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SUMMARY

We previously established the contribution of de
novo damaging sequence variants to Tourette disor-
der (TD) through whole-exome sequencing of 511
trios. Here, we sequence an additional 291 TD trios
and analyze the combined set of 802 trios. We
observe an overrepresentation of de novo damaging
variants in simplex, but not multiplex, families; we
identify a high-confidence TD risk gene, CELSR3
(cadherin EGF LAG seven-pass G-type receptor 3);
we find that the genes mutated in TD patients are en-
riched for those related to cell polarity, suggesting a
common pathway underlying pathobiology; and we
confirm a statistically significant excess of de novo
copynumber variants inTD. Finally,we identify signif-
icant overlap of de novo sequence variants between
Cell Report
This is an open access article under the CC BY-N
TD and obsessive-compulsive disorder and de novo
copy number variants between TD and autism spec-
trum disorder, consistent with shared genetic risk.

INTRODUCTION

Tourette disorder (TD), an early onset neurodevelopmental disor-

der characterizedbychronicmotorandvocal tics, hasaworldwide

prevalence of approximately 0.3%–1% (CDC, 2009; Robertson,

2008; Scharf et al., 2015) and a pronounced sex bias with males

much more likely to be affected (Freeman et al., 2000; Scharf

etal., 2013).TD ishighlycomorbidwithotherpsychiatricdisorders,

such as obsessive-compulsive disorder (OCD) and attention-

deficit and hyperactivity disorder (ADHD) (Ghanizadeh andMosal-

laei, 2009). Behavioral interventions have comparable effective-

ness to medication for tic disorders, though both, unfortunately,

have limited efficacy. Moreover, the most effective medications

to suppress unwanted movements and vocalizations may lead
s 24, 3441–3454, September 25, 2018 ª 2018 The Author(s). 3441
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Study Overview

Our group previously generated and analyzedWES

data from 511 TD trios, generated by the

TIC Genetics (325 trios) and TAAICG (186 trios)

consortia (Willsey et al., 2017). In this study, we

expand the number of trios with WES data by 291

(92 from TIC Genetics, 18 from UTC, and 181 from

TSGENESEE). We leverage recurrent de novo vari-

ants occurring within the same gene in unrelated

individuals to identify a high-confidence gene,

CELSR3. Next, we identify de novo CNVs from the

WES data and significantly associate these variants

with TD. Third, we replicate the association of de

novoCNVs by analysis of microarray data from 399

partially overlapping TIC Genetics trios. Finally,

basedon the rateofde novo variants,weassess the

genomic architecture of TD. CNVs, copy number

variants; SSC,SimonsSimplexCollection; TAAICG,

Tourette Association of America International Con-

sortium for Genetics; TD, Tourette disorder; TIC

Genetics, Tourette International Collaborative

Genetics consortium; TSGENESEE, Tourette Syn-

drome Genetics Southern and Eastern Europe

Initiative; UTC, Uppsala Tourette Cohort.

See Figure S1 for an overviewof quality control and

sample filtering and Table S1 for sample metrics.
to long-term side effects, including chronic movement disorders

(Quezada and Coffman, 2018). Development of a broader and

more effective therapeutic armamentarium is currently profoundly

limited by a lack of understanding of pathophysiology. However,

given the significant role of genetic factors in TD (Huang et al.,

2017; Pauls et al., 1981; Price et al., 1985; Willsey et al., 2017),

the elucidation of genes and loci carrying large TD risks represents

a promising path forward for clarifying the underlying biology.

Indeed, in the past five years, advances in genomics technology,

including microarray genotyping and whole-exome sequencing

(WES), have resulted in an explosion of genetic data for neurode-

velopmental disorders, including autism spectrum disorder

(ASD), intellectual disability, epileptic encephalopathies, OCD,

ADHD, and schizophrenia. With regard to early onset disorders

in particular, it has becomeclear that the identification of recurrent

denovovariants is a highly reliable andproductivepath forward for

gene discovery, in the context of a demonstrated excess of these
3442 Cell Reports 24, 3441–3454, September 25, 2018
variants incasesversuscontrols (or versus

expectation; Willsey et al., 2018).

Recently, our group reported the asso-

ciation of de novo damaging sequence

variants (single-nucleotide variants

[SNVs] and insertion or deletion variants

[indels]) with TD risk (Willsey et al., 2017).

We identified four TD risk genes, including

one high-confidence TD (hcTD) risk gene

(false discovery rate [FDR] < 0.1) and three

probable TD (pTD) risk genes (FDR < 0.3).

We also demonstrated that, similar to

other early-onset neurodevelopmental

disorders, the identification of recurrent

de novo variants is a powerful strategy
for gene discovery in TD. Our group and others have also demon-

strated that rare copy number variants (CNVs) are associatedwith

TD risk (Fernandez et al., 2012; Huang et al., 2017; McGrath et al.,

2014; Nag et al., 2013; Sundaram et al., 2010). However, although

suggestive evidence existed (Fernandez et al., 2012), de novo

CNVs had not yet been firmly established as a risk factor.

In this study (Figure 1), we expand our earlier (phase 1) WES

study by 291 additional trios (873 samples), increasing the total

number of TD trios to 802 (2,406 samples). In the combined data-

set, we identify a new high-confidence TD risk gene,CELSR3, as

well as two probable risk genes (OPA1 and FBN2). Analyses of

the genes with de novo damaging variants implicate cell polarity

in the pathogenesis of TD. We also conduct pilot analyses that

suggest the yield of de novo sequence variants is increased in

‘‘apparently’’ simplex (neither of the parents had any reported

history of a tic disorder) versus multiplex (at least one of the par-

ents had a reported history of a tic disorder) TD families and in



Table 1. Demographics and Sequencing Metrics by Cohort

Phase Phase 1 Phase 2 Phases 1 and 2

Cohort TICGen

TAAICG

(Broad)

TAAICG

(UCLA) TICGen UTC TSGENESEE SSC Siblings

Samples (trios) sequenced 325 149 37 92 18 181 1,184

Samples (trios) passing

QC for de novo sequence

variant calling

311 145 37 92 18 174 1,153

Male:female (sex ratio) 245:66 (3.71) 116:29 (4.00) 34:3 (11.33) 73:19 (3.84) 14:4 (3.50) 144:30 (4.80) 528:625 (0.84)

Paternal agea 33.05 ± 0.63 33.35 ± 0.85 31.85 ± 1.90 33.98 ± 1.15 NA NA 32.6 ± 0.33

Maternal agea 31.08 ± 0.57 31.64 ± 0.82 30.40 ± 1.46 31.16 ± 0.93 NA NA 30.55 ± 0.29

Simplex:multiplexa,b 264:30 128:13 35:0 72:0 17:1 61:59 NA (all simplex)

Comorbid:non-comorbida,c 216:86 101:39 26:10 64:22 0:18 84:64 NA (all non-

comorbid)

Exome array Nimblegen

EZ v2

Agilent v1.1 Nimblegen

EZ v3

IDT xGen Nimblegen

EZ v2

Size of capture region (bp) 44,001,748 32,760,120 63,564,965 33,337,769 44,001,748

RefSeq hg19 coding region

covered (bp)

32,586,393 31,844,591 33,644,238 33,357,319 32,586,393

RefSeq hg19 coding region

covered (%)

96.33 94.13 99.45 98.61 96.33

Consensus region (bp)d 19,343,430

Coding region covered in

consensus (%)

59.36 60.74 57.49 57.99 59.36

Mean consensus callable

size (million bp)e
18.97 ± 0.041 18.97 ± 0.059 18.32 ± 0.59 18.25 ± 0.20 18.87 ± 0.11 18.50 ± 0.0095 18.10 ± 0.064

Cohort characteristics as well as sequencing metrics are summarized per cohort and by phase. 95% confidence intervals are displayed as ±, where

relevant. Agilent v1.1, Agilent SureSelect v1.1; IDT xGen, IDT xGen Exome Research Panel; Nimblegen EZ v2, Nimblegen EZ Exome v2; Nimblegen EZ

v3, Nimblegen EZ Exome v3.
aNot all samples have data; we based calculations on those having records (e.g., we did not have parental age records for UTC and TSGENESEE

cohorts).
bSimplex: parents unaffected with TD; multiplex: one or more parents have TD.
cComorbid: probands comorbid with ADHD/OCD; non-comorbid: probands not comorbid with ADHD/OCD.
dWe first calculated cumulative depth of coverages for each trio. For each cohort, we then generated a list of regions in which more than 50% of trios

from that cohort have R203 joint coverage (i.e., each member of the trio has R203 depth at that position). We intersected these regions from each

cohort to generate a list of consensus regions. To reduce any potential biases arising from differences in coverage, de novo burden analyses were

restricted to these high-quality regions.
eWe estimated the cumulative depth of coverage for each trio in the consensus regions and calculated themean and 95%CI using one-sample t test in

R. See STAR Methods for details.
female versus male probands. Additionally, we identify de novo

CNVs in WES and complementary microarray data, and conclu-

sively associate de novo CNVs with TD risk. We also revise our

estimates on the contribution of de novo sequence and struc-

tural variants to TD risk: 9.7% of cases from TD simplex families

carry a de novo damaging sequence variant and 1.5% carry a de

novo structural variant likely mediating risk. Overall, this sug-

gests that, in simplex families, approximately 10% of individuals

meeting clinical diagnostic criteria for TD will carry a contributing

de novo variant. Finally, we estimate that 483 genes contribute

risk through disruption by de novo sequence variation.

RESULTS

De Novo Sequence Variants
To follow up our phase 1 study (Willsey et al., 2017), we conduct-

ed WES on 291 new ‘‘phase 2’’ TD trios (802 total trios across
phase 1 and 2; Figure 1). We also analyzed 582 new phase 2

control trios from the Simons Simplex Collection (SSC) (1,184

total control trios across phase 1 and 2). After quality control,

we trimmed to 777 TD trios and 1,153 SSC trios for de novo

sequence variant calling (STAR Methods; Tables 1 and S1;

Figure S1).

We leveraged GATK to conduct alignment, quality control, and

variant calling (DePristo et al., 2011; McKenna et al., 2010; Van

der Auwera et al., 2013). We conducted joint genotyping across

the entire set of phase 1 and phase 2 TD trios, as well as the

entire set of control trios, in order to reduce batch effects. We

further modified our previous de novo calling pipeline (Willsey

et al., 2017) to utilize the GATK genotype refinement workflow

(STAR Methods; Table S2). We defined likely gene disrupting

(LGD) variants as insertion of a premature stop codon, disruption

of a canonical splice site, or a frameshift insertion or deletion,

and probably damaging missense 3 (Mis 3) variants include
Cell Reports 24, 3441–3454, September 25, 2018 3443



missense variants with a PolyPhen2 (HDIV) score R 0.957 (Adz-

hubei et al., 2010, 2013). We refer to the set of LGD andMis3 var-

iants as ‘‘damaging’’.

We detected 309 de novo coding variants from phase 2

samples (1.09 variants per sample). Applying the new pipeline

to the phase 1 samples, we detected a total of 466 de novo

coding variants (0.94 variants per sample). The number of

de novo variants per individual followed a Poisson distribution

(Figure S2), and our new pipeline achieved a 95.9% validation

rate across phase 1 and 2 TD samples. See STAR Methods

for more details. We did not validate the de novo variants in

control samples, and therefore, we conducted all burden ana-

lyses using all de novo variants identified in TD and control

trios. However, for gene discovery, we considered validated

de novo variants only. WES coverage varied across cohorts

and phases because of the different capture arrays and

sequencing protocols used (Table 1) and was positively corre-

lated with the number of de novo variants observed per individ-

ual (STAR Methods). To account for these differences, we

compared mutation rates, instead of the number of de novo

variants observed per individual, to normalize for the number

of bases with sufficient joint coverage for de novo calling

(Willsey et al., 2017). To further reduce biases, we estimated

mutation rates within a high-confidence region with high joint

coverage across all cohorts (consensus region; Table 1;

STAR Methods). We then compared the rate between TD pro-

bands and SSC siblings with a one-sided rate ratio test, as pre-

viously described (Willsey et al., 2017). We also confirmed that

the overall rate of coding de novo sequence variants does not

differ between phase 1 and phase 2 TD trios (rate ratio [RR]

1.03; p = 0.81; two-sided rate ratio test). See Table 2 for

de novo rates by variant type and Table S3 for a detailed

summary of all de novo variants called.

De Novo Sequence Variants Contribute Strong Risk to
Simplex TD
Our combined dataset consists of apparently simplex trios (the

proband is the only individual with confirmed TD; 577 trios),

multiplex trios (the proband and one or more parents have TD;

103 trios), and trios with insufficient phenotype data to make a

determination (unknown; 97 trios). We did not consider affected

status of other relatives, as this information was not consistently

available across families. We first assessed whether de novo

mutation rates vary by simplex versus multiplex trios. We

observed a significant increase in simplex, but not multiplex,

TD trios, particularly for LGD variants (simplex: RR 1.93,

p = 0.0028; multiplex: RR 1.11, p = 0.50; Figure 2A; Table 2). Nar-

rowing to mutation-intolerant genes (Kosmicki et al., 2017; Lek

et al., 2016) further strengthens the statistical findings and in-

creases the effect size in simplex families (e.g., for LGD variants;

RR 3.61; p = 0.0023; Figure 2B; Table 2). For multiplex families,

the effect size of LGD variants also increases, but the result re-

mains non-significant (multiplex: RR 1.36; p = 0.55). Directly

comparing the rate of de novo variants in simplex versus multi-

plex TD trios reveals significant differences for nonsynonymous

variants in mutation-intolerant genes overall (RR 3.91; p = 0.023),

as well as for missense variants in mutation-intolerant genes

alone (RR 5.15; p = 0.047) and potentially for LGD variants too
3444 Cell Reports 24, 3441–3454, September 25, 2018
(RR 2.66; p = 0.28; Figure 2B). Together, these results suggest

that de novo variants likely carry risk in multiplex TD but of lesser

effect, although this remains to be confirmed with larger sample

sizes. The de novo rate in unknown trios is similar to simplex

trios, suggesting the unknown trios are largely composed of

true simplex trios (Table 2; Figure S5). Therefore, although we

excluded multiplex trios from de novo burden analyses, estima-

tion of the total number of TD risk genes, and gene discovery, we

included unknown trios in the estimation of the total number of

TD risk genes and in gene discovery.

Female Probands May Have More De Novo Sequence
Variants
Given the strong male:female sex bias in TD, we next assessed

whether sex of the proband influences de novo mutation rate in

577 simplex TD trios. We did not conduct analogous analyses in

multiplex or unknown trios because of the small sample sizes

available in this study. We first compared the rate of de novo

variants in sex-matched TD probands and SSC controls. We

observed an elevation in the rate of de novo LGD variants in fe-

male TD probands (RR 2.39; p = 0.018; female TD probands

versus female SSC controls) as well as in male TD probands

(RR 2.06; p = 0.015; male TD probands versus male SSC con-

trols). A direct comparison of female and male TD probands

does not reveal a statistically significant difference, though

the result shows a trend toward enrichment in female probands

(RR 1.57; p = 0.14; Figure S4A). Further narrowing to variants

within mutation-intolerant genes increases the observed effect

sizes (e.g., de novo LGD: female TD probands, RR 5.21, p =

0.027; male TD probands, RR 3.04, p = 0.04; Figure S4B). Again,

however, a direct comparison of female versus male TD pro-

bands does not result in a statistically significant difference

(e.g., de novo LGD: RR 1.45; p = 0.35; female versus male TD

probands). We did not observe any difference between male

and female SSC controls when comparing the overall rate of

de novo coding variants (Figure S4A).

De Novo Structural Variants
Wedetected de novoCNVs from theWES data from phase 1 and

phase 2 TD samples with CoNIFER (Krumm et al., 2012; STAR

Methods). This resulted in the identification of 27 de novo

CNVs in the 789 TD trios passing CNV-specific quality control

(0.034 per proband; 95% confidence interval [CI] 0.021–0.047;

Figure S1; Table S5). In addition, we analyzed 1,136 SSC control

quartets (mother, father, proband, and unaffected sibling). This

provided the opportunity to compare the de novo CNV rate in

TD probands versus SSC siblings as a negative control, as well

as in SSC probands versus SSC siblings as a positive control.

This also facilitated a comparison of the de novo CNV burden

in ASD versus TD. Using identical methods, a total of 37

de novo CNVs were identified in 1,136 SSC probands (0.033

per proband; 95% CI 0.022–0.043) and 19 in the 1,136 SSC sib-

lings (0.017 per sibling; 95% CI 0.0081–0.025). See Table S5

for details. We attempted qPCR-based confirmation of all

de novo CNVs identified in TD probands (88.2% confirmation

rate; STAR Methods; Table S3). We did not directly confirm de

novoCNVs in the SSC quartets, but based on confirmations pre-

viously performed on a subset of these variants as reported in



Table 2. De Novo Sequence Mutation Rates by Category

Cohort

Mutation Rate per Base Pair in RefSeq Coding Regions (3 10�8; ±95% CI)

TD (n = 777) Controls (n = 1,153)

Simplex

(n = 577)

Multiplex

(n = 103)

Unknown

(n = 97)

Combined

(n = 777)

Simplex Male

(n = 461)

Simplex

Female

(n = 116)

Simplex

Comorbid

(n = 384)

Simplex

Non-comorbid

(n = 179) Male (n = 528)

Female

(n = 625)

Combined

(n = 1,153)

Coding 1.68 ± 0.17 1.58 ± 0.38 1.71 ± 0.44 1.67 ± 0.15 1.67 ± 0.20 1.69 ± 0.35 1.65 ± 0.21 1.72 ± 0.30 1.50 ± 0.17 1.55 ± 0.16 1.53 ± 0.12

Syn 0.42 ± 0.087 0.44 ± 0.23 0.41 ± 0.20 0.42 ± 0.075 0.42 ± 0.099 0.43 ± 0.18 0.43 ± 0.11 0.40 ± 0.16 0.39 ± 0.085 0.41 ± 0.085 0.40 ± 0.060

Nonsyn 1.25 ± 0.15 1.14 ± 0.35 1.30 ± 0.40 1.24 ± 0.13 1.25 ± 0.18 1.25 ± 0.32 1.22 ± 0.19 1.32 ± 0.27 1.10 ± 0.16 1.12 ± 0.14 1.11 ± 0.10

Mis 1.07 ± 0.14 1.03 ± 0.34 1.13 ± 0.38 1.08 ± 0.12 1.09 ± 0.16 1.01 ± 0.30 1.04 ± 0.18 1.13 ± 0.25 1.02 ± 0.15 1.02 ± 0.13 1.02 ± 0.098

Mis3 0.60 ± 0.10 0.60 ± 0.23 0.69 ± 0.27 0.61 ± 0.090 0.62 ± 0.12 0.53 ± 0.20 0.62 ± 0.14 0.53 ± 0.17 0.53 ± 0.11 0.49 ± 0.093 0.51 ± 0.071

LGD 0.18 ± 0.057 0.10 ± 0.10 0.17 ± 0.13 0.17 ± 0.047 0.16 ± 0.062 0.25 ± 0.14 0.18 ± 0.072 0.19 ± 0.10 0.079 ± 0.039 0.11 ± 0.042 0.093 ± 0.029

LGD + Mis3 0.78 ± 0.12 0.70 ± 0.24 0.86 ± 0.31 0.78 ± 0.10 0.78 ± 0.14 0.78 ± 0.22 0.80 ± 0.15 0.72 ± 0.19 0.61 ± 0.12 0.60 ± 0.11 0.60 ± 0.078

LGD SNV 0.073 ± 0.038 0.10 ± 0.10 0.082 ± 0.093 0.078 ± 0.033 0.057 ± 0.039 0.14 ± 0.11 0.082 ± 0.050 0.059 ± 0.058 0.027 ± 0.024 0.065 ± 0.033 0.048 ± 0.021

LGD FS 0.11 ± 0.042 - 0.085 ± 0.097 0.089 ± 0.034 0.10 ± 0.047 0.11 ± 0.098 0.096 ± 0.050 0.13 ± 0.085 0.051 ± 0.032 0.040 ± 0.026 0.045 ± 0.020

In frame 0.0045 ±

0.0088

0.026 ± 0.051 - 0.0067 ±

0.0093

0.0056 ± 0.011 - 0.0067 ±

0.013

- 0.020 ± 0.019 0.0042 ±

0.0082

0.011 ± 0.010

Intolerant

Mis

0.13 ± 0.047 0.026 ± 0.051 0.19 ± 0.14 0.13 ± 0.040 0.12 ± 0.050 0.18 ± 0.12 0.12 ± 0.055 0.15 ± 0.090 0.077 ± 0.039 0.049 ± 0.029 0.062 ± 0.024

Intolerant

LGD

0.069 ± 0.039 0.026 ± 0.051 0.055 ± 0.077 0.062 ± 0.031 0.064 ± 0.044 0.091 ± 0.089 0.070 ± 0.051 0.074 ± 0.065 0.020 ± 0.020 0.018 ± 0.017 0.019 ± 0.013

Intolerant

Nonsyn

0.20 ± 0.063 0.051 ± 0.072 0.25 ± 0.16 0.19 ± 0.052 0.18 ± 0.068 0.27 ± 0.16 0.19 ± 0.076 0.22 ± 0.012 0.097 ± 0.043 0.067 ± 0.034 0.081 ± 0.027

We excluded any de novo variants located outside of the consensus regions and then calculated the mutation rate per base pair and 95% CI using t test in R. See also Figures S4 and S5. Co-

morbid, probands with TD and ADHD/OCD; damaging, LGD + Mis3; in frame, indel causing in-frame deletion or insertion (loss or gain of amino acids); intolerant LGD, de novo LGD variants

occurring in genes with pLI greater than 0.9; intolerant Mis, de novomissense variants occurring in genes with missense Z score greater than 3.891; intolerant Nonsyn, intolerant Mis + intolerant

LGD; LGD, likely gene disrupting (insertion of premature stop codon, disruption of canonical splice site, and insertion-deletion frameshift); LGD FS, insertion-deletion variant causing frameshift;

LGD SNV, point mutation causing insertion of premature stop codon and disruption of canonical splice site; Mis, missense; Mis3, missense 3 (PolyPhen2 [HDIV] scoreR 0.957; Adzhubei et al.,

2010, 2013); multiplex, one or more parents have TD; non-comorbid, probands with TD only (without ADHD/OCD); Nonsyn, nonsynonymous; simplex, parents unaffected with TD; Syn, synon-

ymous; unknown, phenotypic data unavailable for parents.
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Figure 2. Combined Burden Analysis Identifies Differences in De Novo Rate in Simplex versus Multiplex Families

We defined a consensus region, consisting of a set of intervals with high-quality coverage across all samples. We then estimated the de novomutation rates per

base pair in this consensus region (STARMethods). We converted themutation rate per base pair to an expected rate per child (proband or control) bymultiplying

the mutation rate per base pair by the size of the total RefSeq hg19 ‘‘coding’’ region (33,828,798 bp).

(A) De novo variants are overrepresented in simplex TD trios only. LGD variants are significantly increased in simplex TD probands compared to SSC controls

(RR 1.93; p = 0.0028; one-sided rate ratio test). Mis3 variants also trend toward enrichment (RR 1.18; p = 0.08). Therefore, de novo damaging variants as a group

are overrepresented in simplex TD (RR 1.29; p = 0.0061). In contrast, de novo variants in any category are not significantly increased in multiplex TD families,

though de novo damaging variants trend in that direction (RR 1.16; p = 0.26). Additionally, the rate of de novo LGD variants may be higher in simplex versus

multiplex trios though the difference does not reach statistical significance (RR 1.73; p = 0.20).

(B) Restricting the analysis to de novo variants in mutation-intolerant genes (missense Z score R 3.891 or pLIR 0.9; Lek et al., 2016) reveals much larger effect

sizes, particularly in simplex families. Comparing simplex to multiplex trios reveals significant differences for de novo nonsynonymous variants (RR 3.91;

p = 0.023) and for de novo missense variants (RR 5.15; p = 0.047), but not for de novo LGD variants only (RR 2.66; p = 0.28; STAR Methods).

Damaging, LGD + Mis3; LGD, likely gene disrupting (insertion of premature stop codon, disruption of canonical splice site, and frameshift insertion-deletion

variant); Mis, missense; Mis3, probably damaging missense variants (PolyPhen2 [HDIV] score R 0.957; Adzhubei et al., 2010, 2013); Nonsyn, nonsynonymous;

RR, rate ratio; Syn, synonymous. Error bars in (A) and (B) represent the 95%confidence interval (CI). When necessary, we truncated the lower bound of the CI to 0.

See Figures S2, S4, and S5 and Table S3.
Sanders et al. (2015), we estimate a 97.7% confirmation rate.

Therefore, as with de novo sequence variants, we based all

burden analyses on all detected de novo CNVs, though we

observed similar results when narrowing to confirmed de novo

CNVs only (STAR Methods).

De Novo CNVs Are Increased in TD
We normalized de novoCNV rate per individual per cohort based

on the number of non-contiguous intervals captured on each

array type to reduce potential bias arising from different capture

arrays (STAR Methods; Figure S3A). We observed an increased

rate of de novo CNVs in phase 1 TD samples (RR = 2.2; one-

sided Wilcoxon rank-sum test; p = 0.004; Figure 3A), phase 2

TD samples (RR = 2.2; p = 0.024), and the combined dataset

(RR = 2.2; p = 0.0025). De novo deletions (RR 2.13; p = 0.04)

and duplications (RR 2.25; p = 0.015) are independently overrep-

resented in the combined TD dataset, suggesting both are risk

factors (Table S5). As expected, we also observed an increased

rate of de novoCNVs in SSCprobands (RR = 1.9; p = 0.0026).We

do not observe a significant difference between the ASD and TD

samples (RR = 1.1; two-sidedWilcoxon rank-sum test; p = 0.83),

suggesting that de novo CNVs occur at a similar rate in TD and

ASD, although larger sample sizes will be needed to confirm

this observation. We did not assess the de novoCNV rate in sim-

plex versus multiplex families or in male versus female probands
3446 Cell Reports 24, 3441–3454, September 25, 2018
due to the limited number of de novo CNVs identified here and

the corresponding lack of power.

Association ofDeNovoCNVs Is Replicated inMicroarray
Genotyping Data
We used microarray genotyping data in an effort to replicate the

association observed in the WES data. We obtained genotyping

data generated from the Illumina HumanOmniExpressExome

chip for 412 TD trios. We trimmed this number to 399 trios after

quality control (Figure S3C and S3D). These 399 trios overlap

with 279 of the 789 TD trios in the WES CNV analyses and with

35 of the 148 trios in Fernandez et al. (2012). We utilized 765

SSC quartets, previously genotyped with the Illumina Human-

Omni chip, as controls (763 after quality control). To account

for the different microarray platforms, we narrowed to high-qual-

ity SNPs present on both arrays (Figure S3B). We detected CNVs

with PennCNV using an exome-specific Hidden Markov Model

(HMM) file (Szatkiewicz et al., 2013). We identified 13 de novo

CNVs in 399 TD samples (0.033 per proband; 95% CI 0.012–

0.053; 81.8% validation rate), 28 in 763 SSC probands (0.037

per individual; 95% CI 0.021–0.052; 100% validation rate), and

9 in 763 SSC unaffected siblings (0.012 per individual; 95% CI

0.0041–0.020; 100% validation rate). Again, we observed an

increased burden of de novo CNVs in TD samples versus SSC

unaffected control siblings (Figure 3B; RR = 2.8; p = 0.024). De
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Figure 3. De Novo CNV Burden Analysis

We called de novo CNVs from WES data and array data with CoNIFER (Krumm et al., 2012) and PennCNV (Wang et al., 2007), respectively. We utilized different

methods for normalization to make the results comparable across different samples sets.

For the WES data (A), we normalized the de novo CNV rate by the number of discontinuous capture array intervals in each cohort (Figure S3A).

For the microarray data (B), we restricted de novo CNV calling to a set of SNPs shared across all arrays and further removed any outlier SNPs based on the LRR

(Figure S3B; see STAR Methods for details). We compared each group with SSC sibling controls using a Wilcoxon rank-sum test in R. We also used the SSC

probands as positive controls to validate our de novo calling pipelines. We used all de novo calls (confirmed and unconfirmed) in the burden analysis.

Both the WES data (A) and array data (B) demonstrate that de novo CNVs are significantly increased in TD compared to SSC controls and that de novo CNVs

occur at approximately the same rate in TD and in ASD. Error bars in (A) and (B) represent the 95% confidence interval (CI). When necessary, we truncated the

lower bound of the CI to 0.

See also Tables S3, S4, and S5.
novo deletions are independently overrepresented in TD (RR 3.8;

p = 0.02), but de novo duplications do not reach significance (RR

1.9; p = 0.15; Table S5). We also confirmed an increased rate of

de novo CNVs in SSC probands (RR = 3.1; p = 0.0027). Direct

comparison between TD probands and SSC probands again

shows no difference (RR = 0.89; p = 0.63). We did not observe

any recurrent de novo CNVs, even when combining across the

WES and array data.

Approximately 10% of Cases Have a De Novo Damaging
Variant or CNV
We next explored the genomic architecture of simplex TD

(Table 3). We restricted these analyses to the simplex trios with

WES data that passed quality control for both de novo sequence

variant and CNV analyses (577 TD trios; 1,134 SSC control trios).

We predicted that 22.3% of de novo damaging sequence vari-

ants contribute TD risk (95% CI 4.7%–41.5%) and 46.3% of

de novo CNVs carry risk (95% CI �8.5%–101.1%) in simplex

families. Additionally, we estimated that 9.7% of TD cases in

simplex families carry one or more de novo damaging sequence

variants mediating risk (95% CI 5.2%–14.3%) and that 1.5%
carry a de novo CNV mediating risk (95% CI 0.0%–3.0%). Over-

all, we estimated that approximately 10.5% of cases have a de

novo damaging sequence variant and/or CNV mediating risk

(95% CI 6.0%–15.2%).

De Novo Variants in TD Probands Overlap with Those
Identified in Other Disorders
Wecompared the list of genes with confirmed de novo damaging

variants in TD probands with genes mutated in other disorders

with established de novo contributions, including ASD (Sanders

et al., 2015), epileptic encephalopathies (EuroEPINOMICS-RES

Consortium et al., 2014), intellectual disability (Gilissen et al.,

2014; Hamdan et al., 2014; de Ligt et al., 2012; Rauch

et al., 2012), OCD (Cappi et al., 2017), schizophrenia (Fromer

et al., 2014), developmental disorders in general (Deciphering

Developmental Disorders Study, 2017), and congenital heart dis-

ease (Jin et al., 2017). There is a high degree of overlap between

TD and OCD (44 of 315 genes with de novo damaging variants in

TD overlap with 90 genes with de novo damaging variants in

OCD; p < 1 3 10�4 by permutation test accounting for per

gene mutability). However, a substantial proportion of TD
Cell Reports 24, 3441–3454, September 25, 2018 3447



Table 3. Contributions of De Novo Events to TD Risk

Percent of Children

Carrying R1 Varianta Theoretical Rate per Child (±95% CI)b % of Cases with a

Variant Mediating

Risk (±95% CI)c

% of Variants

Carrying TD Risk

(±95% CI)d
TD Simplex

(n = 577)

Control

(n = 1,134)

TD Simplex

(n = 577)

Control

(n = 1,134)

LGD 9.0% 4.6% 0.12 (0.082–0.16) 0.061 (0.042–0.080) 4.4% (1.8%–7.1%) 49.5% (13.6%–83%)

Mis3 26.7% 20.8% 0.41 (0.33–0.48) 0.34 (0.30–0.39) 5.9% (1.6%–10.2%) 15.3% (�5.9%–36.4%)

Damaging (LGD+Mis3) 33.4% 23.7% 0.50 (0.42–0.57) 0.39 (0.34–0.44) 9.7% (5.2%–14.3%) 22.3% (4.7%–41.5%)

Intolerant genes 8.8% 4.1% 0.17 (0.12–0.22) 0.076 (0.055–0.098) 4.7% (2.2%–7.1%) 56.0% (26.0%–86.0%)

De novo CNVse 2.9% 1.4% 1.29 3 10�7

(0.68 3 10�7–

1.90 3 10�7)

0.69 3 10�7

(0.34 3 10�7–

1.05 3 10�7)

1.5% (0.0%–3.0%) 46.3% (�8.5%–101.1%)

Damaging + de novo

CNVs

35.5% 25.0% - - 10.5% (6.0%–15.2%) -

Intolerant genes +

de novo CNVs

11.8% 5.6% - - 6.2% (3.3%–9.2%) -

To estimate the contribution of de novo events to TD risk, we assessed the simplex TD and SSC controls used in both analyses of de novo sequence

variants and de novo CNVs (577 TD simplex trios and 1,134 SSC sibling control trios; Table S1).
aWe calculated the percentage of children carrying de novo events as the total number of individuals carrying one or more de novo events/total number

of individuals in the cohort; we denote the percentages of TD cases and SSC controls as p(TD) and p(Controls), respectively.
bWe estimated the theoretical rate per child (proband or control) for sequence variants as described in Figure 2. We obtained the mean and 95%CI by

t test in R.
cWe estimated the percentage of cases with a variant mediating TD risk by p(TD) � p(Controls). We generated the 95% CI by bootstrapping.
dWe estimated the percentage of variants carrying TD risk and the corresponding 95%CI by two-sample t test in R, using the theoretical rate per child

as input.
eIt is unclear how to estimate the theoretical de novo CNV rate per individual in WES data. We thus used the de novo CNV rate normalized by the num-

ber of continuous intervals captured to estimate the percentage of variants carrying TD risk (STAR Methods). To determine the percentage of cases

with a de novo sequence variant or a de novo CNV mediating risk, we used the percent of children carrying R1 of any of these variants.
probands in our sample have comorbid OCD (361 of 777 overall).

Nonetheless, narrowing to probands with TD only still results in

significant enrichment (22 of 179 genes with de novo damaging

variants in TD overlap with 90 genes with de novo damaging var-

iants in OCD; p < 1 3 10�4), suggesting this is not driven by co-

morbid diagnoses. We do not observe significant overlap with

other disorders, even before correction for multiple compari-

sons: intellectual disability (p = 1.00); schizophrenia (p = 0.95);

epileptic encephalopathies (p = 0.81); congenital heart disease

(p = 0.47); ASD (p = 0.14); and developmental disorders in gen-

eral (p = 0.092), although the latter two show a trend toward

enrichment and these analyses are likely underpowered.

We conducted a similar analysis for de novo CNVs identified

in our TD cohort and de novo CNVs previously identified in the

SSC. We restricted to the unique set of de novo CNVs called in

TD probands across the WES and microarray data and

compared them to published, validated CNVs from 2,591

SSC probands (Sanders et al., 2015). 9 of the 34 de novo

CNVs detected in TD probands were also detected in SSC

probands (p = 0.024 by permutation test), whereas only 1

was detected in SSC unaffected siblings (p = 0.27). Due to

the relatively small samples sizes of studies investigating de

novo CNVs in other disorders, we did not test the significance

of overlap between de novo CNVs in TD and other conditions.

However, we did observe de novo CNVs in TD cases that have

also been detected in other disorders (Table S3), for example,

CNVs in 15q13.2-13.3 have been observed in ASD (Sanders

et al., 2015), schizophrenia (Georgieva et al., 2014; Malhotra
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et al., 2011), and epilepsy (Epilepsy Phenome/Genome Project

Epi4K Consortium, 2015).

Approximately 483 Genes Contribute Risk to TD
We next estimated the number of genes likely to contribute to TD

risk when disrupted by a de novo damaging variant. We used a

previously established maximum-likelihood estimation proced-

ure (Homsy et al., 2015; Willsey et al., 2017) and excluded multi-

plex families in which de novo damaging variants might

contribute low TD risk (Figures 2 and S5A). Our data fit best

with a model of 483 TD risk genes (Figure S6), consistent with

our previous estimate of 420 risk genes (Willsey et al., 2017).

We are unable to estimate the number of loci vulnerable to

de novo CNVs due to the absence of recurrent variants.

Integrated Analysis Identifies Additional TD Risk Genes,
Including a High-Confidence Gene CELSR3

We leveraged de novo damaging variants and the Transmission

and De Novo Association (TADA) algorithm to estimate per-

gene association with TD (De Rubeis et al., 2014; He et al.,

2013; Sanders et al., 2015; Willsey et al., 2017). We did not

observe overlap between genes with de novo sequence variants

and genes affected by de novo CNVs, as has been observed in

ASD (Sanders et al., 2015), and therefore, we did not include de

novoCNVs in this analysis. We also did not include inherited var-

iants, as we did not observe overrepresentation in our combined

TDcohort (FigureS5B).WeutilizedaPoisson regressionmodel to

control for paternal age, sex, affected status (TD or unaffected),



Table 4. TD Risk Genes Identified in this Study

Gene LGD Mis3 p Value q Value q Value in Phase 1a Risk Status in Phase 1a Intolerant pLIb Missense Z Scorec

WWC1d 1 1 1.93 3 10�5 0.069 0.096 hcTD no 0.02 1.27

CELSR3d 0 3 2.23 3 10�5 0.073 0.14 pTD yes (LGD and Mis) 1.00 6.17

OPA1d 0 2 6.70 3 10�5 0.11 0.72 NA yes (LGD) 0.99 1.83

NIPBLd 0 2 1.13 3 10�4 0.16 0.22 pTD yes (LGD and Mis) 1.00 5.04

FN1d 0 2 1.22 3 10�4 0.19 0.26 pTD no 0.06 1.39

FBN2d 0 2 1.29 3 10�4 0.22 0.98 NA yes (LGD) 1.00 1.22

Six genes with recurrent de novo variants meet our thresholds for association: two of these are high-confidence TD (hcTD) risk genes (CELSR3 and

WWC1; FDR% 0.1), and four of these are probable TD (pTD) risk genes (OPA1,NIPBL, FN1, and FBN2; FDR% 0.3). Four of these six TD risk genes are

considered intolerant to variation; determined based on PLI and missense Z score.We excluded genes with only one de novo variant from this table

(3 pTD genes; see Table S7). See also Figure S6 and Table S6.
aWillsey et al., (2017).
bProbability of being loss-of-function (LoF) intolerant, from Exome Aggregation Consortium (ExAC). pLI R 0.9 is considered intolerant.
cZ score for missense variants, from ExAC. Mis_z R 3.891 is considered intolerant.
dWe previously identified WWC1 as an hcTD gene and CELSR3, NIPBL, and FN1 as pTD genes (Willsey et al., 2017).
and number of callable baseswithin the consensus region (STAR

Methods) when estimating the relative risk for de novo LGD and

for de novo Mis3 variants. We included confirmed de novo

damaging variants identified in all 674 non-multiplex trios (577

simplex trios and 97 unknown trios) passing quality control. We

also integrated de novo damaging variants called and confirmed

in Willsey et al. (2017), but not called under the new pipeline,

which added8denovodamaging variants (TableS3). TADA iden-

tified 2 hcTDgenes (FDRq value% 0.1;R2de novo variants) and

4 pTD genes (q % 0.3; R2 de novo variants), including one new

hcTD gene, CELSR3 (cadherin EGF LAG seven-pass G-type re-

ceptor 3) and two new pTD genes (OPA1 and FBN2; Table 4).

Four of these six TD risk genes, including CELSR3, are intolerant

to variation based on pLI and/or missense Z score. We identified

three additional genes with q % 0.3 but only one de novo

damaging variant; we omitted these genes from Table 4, but

they are included in Table S7.

Interestingly, we observed an additional de novo damaging

variant in CELSR3 within the 103 multiplex families. We also

identified two additional inherited compound heterozygous

damaging variants in CELSR3 in two independent probands

(each with one rare and one common inherited variant), which

is highly unlikely by chance (p = 0.0069 by permutation test;

STAR Methods; Table S6). We did not observe any compound

heterozygous variants in the other 5 TD risk genes.

The Top TD Risk Genes Highlight Cell Polarity
Both of the hcTD risk genes identified here (WWC1 and CELSR3)

encode proteins involved in cell polarity. Therefore, we assessed

whether de novo damaging variants in TD affect other genes

encoding cell polarity proteins.We obtained a list of genes related

to cell polarity from theGeneOntology database (Ashburner et al.,

2000; The Gene Ontology Consortium, 2017) and annotated the

denovovariant list (TableS3). 15of the292denovodamagingvar-

iants innon-multiplex families impact genes related tocell polarity,

representingasignificantenrichmentover the variants identified in

the SSC control trios (7 of 350 de novo damaging variants; one-

sided Fisher’s exact test odds ratio [OR] 2.56; p = 0.030). We

confirmed this result with permutation testing (13 of 315 unique

genes with confirmed de novo damaging variants are related to
cell polarity; p = 0.032).Weobservedadditional variants in cell po-

larity genes in multiplex families (2 of 45 de novo damaging vari-

ants), and the combined set of variants from all 777 TD trios are

also significantly enriched for variants affecting cell polarity genes

(17 of 337 unique genes; one-sided Fisher’s exact test OR 2.60,

p = 0.024; permutation test, p = 0.014).

DISCUSSION

We previously established the contribution of de novo damaging

sequence variants to TD risk and identified one hcTD risk gene,

WWC1, based on de novo LGD variants observed in two unre-

lated probands. Furthermore, we demonstrated that sequencing

of larger cohorts coupled with the identification of recurrent de

novo variants would be a productive and reliable method for

gene discovery in TD (Willsey et al., 2017). In this study, we

sequenced an additional 291 trios, bringing the total sample

size to 802 trios. After quality control, we used 674 non-multiplex

trios for gene discovery (577 simplex families and 97 unknown

families). Given this sample size and our previously estimated

trajectory of gene discovery (Willsey et al., 2017), we expected

to identify 1.4 hcTD genes and 5.4 pTD genes. In actuality, this

study implicated 2 hcTD genes and 7 pTD genes, which fits

well with our previous prediction. Note that we did not present

three of the pTD genes in the main text, as they only carried

one de novo damaging variant (Table S7).

We observed a strong effect of plexity on de novo mutation

rate, particularly with respect to de novo variants in mutation-

intolerant genes (Figure 2B). Therefore, this suggests that the

recruitment and sequencing of simplex families should be the

highest priority, at least in studies examining de novo variants.

Of course, it still remains to be determined whether de novo var-

iants (particularly de novo LGD variants) carry risk in multiplex

families, as the effects observed here trend toward significance

(e.g., RR 1.16; p = 0.26 for de novo LGD variants) in an under-

powered analysis (103 multiplex trios) and de novo variants

appear to carry risk in multiplex families for other neurodevelop-

mental disorders (Leppa et al., 2016; Martin et al., 2017).

We also observed preliminary evidence for an increased rate

of de novo damaging sequence variants in female TD probands
Cell Reports 24, 3441–3454, September 25, 2018 3449



compared to male TD probands, as has been observed in ASD

(De Rubeis et al., 2014; Iossifov et al., 2014; Sanders et al.,

2015). Given the TD sex bias for affected males (male:female =

3:1–4:1), this suggests a potential female protective effect similar

to that which has been postulated in ASD (De Rubeis et al., 2014;

Dong et al., 2014; Gockley et al., 2015; Iossifov et al., 2014; Jac-

quemont et al., 2014; Levy et al., 2011; Sanders et al., 2011,

2015). Larger sample sizes are, of course, required to confirm

this preliminary observation, and it should be noted that we

observe a significant excess of de novo variants in both male

and female TD probands independently when compared to

sex-matched controls, indicating these variants carry risk for

both sexes. We do not observe any differences in the overall

rate of coding de novo variants by sex in the TD cohort (RR

1.02; two-sided rate ratio test p = 0.90) or the SSC cohort (RR

1.03; p = 0.72), suggesting no systematic differences in the

rate or detection of de novo variants overall.

We observed a significant increase in the rate of rare de novo

CNVs in TD. We confirmed this association using both WES and

microarray genotyping data. Of note, many of the samples as-

sessed are represented only in the WES data (511 trios) or only

in the array data only (120 trios), and de novo CNV calling was

conducted with independent methods. Taken together, then,

these results strongly support the conclusion that de novo

CNVs carry risk for TD. Although rare CNVs have already been

definitively associated with TD risk (Huang et al., 2017; McGrath

et al., 2014; Nag et al., 2013), de novo CNVs had not been defin-

itively implicated, though previous results suggested association

(Fernandez et al., 2012). The number of WES samples in this cur-

rent study is more than five-fold larger than that in Fernandez

et al. (2012; 789 versus 148 trios), and the array data are more

than two-fold larger (399 versus 148 trios), suggesting the main

difference in these studies was the greater power to identify

this association, especially given the similar effect sizes across

the studies (RR 2.2 in our WES data and RR 2.8 in our array

data versus RR 2.4 in Fernandez et al., 2012). Our observation

of an increased rate of de novo sequence variants in simplex

TD suggests that a similar phenomenon may also occur with

respect to de novoCNVs. However, we did not assess this ques-

tion here due to a very small number of de novo CNVs identified

in multiplex families (3 de novo CNVs in 103 multiplex trios).

We estimated that 4.4% of TD probands have a de novo

LGD variant mediating risk and 5.9% have a de novo missense

3 variant mediating risk (Table 3). Although de novo missense

variants in general are not yet significantly associated, we can

similarly estimate that 5.0% of TD probands carry a de novo

missense variant mediating risk. At first glance, these estimates

appear much lower than estimates in ASD (e.g., 9% and 12% for

de novo LGD and de novomissense, respectively; Iossifov et al.,

2014). However, the ASD estimates are based on different

methods. Indeed, by applying our methods to their data, we

achieved highly similar estimates (5.4% of ASD probands have

a de novo LGD variant contributing risk and 3.1% have a de

novo missense variant contributing risk). We believe the higher

estimates in Iossifov et al. (2014) are due to two major factors.

First, they use a much larger set of regions for analysis

(�83 mb compared to �30 mb here), and we expect the ascer-

tainment differential to increase proportionally to target size if the
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mutation rate per base pair is constant. Second, their method

counts multiple de novos per individual (rate in probands minus

rate in controls), whereas here, we are counting a maximum of

one de novo per individual (percentage with R1 de novo). We

previously observed similar rate ratios between TD probands

versus SSC controls and ASD probands versus SSC controls

(Willsey et al., 2017), further suggesting similar architecture.

Likewise, we did not observe a difference in the rate of de novo

CNVs in TD probands compared to ASD probands (Figure 3).

This suggests that the rate of de novo CNVs is not different

in TD and ASD and that published data showing a higher

proportion of de novo CNVs in ASD (e.g., 4.1% of individuals

have a de novo CNV mediating ASD risk in Sanders et al.,

2015 versus 1.5% reported here in TD) is likely due to the

genome-wide coverage in those studies versus exome-wide

coverage only here (i.e., whole-exome sequencing data and

HumanOmniExpressExome-8-v1 genotyping data).

We observed significant overlap between TD and OCD for de

novo damaging sequence variants, even when restricting to TD

probands without comorbid OCD. We also observed significant

overlap across de novo CNVs identified in TD and in ASD,

consistent with previous results (Fernandez et al., 2012), and a

suggestion of overlap of de novo sequence variants between

TD and ASD (uncorrected p = 0.14). This suggests that TD and

OCD as well as TD and ASD may share a subset of genetic

risk loci, but this hypothesis warrants follow-up with larger sam-

ple sizes. By the same token, the lack of overlap between TD and

other psychiatric disorders is inconclusive and may simply

reflect underpowered analyses, and therefore, it will be impor-

tant to revisit these analyses as data accumulate in these and

other disorders not yet characterized. For example, enrichment

of ultra-rare variants in ADHD (Satterstrom et al., 2018) suggests

that de novo variants will carry risk in this condition. Coupled with

the high degree of TD and ADHD comorbidity, this indicates that

there may be strong overlap at the level of de novo variants as

observed with OCD here.

We identified a total of six likely TD risk genes, including two

hcTD genes, CELSR3 (new; promoted from pTD status in phase

1) and WWC1, and four pTD genes, OPA1 (new), NIPBL, FN1,

and FBN2 (new). Notably, both of the two hcTD genes encode

proteins that are related to cell polarity, defined broadly in the

Gene Ontology database as anisotropic intracellular organiza-

tion or cell growth patterns (Ashburner et al., 2000; The Gene

Ontology Consortium, 2017). Additionally, we observed general

enrichment for cell polarity annotation among the genes carrying

de novo damaging variants, including four mutation-intolerant

genes (SPRY2, MARK2, PSMC1, and UBC; Table S3). Further-

more, recent rare CNV analyses have definitively implicated

NRXN1 deletions and CNTN6 duplications with TD risk (Fernan-

dez et al., 2012; Huang et al., 2017; Sundaram et al., 2010), and

other studies have highlighted CNTN4 and CNTNAP2 (Fernan-

dez et al., 2012; Verkerk et al., 2003). All of the proteins encoded

by these genes have putative roles in cell polarity or axon path-

finding and/or organization (Bel et al., 2009; Fernandez et al.,

2004; Kamei et al., 1998; Ushkaryov et al., 1992), suggesting

that perturbation of cell polarity may contribute to TD. We do

not observe convergence in other pathways, including histamin-

ergic neurotransmission, as has been previously identified



(Fernandez et al., 2012). Given clear evidence that we are in the

early phases of gene discovery in TD, it is very likely that further

studies will clarify these results and generate additinonal test-

able hypotheses regarding the underlying neurobiology of TD.

Generating more TD genomic risk data should also better

address the extent to which TD-associated de novo variants

overlap with CNVs and genes implicated in other neurodevelop-

mental disorders. As these data accumulate, functional genetics

will be critical to translate findings into an actionable understand-

ing of pathobiological mechanisms.
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Intervals file for IDT xGen Integrated DNA Technologies, Inc.,
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for data should be directed to and will be fulfilled by the Lead Contact, Jeremy Willsey (jeremy.

willsey@ucsf.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample collection
TD Trios

We utilized 511 TD trios (affected child and both parents) characterized in our previous ‘‘Phase 1’’ study (Willsey et al., 2017). Ascer-

tainment of these samples has also been described previously (Dietrich et al., 2015). In this study (‘‘Phase 2’’), we sequenced 291

additional TD trio samples from three independent collaborative groups: the Tourette International Collaborative Genetics group

(TIC Genetics; 92 new trios), the European Multicenter Tics in Children Studies (TSGENESEE; 181 new trios) and the Uppsala

Tourette Cohort (UTC, 18 new trios). We ascertained the TIC Genetics trios as previously described (Dietrich et al., 2015). We

also ascertained the TSGENESEE trios as previously described (Karagiannidis et al., 2012). All adult participants and parents of

children providedwritten informed consent along with written or oral assent of their participating child. The Institutional ReviewBoard

(IRB) of each participating site approved the study.

The UTCwas collected under a study in Sweden called, ‘‘Mapping of Hereditary Factors in Neuropsychiatric Conditions, Focusing

on Tourette Syndrome.’’ Individuals with a TD diagnosis were asked to participate and signed informed consent documents that

described the nature of the study. Inclusion criteria for patients were individuals meeting the DSM-IV criteria for TD. All patients

were ascertained by a specialist in child psychiatry or child neurology. After a 60-90 minute assessment, blood samples were pro-

cessed and DNA stored in biobank of the Academic Hospital. All adult participants and parents of children provided written informed

consent along with written or oral assent of their participating child. The regional ethical committee of Uppsala approved the study

(equivalent to IRB).

Phenotypic data available for each cohort is described in Table 1, including sex, parental age (where available, we were not able to

obtain parental age for TSGENESEE and UTC samples), comorbid OCD and/or ADHD in probands, and the history of tic disorders in

the first degree relatives for most data. Among the 789 TD trios that passed quality control (see ‘Quality control’), we defined 582 trios

(73.8%) as ‘apparently simplex’, which means neither of the parents had any reported history of a tic disorder; 103 trios (13.1%) as

‘multiplex’, whichmeans at least one of the parents had a reported history of a tic disorder, and 104 trios (13.2%) as ‘unknown’, which

means that we were not able to assign status based on incomplete parental phenotypic data.

Control Samples

We obtained a total of 1,184 quartets from the Simons Simplex Collection (SSC) (Fischbach and Lord, 2010). These quartets consist

of an ASD proband, an unaffected sibling, and both unaffected parents. 602 of these quartets were used as controls in our Phase 1

study (Willsey et al., 2017) and 582 are new. 1,174 quartets passed quality control (see ‘Quality control’).

METHOD DETAILS

Whole exome sequencing
Exome capture and sequencing

We derived DNA samples for the Phase 2 trios (873 total samples from 291 trios) from a combination of whole blood (858 samples),

lymphoblastoid cell lines (13 samples, 8 parental samples and 5 child samples), and saliva (2 samples, 1 parental sample and 1 child

sample). We did not observe an excess of de novo variants in any of the non-blood samples (excess defined as R 10 de novos).

We utilized the IDT xGen kit (https://www.idtdna.com/pages/products/next-generation-sequencing/hybridization-capture/

lockdown-panels/xgen-exome-research-panel) to capture the exome and then performed whole exome sequencing (WES) with

the Illumina Hiseq 4000 platform to 100 base pair long paired end reads. For the 511 trios previously characterized, DNA was derived

from whole blood, exome capture was performed with three different capture arrays–Nimblegen EZ v2, Agilent v1.1, and Nimblegen

EZ v3–and the exome was sequenced with the Illumina Hiseq 2500 platform (Willsey et al., 2017).
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Control data for whole exome sequencing

We obtained a total of 1,184 quartets from the SSC, which were previously captured on the Nimblegen EZ v2 array and sequenced

with the Illumina Hiseq 2000 platform (Iossifov et al., 2012, 2014; Krumm et al., 2015; O’Roak et al., 2012; Sanders et al., 2012, 2015).

All the WES control data were generated from blood-derived DNA. We summarized metadata and sequencing metrics from all TD

trios and SSC control trios in Tables 1 and S1.

Variant calling pipeline summary

We used GATK best practices to process all raw whole exome sequencing data across both Phase 1 and 2 (DePristo et al., 2011;

McKenna et al., 2010; Van der Auwera et al., 2013). We aligned sequencing reads in FASTQ format to the GRCh37 build of the

human reference genome with BWA-mem (Li and Durbin, 2009). For consistency, we reverted sequencing alignment data

(BAM files) from SSC control families to FASTQ format and then processed identically. We sorted, indexed, and marked duplicate

reads in the alignment files (BAM format) with Picard Tools, and then locally realigned reads containing indels with GATK’s Indel-

Realigner tool. Next, we used GATK to perform Base Quality Score Recalibration using the training data recommended by GATK.

We used the recalibrated alignment data produced by this step in all downstream analyses, including quality control. We produced

variant calls in gVCF format for all samples with GATK HaplotypeCaller. Finally, we produced a list of joint recalibrated variant calls

for the entire sample collection by running GATK GenotypeGVCFs followed by GATK’s SNP and indel Variant Quality Score

Recalibration steps.

Variant calling pipeline details

Below are descriptions of specific software tools used to perform data processing, along with the runtime options that can be used to

reproduce our work. Any arguments or options not specified either retain their default values or are system-specific. For example, file

paths, memory allocation, and multithreading options are not included.

0) Sequencing data was acquired from SSC in BAM format. To transform this data into a fastq format so that alignments could be

re-generated, and variants called, using the same methods as with the TD cohorts, we took the following steps:

d Randomly re-order alignments in BAM files with the Samtools bamshuf function

d Using Picard’s RevertSam function, remove alignment information and restore original quality scores to reads. Options used:

SORT_ORDER = unsorted, RESTORE_ORIGINAL_QUALITIES = true, VALIDATION_STRINGENCY = LENIENT

d Using Picard’s SamToFastq function, convert BAM files to paired-end fastq format. Option used: VALIDATION_

STRINGENCY = LENIENT

1) BWA

Tool: BWA 0.7.12

Runtime options:

mem –R [sample-specific header] [GRCh37 reference fasta file]

2) SAM sorting

Tool: Picard 2.1.1

Runtime options:

SortSam SO = coordinate

Note: In this version of Picard, specifying an output filename ending in ‘‘.bam’’ automatically compresses alignments into BAM

format, which we did.

3) Duplicate marking and BAM index creation

Tool: Picard 2.1.1

Runtime options:

CREATE_INDEX = TRUE

4) Indel realignment

Tool: GATK 3.5

Training file, available online in the GATK Resource Bundle:

Mills_and_1000G_gold_standard.indels.b37.vcf. (aka ‘‘Golden Indels’’)

Runtime options (RealignerTargetCreator step):

- T RealignerTargetCreator

- –intervals [exome-capture-array-specific interval file]

- –interval_padding 100

- R [GRCh37 fasta reference]

- known [Golden Indels file]

- –filter_mismatching_base_and_quals

Runtime options (IndelRealigner step):

- T IndelRealigner

- R [GRCh37 fasta reference]

- –target-intervals [interval list created by RealignerTargetCreater)

- –filter_mismatching_base_and_quals
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5) Base Quality Score Recalibration

Tool: GATK 3.5

Training files, available online in the GATK Resource Bundle:

- Mills_and_1000G_gold_standard.indels.b37.vcf. (aka ‘‘Golden Indels’’)

- dbsnp_138.b37.vcf.

Runtime options (BaseRecalibrator step):

- T BaseRecalibrator

- –intervals [exome-capture-array-specific interval file]

- –interval_padding 100

- R [GRCh37 fasta reference]

- knownSites Mills_and_1000G_gold_standard.indels.b37.vcf.

- knownSites dbsnp_138.b37.vcf.

Runtime options (PrintReads step):

- T PrintReads

- R [GRCh37 fasta reference]

- BQSR [recal data table from BaseRecalibrator step]

6) Variant calling

Tool: GATK 3.5

Runtime options:

- T HaplotypeCaller

- R [GRCh37 fasta reference]

- ERC GVCF

- variant_index_type LINEAR

- variant_index_parameter 128000

- –read_filter BadCigar

- an StrandOddsRatio -an AlleleBalanceBySample

- an DepthPerSampleHC -an MappingQualityZeroBySample

- an StrandBiasBySample -an GenotypeSummaries

7) Joint genotyping

First, gVCFs were combined into batches of around 50 samples each using GATK’s CombineGVCFs tool. In order to speed up

data processing, we created 13 separate combined GVCFs for each batch of samples for the following subsets of chromosomes:

1, 2, 3/21, 4/22, 5/19, 6/Y, 7/20/MT, 18/X, 8/17, 9/16, 10/15, 11/14, 12/13. (These subsets were chosen to have similar combined

sizes to increase the efficiency of parallel processing.) For each of the 13 chromosome subsets, GATK’s GenotypeGVCFs was

run using all associated combined gVCF files as inputs. Then, GATK’s CatVariants was used to combine the 13 separate joint

VCF output files into one comprehensive joint VCF file before continuing to the final variant quality score recalibration steps.

Tool: GATK 3.5

Runtime options, CombineGVCFs step:

- T CombineGVCFs

- R [GRCh37 fasta reference]

- I [ �50 gVCF samples]

- –intervals [run-specific chromosome subset (see above) ]

Runtime options, GenotypeGVCFs step:

- T GenotypeGVCFs

- R [GRCh37 fasta reference]

- I [all combined gVCF files corresponding to the current run’s chromosome subset]

- –pedigree [Plink-style pedigree file including all samples/families]

- an InbreedingCoeff -an StrandOddsRatio -an BaseQualityRankSumTest

- an ChromosomeCounts -an Coverage -an FisherStrand

- an MappingQualityRankSumTest -an MappingQualityZero -an QualByDepth

- an RMSMappingQuality -an ReadPosRankSumTest -an VariantType

- an DepthPerAlleleBySample -an AlleleBalanceBySample

- an MappingQualityZeroBySample -an StrandBiasBySample

- an DepthPerSampleHC -an GenotypeSummaries

CatVariants invokation:

java -cp [GenomeAnalysisTK.jar] org.broadinstitute.gatk.tools.CatVariants

- R [GRCh37 fasta reference]

- V [.vcf.gz file] x13 (chromosome-specific joint VCFs)
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- assumeSorted

- o [output file]

8) SNP variant quality score recalibration

Tool: GATK 3.5

Recalibration training files, available online in the GATK Resource Bundle:

1. hapmap_3.3.b37.vcf.

2. 1000G_omni2.5.b37.vcf.

3. 1000G_phase1.snps.high_confidence.b37.vcf.

4. dbsnp_138.b37.vcf.

Runtime options (VariantRecalibrator step):

- T VariantRecalibrator

- mode SNP

- R [GRCh37 reference fasta]

- resource:hapmap,known = false,training = true,truth = true,prior = 15.0 [recal training file 1]

- resource:omni,known = false,training = true,truth = true,prior = 12.0 [recal training file 2]

- resource:1000G,known = false,training = true,truth = false,prior = 10.0 [recal training file 3]

- resource:dbsnp,known = true,training = false,truth = false,prior = 2.0 [recal training file 4]

- an QD -an MQ -an MQRankSum -an ReadPosRankSum -an FS -an SOR

Runtime options (ApplyRecalibration step):

- T ApplyRecalibration

- mode SNP

- R [GRCh37 reference fasta]

- tranchesFile [tranches output file from VariantRecalibrator]

- recalFile [recal output file from VariantRecalibrator]

- –ts_filter_level 99.5

9) Indel Variant Quality Score Recalibration

Tool used: GATK, version 3.5

Recalibration training files, available online in the GATK Resource Bundle:

- Mills_and_1000G_gold_standard.indels.b37.vcf. (aka ‘‘Golden Indels’’)

- dbsnp_138.b37.vcf.

Runtime options (VariantRecalibrator step):

- T VariantRecalibrator

- R [GRCh37 reference fasta]

- mode INDEL

- –maxGaussians 4

- resource:mills,known = false,training = true,truth = true,prior = 12.0 [golden indels file]

- resource:dbsnp,known = true,training = false,truth = false,prior = 2.0 [dbSNP 138 file]

- an QD -an FS -an SOR -an ReadPosRankSum -an MQRankSum

Runtime options (ApplyRecalibration step):

- T ApplyRecalibration

- mode INDEL

- R [GRCh37 reference fasta]

- tranchesFile [tranches output file from VariantRecalibrator]

- recalFile [recal output file from VariantRecalibrator]

- –ts_filter_level 90.0

Quality Control
Pedigree Check

We verified sample pedigree information by running PLINK (Purcell et al., 2007) on SNP-site genotype calls derived from our WES

data. More specifically, we confirmed familial relationships and sex with an in-house ‘family check’ script (see ‘‘Quality control’’).

This script also checks for higher than expected relatedness across independent trios.

Among the TD data, 789 of the 802 trios remained after we removed 11 trios with unexpected familial relationships (e.g., proband

not related to parents) and 2 trios that were sequenced in both Phase 1 and Phase 2 project (We only used the Phase 2 data for these

two samples). We manually fixed annotation errors where possible (e.g., wrong sex indicated). We considered these 789 trios

only in downstream analyses. We removed 10 of the 1,184 SSC control quartets due to unexpected familial relationships, leaving

1,174 quartets for downstream analysis.
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Whole Exome Sequence Data Quality

We used Picard Tools to obtain quality metrics related to target capture, sequencing, and alignment, and we ran GATK’s

DepthOfCoverage tool to measure coverage across the exome at base-pair resolution. We then identified the sites within each

trio that had at least 20X coverage across all trio members (R20X joint coverage). We performed principal components analysis

(PCA) on these metrics to identify outliers. We treated any samples more than 3 standard deviations (SD) from the mean in any of

the first four principal components as outliers and removed them from subsequent analyses.

When considering de novo sequence variants, the above QC removed 0 TD trios and 18 SSC sibling trios, leaving 789 TD trios and

1,156 SSC sibling trios.We further removed any samples with > 10 de novo sequence variants, leaving 777 TD trios (12 trios removed)

and 1,153 SSC sibling trios (3 trios removed) for de novo sequence variant analysis.

Our methods differed slightly for de novo CNV analysis: we used SSC probands as positive controls to assess our pipeline. There-

fore, we did quality control on complete quartets, which removed additional families due to probands failing quality control resulting in

removal of the entire quartet. In total we removed 38 such quartets, leaving 1,136 SSC quartets for downstream analysis. We did not

remove any samples with excess de novo sequence variants. Therefore, we included 789 TD trios and 1,136 SSC quartets in de novo

CNV analyses (Table S1).

Variant detection
De novo sequence variant detection

We optimized our de novo variant calling pipeline by integrating the GATK genotype refinement workflow (GRW) (https://software.

broadinstitute.org/gatk/documentation/article.php?id=4727). We re-estimated the genotype likelihood for each individual at each

position by utilizing SNP information from 1000 Genomes project as well as pedigree information. We then marked variants with ge-

notype quality (GQ) R 20 and allele count (AC) < max(4, 0.1% samples) (i.e., variant is present in a max of 4 or 0.1% of samples) as

putative de novo variants. After these standard GRW steps, we further applied several empirical error filters to remove false positives:

(1) homozygous in father andmother with allele balance (AB) < 0.05; (2) heterozygous in child with AB between 0.3-0.7; (3) depth in all

trio samples DPR 20; (4) mapping quality: MQR 30; (5) allele frequency in cohort AF < 0.1%; (6) GQR 90 in child sample; (7) de novo

mutation count % 10 (See ‘‘Determine cutoff for de novo mutation per child’’). Finally, we visualized all the de novo indels by IGV

(Thorvaldsdóttir et al., 2013) to remove false positives. We considered the resulting set of de novo variants as ‘high confidence’

de novo variants.

To validate the new de novo calling pipeline, we compared the new de novo calls to those from the old pipeline (published inWillsey

et al., (2017). For comparability, we ran both pipelines on the VCF file from the Phase 1 study, which did not undergo joint-genotyping

with Phase 2 samples. We only used these de novo calls for pipeline optimization (the de novos presented in the main text were

derived from the VCF generated by joint genotyping across Phase 1 and 2 samples, and the SSC samples). The Phase 2 pipeline

has increased sensitivity for de novo calling (520 total variants in the Phase 1 data, including 83 new de novo coding variants, and

missing 17 previously called de novo coding variants; Table S2).

All results presented in themain text are derived from the VCF generated from joint genotyping across all the TD and SSC samples.

This decreases the number of detected de novo coding variants (from 520 to the 466 total reported in the main text for Phase 1

samples), likely because rare variant detection may be penalized by joint calling across a large number of samples. Because of

this, we included the confirmed de novo damaging variants from the Phase 1 study (Willsey et al., 2017), that were missed here,

into gene discovery with TADA in order to increase yield. We did not use these variants for burden analyses.

Determining cutoff for de novo mutation per child

The distribution of de novomutations across individuals should theoretically follow a Poisson distribution. To determine the the cutoff

for the de novo calling, we determined how well our observations fit a Poisson distribution under different cutoffs (Figure S2). To

normalize the different capture regions in different sample sets, we only used mutations in consensus regions (See ‘‘Estimation of

mutation rate per base pair’’ for definition). First, we called all the mutations with the error filters 1-6 in ‘‘De novo variant detection’’

and summarized the de novo counts for each individual. Then we fixed the cutoff from 1 to 20 mutations (filter #7). With each cutoff,

we generated a de novomutation list. We then summarized the de novomutation counts in consensus regions and used themutation

rate per individual (# of de novomutations / # of passed individuals) as the lambda of theoretical Poisson distribution. We then utilized

lambda to generate a list of values based on Poisson distribution by npos function in R. The goodness-of-fit was performed by

chisq.test in R to obtain the p value. We used the maximum cutoff that is not significantly different with theoretical distribution

(p > 0.05) to increase the sensitivity of de novo calling.

Inherited sequence variants detection

We annotated GRW-processed VCF files with ANNOVAR and then detected inherited variants in coding regions with an in-house

script. As in the original TADA study (He et al., 2013), we considered three categories of inherited variants based on the genotypes

of the trios: alternative homozygous (0/1 x 0/1 - > 1/1), transmitted heterozygous (0/1 x 0/1(0/0) - > 0/1), and non-transmitted

(non-transmitted: 0/1 x 0/1(0/0) - > 0/0). We then utilized informative genotypes to identify ‘‘paternal’’ and ‘‘maternal’’ transmitted

mutations. We defined rare mutations as population allele frequency less than 0.1% in Exome Aggregation Consortium (ExAC)

version 0.3 which contains�65,000 whole exome allele frequency data (Lek et al., 2016). Relevant filters from de novo variant calling

were applied in the inherited variant calling including:
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1) heterozygous AB: 0.3-0.7; homozygous AB: < 0.05;

2) depth in all the trio samples: DP R 20.

3) genotype quality (GQ) R 20

De novo CNV detection from WES data

We identified de novo CNVs from whole exome sequencing data using CoNIFER and the standard workflow (Krumm et al., 2012).

Briefly, we defined each continuous capture region as a ‘probe’, then calculated the RPKM (reads per thousand bases per million

reads sequenced) for all the samples and transformed to standardized z-score (ZRPKM). We then implemented singular

value decomposition (SVD) and made final calls based on SVD-ZRPKM values to help correct for biases arising from data

generation. Post-CoNIFER, wemerged neighbor CNVs if the distance between two adjacent CNVs was less than half of the larger

one. Finally, we generated a list of high confidence de novo CNVs by implementing additional filtering criteria on raw de novo

CNVs, including:

1) not detected in both parents (i.e., without any overlap).

2) less than 50% overlap with common CNVs (MacDonald et al., 2014).

3) less than 50% overlap with telomeric, centromeric and immunoglobulin regions.

4) covering more than 12 probes.

5) Manual visualization blinded to affected status.

Microarray genotyping
TD data

We genotyped 412 trio samples with the HumanOmniExpressExome-8-v1 platform. We utilized GenomeStudio to generate high

quality final reports according to a previously published protocol (Guo et al., 2014). Specifically, after loading and automatic

clustering of the raw intensity data in GenomeStudio, we excluded all samples with less than 98% call rate. We then re-clustered

the remaining samples and manually checked and adjusted the following terms:

1) excluded the abnormal SNPs in chrX, chrY, chrXY and chrMT;

2) adjusted clusters with low GenTrain scores (which means less than 0.7).

As a result, 3 samples with less than 98% call rate and all the SNPs with less than 95% call frequency were excluded. After these

steps, we exported final reports as one file per sample.

Control data

We obtained final report level data (i.e., post Genome-Studio data) for 765 previously genotyped quartets from the SSC (Sanders

et al., 2011, 2015) as control data. In each family, there are two unaffected parents, one affected proband and one unaffected sibling.

Because the microarray platforms used in TD samples and SSC controls were different (Table S4), we further trimmed the SNPs that

only existed in the dataset we used in TD samples to make the results comparable. Then we calculated the standard deviation (SD)

of the LRR ratio for each remained SNP in all the passed samples. All the SNPs with SD of LRR > 0.5 were removed. This process

resulted in 686,180 SNPs, which we used for quality control and CNV detection (Figure S3B).

Quality control for genotyping data

The quality controls of genotyping data consisted of three steps (Figures S3C and S3D): (1) We calculated the mean of LRR in chro-

mosome X and Y for each individual and removed any individuals with abnormal sex karyotype; (2) we estimated the contamination of

these samples by calculation of heterozygous ratio (heterozygous to total SNPs) and duplicate sites ratio (SNPs with BAF of 0.25-0.4

or 0.6-0.75 to total SNPs) in each individual and excluded any outliers defined by 2 standard deviations from the mean; and (3) we

checked the pedigrees in each cohort with an in-house script based on PLINK and removed any failing families. We excluded 11 fam-

ilies from the TD dataset and 2 families from the SSC dataset, leaving 399 TD trios and 763 SSC quartets for de novo CNV calling.

Among the 399 TD trios, 279 trios overlap with the WES data. Additionally, 35 of these 399 TD trios were studied previously on a

different microarray platform (Fernandez et al., 2012).

De novo CNV detection from genotyping data

We detected de novo CNVs based in the families passing QC using PennCNV with an exome-specific Hidden Markov Model file

(Szatkiewicz et al., 2013). After merging neighbor CNVs with PennCNV default settings, the output was further filtered by a series

of criteria:

1) not detected in both parents (i.e., without any overlap);

2) less than 50% overlap with common CNVs (MacDonald et al., 2014);

3) less than 50% overlap with telomeric, centromeric and immunoglobulin regions;

4) covered more than 10 SNPs.

5) remove the samples with a) waviness factor > 0.055; b) SD of LRRs > 0.3; c) detected CNVs number > 10.

All the outputs were checked by visualization blind to affected status to obtain the final de novo CNV list.
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De novo variant validation
De novo sequence variants validation

We attempted to validate all 309 Phase 2 de novo coding variants (including those that disrupt canonical splicing sites) through

PCR and Sanger sequencing. We designed the PCR primers for these sites with a primer3-based web tool developed by our lab

(https://primerdesign.willseylab.com). We generated an amplicon for each variant site using PCR from blood-derived DNA, if avail-

able (13 samples from lymphoblastoid cell line DNA, and 2 samples from saliva DNA). Due to failure in primer design, PCR reaction,

and/or Sanger sequencing, wewere unable to validate of 55 of 309 sites. For the remaining 254 sites, we validated 243 of them as true

de novo mutations (95.7%), including 95% for SNVs (232/243) and 100% for indels (11/11).

For the 511 Phase 1 TD trios, our new methods captured the majority of de novo coding variants identified in our Phase 1 analysis

(379 of 419, 40 variants missed). Within these variants, 286 of the 293 with validation data fromWillsey et al., 2017 confirmed as true

de novo variants (97.6%). We also identified 87 additional de novo variants. These differences are likely due to joint calling across a

larger number of samples as well as the GRWworkflow described above. Within these 87 new de novo variants in Phase 1 samples,

we confirmed 31/37 (83.8%; 50 variants were not validated because of sample accessibility or difficulty in primer design). Hence, we

estimate our Phase 1 confirmation rate as 96.1% (317 of 330 de novo variants). Overall, we therefore achieved a confirmation rate of

95.9% (560 of 584) across Phases 1 and 2.

De novo CNV validation

We attempted to validate all detected de novoCNVs with qPCR. We aimed to design three primers for each candidate and to ensure

primers did not overlap common SNPs andwere not within repeat regions (https://genome.ucsc.edu/cgi-bin/hgTables). We checked

fidelity for each pair of primers in silico. We used TERT and ZNF423 as controls to calculate the copy number (Sanders et al., 2011).

We were able to generate primers for 17 de novoCNV candidates in WES data (17/27) and 15 of themwere validated as true de novo

CNVs (15/17, 88.2%). With respect to the microarray data, we conducted validation in 11 of 13 de novo CNV candidates and 9 were

confirmed (9/11, 81.8%).We did not explicitly validate de novoCNVs identified in SSC controls. However, based on published confir-

mation results for de novo CNVs identified in the SSC quartets (Sanders et al., 2012, 2015), we were able to assess the expected

confirmation rate of 44 of the 56 de novoCNVs identified in this study. Overall, 43 of these 44 de novo CNVs (97.7%) were previously

confirmed in SSC samples in WES data, including 31/32 de novo CNVs in SSC probands and 12/12 de novo CNVs in SSC siblings.

We conducted a similar analysis for de novoCNVs detected from the SSCmicroarray genotyping data. Aside from 1 de novoCNV not

attempted previously, all were confirmed as true de novos (27/27 de novo CNVs in SSC probands and 9/9 de novo CNVs in SSC

siblings). Together, these comparisons suggest high specificity in de novo CNV calling. Given the good performance of our

de novo CNV calling pipeline on SSC WES data (97.7% confirmed) or microarray data (100% confirmed), it is unclear why we

have a lower confirmation rate in the TD samples (WES data, 88.2%; microarray data, 81.8%), though this is perhaps due to different

validation methods, different sequencing and genotyping platforms, and/or criteria used in our study and in Sanders et al., 2015.

Burden analysis
Estimation of mutation rate per base pair

Since the capture platforms varied across different cohorts, we defined high confidence ‘‘consensus regions’’ to minimize bias when

comparing themutation rate in cases versus controls.We obtained the consensus callable regions by conducting the following steps:

1) By Family: within RefSeq hg19 coding regions, we produced a list of regions that have R 20X coverage in all members of the

trio (to match the minimum joint coverage required in de novo variant calling).

2) By Cohort: we filtered to regions from (1) covered in at least 50% of the trios

3) Across all cohorts (TD and SSC): we intersected the lists from (2) to generate the consensus regions.

These steps resulted in a set of consensus regions spanning 19,343,430 bp. We restricted comparisons of de novo and

transmitted mutation rates to these regions. More specifically, to estimate the mutation rate rate per base pair, we considered

de novo mutations occurring in consensus regions only. We then calculated mutation rates per individual as

number of de novo mutations in consensus region=number of base pairs withR20X joint coverage within the consensus regions. We

then further divided the mutation rate by two to account for the diploid genome. We obtained the mean as well as the 95% confidence

interval (CI) of the de novomutation rate for each sample set by using t.test in R. Finally, we estimated the theoretical de novomutation

number by multiplying the rate per base pair by the total size of the RefSeq hg19 coding region (33,828,798 bp).

De novo sequence variant burden analysis

We compared the de novo mutation rate in cases versus controls by one-sided Poisson test in R (Willsey et al., 2017):

poisson:testðx;T ; alternative= ‘‘greater 00Þ;
where x is a vector of length two, containing the de novomutation counts in cases and de novomutation counts in controls (number of

events). T is also a vector of length two, containing the sum of the number of base pairs withR 20X joint coverage in the consensus

regions across all TD trios and SSCcontrol trios, respectively (number of opportunities).We also obtained the estimated rate ratio and

also 95% CI from this function. We truncated the lower bound of the 95% CI to 0 if negative.
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De novo sequence variants burden analysis on mutation-intolerant genes

We also narrowed to mutation-intolerant genes and conducted burden analyses. We identified missense intolerant genes based on

missense ZR 3.891 and LGD intolerant genes based on pLIR 0.9 (Lek et al., 2016). Again, we restricted these analyses to de novo

variants in the consensus regions only. For each class of variants, we narrowed to the corresponding filtered list of intolerant genes to

calculate the mutation rate (e.g., missense variants in missense intolerant genes, LGD variants in LGD intolerant genes). We then

combined these two lists of genes (missense plus LGD variants) to calculate the nonsynonymousmutation rate in mutation-intolerant

genes. As in the overall analyses, the t.test function in R estimated mean and 95% CI for mutation rates, and we compared sample

sets with a one-sided rate ratio test.

De novo CNV burden analysis

Within the WES data, we observed that the number of de novo CNVs is positively associated with the number of probes (i.e., discon-

tinuous capture regions) on the respective capture arrays (Figure S3A). To address this issue, we normalized our de novo CNVs rate

per individual by dividing by the number of probes on each capture platform. We estimated the mean and 95% CI of the normalized

de novoCNV rate by t.test in R. Comparison was carried out by Wilcoxon rank-sum test (WRST) in R: wilcoxon.test(x, y, alternative =

‘‘greater’’), where x, y are vectors containing normalized de novoCNV rates for cases and controls respectively.We did not use a one-

sided rate ratio test as in the de novo sequence variant burden analyses because we could not determine if de novo CNV occurence

follows a Poisson distribution. We then calculated the rate ratio (RR) of de novo CNVs in cases versus controls as:

RR=
ðtotal number of de novo CNVs in casesÞ � ðtotal number of callable probes in controlsÞ
ðtotal number of de novo CNVs in controlsÞ � ðtotal number of callable probes in casesÞ

For the microarray genotyping data, we used the de novoCNV rate directly for the burden analysis because we had already trimmed

to a common set of high quality SNP sites prior to de novo CNV calling. We also estimated the mean and 95% CI of the normalized

de novoCNV rate by t.test in R. We used theWRST for comparison: wilcoxon.test(x, y, alternative = ‘‘greater’’), where x, y are vectors

containing de novo CNV rates per individual for cases and controls respectively. We calculated the RR of de novo CNVs in probands

versus siblings as:

RR=
ðtotal number of de novo CNVs in casesÞ � ðtotal number of controlsÞ
ðtotal number of de novo CNVs in controlsÞ � ðtotal number of casesÞ

Given that we have partial confirmation results and the confirmation rate is lower in TD cases, we conducted the same analysis

only using confirmed de novo CNVs for the burden analysis. In the WES data we confirmed 15 de novo CNVs from TD trios and

12 de novo CNVs from SSC sibling trios. As a result, we estimated RR 1.93, p = 0.040 in TD probands versus SSC controls. Within

the small sample size of confirmed de novo CNVs in the microarray data, we obtained RR 1.91, p = 0.13 using the same method.

De novo CNV burden analysis using exact binomial test

In addition to theWRSTmethod, we utilized the binomial exact test to to confirm the increased rate of de novoCNVs in TD probands.

Specifically, we detected de novo CNVs from 789 TD trios and 26 of them carry de novo CNVs. In comparison, 16 of 1,136 SSC sib-

lings carry de novo CNVs. Thus, we carried out the binomial exact test as below:

binom:testð26;789;p= 16=1136; alternative= }greater}Þ;
This generated the p value as 8.37310�5 which is consistent with the result fromWRST that de novoCNVs are significantly increased

in TD versus SSC siblings inWES data. Using the samemethod, we estimated the p value equals to 0.0087 formicroarray data, which

further indicated the increased de novo CNV rate in TD versus SSC siblings.

We also checked with the exact binomial test in R if the increased rate of de novo CNVs could be still observed based on the vali-

dated de novoCNVs only. We estimated the p value as 0.016 for WES data and 0.15 for microarray data. Therefore, even restricted to

confirmed de novo CNVs, our results generally suggested the de novo CNV rate is increased in TD probands compared with SSC

siblings.

Genomic architecture of TD risk factors

We estimated the percentage of TD probands with de novo events (sequence variants and/or CNVs) mediating risk, as well as

the percentage of de novo events carrying TD risk based on the passing simplex trios with WES data (i.e., 577 trios TD trios,

1,134 SSC control trios). This allowed us to assess both types of variation in these individuals, in the same dataset.

To estimate the the percentage of TD probands with de novo events we counted individuals with one or more de novo events as

one and marked the remaining individuals as 0. We thus calculated the percentage of individuals with de novo events in cases and

controls as pCases and pControls respectively. The percentage of cases with de novo events mediating risk was calculated as:

pCases� pControls, the 95% confidence interval were estimated by bootstrapping for 1000 replicates. We calculated these values

for sequence variants alone, CNVs alone, and for any de novo event.

We determined the percentage of de novo events carrying TD risk for sequence variants and CNVs separately. For sequence

variants, we calculated the theoretical rate per base pair as before for each individual in the consensus regions. And then the theo-

retical rate per child was obtained by multiplying the entire refseq coding size (33,828,798 bp). The difference and 95% CI between

cases and controls was estimated by two samples t.test in R. We divided difference by the theoretical rate in cases to obtained the

percentage of de novo events carrying TD risk. We generated the 95% CI for this using the upper and lower of the difference in the
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same formula. For de novo CNVs, we cannot obtain the theoretical rate per person as did for sequence mutations. Thus we treated

the normalizedmutation rate as theoretical rate per child and used the same strategy as before to generate the percentage of de novo

CNVs carrying TD risk as well as the 95% CI.

Gene discovery
Estimation of Total TD risk Genes by MLE

The detection of recurrent damaging mutations enabled us to estimate the number of TD risk genes with a previously established

maximum likelihood estimation (MLE) procedure (Homsy et al., 2015; Willsey et al., 2017). We assessed the percentage of damaging

mutations carrying TD risk (E) and did 50,000 permutations for every possible number of risk genes from 1 to 2500. For each permu-

tation, we randomly generated 292 de de novo variants (the total number of damaging mutations identified in all the TD samples; see

below). We also selected a certain number of risk genes according weighted by their respective mutation probability, which accounts

for gene size and GC content (He et al., 2013). We then randomly assigned a percentage of the 292 variants to risk genes, based on

(E), and the remaining percent as non-risk. In each iteration, we combined the risk genes and non-risk genes and checked whether

the recurrent mutation count was consistent with what we observed in our study. We estimated E using all de novo damaging

mutations identified in TD non-multiplex probands (probands from simplex [577 samples] and unknown [97 samples] trios, 674 total

probands) and SSC controls (1,153 samples) in consensus regions to reduce the bias that plexity and different capture platform intro-

duced. We did not use use the mutations from multiplex families due to their unclear risk (Figures 2 and S5). We calculated E as:

E =
M1�M2

M1
=
ð199=674Þ � ð258=1153Þ

ð199=674Þ = 0:2421256:

Among the 292 de novo damagingmutations detected in non-multiplex families (we removed the 10 variants failing confirmation, thus

remained 282 variants), we observed 6 genes with two recurrent variants and 2 genes with three recurrent variants. With these

observations, we determined the MLE of TD risk genes to be 483 genes based on the frequency of occurrences versus possible

TD risk gene number (Figure S6).

Identification of TD risk genes with TADA-denovo model

We did not observe an increase in rare transmitted mutations in simplex TD trios compared with SSC control trios (Figure S5B).

Therefore, we used the TADA de novo only model and all de novo damaging variants identified in the non-multiplex families to identify

TD risk genes. We updated the following parameters from Phase 1:

1) Fraction of causal genes (p)

we used the new estimated risk gene number (483),

p=
483 risk genes

17726 refseq hg19 genes
= 0:02724811

2) Fold-enrichment (l) for Mis3 and LGD

Instead of using synonymous mutations as controls, we used poisson regression to control the effects of paternal age, sex bias,

and consensus callable size. To reduce bias from different exome capture kits, we only used the results from Phase 1 Yale non-multi-

plex samples (281 trios) and Phase 1 and 2SSC controls (1,153 trios) to estimate the fold-enrichment values since theywere captured

by the same exome capture platform. Additionally, as in our other analyses we restricted the regression to the consensus regions to

further reduce batch effects. The formula for the regressions were:

Number of Mis3 mutations � paternalAge+ sex + affect status+ offsetðlog 10ðconsensus callable sizeÞÞ
and

Number of LGD mutations � paternalAge+ sex + affect status+offsetðlog 10ðconsensus callable sizeÞÞ
We estimated the l for Mis3 and LGD as 1.383366 and 2.492502 respectively.

3) Relative risk (g) for Mis3 and LGD
For Mis3: g= 1+
l� 1

p
= 1+

1:383366 � 1

0:04129527
= 10:28354
For LGD : g= 1+
l� 1

p
= 1+

2:492502 � 1

0:04129527
= 37:1422
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With these parameters, we ran TADA-Denovo to estimate the p value and q value (false discovery rate, FDR) for each gene (1000 per-

mutations). We considered genes with recurrent variants (> 1 de novo variant) and q % 0.3 as true TD risk genes (Table 4), but see

Table S7 for an exome-wide summary of p and q values (3 genes have q % 0.3 but only one de novo variant).

Prediction of the Number of Risk Genes Identified by Cohort Size

We took advantage of the estimated TD risk gene number above to predict the gene discovery yield while additional TD trios are

whole-exome sequenced. As done previously (Willsey et al., 2017), we fixed the gene number at 483 and varied the cohort size.

As in the MLE above, we randomly selected the risk genes, and then assigned a fraction of them to TD risk gene and the remaining

as non-TD risk genes. We permuted 10,000 iterations for each cohort size and generated LGD andMis3 variants separately based on

their mutation rate (He et al., 2013; Sanders et al., 2012). We then combined the permuted variants and ran the TADA de novo only

algorithm using the same sample parameters as above to assess the per gene q value. Then we counted the number of probable

genes (q < 0.3) and high confidence genes (q < 0.1) for each cohort size and plotted the smoothed trend line using ggplot in R (‘‘loess’’

function). We predicted the number of genes identified in a particular cohort size by regression model.

We estimated the fractions of LGD andMis3 variants carrying TD risk (ELGD and EMis3). We did not exclude the variants that failed in

confirmation due to the lack of confirmation data in SSC controls. We only used de novo damaging mutations in non-multiplex fam-

ilies and restricted the mutations to the consensus regions as in the MLE section. Specifically, the observed rate of de novo LGD

variants, M1 = 44/674 for TD probands while M2 = 39/1153 for controls. Therefore, ELGD = (M1-M2)/M1 = 0.482. For Mis3 mutations,

M1 = 155/674 and M2 = 219/1153, and therefore EMis3 = (M1-M2)/M1 = 0.174.

Permutation test for the occurrence of compound heterozygous mutations in hcTD genes

We first detected compound heterozygous mutations within any of the genes with one or more de novo damaging variants in TD pro-

bands. We only considered compound heterozygous where at least one allele is rare in the population (AF < 0.1% based on ExAC

v0.3) and both areMis3 or LGDmutations. In total, we identified 189mutations. Since the q value ofOPA1 is very close to the cutoff of

hcTD genes (q% 0.1) while only concerning non-multiplex families in TADA, we treated OPA1 as a potential hcTD genes in this per-

mutation test. To estimate the probability of observing recurrent compound heterozygous mutations in any of the three genes

(CELSR3, WWC1 or OPA1), we thus sampled exactly 189 genes genome-wide with replacement and weighted by the probability

of a damaging mutation (He et al., 2013; Sanders et al., 2012). We defined a ‘‘success’’ as CELSR3, WWC1 or OPA1 appears

more than twice in the generated gene list. We permuted the process 10,000 times and calculated the p value as the total number

of success in permutations.

Systems biological analyses
Comparison of de novo damaging variants in TD and other disorders

To assess the overlap of genes affected by de novo mutations between TD and other disorders, we used a one-sided permutation

test to estimate the significance of overlap. We focused on the de novo damaging mutations from OCD (Cappi et al., 2017), ASD

(Sanders et al., 2015), congenital heart disease (Jin et al., 2017), intellectual disability (Gilissen et al., 2014; Hamdan et al., 2014;

de Ligt et al., 2012; Rauch et al., 2012), schizophrenia (Fromer et al., 2014), epileptic encephalopathies (EuroEPINOMICS-RES Con-

sortium et al., 2014), and developmental disorders in general (Deciphering Developmental Disorders Study, 2017). For each disorder,

we randomly selected the number of unique genes with one or more detected de novo damaging variants, weighted by damaging

mutation probability (He et al., 2013; Sanders et al., 2012) and compared, at the gene level, the permuted list with our observations

in TD. We defined a success as the amount of overlap derived from permutation greater than or equal to our observation. We

permuted 10,000 iterations to estimate the p value for each disorder. Then we iterated the permutation test for each disorder and

obtained the p values respectively. We removed de novo damaging mutations that failed in confirmation and treated genes with

more than one mutations as one. Since a proportion of TD probands in our sample set comorbid with OCD, we therefore also did

the same permutation test using the genes detected from TD probands without comorbid with OCD only.

Comparison of de novo CNVs in TD and ASD

To assess the overlap of de novo CNVs detected from TD probands and ASD probands, we utilized the results from a previously

published study characterizing the Simons Simplex Collection (Sanders et al., 2015). We removed de novo CNVs with more than

50% overlap between ASD probands and siblings which likely carry lower risk. We further removed the telomeric, centromeric

and immunoglobulin regions as did in our de novo CNV calling workflow. These filters resulted in 290 and 57 de novo CNVs in

ASD probands and siblings respectively. Then we intersected either de novo CNV list from ASD study with the de novo CNVs

detected from either WES data or microarray data under the cutoff as 50% using bedtools. We combined CNVs detected in the

same TD probands from either WES data or microarray data prior to the intersection. We observed 9 de novo CNVs overlapping

between ASD probands and TD probands. In comparison, we observed only 1 de novo CNV shared across ASD siblings and TD

probands.

We then estimated the significance of this observation by permutation test. We randomly picked a region list according to the

length of the given CNVs and the chromosome location. We avoided the telomeric, centromeric and immunoglobulin regions in

the permutation. We permuted 10,000 times for ASD probands and siblings. We defined a ‘‘success’’ as the intersection between

the permuted list with de novo CNVs in TD was greater than or equal to the observations (i.e., 9 for TD versus ASD probands

and 1 for TD versus ASD siblings). We estimated the final p value as the rate of success in 10,000 permutations.
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Enrichment of de novo mutations in cell polarity

To check whether the de novo mutations are enriched in cell polarity, we extracted all the genes related to cell polarity from Gene

Ontology (http://www.geneontology.org/) and annotated the de novo variants in TD and SSC controls. We utilized three methods

to assess the enrichment.

First, we compared de novo damaging variants affecting cell polarity genes in cases and controls. In total, we observed 337 de novo

damaging mutations in TD probands and 350 de novo damaging mutations in SSC controls. Among these, 17/337 and 7/350 affected

cell polarity genes, respectively.Wedid not consider confirmation status here as variants in the SSCsamples did not undergo validation.
TD probands SSC controls

# of de novo damaging mutations 337 350

# of hits in cell polarity 17 7
We then compared using fisher’s exact test in R as:

fisher:testðmatrixðcðð17;337� 17;7;350� 7Þ; ncol = 2ÞÞ; alternative= }greater}Þ;
The results in an estimated odds ratio (OR) = 2.60 and p value = 0.024.

Second, we used a permutation test at the gene-level to assess the enrichment. We removed all the de novos that failed confir-

mation. In total, we observed 327 genes with one or more de novo damaging mutations, across Phase 1 and 2. 15 of these are

cell polarity genes. For each of 10,000 permutations, we randomly selected 327 genes without replacement according to the

damaging mutation probability of each gene (He et al., 2013; Sanders et al., 2012). We tabulated howmany of these were cell polarity

genes. We defined success as R 15 cell polarity genes. We calculated the p value as the total number of successes in the 10,000

iterations. We estimated the p value as 0.014.

QUANTIFICATION AND STATISTICAL ANALYSIS

We conducted all statistical analyses in Python (vR 3.6) and R (vR 3.31). We have made the scripts used in these analyses available on

bitbucket at https://bitbucket.org/willseylab/tourette_phase2/src/master/. Where appropriate, we present data as mean ± the 95% con-

fidence interval (CI). We estimate mean and 95%CI with the t.test function. We describe the value of n in the main text and/or in Tables 2

and 3, and n stands for number of samples (trios), number of base pairs, or number of variants as indicated. We conducted the primary

burden analyses for sequence variants with a rate ratio test, using the poisson.test function in R, and comparing, across two cohorts, the

number of de novo variants per the number of callable base pairs assessed. We did burden analyses for copy number variants using Wil-

coxon rank-sum test usingwilcox.test function inR.Whencomparing TDprobands versusSSCcontrols,weutilized aone-sided test (alter-

native = ‘‘greater’’), given the prior evidence for the role of de novo sequence/copy number variants in TD and other neurodevelopmental

disorders. However, we compared rates between TD cohorts with a two-sided test because we did not expect these rates to differ. In

secondary burden analyses, one-sided binomial exact tests (binom.test in R) and Fisher’s exact tests (fisher.test in R), aswell as a Poisson

regression inR (glmwith family = poisson, link = ‘‘log’’) (see ‘‘Determining cutoff for de novomutation per child’’) also assessed significance.

We did not correct p values for multiple comparisons because our primary hypotheses focused on de novo damaging variants

followed by secondary characterization of individual variant classes, and because we previously implicated de novo variants in

TD (Willsey et al., 2017). We considered a p value < 0.05 statistically significant and we list individual p values in themain text, Figures

2 and 3, and Tables 3 and 4.

As described above in the STARMethods, we estimated p- and q-values for individual association with TD risk with the algorithm,

TADA, which is described in detail in (He et al., 2013).

DATA AND SOFTWARE AVAILABILITY

Data
Wehave deposited alignedwhole exome sequencing data (.bamfiles) in the SequenceReadArchive (SRA; https://www.ncbi.nlm.nih.

gov/sra/) under BioProject: PRJNA384374 (https://www.ncbi.nlm.nih.gov/bioproject/384374) (TIC Genetics data) and BioProject:

PRJNA384389 (https://www.ncbi.nlm.nih.gov/bioproject/384389) (TAAICGdata).We have also deposited themicroarray genotyping

data (final report files) from the TIC Genetics cohort under BioProject: PRJNA384374.

Software
Perl, Python, and R code used to process these data and complete statistical analyses are available on bitbucket at https://bitbucket.

org/willseylab/tourette_phase2/src/master/. Our in-house primer design software that generated primer sets for variant confirma-

tions is located at https://primerdesign.willseylab.com/.
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