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Abstract

In this paper, we consider a two-dimensional insurance risk model where each business line faces
not only stand-alone claims but also common shocks that induce dependent losses to both lines simul-
taneously. The joint ruin probability is analyzed, and it is shown that under some model assumptions
it can be expressed in terms of a bivariate Laguerre series with the initial surplus levels of the two
business lines as arguments. Our approach is based on utilizing various attractive properties of La-
guerre functions to solve a partial-integro differential equation satisfied by the joint ruin probability,
so that continuum operations such as convolutions and partial differentiation are translated to lattice
operations on the Laguerre coefficients. For computational purposes, the bivariate Laguerre series
needs to be truncated, and the corresponding Laguerre coefficients can be obtained through a system
of linear equations. The computational procedure is easy to implement, and a numerical example is
provided that illustrates its excellent performance. Finally, the results are also applied to address a
related capital allocation problem.

Keywords: Bivariate risk process; Common shock; Bivariate Laguerre series; Dependence; Capital
allocation.

1 Introduction

In this paper, we study a bivariate insurance risk model with common shocks (see e.g. Chan et al. (2003)
and Gong et al. (2012)). Denoting the surplus process of the i-th business line by {Ui(t)}t≥0 (for i = 1, 2),
the dynamics are described by

Ui(t) = ui + cit−
Ni(t)∑
k=1

Yi,k −
N12(t)∑
k=1

Zi,k, t ≥ 0,

where ui = Ui(0) ≥ 0 is the initial surplus level, ci > 0 is the incoming premium rate, {Ni(t)}t≥0 is a
Poisson process with rate λi > 0, and {Yi,k}∞k=1 is a sequence of independent and identically distributed
(i.i.d.) positive random variables with density fi and survival function F i. Moreover, {N12(t)}t≥0 is a
Poisson process with rate λ12 > 0, which represents a ‘common shock’ component that impacts both
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lines of business at the same time, and {(Z1,k, Z2,k)}∞k=1 is a sequence of i.i.d. positive bivariate random
vectors with joint density g12 and joint survival function G12. Also define gi to be the marginal density
of the i.i.d. sequence {Zi,k}∞k=1 for i = 1, 2. In Badila et al. (2014)’s terminology, the process {Ni(t)}t≥0

counts the number of claims dedicated to line i only while {N12(t)}t≥0 is concerned with simultaneous
claim arrivals. We assume that the processes {N1(t)}t≥0, {N2(t)}t≥0 and {N12(t)}t≥0 and the sequences
{Y1,k}∞k=1, {Y2,k}∞k=1 and {(Z1,k, Z2,k)}∞k=1 are all mutually independent. Note that each surplus process
follows the classical compound Poisson risk model. In particular, for i = 1, 2, the i-th business line has
Poisson rate λi + λ12 and i.i.d. claim amounts with common density

hi(x) =
λi

λi + λ12
fi(x) +

λ12

λi + λ12
gi(x), x ≥ 0. (1.1)

In addition, the ruin time of the i-th line is τi = inf{t ≥ 0|Ui(t) < 0}, and to ensure that each risk process
has a positive survival probability we assume the premium income satisfies ci = (1 + θi)(λiE[Yi,1] +
λ12E[Zi,1]) for some θi > 0 (and this is known as the positive security loading condition).

Unlike univariate risk models, there are possibly different definitions of ruin for the bivariate risk
processes {(U1(t), U2(t))}t≥0 (e.g. Chan et al. (2003)). We shall consider two of these definitions in this
paper, including (i) τor = inf{t ≥ 0|min{U1(t), U2(t)} < 0} = min(τ1, τ2): the first time when {U1(t)}t≥0

or {U2(t)}t≥0 is below zero; and (ii) τand = max(τ1, τ2): the first time both {U1(t)}t≥0 and {U2(t)}t≥0

have ruined (but not necessarily simultaneously). These respectively resemble the ‘joint life’ status
and the ‘last survivor’ status in life contingencies. The corresponding ruin probabilities are denoted by
ψor(u1, u2) = Pr{τor < ∞|(U1(0), U2(0)) = (u1, u2)} and ψand(u1, u2) = Pr{τand < ∞|(U1(0), U2(0)) =
(u1, u2)}, and they are related via

ψand(u1, u2) = ψ1(u1) + ψ2(u2)− ψor(u1, u2), u1, u2 ≥ 0, (1.2)

where ψi(ui) = Pr{τi <∞|Ui(0) = ui} is the univariate ruin probability for line i.

The analysis of bivariate or more generally multivariate risk processes poses a great challenge to
researchers, and exact solutions to ruin-related quantities such as ruin probabilities are rarely available.
Some exceptions are e.g. Avram et al. (2008a,b) and Badescu et al. (2011), where the two lines of business
are engaged in a proportional reinsurance contract and therefore the proportionality of the claim amounts
across the two lines allows the bivariate problems to be reduced to simpler univariate problems. These
were further generalized by Badila et al. (2014, 2015) in a multivariate setting where the claims of
different business lines are ordered. In most other works in multivariate risk theory, researchers usually
resort to bounds, asymptotic results or numerical approximations for the ruin probabilities. While early
simple bounds are available in e.g. Chan et al. (2003), Cai and Li (2005, 2007) and Li et al. (2007),
various results can be found e.g. in Collamore (1996, 1998) regarding Cramér type asymptotics and
in Li et al. (2007, Section 4), Chen et al. (2011), and Cojocaru (2017) for heavy-tailed asymptotics.
Concerning approximations, recursive integral formulas were derived by Dang et al. (2009) which were
further generalized and probabilistically interpreted by Gong et al. (2012) who also transformed these to
recursive sums that are easier to compute. Moreover, approximations of continuous-time bivariate models
via their discrete-time counterparts were developed by Yuen et al. (2006), Castañer et al. (2013), and Liu
and Cheung (2015). Multi-dimensional Brownian motion risk models have recently been analyzed by e.g.
Dȩbicki et al. (2020), and while such models are of interest in their own right they can also be used to
approximate multivariate Markovian models (see Delsing et al. (2020)). For dividend strategies in two-
dimensional risk processes, see e.g. Czarna and Palmowski (2011), Liu and Cheung (2015), Albrecher et
al. (2019), Gu et al. (2018), Azcue et al. (2019), and Grandits (2019). In addition, applications of bivariate
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ruin probabilities in reinsurance were considered by e.g. Kaishev and Dimitrova (2006), Dimitrova and
Kaishev (2010), and Castañer et al. (2013). For ruin functions defined via hitting events of a rare or
remote set see e.g. Collamore (1996, 1998), Hult et al. (2005), Blanchet and Liu (2014), Liu and Woo
(2014) and Pan and Borovkov (2019), and a connection to fluid models was exploited in Rabehasaina
(2009). We refer to Asmussen and Albrecher (2010, Chapter XIII.9) for a comprehensive overview of
multivariate risk models.

Among the challenges of multivariate ruin problems is that the ruin-related quantities often satisfy a
partial integro-differential equation (PIDE) for which exact or explicit solutions are difficult to obtain.
In this paper, we shall investigate bivariate Laguerre series as a tool in this direction. As seen in e.g.
Keilson and Nunn (1979) and Sumita and Kijima (1985), Laguerre series possess various nice properties
concerning differentiation and convolutions. In particular, it turns out that these continuum operations
on the Laguerre functions can be mapped to lattice operations on the Laguerre coefficients which are
computationally more attractive. While Laguerre expansions have successfully been applied to one-
dimensional problems in the context of insurance risk in the past (see e.g. Albrecher et al. (2001),
Goffard et al. (2016), Zhang and Su (2018), Asmussen et al. (2019), Avram et al. (2019), Cheung and
Zhang (2021)), the present approach seems to be the first of its kind to explore the feasibility of Laguerre
expansions in multivariate ruin theory.

We would like to note that with the multivariate duality established in Badila et al. (2014, Section
2), the results developed in this paper are also directly applicable to two parallel M/G/1 queues with
simultaneous arrivals. Specifically, in the coupled queueing system, the i-th queue (for i = 1, 2) has
dedicated arrivals at Poisson rate λi where the k-th arrival has service requirement Yi,k. Moreover,
simultaneous arrivals occur at rate λ12 with the k-th arrival bringing in respective service requirements
of Z1,k and Z2,k to the two queues. If the i-th server handles workload at a constant rate of ci (where the
loading condition θi > 0 in risk theory is equivalent to that the server can handle the traffic), then the
survival probability 1 − ψor(u1, u2) = Pr{τ1 = ∞, τ2 = ∞|(U1(0), U2(0)) = (u1, u2)} corresponds to the
probability that the steady-state workloads in the two queues are no larger than u1 and u2 respectively.

The rest of this paper is organized as follows. Section 2 reviews some basic properties of bivariate
Laguerre series along with the notion of rapidly decreasing functions and Schwartz functions. The main
results are presented in Section 3. First, a PIDE for the ruin probability ψand is derived. In order to
solve it using bivariate Laguerre series, it is proved that ψand is a Schwartz function under some easily
verifiable conditions on the (joint) survival functions F 1, F 2 and G12. Then, the Laguerre coefficients are
shown to satisfy a countable system of linear equations which will be truncated for computation. Section
4 provides an example which not only demonstrates the excellent numerical performance of the proposed
approach but also illustrates an application in capital allocation. Some technical proofs are deferred to
an Appendix.

2 Preliminaries on Laguerre series

We start by reviewing some facts and properties of Laguerre series, and the exposition of this section
closely follows Cheung et al. (2021). See e.g. Keilson and Nunn (1979) and Sumita and Kijima (1985)
for more details. For each k ∈ N0 (where N0 is the set of non-negative integers), the Laguerre function is
defined as

ϕk(x) = Lk(x)e−
x
2 , x ≥ 0, (2.1)
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where

Lk(x) =
k∑
j=0

(−1)j
(
k

j

)
xj

j!
, x ≥ 0,

is the k-th Laguerre polynomial. The Laguerre functions are known to be uniformly bounded such that
supx≥0 |ϕk(x)| ≤ 1 for k ∈ N0. Let L2(R+) be the class of square-integrable functions on the positive
half-line R+, and define the scalar product and L2-norm on L2(R+) as

〈a1, a2〉 =

∫ ∞
0

a1(x)a2(x) dx and ‖a1‖ =

√∫ ∞
0

[a1(x)]2 dx, ∀ a1, a2 ∈ L2(R+),

respectively. The collection {ϕk}∞k=0 is known to form a complete orthonormal basis of L2(R+) satisfying
(i) ‖ϕk‖ = 1 for each k ∈ N0; and (ii) 〈ϕj , ϕk〉 = 0 for k 6= j. Consequently, every a ∈ L2(R+) can be
represented as

a(x) =
∞∑
k=0

Θa,k ϕk(x), x ≥ 0, (2.2)

where

Θa,k = 〈a, ϕk〉 =

∫ ∞
0

a(x)ϕk(x) dx, k ∈ N0, (2.3)

with the convention Θa,k = 0 for k < 0. The constants {Θa,k}∞k=0 are called Laguerre dagger coefficients
or Laguerre coefficients in short. Then, the Laguerre sharp coefficients are defined as the difference
Θ#
a,k = Θa,k −Θa,k−1 for k ∈ N0.

Analogously, let L2(R2
+) be the class of square-integrable functions on the positive orthant R2

+ (i.e.
a(·, ·) such that

∫∞
0

∫∞
0 [a(x1, x2)]2 dx1 dx2 < ∞). Every function a ∈ L2(R2

+) can then be developed on
the Laguerre basis. In order to utilize some nice properties of bivariate Laguerre series, the notion of
rapidly decreasing functions and Schwartz functions is given below.

Definition 1 (Rapidly decreasing function)

(a) A univariate function a(·) on R+ is rapidly decreasing if supx∈R+
|xka(x)| <∞ for any k ∈ N0.

(b) A bivariate function a(·, ·) on R2
+ is rapidly decreasing if sup(x1,x2)∈R2

+
|xk1xl2a(x1, x2)| <∞ for any

k, l ∈ N0.

Definition 2 (Schwartz space) A Schwartz function is a function whose derivatives are rapidly de-
creasing. The Schwartz space is the set of Schwartz functions and is defined as follows.

(a) In the univariate case, the Schwartz space is given by

C∞↓ (R+) =

{
a : R+ → R such that sup

x∈R+

∣∣∣∣xk didxia(x)

∣∣∣∣ <∞ for all i, k ∈ N0

}
.

(b) In the bivariate case, the Schwartz space is given by

C∞↓ (R2
+) =

{
a : R2

+ → R such that sup
(x1,x2)∈R2

+

∣∣∣∣∣xk1xl2 ∂i+j

∂xi1∂x
j
2

a(x1, x2)

∣∣∣∣∣ <∞ for all i, j, k, l ∈ N0

}
.
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It is clear that C∞↓ (R+) ⊂ L2(R+) and C∞↓ (R2
+) ⊂ L2(R2

+). From Sumita and Kijima (1985), every

a ∈ C∞↓ (R2
+) admits the representation

a(x1, x2) =

∞∑
m=0

∞∑
n=0

Θa,m,n ϕm(x1)ϕn(x2), x1, x2 ≥ 0, (2.4)

where

Θa,m,n =

∫ ∞
0

∫ ∞
0

a(x1, x2)ϕm(x1)ϕn(x2) dx1 dx2, m, n ∈ N0, (2.5)

with the convention Θa,m,n = 0 if m < 0 or n < 0. For later use, the Laguerre sharp coefficients are

defined as the difference Θ#
a,m,n = Θa,m,n − Θa,m−1,n − Θa,m,n−1 + Θa,m−1,n−1 for m,n ∈ N0. Like the

univariate counterpart, bivariate Laguerre series possess various nice operational properties, many of
which are summarized in Sumita and Kijima (1985, Section 4). Note that Property 1 below concerns
functions defined on R2

+, whereas in the former reference the case R2 is treated (for a proof of this
adaptation see Cheung et al. (2021)).

Property 1: Partial differentiation. Suppose that a ∈ C∞↓ (R2
+). Then we have

∂

∂x1
a(x1, x2) =

∞∑
m=0

∞∑
n=0

Θa,1′,m,n ϕm(x1)ϕn(x2), x1, x2 ≥ 0,

where the Laguerre sharp coefficients Θ#
a,1′,m,n = Θa,1′,m,n −Θa,1′,m−1,n −Θa,1′,m,n−1 + Θa,1′,m−1,n−1 are

given by

Θ#
a,1′,m,n =


−1

2Θa,0,0 −
∑∞

i=1 Θa,i,0, m = 0;n = 0,
−1

2Θa,0,n −
∑∞

i=1 Θa,i,n + 1
2Θa,0,n−1 +

∑∞
i=1 Θa,i,n−1, m = 0;n ≥ 1,

1
2(Θa,m,0 + Θa,m−1,0), m ≥ 1;n = 0,
1
2(Θa,m,n + Θa,m−1,n −Θa,m,n−1 −Θa,m−1,n−1), m ≥ 1;n ≥ 1.

Similarly, we have

∂

∂x2
a(x1, x2) =

∞∑
m=0

∞∑
n=0

Θa,2′,m,n ϕm(x1)ϕn(x2), x1, x2 ≥ 0,

where the Laguerre sharp coefficients Θ#
a,2′,m,n = Θa,2′,m,n −Θa,2′,m−1,n −Θa,2′,m,n−1 + Θa,2′,m−1,n−1 are

given by

Θ#
a,2′,m,n =


−1

2Θa,0,0 −
∑∞

j=1 Θa,0,j , m = 0;n = 0,
1
2(Θa,0,n + Θa,0,n−1), m = 0;n ≥ 1,
−1

2Θa,m,0 −
∑∞

j=1 Θa,m,j + 1
2Θa,m−1,0 +

∑∞
j=1 Θa,m−1,j , m ≥ 1;n = 0,

1
2(Θa,m,n + Θa,m,n−1 −Θa,m−1,n −Θa,m−1,n−1), m ≥ 1;n ≥ 1.

Property 2: Convolution in one argument. If a ∈ C∞↓ (R2
+) and b ∈ C∞↓ (R+), then∫ x1

0
a(x1 − y1, x2)b(y1) dy1 =

∞∑
m=0

∞∑
n=0

Θa1∗b,m,n ϕm(x1)ϕn(x2), x1, x2 ≥ 0,
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where the Laguerre sharp coefficients Θ#
a1∗b,m,n = Θa1∗b,m,n − Θa1∗b,m−1,n − Θa1∗b,m,n−1 + Θa1∗b,m−1,n−1

are given by

Θ#
a1∗b,m,n =

m∑
k=0

Θ#
b,m−k Θ#

a,k,n,

and in addition one has∫ x2

0
a(x1, x2 − y2)b(y2) dy2 =

∞∑
m=0

∞∑
n=0

Θa2∗b,m,n ϕm(x1)ϕn(x2), x1, x2 ≥ 0,

where the Laguerre sharp coefficients Θ#
a2∗b,m,n = Θa2∗b,m,n − Θa2∗b,m−1,n − Θa2∗b,m,n−1 + Θa2∗b,m−1,n−1

are given by

Θ#
a2∗b,m,n =

n∑
k=0

Θ#
b,n−k Θ#

a,m,k.

Here it is understood that {Θ#
b,k = Θb,k −Θb,k−1}∞k=0 are the Laguerre sharp coefficients of b.

Property 3: Convolution in both arguments. If a, b ∈ C∞↓ (R2
+), then∫ x1

0

∫ x2

0
a(x1 − y1, x2 − y2)b(y1, y2) dy2 dy1 =

∞∑
m=0

∞∑
n=0

Θa∗b,m,n ϕm(x1)ϕn(x2), x1, x2 ≥ 0,

where the Laguerre sharp coefficients Θ#
a∗b,m,n = Θa∗b,m,n − Θa∗b,m−1,n − Θa∗b,m,n−1 + Θa∗b,m−1,n−1 are

given by

Θ#
a∗b,m,n =

m∑
i=0

n∑
j=0

Θ#
b,m−i,n−jΘ

#
a,i,j .

Here it is understood that {Θ#
b,i,j = Θb,i,j − Θb,i−1,j − Θb,i,j−1 + Θb,i−1,j−1}∞i,j=0 are the Laguerre sharp

coefficients of b.

3 Main results on the ruin probability

3.1 Partial integro-differential equation (PIDE)

In order to express a function as a bivariate Laguerre series, it has to be square-integrable. However,
because ψor(u1, u2) ≥ ψor(∞, u2) = ψ2(u2), one has that∫ ∞

0

∫ ∞
0

[ψor(u1, u2)]2 du1 du2 ≥
∫ ∞

0

∫ ∞
0

[ψ2(u2)]2 du1 du2 = +∞,

i.e. ψor is not square-integrable. Consequently, we shall work with ψand whose square-integrability
can be proved as follows under mild conditions. For line i (i = 1, 2), denote Mi as the maximum
aggregate loss, which is well known to follow a compound geometric distribution (where the primary
geometric distribution has ‘failure’ probability 1/(1+θi) and the secondary distribution is the equilibrium
distribution of (1.1)). Because {τand < ∞} = {τ1 < ∞, τ2 < ∞} = {M1 > u1,M2 > u2}, one easily
checks that ∫ ∞

0

∫ ∞
0

[ψand(u1, u2)]2 du1 du2 ≤
∫ ∞

0

∫ ∞
0

ψand(u1, u2) du1 du2
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=

∫ ∞
0

∫ ∞
0

Pr{M1 > u1,M2 > u2} du1 du2

= E[M1M2]

≤ {E[M2
1 ]}

1
2 {E[M2

2 ]}
1
2 ,

where the last two lines follow from the joint moment formula in e.g. Lo (2019, Proposition 3.1) and the
Cauchy-Schwarz inequality respectively. For E[M2

1 ] and E[M2
2 ] to be finite, we shall require the second

moment of the equilibrium distribution of (1.1) to be finite for i = 1, 2, which in turn requires the third
moments of Y1,1, Y2,1, Z1,1 and Z2,1 to be finite. In fact, throughout the paper we shall make the following
stronger assumption that will be useful in Section 3.2 for another purpose and in particular entails that
all moments of Y1,1, Y2,1, Z1,1 and Z2,1 are finite (see e.g. Klugman et al. (2013, Theorem 11.3)).

Assumption 1. For each i = 1, 2, the adjustment coefficient exists for the univariate surplus process
{Ui(t)}t≥0. That is, there exists a positive value Ri inside the radius of convergence of the moment
generating function corresponding to the density hi defined in (1.1) such that

ciRi = (λi + λ12)

(∫ ∞
0

eRixhi(x) dx− 1

)
.

As a result, Lundberg’s upper bound

ψi(u) ≤ e−Riu, u ≥ 0, (3.1)

holds true.

Next, we present the following lemma with regard to a PIDE satisfied by the ruin probability ψand.

Lemma 1 (PIDE satisfied by ψand) The bivariate ruin probability ψand satisfies the PIDE

c1
∂

∂u1
ψand(u1, u2) + c2

∂

∂u2
ψand(u1, u2)− (λ1 + λ2 + λ12)ψand(u1, u2)

+ λ1

∫ u1

0
ψand(u1 − y1, u2)f1(y1) dy1 + λ2

∫ u2

0
ψand(u1, u2 − y2)f2(y2) dy2

+ λ12

∫ u1

0

∫ u2

0
ψand(u1 − y1, u2 − y2)g12(y1, y2) dy2 dy1 = γ(u1, u2), u1, u2 ≥ 0, (3.2)

where

γ(u1, u2) =− λ1ψ2(u2)F 1(u1)− λ2ψ1(u1)F 2(u2)− λ12

∫ u1

0

∫ ∞
u2

ψ1(u1 − y1)g12(y1, y2) dy2 dy1

− λ12

∫ ∞
u1

∫ u2

0
ψ2(u2 − y2)g12(y1, y2) dy2 dy1 − λ12G12(u1, u2) (3.3)

only consists of the univariate ruin probabilities and known functions corresponding to the claim distri-
butions.

Proof. We proceed by considering a time interval (0, ε] for some small ε > 0 and analyzing all possible
events in relation to the ruin definition τand = max(τ1, τ2) as follows.

1. With probability 1 − (λ1 + λ2 + λ12)ε+o(ε), there is no claim event at all. At time ε, the surplus
levels of lines 1 and 2 are u1 + c1ε and u2 + c2ε respectively.
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2. An event from the process {N1(t)}t≥0 occurs with probability λ1ε+o(ε), causing a claim in line 1
but not in line 2. Depending on the resulting claim amount y1 to line 1, this is further separated
into two cases.

a. If y1 ≤ u1 + c1ε, then line 1 survives the claim at time ε with new surplus level u1 + c1ε− y1.
The bivariate process {(U1(t), U2(t))}t≥0 has ruin probability ψand(u1 + c1ε− y1, u2 + c2ε) at
time ε.

b. If y1 > u1 + c1ε, then line 1 ruins at time ε. Whether ruin will occur in the bivariate risk
process will depend on whether line 2, possessing u2 + c2ε at time ε, will ruin in the future,
and this will happen with probability ψ2(u2 + c2ε).

3. An event from the process {N2(t)}t≥0 occurs with probability λ2ε+o(ε). The possibilities are similar
to point 2 above.

4. A common shock event occurs from the process {N12(t)}t≥0 with probability λ12ε+o(ε), causing
claims of amounts y1 and y2 in lines 1 and 2 respectively. This further consists of four cases
depending on the values of (y1, y2) which follow the joint density g12.

a. If y1 ≤ u1 + c1ε and y2 ≤ u2 + c2ε, then both lines survive time ε with new surplus levels
u1 + c1ε− y1 and u2 + c2ε− y2 respectively.

b. If y1 ≤ u1 + c1ε and y2 > u2 + c2ε, then line 1 survives but line 2 ruins at time ε, and the ruin
probability of the bivariate process is equivalent to ψ1(u1 + c1ε− y1).

c. If y1 > u1 + c1ε and y2 ≤ u2 + c2ε, then this is just an opposite situation compared to point
4b above.

d. If y1 > u1 + c1ε and y2 > u2 + c2ε, then ruin occurs at time ε in the bivariate process.

5. Two or more claim events occur. This happens with negligible probability o(ε).

Consolidating all the above, we arrive at

ψand(u1, u2) = [1− (λ1 + λ2 + λ12)ε]ψand(u1 + c1ε, u2 + c2ε)

+ λ1ε

(∫ u1+c1ε

0
ψand(u1 + c1ε− y1, u2 + c2ε)f1(y1) dy1 + ψ2(u2 + c2ε)F 1(u1 + c1ε)

)
+ λ2ε

(∫ u2+c2ε

0
ψand(u1 + c1ε, u2 + c2ε− y2)f2(y2) dy2 + ψ1(u1 + c1ε)F 2(u2 + c2ε)

)
+ λ12ε

(∫ u1+c1ε

0

∫ u2+c2ε

0
ψand(u1 + c1ε− y1, u2 + c2ε− y2)g12(y1, y2) dy2 dy1

+

∫ u1+c1ε

0

∫ ∞
u2+c2ε

ψ1(u1 + c1ε− y1)g12(y1, y2) dy2 dy1

+

∫ ∞
u1+c1ε

∫ u2+c2ε

0
ψ2(u2 + c2ε− y2)g12(y1, y2) dy2 dy1 +G12(u1 + c1ε, u2 + c2ε)

)
+ o(ε).

Letting ε → 0 followed by rearrangements gives rise to the PIDE (3.2) with γ(u1, u2) given by (3.3).
Finally, note that the differentiability of ψand(u1, u2) is guaranteed by the same argument as in Asmussen
and Albrecher (2010, Remark VIII.1.11). Another way to derive this PIDE is the (essentially equivalent)
generator approach (cf. Asmussen and Albrecher (2010, Ch.II)).
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3.2 ψand as a Schwartz function

To solve the PIDE (3.2), we would like to ensure that the ruin probability ψand is a Schwartz function
so that the nice properties of bivariate Laguerre series discussed in Section 2 can be applied. We start
with the following simple lemma which shows that ψand is rapidly decreasing.

Lemma 2 Under Assumption 1, there exist constants r1, r2 > 0 such that

ψand(u1, u2) ≤ e−r1u1−r2u2 , u1, u2 ≥ 0. (3.4)

Specifically, one can choose r1 = r2 = min(R1, R2)/2. Consequently, ψand is rapidly decreasing.

Proof. First, by the definition ψand(u1, u2) = Pr{τ1 < ∞, τ2 < ∞|(U1(0), U2(0)) = (u1, u2)} of the bi-
variate ruin probability, it is clear that ψand(u1, u2) cannot be larger than the univariate ruin probabilities
ψ1(u1) = Pr{τ1 <∞|U1(0) = u1} and ψ2(u2) = Pr{τ2 <∞|U2(0) = u2}. We divide R2

+ into two regions,
namely 0 ≤ u2 ≤ u1 and 0 ≤ u1 < u2. Using the Lundberg bound (3.1) with i = 1 in the first region
gives

ψand(u1, u2) ≤ ψ1(u1) ≤ e−R1u1 ≤ e−R1

(
u1+u2

2

)
, 0 ≤ u2 ≤ u1,

and similarly for the second region we have

ψand(u1, u2) ≤ ψ2(u2) ≤ e−R2u2 ≤ e−R2

(
u1+u2

2

)
, 0 ≤ u1 < u2,

from which the result follows. Finally, it is clear that (3.4) implies that ψand is rapidly decreasing
according to Definition 1(b).

In order to prove that the derivatives of ψand are also rapidly decreasing, we will need two more
assumptions on the claim distributions.

Assumption 2. For i = 1, 2, the survival function F i of the claim amounts specific to line i is infinitely
differentiable, and for any k ∈ N0 it satisfies

|F (k)
i (x)| ≤ Aike−αix, x ≥ 0, (3.5)

where Aik’s and αi’s are positive constants. This implies F i ∈ C∞↓ (R+) for i = 1, 2.

Assumption 3. The joint survival function G12 of the claim amounts resulting from common shocks is
infinitely differentiable, and for any i, j ∈ N0 it satisfies∣∣∣∣∣ ∂i+j

∂xi1∂x
j
2

G12(x1, x2)

∣∣∣∣∣ ≤ Bije−β1x1−β2x2 , x1, x2 ≥ 0, (3.6)

where Bij’s, β1 and β2 are positive constants. This implies G12 ∈ C∞↓ (R2
+).

Moreover, bounds on the derivatives of γ defined by (3.3) are needed, and these are presented in the
following lemma, with the proof provided in Appendix A.1.

Lemma 3 (Bound showing γ is a Schwartz function) Under Assumptions 1-3, for any given
i, j ∈ N0 one has ∣∣∣∣∣ ∂i+j

∂ui1∂u
j
2

γ(u1, u2)

∣∣∣∣∣ ≤ Kij(u1 + u2 + 1)e−R
∗
1u1−R∗2u2 , u1, u2 ≥ 0, (3.7)
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where Kij’s, R∗1 and R∗2 are positive constants. Specifically, one can take R∗k = min(Rk, αk, βk) for
k = 1, 2. Consequently, γ is a Schwartz function.

Now we have the necessary ingredients to state the following lemma. Its proof is quite technical and
delegated to Appendix A.2.

Lemma 4 (Bound showing ψand is a Schwartz function) Under Assumptions 1-3, for any given
i, j ∈ N0 one has∣∣∣∣∣ ∂i+j

∂ui1∂u
j
2

ψand(u1, u2)

∣∣∣∣∣ ≤ Hij(u1 + 1)i+j(u2 + 1)i+je−R
∗∗
1 u1−R∗∗2 u2 , u1, u2 ≥ 0, (3.8)

where Hij’s, R∗∗1 and R∗∗2 are positive constants. Specifically, one can take R∗∗k = min(rk, αk, βk) for
k = 1, 2. Consequently, ψand is a Schwartz function.

Remark 1 Note that both the classes of combinations of exponentials and Erlang mixtures satisfy
Assumption 2, and can be used to model the dedicated claim amounts {Yi,k}∞k=1 for business line i
(i = 1, 2). For a combination of exponentials, the density is

fi(x) =

ni∑
j=1

qijνije
−νijx, x ≥ 0, (3.9)

where νij ’s are positive (and distinct, without loss of generality) and qij ’s are non-zero such that∑ni
j=1 qij = 1. On the other hand, a mixed Erlang distribution has density

fi(x) =

ni∑
j=1

qj
νjxj−1e−νx

(j − 1)!
, x ≥ 0,

where ν > 0, and {qj}nij=1 constitute a probability mass function. These two classes are known to be dense
in the set of positive continuous distributions. Regarding the simultaneous claims of the two business
lines, Assumption 3 is satisfied by the class of bivariate mixed Erlang distributions. This class is dense
in the set of positive continuous bivariate distributions and has joint density

g12(x1, x2) =

m1∑
i=1

m2∑
j=1

ωij
νi1x

i−1
1 e−ν1x1

(i− 1)!

νj2x
j−1
2 e−ν2x2

(j − 1)!
, x1, x2 ≥ 0,

where ν1, ν2 > 0 and ωij ’s form a bivariate probability mass function. Interested readers are referred
to e.g. Dufresne (2007), Willmot and Woo (2007, 2015), Lee and Lin (2010, 2012) for the nice analytic
properties and fitting of the afore-mentioned classes of distributions. In Section 4 we shall provide another
class of joint distributions in terms of a copula that satisfies Assumption 3. �

3.3 An exact formula for ψand

Since the claim densities f1 and f2 are square-integrable (as implied by (3.5) in Assumption 2), they
admit the Laguerre series representation (2.2) with Laguerre coefficients {Θf1,k}∞k=0 and {Θf2,k}∞k=0 com-
putable via (2.3). Moreover, with g12, γ, ψand ∈ C∞↓ (R2

+) under Assumptions 1-3, these functions can be
represented in the form of (2.4). Because the claim density g12 arising from common shocks is known
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and γ defined in (3.3) is also expressed in terms of known functions (including the univariate ruin prob-
abilities), their Laguerre coefficients {Θg12,m,n}∞m,n=0 and {Θγ,m,n}∞m,n=0 can be evaluated via (2.5). On
the other hand, for the bivariate Laguerre series of the joint ruin probability

ψand(u1, u2) =
∞∑
m=0

∞∑
n=0

Θψand,m,n ϕm(u1)ϕn(u2), u1, u2 ≥ 0, (3.10)

the Laguerre coefficients {Θψand,m,n}∞m,n=0 are unknown and need to be determined. As we have shown
that all the functions involved in the PIDE are Schwartz functions under Assumptions 1-3, this can be
done by applying the three properties in Section 2 to the PIDE (3.2) followed by matching the coefficients
of ϕm(u1)ϕn(u2). With the obvious notation one has that

c1Θψand,1′,m,n + c2Θψand,2′,m,n − (λ1 + λ2 + λ12)Θψand,m,n + λ1Θψand,1∗f1,m,n + λ2Θψand,2∗f2,m,n + λ12Θψand∗g12,m,n

= Θγ,m,n, m, n ∈ N0.

The above relation is also true for the Laguerre sharp coefficients, i.e.

c1Θ#
ψand,1′,m,n

+ c2Θ#
ψand,2′,m,n

− (λ1 + λ2 + λ12)Θ#
ψand,m,n

+ λ1Θ#
ψand,1∗f1,m,n + λ2Θ#

ψand,2∗f2,m,n + λ12Θ#
ψand∗g12,m,n

= Θ#
γ,m,n, m, n ∈ N0.

The equation is written down explicitly according to four cases below.

1. m = 0 and n = 0:(
−c1 + c2

2
− (λ1 + λ2 + λ12) + λ1Θf1,0 + λ2Θf2,0 + λ12Θg12,0,0

)
Θψand,0,0 − c1

∞∑
i=1

Θψand,i,0 − c2

∞∑
j=1

Θψand,0,j

= Θγ,0,0. (3.11)

2. m = 0 and n ≥ 1:(
−c1 + c2

2
− (λ1 + λ2 + λ12) + λ1Θf1,0

)
Θψand,0,n +

(
c1 + c2

2
+ (λ1 + λ2 + λ12)− λ1Θf1,0

)
Θψand,0,n−1

+

n∑
j=0

(λ2Θ#
f2,n−j + λ12Θ#

g12,0,n−j)(Θψand,0,j −Θψand,0,j−1)− c1

∞∑
i=1

Θψand,i,n + c1

∞∑
i=1

Θψand,i,n−1

= Θγ,0,n −Θγ,0,n−1. (3.12)

3. m ≥ 1 and n = 0:(
c1 − c2

2
− (λ1 + λ2 + λ12) + λ2Θf2,0

)
Θψand,m,0 +

(
c1 + c2

2
+ (λ1 + λ2 + λ12)− λ2Θf2,0

)
Θψand,m−1,0

+
m∑
i=0

(λ1Θ#
f1,m−i + λ12Θ#

g12,m−i,0)(Θψand,i,0 −Θψand,i−1,0)− c2

∞∑
j=1

Θψand,m,j + c2

∞∑
j=1

Θψand,m−1,j

= Θγ,m,0 −Θγ,m−1,0. (3.13)

4. m ≥ 1 and n ≥ 1:

c1

2
(Θψand,m,n + Θψand,m−1,n −Θψand,m,n−1 −Θψand,m−1,n−1)
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+
c2

2
(Θψand,m,n + Θψand,m,n−1 −Θψand,m−1,n −Θψand,m−1,n−1)

− (λ1 + λ2 + λ12)(Θψand,m,n −Θψand,m−1,n −Θψand,m,n−1 + Θψand,m−1,n−1)

+ λ1

m∑
k=0

Θ#
f1,m−k(Θψand,k,n −Θψand,k−1,n −Θψand,k,n−1 + Θψand,k−1,n−1)

+ λ2

n∑
k=0

Θ#
f2,n−k(Θψand,m,k −Θψand,m−1,k −Θψand,m,k−1 + Θψand,m−1,k−1)

+ λ12

m∑
i=0

n∑
j=0

Θ#
g12,m−i,n−j(Θψand,i,j −Θψand,i−1,j −Θψand,i,j−1 + Θψand,i−1,j−1)

= Θγ,m,n −Θγ,m−1,n −Θγ,m,n−1 + Θγ,m−1,n−1. (3.14)

We summarize the results in the following proposition.

Proposition 1 (Ruin probability ψand) Under Assumptions 1-3, the exact solution to ψand is given
by (3.10), where the Laguerre coefficients {Θψand,m,n}∞m,n=0 are the solution of the (countably infinite)
linear system of equations consisting of (3.11)-(3.14). Here {Θf1,k}∞k=0, {Θf2,k}∞k=0 and {Θg12,m,n}∞m,n=0

are the Laguerre coefficients of the claim densities, and {Θγ,m,n}∞m,n=0 are the Laguerre coefficients of
the known function (3.3).

Although the above result is exact, for the purposes of implementation we need to proceed by trun-
cating (3.10) and writing

ψ̃and(u1, u2) =

M∑
m=0

N∑
n=0

Θ̃ψand,m,n ϕm(u1)ϕn(u2), (3.15)

where Θ̃ψand,m,n’s are solved from a truncated version of the system (3.11)-(3.14) (i.e. the upper limits
of the summation over i and j in (3.11)-(3.13) are replaced by M and N respectively). In particular,
the truncated system consists of a total of (M + 1)(N + 1) equations: we get 1 equation from (3.11); N
equations from (3.12) (i.e. m = 0;n = 1, 2, . . . , N); M equations from (3.13) (i.e. m = 1, 2, . . . ,M ;n = 0);
and MN equations from (3.14) (i.e. m = 1, 2, . . . ,M ;n = 1, 2, . . . , N). This results in an approximation
where the performance improves as M and N increase. It is important to note that once the coefficients
{Θ̃ψand,m,n : 0 ≤ m ≤ M ; 0 ≤ n ≤ N} have been obtained for a given pair of (M,N), the approximation

(3.15) is valid for all u1, u2 ≥ 0. This greatly facilitates the plotting of ψ̃and(u1, u2) and can be convenient
for optimization with respect to u1 and/or u2 (see Section 4.3).

3.4 A note on scaling

As in the case of univariate Laguerre expansion, the number of terms required for the bivariate series to
converge depends on the unit used. In our case, each Laguerre series is expanded as a function of the
surplus level which is measured in monetary units. Suppose that the surplus levels of business lines 1
and 2 are measured in the same unit of s. For example, s may represent 1,000,000 if money is quoted in
millions, or s may mean 1 AUD if money is expressed in terms of Australian dollars. If we change the
unit of line i to s∗i , the resulting surplus process will be denoted by {U∗i (t)}t≥0. Such a surplus process
then has initial surplus u∗i = uis/s

∗
i and premium rate c∗i = cis/s

∗
i . Moreover, if the scale parameters

of Yi,k and Zi,k are µY1 and µZ1 respectively, then the surplus process {U∗i (t)}t≥0 has claim amounts

12



Y ∗i,k = Yi,ks/s
∗
i and Z∗i,k = Zi,ks/s

∗
i with respective scale parameters µY ∗1 = µY1s/s

∗
i and µZ∗1 = µZ1s/s

∗
i .

In addition, the marginal density fi is scaled to give f∗i (x) = (s∗i /s)fi((s
∗
i /s)x) for i = 1, 2 and the joint

density g12 is replaced by g∗12(x1, x2) = (s∗1s
∗
2/s

2)g12((s∗1/s)x1, (s
∗
2/s)x2). Then the ruin probability ψand

of the original bivariate process {(U1(t), U2(t))}t≥0 is linked to the ruin probability ψ∗and of the rescaled
bivariate process {(U∗1 (t), U∗2 (t))}t≥0 as ψand(u1, u2) = ψ∗and(u∗1, u

∗
2). When approximating ψ∗and(u∗1, u

∗
2)

using truncation at (M∗, N∗) (in the same way as in (3.15)), some numerical tests can be done and s∗1 and
s∗2 can be manually selected (via a trial-and-error approach) such that the series converges fast already
for small values of M∗ and N∗. To get a feeling of what s∗1 and s∗2 should approximately be, one can
first develop f∗1 , f∗2 and g∗12 on the Laguerre basis under different choices of s∗1 and s∗2 and check the
number of terms required for their series to converge satisfactorily. This can help rule out pairs of s∗1 and
s∗2 that are likely to require unreasonably large values of M∗ and N∗ for ψ∗and(u∗1, u

∗
2) to converge. Then,

the same check can be performed for the univariate ruin probabilities ψ∗1 and ψ∗2 concerning the scaled
univariate processes {U∗1 (t)}t≥0 and {U∗2 (t)}t≥0 and subsequently for γ∗ (which is the corresponding γ in
(3.3) for the process {(U∗1 (t), U∗2 (t))}t≥0 and depends on ψ∗1 and ψ∗2), leading to reasonably good choices
of s∗1 and s∗2.

4 A numerical illustration

4.1 FGM copula for common shocks

To apply Proposition 1, we require the Laguerre coefficients {Θf1,k}∞k=0, {Θf2,k}∞k=0, {Θg12,m,n}∞m,n=0 and
{Θγ,m,n}∞m,n=0. In this entire Section 4, it will be assumed that the claim amounts dedicated to line i
(i = 1, 2) are distributed as a combination of exponentials with density (3.9). In that case, the evaluation
of the Laguerre coefficients relies on the fact that the Laplace transform of the Laguerre function (2.1)
has the pleasant form ∫ ∞

0
e−axϕk(x) dx =

(
a− 1

2

)k(
a+ 1

2

)k+1
, <(a) ≥ 0. (4.1)

(Cf. Keilson and Nunn (1979, Equation (1.8).) Therefore, by virtue of (2.3) and (4.1), the Laguerre
coefficients of fi can be obtained as

Θfi,k =

ni∑
j=1

qijνij

(
νij − 1

2

)k(
νij + 1

2

)k+1
.

The simultaneous claims arising from common shocks are also assumed to be combinations of exponentials
within each line of business. For i = 1, 2, similar to (3.9) the marginal density of Zi,k is correspondingly

gi(x) =

mi∑
j=1

q∗ijηije
−ηijx, x ≥ 0, (4.2)

where ηij ’s are positive and distinct, and q∗ij ’s are non-zero with
∑mi

j=1 q
∗
ij = 1. The dependency between

these claim amounts across the two lines are modelled by a Farlie-Gumbel-Morgenstern (FGM) copula
of the form

C(x1, x2) = x1x2 + ωx1x2(1− x1)(1− x2), 0 ≤ x1, x2 ≤ 1, (4.3)

with correspodning copula density c(x1, x2) = (∂2/∂x1∂x2)C(x1, x2) = 1 + ω(1− 2x1)(1− 2x2) (see e.g.
Nelsen (2006)). Here ω is the dependence parameter satisfying −1 ≤ ω ≤ 1, and the Kendall’s tau
and Spearman’s rho of the FGM copula are 2ω/9 and ω/3 respectively. The use of a copula to model
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dependence is particularly useful for numerical demonstration because one can easily alter the degree of
dependence while keeping the marginal distributions fixed, and therefore any change of the results can be
attributed to the effect of dependence. Interested readers are also referred to e.g. Cossette et al. (2010,
2013) and Bargès et al. (2011) for applications of the FGM copula in risk theory.

Denoting the survival function corresponding to gi by Gi, under the FGM copula the joint density of
(Z1,k, Z2,k) is given by

g12(x1, x2)

= c(1−G1(x1), 1−G2(x2))g1(x1)g2(x2)

= g1(x1)g2(x2) + ω[2G1(x1)g1(x1)− g1(x1)][2G2(x2)g2(x2)− g2(x2)]

=

(
m1∑
i=1

q∗1iη1ie
−η1ix1

)(
m2∑
k=1

q∗2kη2ke
−η2kx2

)

+ ω

2

m1∑
i=1

m1∑
j=1

q∗1iq
∗
1jη1ie

−(η1i+η1j)x1 −
m1∑
i=1

q∗1iη1ie
−η1ix1

(2

m2∑
k=1

m2∑
l=1

q∗2kq
∗
2lη2ke

−(η2k+η2l)x2 −
m2∑
k=1

q∗2kη2ke
−η2kx2

)
.

Thus, with the help of (2.5) and (4.1), the Laguerre coefficients of g12 can be evaluated explicitly as

Θg12,m,n =

(
m1∑
i=1

q∗1iη1i

(
η1i − 1

2

)m(
η1i + 1

2

)m+1

)(
m2∑
k=1

q∗2kη2k

(
η2k − 1

2

)n(
η2k + 1

2

)n+1

)

+ ω

2

m1∑
i=1

m1∑
j=1

q∗1iq
∗
1jη1i

(
η1i + η1j − 1

2

)m(
η1i + η1j + 1

2

)m+1 −
m1∑
i=1

q∗1iη1i

(
η1i − 1

2

)m(
η1i + 1

2

)m+1


×

(
2

m2∑
k=1

m2∑
l=1

q∗2kq
∗
2lη2k

(
η2k + η2l − 1

2

)n(
η2k + η2l + 1

2

)n+1 −
m2∑
k=1

q∗2kη2k

(
η2k − 1

2

)n(
η2k + 1

2

)n+1

)
.

Next, we would like to calculate the Laguerre coefficients {Θγ,m,n}∞m,n=0 pertaining to the function
γ defined in (3.3). To this end, we require the univariate ruin probabilities ψ1 and ψ2. Under (3.9) and
(4.2), it is easily seen from (1.1) that the claim density hi for business line i (when viewed as a univariate
risk process) still remains a combination of exponentials. However, the number of distinct exponential
terms in the combintation depends on whether some {νij}nij=1 overlap with {ηij}mij=1. Suppose that, for
fixed i = 1, 2, there are si distinct values in the set containing {νij}nij=1 and {ηij}mij=1. From Dufresne and
Gerber (1988), the univariate ruin probability can be represented as

ψi(u) =

si∑
j=1

Vije
−κiju, u ≥ 0, (4.4)

where {−κij}sij=1 are the roots of the Lundberg equation with negative real parts (which are typically

distinct), and {Vij}sij=1 are constants that can be evaluated explicitly. The roots {−κij}sij=1 are known

to be distinct from {νij}nij=1 and {ηij}mij=1. Then, one can proceed to evaluate (3.3) and apply (2.5) and

(4.1) to get Θγ,m,n. Assuming that, for fixed b = 1, 2, none of {κba}sba=1 coincide with {ηbi + ηbj}mbi,j=1, we
omit the straightforward details to arrive at

Θγ,m,n
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=− λ1

(
n1∑
i=1

q1i

(
ν1i − 1

2

)m(
ν1i + 1

2

)m+1

) s2∑
j=1

V2j

(
κ2j − 1

2

)n(
κ2j + 1

2

)n+1

− λ2( s1∑
l=1

V1l

(
κ1l − 1

2

)m(
κ1l + 1

2

)m+1

)(
n2∑
k=1

q2k

(
ν2k − 1

2

)n(
ν2k + 1

2

)n+1

)

− λ12
s1∑
a=1

V1a

{[
m1∑
i=1

q∗1iη1i

η1i − κ1a

( (
κ1a − 1

2

)m(
κ1a + 1

2

)m+1
−

(
η1i − 1

2

)m(
η1i + 1

2

)m+1

)](
m2∑
k=1

q∗2k

(
η2k − 1

2

)n(
η2k + 1

2

)n+1

)

+ ω

2

m1∑
i=1

m1∑
j=1

q∗1iq
∗
1jη1i

η1i + η1j − κ1a

( (
κ1a − 1

2

)m(
κ1a + 1

2

)m+1
−

(
η1i + η1j − 1

2

)m(
η1i + η1j + 1

2

)m+1

)
−
m1∑
i=1

q∗1iη1i

η1i − κ1a

( (
κ1a − 1

2

)m(
κ1a + 1

2

)m+1
−

(
η1i − 1

2

)m(
η1i + 1

2

)m+1

)
×
[

2

m2∑
k=1

m2∑
l=1

q∗2kq
∗
2lη2k

η2k + η2l

(
η2k + η2l − 1
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We now have all components in the linear system (3.11)-(3.14), so that Proposition 1 and the subse-
quent comments regarding truncation can be applied to approximate ψand by ψ̃and in (3.15).

4.2 Bivariate ruin probabilities and effect of scaling on convergence

In the numerical example, we first assume the Poisson arrival rates λ1 = λ2 = 1 and λ12 = 0.2. For
both business lines (i = 1, 2) the dedicated claim amounts {Yi,k}∞k=1 are assumed to be exponential with
density

fi(x) = 5e−5x, x ≥ 0,

so that the mean is 0.2 and the variance is 0.04 (with a coefficient of variation of 1). For common shocks,
the resulting claim amounts {Z1,k}∞k=1 and {Z2,k}∞k=1 of the two lines follow the marginal densities

g1(x) = 2

(
3

2
e−

3
2
x

)
+ (−1)

(
3e−3x

)
, x ≥ 0,

g2(x) =
1

3

(
1

2
e−

1
2
x

)
+

2

3

(
2e−2x

)
, x ≥ 0,

which are of the form (4.2). Thus, Z1,k and Z2,k have the same mean of 1 but possess different variances
of 0.56 and 2 respectively (implying respective coefficients of variation of 0.75 and 1.41). Assuming that
the security loading factors for business lines 1 and 2 are θ1 = 0.1 and θ2 = 0.2, the premium rates are
calculated to be c1 = 0.44 and c2 = 0.48. Note that under the above setting, common shocks occur
less frequently than claims dedicated to specific lines but produce larger claims on average. Moreover,
a higher security loading is applied for line 2 which faces claims with higher variability when a common
shock strikes. Regarding the dependence between Z1,k and Z2,k, three cases of the FGM copula (4.3) will
be considered, namely (i) ω = −1; (ii) ω = 0; and (iii) ω = 1, which correspond to negative dependence,
independence and positive dependence respectively.
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s/s∗1 = s/s∗2 = 1 s/s∗1 = s/s∗2 = 1/3 s/s∗1 = s/s∗2 = 3

ψand(2, 2) N∗ = 10 N∗ = 20 N∗ = 30 N∗ = 40 N∗ = 50 N∗ = 10 N∗ = 20 N∗ = 30 N∗ = 40 N∗ = 50 N∗ = 10 N∗ = 20 N∗ = 30 N∗ = 40 N∗ = 50

M∗ = 10 0.346166 0.346155 0.346153 0.346153 0.346153 0.342574 0.346365 0.345570 0.345409 0.345462 0.338664 0.343701 0.343837 0.343845 0.343845
M∗ = 20 0.346164 0.346152 0.346150 0.346150 0.346150 0.343615 0.347263 0.346532 0.346367 0.346414 0.339799 0.345772 0.346065 0.346085 0.346085
M∗ = 30 0.346163 0.346151 0.346149 0.346149 0.346149 0.343355 0.347021 0.346280 0.346116 0.346164 0.339835 0.345819 0.346121 0.346144 0.346145
M∗ = 40 0.346162 0.346151 0.346149 0.346149 0.346149 0.343265 0.346953 0.346205 0.346040 0.346089 0.339839 0.345823 0.346126 0.346148 0.346149
M∗ = 50 0.346162 0.346151 0.346149 0.346149 0.346149 0.343289 0.346974 0.346227 0.346061 0.346111 0.339839 0.345823 0.346125 0.346148 0.346149

Table 1: Approximated values of ψand(2, 2) for selected (M∗, N∗) when ω = −1

s/s∗1 = s/s∗2 = 1 s/s∗1 = s/s∗2 = 1/3 s/s∗1 = s/s∗2 = 3

ψand(2, 2) N∗ = 10 N∗ = 20 N∗ = 30 N∗ = 40 N∗ = 50 N∗ = 10 N∗ = 20 N∗ = 30 N∗ = 40 N∗ = 50 N∗ = 10 N∗ = 20 N∗ = 30 N∗ = 40 N∗ = 50

M∗ = 10 0.360181 0.360178 0.360176 0.360176 0.360176 0.357045 0.360407 0.359678 0.359530 0.359581 0.351460 0.357344 0.357499 0.357507 0.357507
M∗ = 20 0.360175 0.360173 0.360171 0.360171 0.360171 0.357972 0.361206 0.360539 0.360385 0.360430 0.352605 0.359689 0.360070 0.360096 0.360097
M∗ = 30 0.360174 0.360172 0.360170 0.360170 0.360170 0.357717 0.360972 0.360295 0.360143 0.360188 0.352641 0.359737 0.360133 0.360164 0.360165
M∗ = 40 0.360174 0.360172 0.360170 0.360170 0.360170 0.357628 0.360904 0.360221 0.360067 0.360114 0.352646 0.359742 0.360137 0.360168 0.360170
M∗ = 50 0.360174 0.360172 0.360170 0.360170 0.360170 0.357650 0.360923 0.360241 0.360088 0.360134 0.352645 0.359741 0.360137 0.360168 0.360170

Table 2: Approximated values of ψand(2, 2) for selected (M∗, N∗) when ω = 0

s/s∗1 = s/s∗2 = 1 s/s∗1 = s/s∗2 = 1/3 s/s∗1 = s/s∗2 = 3

ψand(2, 2) N∗ = 10 N∗ = 20 N∗ = 30 N∗ = 40 N∗ = 50 N∗ = 10 N∗ = 20 N∗ = 30 N∗ = 40 N∗ = 50 N∗ = 10 N∗ = 20 N∗ = 30 N∗ = 40 N∗ = 50

M∗ = 10 0.375049 0.375058 0.375056 0.375056 0.375056 0.372398 0.375287 0.374629 0.374494 0.374542 0.364944 0.371787 0.371962 0.371970 0.371970
M∗ = 20 0.375039 0.375048 0.375046 0.375046 0.375046 0.373219 0.376001 0.375402 0.375260 0.375302 0.366073 0.374435 0.374927 0.374961 0.374962
M∗ = 30 0.375039 0.375048 0.375046 0.375046 0.375046 0.372967 0.375776 0.375166 0.375026 0.375069 0.366110 0.374484 0.374996 0.375038 0.375041
M∗ = 40 0.375039 0.375048 0.375046 0.375046 0.375046 0.372877 0.375707 0.375092 0.374951 0.374994 0.366114 0.374489 0.375001 0.375044 0.375046
M∗ = 50 0.375039 0.375048 0.375046 0.375046 0.375046 0.372898 0.375725 0.375111 0.374969 0.375013 0.366114 0.374488 0.375001 0.375043 0.375046

Table 3: Approximated values of ψand(2, 2) for selected (M∗, N∗) when ω = 1

As discussed in Section 3.4, the above notation implicitly assumes that a certain monetary unit, say
s, is applied to the two business lines. One may want to check whether the use of different monetary units
can make the bivariate Laguerre series (3.15) converge with a smaller number of terms. For illustrative
purposes, we shall consider three sets of monetary units (s∗1, s

∗
2) such that (i) s/s∗1 = s/s∗2 = 1 (i.e.

without scaling); (ii) s/s∗1 = s/s∗2 = 1/3; and (iii) s/s∗1 = s/s∗2 = 3. The number of terms required for the
series to converge will be examined. Tables 1-3 show the approximated values of ψand(2, 2) rounded to six
decimal places for various pairs of (M∗, N∗) (which are the truncation points in (3.15) but for the scaled
process) under three different dependence parameters respectively. Starting with Table 1 (ω = −1), we
first look at the scaling s/s∗1 = s/s∗2 = 1 and observe that the approximated ruin probability converges
when (i) N∗ increases across a row (keeping M∗ fixed); and (ii) M∗ increases down a column (keeping N∗

fixed). In particular, the use of (M∗, N∗) = (30, 30) leads to converging result of 0.346149 that is correct
up to at least six decimal places. It is noteworthy that (M∗, N∗) = (10, 10) is sufficient to produce a
satisfactory result of 0.346166 correct at the third decimal, which is arguably good enough for decision
making purposes. In contrast, when the scaling s/s∗1 = s/s∗2 is chosen to be 1/3 or 3, a larger number
of terms is needed for the series to converge. Specifically, when s/s∗1 = s/s∗2 = 1/3, the ruin probability
does not fully converge even when (M∗, N∗) = (50, 50), and this appears to be the worst option among
the three choices of scaling factors as far as convergence is concerned. When s/s∗1 = s/s∗2 = 3, accuracy
at the sixth decimal place is achieved with the truncation points (M∗, N∗) = (40, 50). Such performance
is still good but not as superior as that produced by s/s∗1 = s/s∗2 = 1. Nevertheless, the above results
demonstrate that it can be important to take into account scaling during computation. Moving to Table
2 (ω = 0) and Table 3 (ω = 1), similar pattern can be observed such that s/s∗1 = s/s∗2 = 1 leads to
the best convergence results. Comparing across Tables 1-3, the number of terms required for a given
accuracy is insensitive to the dependence parameter ω of the FGM copula. This intuitively makes sense
because ω is unitless.
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ψand(u1, u2) u2 = 0 u2 = 2 u2 = 4 u2 = 6 u2 = 8 u2 = 10

u1 = 0 0.768375 0.472728 0.337113 0.241968 0.173667 0.124595
u1 = 2 0.534529 0.346149 0.252221 0.184192 0.134135 0.097431
u1 = 4 0.375081 0.250588 0.185965 0.137953 0.101872 0.074922
u1 = 6 0.262287 0.178943 0.134757 0.101321 0.075769 0.056381
u1 = 8 0.183091 0.126778 0.096574 0.073427 0.055511 0.041742
u1 = 10 0.127675 0.089382 0.068703 0.052716 0.040223 0.030525

Table 4: Values of ψand(u1, u2) for selected (u1, u2) when ω = −1

ψand(u1, u2) u2 = 0 u2 = 2 u2 = 4 u2 = 6 u2 = 8 u2 = 10

u1 = 0 0.771137 0.477053 0.340563 0.244614 0.175656 0.126072
u1 = 2 0.541171 0.360170 0.264642 0.194333 0.142091 0.103524
u1 = 4 0.380708 0.264254 0.199266 0.149538 0.111418 0.082522
u1 = 6 0.266610 0.190161 0.146355 0.111916 0.084850 0.063854
u1 = 8 0.186292 0.135403 0.105855 0.082207 0.063273 0.048310
u1 = 10 0.130003 0.095805 0.075808 0.059615 0.046473 0.035934

Table 5: Values of ψand(u1, u2) for selected (u1, u2) when ω = 0

ψand(u1, u2) u2 = 0 u2 = 2 u2 = 4 u2 = 6 u2 = 8 u2 = 10

u1 = 0 0.774192 0.481611 0.344037 0.247185 0.177533 0.127432
u1 = 2 0.548281 0.375046 0.277508 0.204590 0.149961 0.109429
u1 = 4 0.386447 0.278507 0.213201 0.161614 0.121277 0.090281
u1 = 6 0.270898 0.201657 0.158491 0.123105 0.094463 0.071752
u1 = 8 0.189414 0.144120 0.115517 0.091523 0.071605 0.055405
u1 = 10 0.132247 0.102230 0.083165 0.066942 0.053233 0.041862

Table 6: Values of ψand(u1, u2) for selected (u1, u2) when ω = 1

Since the scaling s/s∗1 = s/s∗2 = 1 leads to superior performance in terms of convergence, this will be
applied in the remainder of our numerical illustration. To ensure the ruin probability values ψand(u1, u2)
are of high accuracy, we shall apply the truncation points (M∗, N∗) = (50, 50) for the rest of the paper.
Tables 4-6 show the resulting values for various pairs of (u1, u2) when ω = −1, 0, 1 respectively, and all
these values have converged up to at least six decimal places (upon checking against results calculated
using larger values of M∗ and N∗). As expected, within each of these tables, the ruin probability
ψand(u1, u2) is decreasing in the initial surplus levels u1 and u2. Meanwhile, for a fixed pair of (u1, u2),
comparing across Tables 4-6 reveals that ψand(u1, u2) increases as the dependence parameter ω increases
from −1 to 0 and then to 1. This can be explained intuitively as follows. When ω > 0 (resp. ω < 0),
the claims Z1,k and Z2,k incurred by the two business lines as a result of the k-th common shock are
positively (resp. negatively) dependent, implying there is a higher (resp. lower) chance that both lines
face large claims and experience ruin. Thus, ψand(u1, u2) is larger when ω = 1 and smaller when ω = −1,
with the independent case ω = 0 lying between these two cases. We have also further tested the accuracy
of our algorithm using larger values of u1 and u2 with (u1, u2) = (20, 20), (30, 30), (40, 40), and the
results presented in Table 7 are correct up to at least six significant figures. It is confirmed that the
use of (M∗, N∗) = (50, 50) in our approach works uniformly well at least for 0 ≤ u1, u2 ≤ 40 in this
example. For larger pairs of initial surplus levels like (u1, u2) = (50, 50), the ruin probability ψand(u1, u2)
is essentially zero at the sixth decimal place.

Next, we shall use the exact univariate ruin probability (4.4) for i = 1, 2 and utilize the relation (1.2)
to calculate the bivariate ruin probability ψor(u1, u2), and the results are summarized in Tables 8-10.
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ψand(u1, u2) (u1, u2) = (20, 20) (u1, u2) = (30, 30) (u1, u2) = (40, 40)

ω = −1 0.00158443 0.0000845617 0.00000457669
ω = 0 0.00220892 0.000140694 0.00000912874
ω = 1 0.00299008 0.000222413 0.0000169034

Table 7: Values of ψand(u1, u2) for larger (u1, u2)

Again, ψor(u1, u2) is decreasing in both u1 and u2. However, as opposed to the analysis of ψand(u1, u2), it
is noted that (for fixed (u1, u2)) the ruin probability ψor(u1, u2) decreases in ω. Indeed, when the claims
arising from a given common shock are negatively dependent, it is more likely that the claim amounts go
in the opposite direction. This in turn means there is less chance that the claims in both lines are small,
resulting in a higher ruin probability ψor(u1, u2) (which takes into account sample paths for which line 1
or line 2 ruins).

ψor(u1, u2) u2 = 0 u2 = 2 u2 = 4 u2 = 6 u2 = 8 u2 = 10

u1 = 0 0.974050 0.940777 0.930242 0.923410 0.918854 0.915784
u1 = 2 0.915816 0.775277 0.723056 0.689108 0.666307 0.650869
u1 = 4 0.887277 0.682850 0.601324 0.547359 0.510581 0.485390
u1 = 6 0.869346 0.623771 0.521808 0.453267 0.405960 0.373207
u1 = 8 0.857650 0.585043 0.469099 0.390268 0.335326 0.296953
u1 = 10 0.849869 0.559242 0.433773 0.347782 0.287417 0.244973

Table 8: Values of ψor(u1, u2) for selected (u1, u2) when ω = −1

ψor(u1, u2) u2 = 0 u2 = 2 u2 = 4 u2 = 6 u2 = 8 u2 = 10

u1 = 0 0.971287 0.936451 0.926793 0.920764 0.916864 0.914306
u1 = 2 0.909175 0.761256 0.710636 0.678968 0.658351 0.644776
u1 = 4 0.881650 0.669184 0.588022 0.535774 0.501035 0.477790
u1 = 6 0.865024 0.612553 0.510210 0.442672 0.396880 0.365734
u1 = 8 0.854449 0.576418 0.459818 0.381489 0.327564 0.290386
u1 = 10 0.847541 0.552819 0.426668 0.340883 0.281167 0.239564

Table 9: Values of ψor(u1, u2) for selected (u1, u2) when ω = 0

ψor(u1, u2) u2 = 0 u2 = 2 u2 = 4 u2 = 6 u2 = 8 u2 = 10

u1 = 0 0.968232 0.931893 0.923319 0.918193 0.914987 0.912947
u1 = 2 0.902065 0.746380 0.697769 0.668710 0.650480 0.638872
u1 = 4 0.875910 0.654931 0.574088 0.523698 0.491176 0.470031
u1 = 6 0.860735 0.601057 0.498074 0.431483 0.387266 0.357836
u1 = 8 0.851327 0.567701 0.450155 0.372172 0.319232 0.283291
u1 = 10 0.845296 0.546394 0.419311 0.333556 0.274406 0.233636

Table 10: Values of ψor(u1, u2) for selected (u1, u2) when ω = 1

4.3 A capital allocation problem

If the two business lines with surplus processes {U1(t)}t≥0 and {U2(t)}t≥0 belong to the same company,
then the formulas for ψand and ψor can also be used to analyze a capital allocation problem, see e.g. Gong
et al. (2012, Section 6.3). Concretely, one can identify the best split of a capital amount u∗ between the
two lines so as to minimize a bivariate ruin probability. In this subsection, we shall minimize ψor(u1, u2)
with respect to u1 ≥ 0 and u2 ≥ 0 subject to the constraint u1 + u2 = u∗ (see Remark 2 for discussion
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Figure 1: Plot of ψor(u1, u
∗ − u1) against u1 for ω = −1 and λ12 = 0.2

u∗ = 5 u∗ = 10 u∗ = 15 u∗ = 20

ω = −1 3.055 (61.11%) 5.580 (55.80%) 8.005 (53.37%) 10.423 (52.12%)
0.723676 0.519907 0.360336 0.244203

ω = 0 3.041 (60.81%) 5.558 (55.58%) 7.981 (53.21%) 10.399 (52.99%)
0.709365 0.508019 0.352024 0.238867

ω = 1 3.024 (60.49%) 5.533 (55.33%) 7.954 (53.03%) 10.373 (51.86%)
0.694293 0.495530 0.343136 0.233015

Table 11: Optimal u1, ratio of optimal u1 to u∗ (in parentheses) and minimized ψor(u1, u
∗ − u1) (in

boldface) when λ12 = 0.2

on ψand(u1, u2)). This is equivalent to minimizing ψor(u1, u
∗ − u1) with respect to u1 in the domain

0 ≤ u1 ≤ u∗.

First, Figure 1 plots ψor(u1, u
∗ − u1) against u1 (for 0 ≤ u1 ≤ u∗) under ω = −1 (i.e. negative

dependence). For each available capital u∗ = 5, 10, 15, 20 to be allocated, it can be seen that, as u1

increases, ψor(u1, u
∗ − u1) first decreases and then increases such that there is a distinctive minimum

ruin probability achieved at an optimal value of u1. The plots of the cases ω = 0 and ω = 1 are almost
identical and are omitted here. Instead, the optimal u1, the ratio of the optimal u1 to the available capital
u∗ and the corresponding minimized ruin probability ψor(u1, u

∗ − u1) when ω = −1, 0, 1 are provided in
Table 11. For each ω and u∗, Table 11 shows that neither business line is allocated significantly more
capital than the other under the optimal allocation. According to the definition of τor, ruin is said to
occur when any of the line is ruined. In general, if significantly more capital is allocated to one line,
although its own probability can be reduced the ruin probability of the other line can be noticeably higher,
leading to a higher bivariate ruin probability ψor(u1, u2). This can also be seen from the simple lower
bound ψor(u1, u2) ≥ max(ψ1(u1), ψ2(u2)) (see e.g. Chan et al. (2003, Equation (2.1))). In our setting,
the insurance portfolios of the two business lines are of very similar size in terms of claim frequencies
and claim amounts, where line 1 has a smaller security loading factor of θ1 = 0.1 compared to line 2’s
θ2 = 0.2. Consequently, it is not surprising that the minimum ψor(u1, u

∗ − u1) is attained when slightly
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more capital is allocated to line 1.

u*=5 u*=10 u*=15 u*=20
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ψor(u1,u*-u1)

Figure 2: Plot of ψor(u1, u
∗ − u1) against u1 for ω = −1 and λ12 = 1

u∗ = 5 u∗ = 10 u∗ = 15 u∗ = 20

ω = −1 3.044 (60.89%) 5.513 (55.13%) 7.928 (52.85%) 10.340 (51.70%)
0.809724 0.650779 0.508052 0.389289

ω = 0 3.024 (60.48%) 5.480 (54.80%) 7.890 (52.60%) 10.301 (51.50%)
0.794778 0.635503 0.494907 0.378926

ω = 1 3.002 (60.03%) 5.446 (54.46%) 7.850 (52.33%) 10.257 (51.28%)
0.778604 0.619197 0.480796 0.367646

Table 12: Optimal u1, ratio of optimal u1 to u∗ (in parentheses) and minimized ψor(u1, u
∗ − u1) (in

boldface) when λ12 = 1

Finally, we consider the situation where λ12 = 1 (instead of λ12 = 0.2) so that common shocks occur
more frequently while keeping all other assumptions on the claims processes unchanged. To maintain the
loading factors for the two lines at θ1 = 0.1 and θ2 = 0.2, the premium rates are updated to c1 = 1.32
and c2 = 1.44. We found that the scaling s/s∗1 = s/s∗2 = 1 applied for the case λ12 = 0.2 remains a good
choice (because λ12 is related to time unit but not monetary unit), and again the use of truncation points
(M∗, N∗) = (50, 50) yields excellent performance. When ω = −1, the results are provided in Figure 2
and Table 12 in the same manner as in Figure 1 and Table 11. For each ω and u∗, we observe that
the optimal values of u1 in Tables 11 and 12 are very close but the minimized values of ψor(u1, u

∗ − u1)
are significantly higher in Table 12. Clearly, the same logic used to explain the allocation of capital
when λ12 = 0.2 is still applicable to the current case of λ12 = 1. To explain the latter observation, it is
important to note that a higher λ12 leads to a higher expected aggregate claim per unit time for both
business lines. Although the premium rates in the present case have been increased accordingly compared
to the case of λ12 = 0.2, the same amount of capital u∗ available for allocation becomes less sufficient to
prevent ruin.

Remark 2 Instead of working with ψor(u1, u
∗ − u1), one may attempt to minimize ψand(u1, u

∗ − u1)
with respect to u1 for 0 ≤ u1 ≤ u∗ as far as capital allocation is concerned. However, it is found that
ψand(u1, u

∗−u1) is typically minimized when u1 is close to zero or u∗, i.e. it is optimal to allocate almost
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all available capital to one of the two lines. This is because ψand only takes into account sample paths
where both business lines ruin, and consequently it is sufficient to ensure that one of the lines survives
with high probability if we would like to minimize ψand, and to do so we simply invest almost everything
in one line. This can also be seen from the obvious upper bound ψand(u1, u2) ≤ min(ψ1(u1), ψ2(u2)). �
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A Appendix

A.1 Proof of Lemma 3: Bounds for | ∂i+j

∂ui1∂u
j
2

γ(u1, u2)| when i, j ∈ N0

We start by rewriting (3.3) as

γ(u1, u2) =− λ1ψ2(u2)F 1(u1)− λ2ψ1(u1)F 2(u2) + λ12

∫ u1

0
ψ1(u1 − y1)

(
∂

∂y1
G12(y1, u2)

)
dy1

+ λ12

∫ u2

0
ψ2(u2 − y2)

(
∂

∂y2
G12(u1, y2)

)
dy2 − λ12G12(u1, u2).

Then for i, j ∈ N0 after some algebra one finds

∂i+j

∂ui1∂u
j
2

γ(u1, u2)

=− λ1ψ
(j)
2 (u2)F

(i)
1 (u1)− λ2ψ

(i)
1 (u1)F

(j)
2 (u2) + λ12

i−1∑
k=0

ψ
(k)
1 (u1)

(
∂i−k+j

∂yi−k1 ∂uj2
G12(y1, u2)

∣∣∣∣
y1=0

)

+ λ12

∫ u1

0
ψ1(u1 − y1)

(
∂i+1+j

∂yi+1
1 ∂uj2

G12(y1, u2)

)
dy1 + λ12

j−1∑
l=0

ψ
(l)
2 (u2)

(
∂i+j−l

∂ui1∂y
j−l
2

G12(u1, y2)

∣∣∣∣
y2=0

)

+ λ12

∫ u2

0
ψ2(u2 − y2)

(
∂i+j+1

∂ui1∂y
j+1
2

G12(u1, y2)

)
dy2 − λ12

∂i+j

∂ui1∂u
j
2

G12(u1, u2). (A.1)
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To bound the above expression, apart from the bounds (3.1), (3.5) and (3.6) from Assumptions 1-3, we
also need bounds on the derivatives of the univariate ruin probabilities ψ1 and ψ2. To this end, Cheung
and Zhang (2021, Lemma 4.1) is applicable if the derivatives of the densities h1 and h2 defined via (1.1)
can be bounded by functions that decay exponentially. This can be readily verified to be true under
Assumptions 2 and 3. For example, for h1 one has that, for any k ∈ N0,

h
(k)
1 (x) = − λ1

λ1 + λ12
F

(k+1)
1 (x)− λ12

λ1 + λ12

∂k+1

∂xk+1
G12(x, 0).

The use of (3.5) and (3.6) leads to the upper bound

|h(k)
1 (x)| ≤

(
λ1

λ1 + λ12
A1,k+1 +

λ12

λ1 + λ12
Bk+1,0

)
e−[min(α1,β1)]x.

Similar bounds are also available for h
(k)
2 . Consequently, from Cheung and Zhang (2021, Lemma 4.1) we

have for i = 1, 2 and any k ∈ N0 that

|ψ(k)
i (u)| ≤ Cik(u+ 1)e−R

∗
i u, u ≥ 0, (A.2)

where Cik > 0 is a constant and we can take R∗i = min(Ri, αi, βi). Utilizing (3.1), (3.5), (3.6) and (A.2),
we can now upper bound (A.1) by∣∣∣∣∣ ∂i+j

∂ui1∂u
j
2

γ(u1, u2)

∣∣∣∣∣
≤ λ1C2j(u2 + 1)e−R

∗
2u2A1ie

−α1u1 + λ2C1i(u1 + 1)e−R
∗
1u1A2je

−α2u2 + λ12

i−1∑
k=0

C1k(u1 + 1)e−R
∗
1u1Bi−k,je

−β2u2

+ λ12

∫ u1

0
e−R1(u1−y1)Bi+1,je

−β1y1−β2u2 dy1 + λ12

j−1∑
l=0

C2l(u2 + 1)e−R
∗
2u2Bi,j−le

−β1u1

+ λ12

∫ u2

0
e−R2(u2−y2)Bi,j+1e

−β1u1−β2y2 dy2 + λ12Bije
−β1u1−β2u2 . (A.3)

Note that the first integral term can be upper bounded by∫ u1

0
e−R1(u1−y1)Bi+1,je

−β1y1−β2u2 dy1 ≤ Bi+1,j

∫ u1

0
e−[min(R1,β1)](u1−y1)e−[min(R1,β1)]y1−β2u2 dy1

= Bi+1,ju1e
−[min(R1,β1)]u1−β2u2 ,

and similarly for the second integral term one has∫ u2

0
e−R2(u2−y2)Bi,j+1e

−β1u1−β2y2 dy2 ≤ Bi,j+1u2e
−β1u1−[min(R2,β2)]u2 .

By incorporating these two inequalities into (A.3) and recalling that R∗k = min(Rk, αk, βk) for k = 1, 2,
one asserts that (3.7) holds true, where one can take

Kij = λ1C2jA1i + λ2C1iA2j + λ12

i−1∑
k=0

C1kBi−k,j + λ12Bi+1,j + λ12

j−1∑
l=0

C2lBi,j−l + λ12Bi,j+1 + λ12Bij .

Note that (3.7) implies that γ is a Schwartz function according to Definition 2(b).
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A.2 Proof of Lemma 4: ψand is a Schwartz function

Part 1: Bounds for | ∂i
∂ui1

ψand(u1, u2)| when i ∈ N0

It is instructive to note that the result of Lemma 2 implies that (3.8) holds true when i = j = 0. We
start the proof by following essentially the same analysis as in Lemma 1, but instead of considering a
small time interval we condition on the first time t when a claim event occurs. This leads to

ψand(u1, u2) =

∫ ∞
0

λ1e
−(λ1+λ2+λ12)t

∫ u1+c1t

0
ψand(u1 + c1t− y1, u2 + c2t)f1(y1) dy1 dt

+

∫ ∞
0

λ2e
−(λ1+λ2+λ12)t

∫ u2+c2t

0
ψand(u1 + c1t, u2 + c2t− y2)f2(y2) dy2 dt

+

∫ ∞
0

λ12e
−(λ1+λ2+λ12)t

∫ u1+c1t

0

∫ u2+c2t

0
ψand(u1 + c1t− y1, u2 + c2t− y2)g12(y1, y2) dy2 dy1 dt

−
∫ ∞

0
e−(λ1+λ2+λ12)tγ(u1 + c1t, u2 + c2t) dt. (A.4)

Our goal here is to express the higher order derivatives in terms of lower order ones by differentiating the
above equation with respect to u1. By a change of variable, we first rewrite the second integral in (A.4)
as ∫ ∞

0
λ2e
−(λ1+λ2+λ12)t

∫ u2+c2t

0
ψand(u1 + c1t, u2 + c2t− y2)f2(y2) dy2 dt

=
λ2

c1

∫ ∞
u1

e
−λ1+λ2+λ12

c1
(x−u1)

∫ u2+
c2
c1

(x−u1)

0
ψand(x, y2)f2

(
u2 +

c2

c1
(x− u1)− y2

)
dy2 dx.

Its first derivative is thus

∂

∂u1

∫ ∞
0

λ2e
−(λ1+λ2+λ12)t

∫ u2+c2t

0
ψand(u1 + c1t, y2)f2(u2 + c2t− y2) dy2 dt

=− λ2

c1

∫ u2

0
ψand(u1, y2)f2(u2 − y2) dy2

+
λ2

c1

∫ ∞
u1

λ1 + λ2 + λ12

c1
e
−λ1+λ2+λ12

c1
(x−u1)

∫ u2+
c2
c1

(x−u1)

0
ψand(x, y2)f2

(
u2 +

c2

c1
(x− u1)− y2

)
dy2 dx

+
λ2

c1

∫ ∞
u1

e
−λ1+λ2+λ12

c1
(x−u1)

(
−c2

c1

)[
ψand

(
x, u2 +

c2

c1
(x− u1)

)
f2(0)

+

∫ u2+
c2
c1

(x−u1)

0
ψand(x, y2)f ′2

(
u2 +

c2

c1
(x− u1)− y2

)
dy2

]
dx

=− λ2

c1

∫ u2

0
ψand(u1, y2)f2(u2 − y2) dy2

+
λ1 + λ2 + λ12

c1

∫ ∞
0

λ2e
−(λ1+λ2+λ12)t

∫ u2+c2t

0
ψand(u1 + c1t, u2 + c2t− y2)f2(y2) dy2 dt

− c2

c1

∫ ∞
0

λ2e
−(λ1+λ2+λ12)t

(
ψand(u1 + c1t, u2 + c2t)f2(0) +

∫ u2+c2t

0
ψand(u1 + c1t, u2 + c2t− y2)f ′2(y2) dy2

)
dt.

Using the above result, differentiating (A.4) leads to

∂

∂u1
ψand(u1, u2)
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=

∫ ∞
0

λ1e
−(λ1+λ2+λ12)t

(
ψand(u1 + c1t, u2 + c2t)f1(0) +

∫ u1+c1t

0
ψand(u1 + c1t− y1, u2 + c2t)f

′
1(y1) dy1

)
dt

− λ2

c1

∫ u2

0
ψand(u1, y2)f2(u2 − y2) dy2

+
λ1 + λ2 + λ12

c1

∫ ∞
0

λ2e
−(λ1+λ2+λ12)t

∫ u2+c2t

0
ψand(u1 + c1t, u2 + c2t− y2)f2(y2) dy2 dt

− c2

c1

∫ ∞
0

λ2e
−(λ1+λ2+λ12)t

(
ψand(u1 + c1t, u2 + c2t)f2(0) +

∫ u2+c2t

0
ψand(u1 + c1t, u2 + c2t− y2)f ′2(y2) dy2

)
dt

+

∫ ∞
0

λ12e
−(λ1+λ2+λ12)t

[∫ u2+c2t

0
ψand(u1 + c1t, u2 + c2t− y2)g12(0, y2) dy2

+

∫ u1+c1t

0

∫ u2+c2t

0
ψand(u1 + c1t− y1, u2 + c2t− y2)

(
∂

∂y1
g12(y1, y2)

)
dy2 dy1

]
dt

−
∫ ∞

0
e−(λ1+λ2+λ12)t

(
∂

∂u1
γ(u1 + c1t, u2 + c2t)

)
dt. (A.5)

Because fi(xi) = −F i(xi) and g12(y1, y2) = ∂2

∂y1∂y2
G12(y1, y2), the right-hand side of the above equation

only consists of functions whose bounds are available from (3.4)-(3.7). It is observed that certain types
of integrals appear repeatedly, and we would like to bound these as, for k ∈ N0,∣∣∣∣∫ ∞

0
e−(λ1+λ2+λ12)t

∫ u1+c1t

0
ψand(u1 + c1t− y1, u2 + c2t)f

(k)
1 (y1) dy1 dt

∣∣∣∣
≤
∫ ∞

0
e−(λ1+λ2+λ12)t

∫ u1+c1t

0
e−r1(u1+c1t−y1)−r2(u2+c2t)A1,k+1e

−α1y1 dy1 dt

≤ A1,k+1

∫ ∞
0

e−(λ1+λ2+λ12)t−r2(u2+c2t)

∫ u1+c1t

0
e−[min(r1,α1)](u1+c1t−y1)e−[min(r1,α1)]y1 dy1 dt

= A1,k+1

∫ ∞
0

e−(λ1+λ2+λ12)t−[min(r1,α1)](u1+c1t)−r2(u2+c2t)(u1 + c1t) dt

≤ D1k(u1 + 1)e−[min(r1,α1)]u1−r2u2 , (A.6)

for some obvious choice of D1k > 0. Similarly, one has for k ∈ N0 that∣∣∣∣∫ ∞
0

e−(λ1+λ2+λ12)t

∫ u2+c2t

0
ψand(u1 + c1t, u2 + c2t− y2)f

(k)
2 (y2) dy2 dt

∣∣∣∣ ≤ D2k(u2+1)e−r1u1−[min(r2,α2)]u2 ,

(A.7)
for some D2k > 0. In addition, we also have, for i ∈ N0,∣∣∣∣∫ ∞

0
e−(λ1+λ2+λ12)t

∫ u1+c1t

0

∫ u2+c2t

0
ψand(u1 + c1t− y1, u2 + c2t− y2)

(
∂i

∂yi1
g12(y1, y2)

)
dy2 dy1 dt

∣∣∣∣
≤
∫ ∞

0
e−(λ1+λ2+λ12)t

∫ u1+c1t

0

∫ u2+c2t

0
e−r1(u1+c1t−y1)−r2(u2+c2t−y2)Bi+1,1e

−β1y1−β2y2 dy2 dy1 dt

≤ Bi+1,1
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0

e−(λ1+λ2+λ12)t

∫ u1+c1t

0

∫ u2+c2t

0
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= Bi+1,1

∫ ∞
0

e−(λ1+λ2+λ12)t−[min(r1,β1)](u1+c1t)−[min(r1,β1)](u2+c2t)(u1 + c1t)(u2 + c2t) dt
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≤ Ei(u1 + 1)(u2 + 1)e−[min(r1,β1)]u1−[min(r2,β2)]u2 , (A.8)

and ∣∣∣∣∫ ∞
0

e−(λ1+λ2+λ12)t

(
∂i

∂ui1
γ(u1 + c1t, u2 + c2t)

)
dt

∣∣∣∣
≤
∫ ∞

0
e−(λ1+λ2+λ12)tKi0(u1 + c1t+ u2 + c2t+ 1)e−R

∗
1(u1+c1t)−R∗2(u2+c2t) dt

= K∗i (u1 + u2 + 1)e−R
∗
1u1−R∗2u2 , (A.9)

for some Ei,K
∗
i > 0. With the help of (3.4) and (A.6)-(A.9), we can upper bound (A.5) as∣∣∣∣ ∂∂u1

ψand(u1, u2)

∣∣∣∣
≤
∫ ∞

0
λ1e
−(λ1+λ2+λ12)te−r1(u1+c1t)−r2(u2+c2t)A11 dt+ λ1D11(u1 + 1)e−[min(r1,α1)]u1−r2u2

+
λ2

c1

∫ u2

0
e−r1u1−r2y2A21e

−α2(u2−y2) dy2 +
λ1 + λ2 + λ12

c1
λ2D20(u2 + 1)e−r1u1−[min(r2,α2)]u2

+
c2

c1

∫ ∞
0

λ2e
−(λ1+λ2+λ12)te−r1(u1+c1t)−r2(u2+c2t)A21 dt+

c2

c1
λ2D21(u2 + 1)e−r1u1−[min(r2,α2)]u2

+

∫ ∞
0

λ12e
−(λ1+λ2+λ12)t

∫ u2+c2t

0
e−r1(u1+c1t)−r2(u2+c2t−y2)B11e

−β2y2 dy2 dt

+ λ12E1(u1 + 1)(u2 + 1)e−[min(r1,β1)]u1−[min(r2,β2)]u2 +K∗1 (u1 + u2 + 1)e−R
∗
1u1−R∗2u2

≤ A11e
−r1u1−r2u2

∫ ∞
0

λ1e
−(λ1+λ2+λ12+r1c1+r2c2)t dt+ λ1D11(u1 + 1)e−[min(r1,α1)]u1−r2u2

+
λ2

c1
A21u2e

−r1u1−[min(r2,α2)]u2 +
λ1 + λ2 + λ12

c1
λ2D20(u2 + 1)e−r1u1−[min(r2,α2)]u2

+
c2

c1
A21e

−r1u1−r2u2
∫ ∞

0
λ2e
−(λ1+λ2+λ12+r1c1+r2c2)t dt+

c2

c1
λ2D21(u2 + 1)e−r1u1−[min(r2,α2)]u2

+ λ12B11

∫ ∞
0

e−(λ1+λ2+λ12)t−r1(u1+c1t)−[min(r2,β2)](u2+c2t)(u2 + c2t) dt

+ λ12E1(u1 + 1)(u2 + 1)e−[min(r1,β1)]u1−[min(r2,β2)]u2 +K∗1 (u1 + u2 + 1)e−R
∗
1u1−R∗2u2

≤ H10(u1 + 1)(u2 + 1)e−R
∗∗
1 u1−R∗∗2 u2 ,

for some H10 > 0, where R∗∗k = min(R∗k, rk, αk, βk) = min(rk, αk, βk) for k = 1, 2 by recalling that
r1 = r2 = min(R1, R2)/2 from Lemma 2 and R∗k = min(Rk, αk, βk) for k = 1, 2 from Lemma 3. Thus
(3.8) is valid when i = 1 and j = 0. Now we would like to show by induction that (3.8) (with j = 0 fixed)
holds true for i = I + 1 by assuming that (3.8) is true for i = 0, 1, . . . , I for some I > 0. Now, we apply

the operator ∂I

∂uI1
to (A.5) to get

∂I+1

∂uI+1
1

ψand(u1, u2)

=

∫ ∞
0

λ1e
−(λ1+λ2+λ12)t

[
I∑

k=0

(
∂k

∂uk1
ψand(u1 + c1t, u2 + c2t)

)
f

(I−k)
1 (0)
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+

∫ u1+c1t

0
ψand(u1 + c1t− y1, u2 + c2t)f

(I+1)
1 (y1) dy1

]
dt

− λ2

c1

∫ u2

0

(
∂I

∂uI1
ψand(u1, y2)

)
f2(u2 − y2) dy2

+
λ1 + λ2 + λ12

c1

∫ ∞
0

λ2e
−(λ1+λ2+λ12)t

∫ u2+c2t

0

(
∂I

∂uI1
ψand(u1 + c1t, u2 + c2t− y2)

)
f2(y2) dy2 dt

− c2

c1

∫ ∞
0

λ2e
−(λ1+λ2+λ12)t

[(
∂I

∂uI1
ψand(u1 + c1t, u2 + c2t)

)
f2(0)

+

∫ u2+c2t

0

(
∂I

∂uI1
ψand(u1 + c1t, u2 + c2t− y2)

)
f ′2(y2) dy2

]
dt

+

∫ ∞
0

λ12e
−(λ1+λ2+λ12)t

[
I∑

k=0

∫ u2+c2t

0

(
∂k

∂uk1
ψand(u1 + c1t, u2 + c2t− y2)

)(
∂I−k

∂yI−k1

g12(y1, y2)

∣∣∣∣
y1=0

)
dy2

+

∫ u1+c1t

0

∫ u2+c2t

0
ψand(u1 + c1t− y1, u2 + c2t− y2)

(
∂I+1

∂yI+1
1

g12(y1, y2)

)
dy2 dy1

]
dt

−
∫ ∞

0
e−(λ1+λ2+λ12)t

(
∂I+1

∂uI+1
1

γ(u1 + c1t, u2 + c2t)

)
dt.

Utilizing the induction assumption along with (3.5), (A.6), (A.8) and (A.9) gives rise to∣∣∣∣∣ ∂I+1

∂uI+1
1

ψand(u1, u2)

∣∣∣∣∣
≤
∫ ∞

0
λ1e
−(λ1+λ2+λ12)t

I∑
k=0

Hk0(u1 + c1t+ 1)k(u2 + c2t+ 1)ke−R
∗∗
1 (u1+c1t)−R∗∗2 (u2+c2t)A1,I−k+1 dt

+ λ1D1,I+1(u1 + 1)e−[min(r1,α1)]u1−r2u2 +
λ2

c1

∫ u2

0
HI0(u1 + 1)I(y2 + 1)Ie−R

∗∗
1 u1−R∗∗2 y2A21e

−α2(u2−y2) dy2

+
λ1 + λ2 + λ12

c1

∫ ∞
0

λ2e
−(λ1+λ2+λ12)t

×
∫ u2+c2t

0
HI0(u1 + c1t+ 1)I(u2 + c2t− y2 + 1)Ie−R

∗∗
1 (u1+c1t)−R∗∗2 (u2+c2t−y2)A21e

−α2y2 dy2 dt

+
c2

c1

∫ ∞
0

λ2e
−(λ1+λ2+λ12)t

(
HI0(u1 + c1t+ 1)I(u2 + c2t+ 1)Ie−R

∗∗
1 (u1+c1t)−R∗∗2 (u2+c2t)A21

+

∫ u2+c2t

0
HI0(u1 + c1t+ 1)I(u2 + c2t− y2 + 1)Ie−R

∗∗
1 (u1+c1t)−R∗∗2 (u2+c2t−y2)A22e

−α2y2 dy2

)
dt

+

∫ ∞
0

λ12e
−(λ1+λ2+λ12)t

×
I∑

k=0

∫ u2+c2t

0
Hk0(u1 + c1t+ 1)k(u2 + c2t− y2 + 1)ke−R

∗∗
1 (u1+c1t)−R∗∗2 (u2+c2t−y2)BI−k+1,1e

−β2y2 dy2 dt

+ λ12EI+1(u1 + 1)(u2 + 1)e−[min(r1,β1)]u1−[min(r2,β2)]u2 +K∗I+1(u1 + u2 + 1)e−R
∗
1u1−R∗2u2 . (A.10)

Note that integrals of similar form appear repeatedly and these can be dealt with as follows. First, for
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k = 0, 1, . . . , I one has∫ ∞
0

e−(λ1+λ2+λ12)t(u1 + c1t+ 1)k(u2 + c2t+ 1)ke−R
∗∗
1 (u1+c1t)−R∗∗2 (u2+c2t) dt

≤ e−R
∗∗
1 u1−R∗∗2 u2

∫ ∞
0

e−(λ1+λ2+λ12)t(u1 + c1t+ 1)I(u2 + c2t+ 1)Ie−R
∗∗
1 c1t−R∗∗2 c2t dt

= e−R
∗∗
1 u1−R∗∗2 u2

∫ ∞
0

e−(λ1+λ2+λ12)t

[
I∑

m=0

(
I

m

)
(u1 + 1)m(c1t)

I−m

][
I∑

n=0

(
I

n

)
(u2 + 1)n(c2t)

I−n

]
e−R

∗∗
1 c1t−R∗∗2 c2t dt

≤ L(u1 + 1)I(u2 + 1)Ie−R
∗∗
1 u1−R∗∗2 u2 , (A.11)

for some L > 0. Second, we recall R∗∗2 = min(r2, α2, β2) and find that∫ u2

0
(u1 + 1)I(y2 + 1)Ie−R

∗∗
1 u1−R∗∗2 y2e−α2(u2−y2) dy2 ≤ (u1 + 1)I(u2 + 1)Ie−R

∗∗
1 u1

∫ u2

0
e−R

∗∗
2 y2e−R

∗∗
2 (u2−y2) dy2

= (u1 + 1)I(u2 + 1)Ie−R
∗∗
1 u1−R∗∗2 u2u2

≤ (u1 + 1)I(u2 + 1)I+1e−R
∗∗
1 u1−R∗∗2 u2 . (A.12)

Third, letting a below be either α2 or β2, similar to the above inequalities we look at, for k = 0, 1, . . . , I,∫ u2+c2t

0
(u1 + c1t+ 1)k(u2 + c2t− y2 + 1)ke−R

∗∗
1 (u1+c1t)−R∗∗2 (u2+c2t−y2)e−ay2 dy2

≤ (u1 + c1t+ 1)I(u2 + c2t+ 1)I+1e−R
∗∗
1 (u1+c1t)−R∗∗2 (u2+c2t), (A.13)

and therefore∫ ∞
0

e−(λ1+λ2+λ12)t

∫ u2+c2t

0
(u1 + c1t+ 1)k(u2 + c2t− y2 + 1)ke−R

∗∗
1 (u1+c1t)−R∗∗2 (u2+c2t−y2)e−ay2 dy2 dt

≤ L∗a(u1 + 1)I(u2 + 1)I+1e−R
∗∗
1 u1−R∗∗2 u2 , (A.14)

for some L∗a > 0. We can now incorporate (A.11)-(A.14) into (A.10) to confirm that (3.8) is true for
i = I + 1 (with j = 0 fixed), and the induction on i is complete.

Part 2: Bounds for | ∂i+j

∂ui1∂u
j
2

ψand(u1, u2)| when j ≥ 1

We shall now derive bounds for | ∂i+j

∂ui1∂u
j
2

ψand(u1, u2)| when i ∈ N0 and j ≥ 1. To this end, we can make

use of the PIDE (3.2). In particular, applying the operator ∂i+j−1

∂ui1∂u
j−1
2

to (3.2) followed by rearrangements

yields

∂i+j

∂ui1∂u
j
2

ψand(u1, u2)

=− c1

c2

∂i+j

∂ui+1
1 ∂uj−1

2

ψand(u1, u2) +
λ1 + λ2 + λ12

c2

∂i+j−1

∂ui1∂u
j−1
2

ψand(u1, u2)

− λ1

c2

[
i−1∑
k=0

(
∂k+j−1

∂uk1∂u
j−1
2

ψand(u1, u2)

)
f

(i−1−k)
1 (0) +

∫ u1

0

(
∂j−1

∂uj−1
2

ψand(u1 − y1, u2)

)
f

(i)
1 (y1) dy1

]

− λ2

c2

[
j−2∑
l=0

(
∂i+l

∂ui1∂u
l
2

ψand(u1, u2)

)
f

(j−2−l)
2 (0) +

∫ u2

0

(
∂i

∂ui1
ψand(u1, u2 − y2)

)
f

(j−1)
2 (y2) dy2

]
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− λ12

c2

[
i−1∑
k=0

j−2∑
l=0

(
∂k+l

∂uk1∂u
l
2

ψand(u1, u2)

)(
∂i−1−k+j−2−l

∂yi−1−k
1 ∂yj−2−l

2

g12(y1, y2)

∣∣∣∣
y1,y2=0

)

+

i−1∑
k=0

∫ u2

0

(
∂k

∂uk1
ψand(u1, u2 − y2)

)(
∂i−1−k+j−1

∂yi−1−k
1 ∂yj−1

2

g12(y1, y2)

∣∣∣∣
y1=0

)
dy2

+

j−2∑
l=0

∫ u1

0

(
∂l

∂ul2
ψand(u1 − y1, u2)

)(
∂i+j−2−l

∂yi1∂y
j−2−l
2

g12(y1, y2)

∣∣∣∣
y2=0

)
dy1

+

∫ u1

0

∫ u2

0
ψand(u1 − y1, u2 − y2)

(
∂i+j−1

∂yi1∂y
j−1
2

g12(y1, y2)

)
dy2 dy1

]
+

1

c2

∂i+j−1

∂ui1∂u
j−1
2

γ(u1, u2).

(A.15)

From the above equation, one observes that bounds involving the j-th derivatives of ψand(u1, u2) with
respect to u2 are obtainable from those for the (j − 1)-th derivatives. As a result, inductively (on j) we
can deduce that bounds for the derivatives of ψand(u1, u2) with respect to u1 only, which are available
from Part 1, will suffice. Starting with the case j = 1, (A.15) implies that, for all i ∈ N0,∣∣∣∣ ∂i+1

∂ui1∂u2
ψand(u1, u2)

∣∣∣∣
≤ c1

c2

∣∣∣∣ ∂i+1

∂ui+1
1

ψand(u1, u2)

∣∣∣∣+
λ1 + λ2 + λ12

c2

∣∣∣∣ ∂i∂ui1ψand(u1, u2)

∣∣∣∣
+
λ1

c2

(
i−1∑
k=0

∣∣∣∣ ∂k∂uk1ψand(u1, u2)

∣∣∣∣ |f (i−1−k)
1 (0)|+

∫ u1

0
ψand(u1 − y1, u2)|f (i)

1 (y1)| dy1

)

+
λ2

c2

∫ u2

0

∣∣∣∣ ∂i∂ui1ψand(u1, u2 − y2)

∣∣∣∣ f2(y2) dy2 +
λ12

c2

(
i−1∑
k=0

∫ u2

0

∣∣∣∣ ∂k∂uk1ψand(u1, u2 − y2)

∣∣∣∣
∣∣∣∣∣ ∂i−1−k

∂yi−1−k
1

g12(y1, y2)

∣∣∣∣
y1=0

∣∣∣∣∣ dy2

+

∫ u1

0

∫ u2

0
ψand(u1 − y1, u2 − y2)

∣∣∣∣ ∂i∂yi1 g12(y1, y2)

∣∣∣∣ dy2 dy1

)
+

1

c2

∣∣∣∣ ∂i∂ui1γ(u1, u2)

∣∣∣∣ . (A.16)

The integrals appearing above can be bounded as follows. First, following the steps in obtaining (A.6),
it is found that ∫ u1

0
ψand(u1 − y1, u2)|f (i)

1 (y1)| dy1 ≤ A1,i+1u1e
−[min(r1,α1)]u1−r2u2 .

Second, similar to (A.13) one has∫ u2

0

∣∣∣∣ ∂i∂ui1ψand(u1, u2 − y2)

∣∣∣∣ f2(y2) dy2 ≤ Hi0A21(u1 + 1)i(u2 + 1)i+1e−R
∗∗
1 u1−R∗∗2 u2 ,

and, for k = 0, 1, . . . , i− 1 (which is an empty set when i = 0),∫ u2

0

∣∣∣∣ ∂k∂uk1ψand(u1, u2 − y2)

∣∣∣∣
∣∣∣∣∣ ∂i−1−k

∂yi−1−k
1

g12(y1, y2)

∣∣∣∣
y1=0

∣∣∣∣∣ dy2 ≤ Hk0Bi−k,1(u1 + 1)i−1(u2 + 1)ie−R
∗∗
1 u1−R∗∗2 u2 .

Third, from the steps of (A.8) we have∫ u1

0

∫ u2

0
ψand(u1 − y1, u2 − y2)

∣∣∣∣ ∂i∂yi1 g12(y1, y2)

∣∣∣∣ dy2 dy1 ≤ Bi+1,1u1u2e
−[min(r1,β1)]u1−[min(r2,β2)]u2 .
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Consequently, with the further help of (3.8) at j = 0 (proved in Part 1) and (3.7), it is confirmed from
(A.16) that (3.8) is valid for all i ∈ N0 and j = 1. In the inductive step, it is assumed that, for some
J > 0, (3.8) is true for all i ∈ N0 and j = J . Then one can use (A.15) at j = J + 1 to show that (3.8)
is true for all i ∈ N0 and j = J + 1 to complete the induction on j. Since the algebra involved is rather
repetitive, the details are omitted.

Having shown that (3.8) is valid for i, j ∈ N0, it is obvious that ψand is a Schwartz function according
to Definition 2(b).
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