DroidPlugin. https://github.com/DroidPluginTeam/
DroidPlugin. Visited: Sep. 2018.

[9] F-Droid. https://f-droid.org/en/. Visited: Sep. 2018.

[10] Help protect against harmful apps with Google Play Pro-
tect. https://support.google.com/accounts/answer/
2812853?hl=en. Visited: Sep. 2018.

[11] Hide App, Private Dating, Safe Chat - PrivacyHider.
https://play.google.com/store/apps/details?id=
com.trigtech.privateme&hl=en. Visited: Sep. 2018.

[12] InstaSize Editor: Photo Filters and Collage Maker.
https://play.google.com/store/apps/details?
id=com.jsdev.instasize. Visited: Sep. 2018.

[13] Launch-Time Performance. https://developer.android.
com/topic/performance/launch-time.html. Visited:
Sep. 2018.

[14] MX Player. https://play.google.com/store/apps/
details?id=com.mxtech.videoplayer.ad. Visited: Sep.
2018.

[15] Neon Motocross. https://play.google.com/store/
apps/details?id=com.motomex.neonmotocross. Visited:
Sep. 2018.

16

https://source.android.com/security/reports/Google_Android_Security_2015_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2015_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2015_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://play.google.com/store/apps/details?id=com.rovio.angrybirds
https://play.google.com/store/apps/details?id=com.rovio.angrybirds
https://play.google.com/store/apps/details?id=com.beurer.connect.healthmanager
https://play.google.com/store/apps/details?id=com.beurer.connect.healthmanager
https://play.google.com/store/apps/details?id=com.beurer.connect.healthmanager
https://play.google.com/store/apps/details?id=com.fueled.cancernet
https://play.google.com/store/apps/details?id=com.fueled.cancernet
https://play.google.com/store/apps/details?id=com.droidhen.game.poker
https://play.google.com/store/apps/details?id=com.droidhen.game.poker
https://play.google.com/store/apps/details?id=com.droidhen.game.poker
https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/
https://github.com/DroidPluginTeam/DroidPlugin
https://github.com/DroidPluginTeam/DroidPlugin
https://f-droid.org/en/
https://support.google.com/accounts/answer/2812853?hl=en
https://support.google.com/accounts/answer/2812853?hl=en
https://play.google.com/store/apps/details?id=com.trigtech.privateme&hl=en
https://play.google.com/store/apps/details?id=com.trigtech.privateme&hl=en
https://play.google.com/store/apps/details?id=com.jsdev.instasize
https://play.google.com/store/apps/details?id=com.jsdev.instasize
https://developer.android.com/topic/performance/launch-time.html
https://developer.android.com/topic/performance/launch-time.html
https://play.google.com/store/apps/details?id=com.mxtech.videoplayer.ad
https://play.google.com/store/apps/details?id=com.mxtech.videoplayer.ad
https://play.google.com/store/apps/details?id=com.motomex.neonmotocross
https://play.google.com/store/apps/details?id=com.motomex.neonmotocross

[16] Nova Launcher. https://play.google.com/store/apps/
details?id=com.teslacoilsw.launcher&hl=en. Visited:
Sep. 2018.

[17] Parallel Space - Multiple accounts and Two face.
https://play.google.com/store/apps/details?
id=com.lbe.parallel.intl&hl=en. Visited: Sep. 2018.

[18] Private Zone - Safe Vault. https://play.google.com/
store/apps/details?id=com.leo.appmaster. Visited:
Sep. 2018.

[19] Publish Your App. https://developer.android.com/
studio/publish/index.html#publishing-unknown. Vis-
ited: Sep. 2018.

[20] Solitaire: Super Challenges. https://play.google.com/
store/apps/details?id=com.cardgame.solitaire.
full. Visited: Sep. 2018.

[21] Sweet Selfie - selfie camera, beauty cam, photo edit.
https://play.google.com/store/apps/details?id=
com.cam001.selfie. Visited: Sep. 2018.

[22] ACHARA, J. P., ACS, G., AND CASTELLUCCIA, C. On the
Unicity of Smartphone Applications. In Proc. of WPES (2015).

[23] AITKEN, M., AND LYLE, J. Patient adoption of mhealth: use,
evidence and remaining barriers to mainstream acceptance.
IMS Institute for Healthcare Informatics (2015).

[24] BACKES, M., BUGIEL, S., HAMMER, C., SCHRANZ, O., AND

VON STYP-REKOWSKY, P. Boxify: Full-fledged App Sandbox-
ing for Stock Android. In Proc. of USENIX Security (2015).

[25] BIANCHI, A., FRATANTONIO, Y., KRUEGEL, C., AND VI-
GNA, G. Njas: Sandboxing unmodified applications in non-
rooted devices running stock android. In Proc. of SPSM (2015).

[26] CHEN, Q. A., QIAN, Z., AND MAO, Z. M. Peeking into Your
App without Actually Seeing It: UI State Inference and Novel
Android Attacks. In Proc. of USENIX Security (2014).

[27] CHEN, Y., JIN, X., SUN, J., ZHANG, R., AND ZHANG, Y.
POWERFUL: Mobile app fingerprinting via power analysis.
In Proc. of IEEE INFOCOM (2017).

[28] DAI, S., TONGAONKAR, A., WANG, X., NUCCI, A., AND

SONG, D. NetworkProfiler: Towards automatic fingerprinting
of Android apps. In Proc. of IEEE INFOCOM (2013).

[29] DEMETRIOU, S., MERRILL, W., YANG, W., ZHANG, A., AND

GUNTER, C. A. Free for all! assessing user data exposure to
advertising libraries on android. In Proc. of NDSS (2016).

[30] FELT, A. P., HA, E., EGELMAN, S., HANEY, A., CHIN, E.,
AND WAGNER, D. Android Permissions: User Attention, Com-
prehension, and Behavior. In Proc. of SOUPS (2012).

[31] FERNANDES, E., PAUPORE, J., RAHMATI, A., SIMIONATO,
D., CONTI, M., AND PRAKASH, A. FlowFence: Practical
Data Protection for Emerging IoT Application Frameworks. In
Proc. of USENIX Security (2016).

[32] GRACE, M. C., ZHOU, W., JIANG, X., AND SADEGHI, A.-R.
Unsafe exposure analysis of mobile in-app advertisements. In
Proc. of ACM WiSec (2012).

[33] GULYÁS, G. G., ACS, G., AND CASTELLUCCIA, C. Near-
Optimal Fingerprinting with Constraints. Proceedings of Pri-
vacy Enhancing Technologies Symposium (2016).

[34] HUANG, J., SCHRANZ, O., BUGIEL, S., AND BACKES, M.
The ART of App Compartmentalization: Compiler-based Li-
brary Privilege Separation on Stock Android. In Proc. of ACM
CCS (2017).

[35] JAEBAEK, S., DAEHYEOK, K., DONGHYUN, C., INSIK, S.,
AND TAESOO, K. FLEXDROID: Enforcing In-App Privilege
Separation in Android. In Proc. of NDSS (2016).

[36] JANA, S., AND SHMATIKOV, V. Memento: Learning secrets
from process footprints. In Proc. of IEEE S&P (2012).

[37] KOTZ, D., GUNTER, C. A., KUMAR, S., AND WEINER, J. P.
Privacy and Security in Mobile Health: A Research Agenda.
Computer (June 2016).

[38] LIN, C.-C., LI, H., ZHOU, X.-Y., AND WANG, X. Screen-
milker: How to Milk Your Android Screen for Secrets. In Proc.
of NDSS (2014).

[39] MALHOTRA, N. K., KIM, S. S., AND AGARWAL, J. Internet
users’ information privacy concerns (IUIPC): The construct,
the scale, and a causal model. Information systems research
(2004).

[40] MALMI, E., AND WEBER, I. You Are What Apps You Use:
Demographic Prediction Based on User’s Apps. In Proc. of
AAAI CWSM (2016).

[41] MCDONALD, A. M., REEDER, R. W., KELLEY, P. G., AND

CRANOR, L. F. A Comparative Study of Online Privacy Poli-
cies and Formats. In Privacy Enhancing Technologies (2009).

[42] NAVEED, M., ZHOU, X.-Y., DEMETRIOU, S., WANG, X.,
AND GUNTER, C. A. Inside Job: Understanding and Mitigat-
ing the Threat of External Device Mis-Binding on Android. In
Proc. of NDSS (2014).

[43] NGUYEN, D. C., WERMKE, D., ACAR, Y., BACKES, M.,
WEIR, C., AND FAHL, S. A Stitch in Time: Supporting An-
droid Developers in Writing Secure Code. In Proc. of ACM
CCS (2017).

[44] PHAM, A., DACOSTA, I., LOSIOUK, E., STEPHAN, J.,
HUGUENIN, K., AND HUBAUX, J.-P. Hidemyapp : Hiding
the presence of sensitive apps on android. In EPFL Infoscience
(2019).

[45] RATAZZI, P., AAFER, Y., AHLAWAT, A., HAO, H., WANG,
Y., AND DU, W. A systematic security evaluation of android’s
multi-user framework. arXiv preprint arXiv:1410.7752 (2014).

[46] SENEVIRATNE, S., SENEVIRATNE, A., MOHAPATRA, P.,
AND MAHANTI, A. Predicting User Traits from a Snapshot of
Apps Installed on a Smartphone. SIGMOBILE Mob. Comput.
Commun. Rev. 18, 2 (June 2014).

[47] SENEVIRATNE, S., SENEVIRATNE, A., MOHAPATRA, P.,
AND MAHANTI, A. Your installed apps reveal your gender
and more! SIGMOBILE Mob. Comput. Commun. Rev. (2015).

[48] SUN, M., AND TAN, G. NativeGuard: Protecting Android
Applications from Third-party Native Libraries. In Proc. of
ACM WiSec (2014).

[49] SUNSHINE, J., EGELMAN, S., ALMUHIMEDI, H., ATRI, N.,
AND CRANOR, L. F. Crying Wolf: An Empirical Study of SSL
Warning Effectiveness. In Proc. of USENIX Security (2009).

17

https://play.google.com/store/apps/details?id=com.teslacoilsw.launcher&hl=en
https://play.google.com/store/apps/details?id=com.teslacoilsw.launcher&hl=en
https://play.google.com/store/apps/details?id=com.lbe.parallel.intl&hl=en
https://play.google.com/store/apps/details?id=com.lbe.parallel.intl&hl=en
https://play.google.com/store/apps/details?id=com.leo.appmaster
https://play.google.com/store/apps/details?id=com.leo.appmaster
https://developer.android.com/studio/publish/index.html#publishing-unknown
https://developer.android.com/studio/publish/index.html#publishing-unknown
https://play.google.com/store/apps/details?id=com.cardgame.solitaire.full
https://play.google.com/store/apps/details?id=com.cardgame.solitaire.full
https://play.google.com/store/apps/details?id=com.cardgame.solitaire.full
https://play.google.com/store/apps/details?id=com.cam001.selfie
https://play.google.com/store/apps/details?id=com.cam001.selfie

[50] TAYLOR, V. F., SPOLAOR, R., CONTI, M., AND MARTI-
NOVIC, I. Appscanner: Automatic fingerprinting of smart-
phone apps from encrypted network traffic. In Proc. of IEEE
EuroS&P (2016).

[51] TAYLOR, V. F., SPOLAOR, R., CONTI, M., AND MARTI-
NOVIC, I. Robust Smartphone App Identification via En-
crypted Network Traffic Analysis. IEEE Trans. on Inf. Foren-
sics and Security 13, 1 (Jan. 2018).

[52] WANG, T., AND GOLDBERG, I. Walkie-talkie: An efficient
defense against passive website fingerprinting attacks. In Proc.
of USENIX Security (2017).

[53] WANG, X., SUN, K., WANG, Y., AND JING, J. DeepDroid:
Dynamically Enforcing Enterprise Policy on Android Devices.
In Proc. of NDSS (2015).

[54] XU, Q., LIAO, Y., MISKOVIC, S., MAO, Z. M., BALDI, M.,
NUCCI, A., AND ANDREWS, T. Automatic generation of
mobile app signatures from traffic observations. In Proc. of
IEEE INFOCOM (2015).

[55] ZHOU, X., DEMETRIOU, S., HE, D., NAVEED, M., PAN, X.,
WANG, X., GUNTER, C. A., AND NAHRSTEDT, K. Identity,
location, disease and more: Inferring your secrets from android
public resources. In Proc. of ACM CCS (2013).

Notes
1https://liquid-state.com/mhealth-apps-market-snapshot/.

Visited: Nov. 2018.
2https://research2guidance.com/mhealth-app-market-

getting-crowded-259000-mhealth-apps-now/. Visited: Sep. 2018.
3https://www.theguardian.com/technology/2014/nov/27/

twitter-scanning-other-apps-tailored-content. Note that Twitter
recently announced that it excludes apps dealing with health, religion
and sexual orientation, https://help.twitter.com/en/safety-and-
security/app-graph. Visited: Sep. 2018.

4https://techcrunch.com/2017/05/04/report-smartphone-
owners-are-using-9-apps-per-day-30-per-month/. Visited: Sep.
2018.

5Now reclassified as Mobile Unwanted Software (MUwS) [2].
6https://play.google.com/about/developer-content-policy-

print/. Visited: Sep. 2018.
7Additional protections by Safe Browsing for Android users,

https://security.googleblog.com/2017/12/additional-
protections-by-safe-browsing.html. Visited: Sep. 2018.

8Note that, unlike previous work (e.g., [22]) that focuses on apps directly
retrieving the list of installed apps, our work focuses on the fingerprintability
of a specific app, a more general and difficult problem.

9https://developer.android.com/guide/topics/permissions/
overview. Visited: Sep. 2018.

10https://developer.android.com/studio/command-
line/adb.html. Visited: Sep. 2018.

11https://codelabs.developers.google.com/codelabs/
developing-android-a11y-service/. Visited: Apr. 2019.

12https://cromulentlabs.wordpress.com/2016/01/15/
explanation-of-canopenurl-changes-in-ios-9/. Visited: Sep.
2018.

13https://ibotpeaches.github.io/Apktool/. Visited: Sep. 2018.
14Note that we also found many occurrences of other methods presented

in Section 4, but we did not know the purposes of the calling apps.
15http://www.zdnet.com/article/accuweather-caught-

sending-geo-location-data-even-when-denied-access/. Vis-
ited: Nov. 2018.

16https://github.com/M66B/XPrivacy. Visited: Sep. 2018.
17We performed a similar analysis on a small set of paid apps, see Ap-

pendix A.
18https://play.google.com/about/privacy-security-

deception/personal-sensitive/. Visited: Sep. 2018.
19https://source.android.com/devices/tech/admin/multi-

user. Visited: Sep. 2018.
20https://www.xda-developers.com/add-multi-user-support-

android/. Visited: Feb. 2019.
21https://www.android.com/enterprise/employees/. Visited: Sep.

2018
22https://developer.android.com/topic/instant-

apps/index.html. Visited: Sep. 2018.
23https://developer.android.com/topic/instant-

apps/reference.html#instantapps.InstantApps. Visited: Sep.
2018

24https://www.samsungknox.com/en. Visited: Sep. 2018.
25https://www.amazon.com/mobile-apps/b?ie=UTF8&node=

2350149011. Visited: Sep. 2018.
26P is defined based on the estimation about the number of sensitive apps

that users of the HMA App Store can have, because Android does not permit
duplicate package names for apps. Average users have around 80 apps on
their phones, therefore P is at most 80.

27https://developer.android.com/about/versions/
marshmallow/android-6.0#direct-share. Visited: Feb. 2019.

28https://www.torproject.org/projects/torbrowser/design/.
Visited: Sep. 2018.

29https://www.androidpolice.com/2017/11/12/google-
will-remove-play-store-apps-use-accessibility-services-
anything-except-helping-disabled-users/. Visited: Apr. 2018.

30A signature-protected permission is a permission that the system grants
only if the requesting app is signed with the same certificate as the app that
declared the permission.

31We omit the app-update operation, because app-update and app-
installation operations are similar.

32https://github.com/commonsguy/cw-omnibus/tree/master/
Activities/Lifecycle. Visited: Sep. 2018.

33SQLiteOpenHelper, https://github.com/commonsguy/cw-
omnibus/tree/master/Database/ConstantsROWID. Visited: Sep. 2018

34https://developer.android.com/about/versions/pie/
restrictions-non-sdk-interfaces. Visited: Sep. 2018.

35https://repo.xposed.info/module/de.robv.android.xposed.
installer. Visited: Sep. 2018

36https://developers.google.com/cloud-messaging/android/
android-migrate-fcm. Visited: Feb. 2019.

37A permission that the system grants only if the requesting application is
signed with the same certificate as the application that declared the permission

38https://www.dropbox.com/sh/lo273jtx6jkbf1c/
AAB1BtkBmBuNVOV13OAwDu-ha?dl=1

A Analysis of Paid Apps

To estimate if there are differences between free and paid
apps w.r.t. collecting LIAs, we performed a similar analysis
with a set of 28 popular paid apps from different categories in
the Google Play Store. We found that 17.8% of the paid apps
included at least one call to getIA() or getIP() methods
in their code (upper-bound) and that 7.4% of the paid apps
called at least one of these two methods at runtime (lower-
bound). Although the number of paid apps evaluated is much
smaller than of free apps, our results still indicate that paid
apps are less likely to query for LIAs, probably because they
rely less on third-party libs, particularly ad libraries.

18

https://liquid-state.com/mhealth-apps-market-snapshot/
https://research2guidance.com/mhealth-app-market-getting-crowded-259000-mhealth-apps-now/
https://research2guidance.com/mhealth-app-market-getting-crowded-259000-mhealth-apps-now/
https://www.theguardian.com/technology/2014/nov/27/twitter-scanning-other-apps-tailored-content
https://www.theguardian.com/technology/2014/nov/27/twitter-scanning-other-apps-tailored-content
https://help.twitter.com/en/safety-and-security/app-graph
https://help.twitter.com/en/safety-and-security/app-graph
https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/
https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/
https://play.google.com/about/developer-content-policy-print/
https://play.google.com/about/developer-content-policy-print/
https://security.googleblog.com/2017/12/additional-protections-by-safe-browsing.html
https://security.googleblog.com/2017/12/additional-protections-by-safe-browsing.html
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html
https://codelabs.developers.google.com/codelabs/developing-android-a11y-service/
https://codelabs.developers.google.com/codelabs/developing-android-a11y-service/
https://cromulentlabs.wordpress.com/2016/01/15/explanation-of-canopenurl-changes-in-ios-9/
https://cromulentlabs.wordpress.com/2016/01/15/explanation-of-canopenurl-changes-in-ios-9/
https://ibotpeaches.github.io/Apktool/
http://www.zdnet.com/article/accuweather-caught-sending-geo-location-data-even-when-denied-access/
http://www.zdnet.com/article/accuweather-caught-sending-geo-location-data-even-when-denied-access/
https://github.com/M66B/XPrivacy
https://play.google.com/about/privacy-security-deception/personal-sensitive/
https://play.google.com/about/privacy-security-deception/personal-sensitive/
https://source.android.com/devices/tech/admin/multi-user
https://source.android.com/devices/tech/admin/multi-user
https://www.xda-developers.com/add-multi-user-support-android/
https://www.xda-developers.com/add-multi-user-support-android/
https://www.android.com/enterprise/employees/
https://developer.android.com/topic/instant-apps/index.html
https://developer.android.com/topic/instant-apps/index.html
https://developer.android.com/topic/instant-apps/reference.html#instantapps.InstantApps
https://developer.android.com/topic/instant-apps/reference.html#instantapps.InstantApps
https://www.samsungknox.com/en
https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
https://developer.android.com/about/versions/marshmallow/android-6.0#direct-share
https://developer.android.com/about/versions/marshmallow/android-6.0#direct-share
https://www.torproject.org/projects/torbrowser/design/
https://www.androidpolice.com/2017/11/12/google-will-remove-play-store-apps-use-accessibility-services-anything-except-helping-disabled-users/
https://www.androidpolice.com/2017/11/12/google-will-remove-play-store-apps-use-accessibility-services-anything-except-helping-disabled-users/
https://www.androidpolice.com/2017/11/12/google-will-remove-play-store-apps-use-accessibility-services-anything-except-helping-disabled-users/
https://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
https://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
https://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsROWID
https://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsROWID
https://developer.android.com/about/versions/pie/restrictions-non-sdk-interfaces
https://developer.android.com/about/versions/pie/restrictions-non-sdk-interfaces
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://repo.xposed.info/module/de.robv.android.xposed.installer
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://www.dropbox.com/sh/lo273jtx6jkbf1c/AAB1BtkBmBuNVOV13OAwDu-ha?dl=1
https://www.dropbox.com/sh/lo273jtx6jkbf1c/AAB1BtkBmBuNVOV13OAwDu-ha?dl=1

	Introduction
	Related Work
	Background on Android
	Fingerprintability of Android Apps
	Apps Inquiring about Other Apps
	Data Collection
	Static Analysis
	Dynamic Analysis
	Analysis of Privacy Policies

	Existing Protection Mechanisms
	Mechanisms by Google
	Mechanisms by Third Parties

	Our Solution: HideMyApp
	System Model
	Adversarial Model
	Design Goals
	HMA Overview

	HMA System Description
	HMA Manager App
	HMA App Store
	HMA Operations

	Privacy and Security Analysis
	Privacy
	Security

	Evaluation
	Dataset
	Implementation Details
	Performance Overhead
	App Installation
	App Launch

	HMA Robustness and Compatibility
	Inter-App Communication Support
	HMA Usability and Desirability

	Conclusion
	Analysis of Paid Apps

