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ABSTRACT

Aim: Two-dimensional phase-contrast magnetic resonance imaging (2D flow MRI) and its multidimensional alternatives, 4D and
5D flow MRI, measure blood flow in the heart and great vessels. While 2D flow MRI is the standard technique, it has limitations
regarding need for precise image plane prescribing and long scan time. In contrast, 4D and 5D flow MRI acquire 3D volumes,
enabling retrospective assessment of all vessels. This review evaluates these three techniques for quantification of blood flow of
the aortic and pulmonary valves in congenital heart disease.

Methods: A systematic literature search was conducted in August 2024 using the PUBMED database, including articles comparing
2D, 4D, and 5D flow MRI.

Results: Fifteen articles comparing 2D and 4D, one comparing 2D and 5D and three articles comparing 4D and 5D flow MRI were
included. No study compared all three techniques. 2D, 4D and 5D flow MRI demonstrated a good agreement for flow quantification.
4D flow MRI, however, tends to present a better accuracy and internal consistency than 2D flow MRI for determination of peak
velocities and flow in stenotic lesions, particularly when comparing velocities to echocardiography. 4D and 5D flow MRI are
associated with shorter scan times than 2D flow MRI.

Conclusions: 4D and 5D flow MRI appear to offer promising alternatives to 2D flow MRI with the advantage of reduced scan
times. Larger and prospective studies including echocardiography are needed to evaluate the potential of 4D and 5D to replace 2D
flow MRI for flow quantification and peak velocity determination.

1 | Introduction cardiovascular disease, along with echocardiography and invasive
catheterization [2].

Two-dimensional phase-contrast magnetic resonance imaging

(2D flow MRI) was first proposed in the 1980s [1] and, to date, The 2D flow MRI technique allows measurement of blood

is a valuable tool to aid in the diagnosis and monitoring of  velocity in one direction, perpendicular to the image plane

Abbreviations: 2D, two-dimensional; 3D, three-dimensional; 4D, four-dimensional; 5D, five-dimensional; AA, ascending aorta; AV, aortic valve; BAV, bicuspid aortic valve-; DA, descending aorta; HV,
healthy volunteers; ICC, intra-class correlation coefficients; IVC, inferior vena cava; LPA, left pulmonary artery; MPA, main pulmonary artery; MRI, magnetic resonance imaging; nRMSE, normalized
root mean square error; PR, pulmonary regurgitation; PV, pulmonary valve; r, Pearson’s Correlation Coefficient; RF, regurgitation fraction; RPA, right pulmonary artery; bSSFP, balanced steady state
free precession; SVC, superior vena cava; TAV, tricuspid aortic valve; TAVI, transcatheter aortic valve implantation; TTE, transthoracic echocardiography; TV, tricuspid valve.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly
cited.
© 2024 The Author(s). Echocardiography published by Wiley Periodicals LLC.

Echocardiography, 2024; 41:¢70005 10f13
https://doi.org/10.1111/echo.70005


https://doi.org/10.1111/echo.70005
https://orcid.org/0009-0002-5011-6290
https://orcid.org/0000-0002-4996-0331
https://orcid.org/0000-0003-3149-2944
https://orcid.org/0000-0002-3111-8840
https://orcid.org/0000-0001-5899-291X
mailto:tobias.rutz@chuv.ch
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/echo.70005
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fecho.70005&domain=pdf&date_stamp=2024-11-05

predefined by a cardiac MRI expert [1-4]. To image the volume of
a vessel of interest, multiple 2D flow MRI planes can be acquired
consecutively and perpendicularly along the vessel [2].

This technique is easy to use and well-established in the clinical
setting, but has several limitations:

1. Prolonged breath holding: 2D flow MRI is sensitive to
respiratory movements, which is why image acquisition is
often performed at the end of expiration [5]. Therefore, the
patient must hold their breath during image acquisition,
which can be very challenging [1, 3, 6]. Alternatively, free-
breathing acquisition can be performed requiring averaging
to account for respiratory movement [7].

2. Long and unpredictable scan times: 2D flow MRI images
in different locations require multiple acquisitions, resulting
in long examination times. The scan time depends on the
number of images acquired, prolonging importantly the scan
time [6].

3. Sedation of children: This technique requires sedation of
young children, in whom breath holding is often impossible
[6,8,9].

4. Errors in establishing MRI planes: Each examination
requires the presence at the scanner of a highly trained
cardiac MRI technologist to determine scan planes and
acquisition parameters [6, 8]. Errors in the choice of planes
(e.g., not perpendicular to the vessel) often force a repeat
examination [3]. If the examination is already finished and
the patient has left the scanner, it is impossible to correct the
image plane [3].

5. Unidirectional measurement: Blood flow through the cavities
of the heart and great vessels is pulsatile and is subject to
multidirectional variations. 2D flow MRI measures velocity
only through one plane and is unable to optimally analyze
velocity patterns in cardiac cavities or eccentric flow due to
for example, stenosis or regurgitation [2, 3].

As an alternative to 2D flow MRI, the 3D (three-dimensional) flow
MRI technique, also known as four-dimensional (4D) flow MRI
(volumetric coverage plus 3D velocity encoding), was introduced
[2-4]. Tt allows quantification of velocities in three directions in
a 3D volume and retrospective quantification of blood flow in
multiple vessels using a single imaging sequence [2-4].

This technique also allows the acquisition independently of
breathing (free-breathing) [4]. This increases the patient comfort
during scanning and diminishes, or even prevents, the need for
general anesthesia in pediatric patients [8].

To account for the respiratory motion of the heart, the so-called
navigator technique is used. Navigators are placed on the hepatic
dome assuming that the diaphragmatic motion corresponds to
the movement of the heart during the respiratory cycle [2, 10,
11]. Usually, only the end-expiratory images are used for the
reconstruction of the 3D volume [10, 11]. Limitations of this
approach include a low acceptance rate, often less than 40%,
potential issues with misplaced navigators resulting in prolonged
examination times, unreliable adaptive windowing techniques

in the case of significant respiratory motion variations, and
suboptimal accuracy in motion detection due to a fixed
correlation factor not accounting for interpatient variability
and being influenced by hysteretic effects and temporal delays
[11]. These issues can result in extended acquisition times [11, 12].
Thanks to the development of acceleration techniques such as
compressed sensing, k-t methods, radial and spiral acquisitions,
which have enabled shorter scan times, 4D flow MRI has seen a
significant increase in clinical use since 2010 [1, 2, 4].

To overcome the limitations of 4D flow, several extensions of 4D
flow MRI have been developed over the last years under the name
5D flow MRI (five-dimensional MRI) [12, 13].

The five dimensions include the three spatial dimensions (x-y-z)
plus two distinct temporal dimensions representing the cardiac
and respiratory phases [14].

This modern imaging technique allows simultaneous detection
of blood flow and cardiac anatomy and acquires images during
the entire respiratory cycle (“free running”), without excluding
the inspiratory phase and without the need for diaphragmatic
respiratory navigation [13, 15]. After image acquisition, the
information is divided into intervals of the corresponding
respiratory cycle (end-expiratory and end-inspiratory images),
and respiration-dependent blood flow measurements can be
analyzed (respiratory motion resolved flow datasets) [13]. 5D
flow MRI is therefore independent of the patient’s respiratory
efficiency, allowing for predictable scan times [12, 13].

An additional advantage of free running 5D flow MRI is its inde-
pendence from ECG detection and triggering: it is no longer nec-
essary to record cardiac electrical activity by attaching electrodes
to the patient [15]. Instead, detection of cardiac and respiratory
motion can be achieved by processing specific data acquired
during acquisition, using the so-called self-gating (SG) technique
[15].

There is an increasing number of studies comparing 2D and
4D flow MRI, however, there are currently a limited number
of studies comparing 2D and 4D with 5D flow MRI, and there
are no studies comparing all the three modalities [4]. The aim
of this literature review is to investigate the existing knowledge
regarding the comparison, advantages, and disadvantages of
these techniques with a particular focus on the aortic and
pulmonary valves (AV and PV) in healthy volunteers (HV) and in
patients with specific congenital heart disease (CHD) (repaired
tetralogy of Fallot [rTOF], d-transposition of the great vessels
[d-TGA]).

2 | Methods

This review was conducted following the Preferred Reporting
Items for Systematic Reviews and Meta Analysis (PRISMA)
2013 guidelines [16]. The research question was defined based
on the PICOS model: participants; interventions; comparators;
outcomes; study designs [16]. To ensure that this was the first
systematic review on the topic, we searched the Cochrane
database for systematic reviews in January 2023.
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INCLUSION CRITERIA

- Flow volume, flow rate, peak flow
rate, regurgitation volume,
regurgitation fraction or peak
velocity

- Comparison between at least two
techniques (2D;4D;5D)

- Pulmonary and artery valves

- Tetralogy of Fallot, transposition
of the great vessels

- Studies in humans

Records excluded
(n=139)

EXCLUSION CRITERIA
- outside of heart

- AV valves

- Studies in animals

- Fetal, phantom, in vitro, and ex

Full-text articles vivo studies

excluded:
Did not report
outcome of interest
(n=7)

[ Identification of studies via PUBMED }
)
Records identified from
= PUBMED (01.2023, 06.2024):
.g 2D vs. 4D vs. 5D (n=0)
o 2D vs. 4D (n = 147)
= 5D (n=27)
5 PUBMED (08.2024)
k) 5D (n=3)
—
\ 4
Accessible records after
duplicates removed
2D vs. 4D (n = 135)
5D (n=30)
=)
£
o A
©
(3]
»n
Full-text assessed for eligibility
(n=26)
\4
- Studies included in review
9 2D vs. 4D (n=15)
= 4D vs. 5D (n=3)
2 2D vs. 5D (n=1)

FIGURE 1 | Flow diagram showing the article selection and exclusion process.

2.1 | Search strategy

A systematic literature search was performed in January 2023 and
updated in August 2024 using the PUBMED database. The focus
was on articles comparing 2D, 4D and 5D flow MRI techniques for
assessing cardiac blood flow. The search was limited to English-
language articles published since 2010, marking the period when
4D flow MRI gained clinical importance [1, 2, 3]. Articles were
screened according to specific eligibility criteria, as illustrated in
Figure 1.

The search for 2D and 4D flow MRI comparison yielded 147
results, which were reduced to 135 accessible articles. These were
further screened by titles and abstract to identify the most relevant
studies.

The 5D flow MRI search, completed in August 2024, identified 30
results. After screening, only four studies were included, as the
remaining articles did not compare techniques and only focused
on 5D flow MRI.

For inclusion in this review, articles had to measure one or more
of the following parameters: flow volume (forward, backward,

net flow volume, stroke volume), flow rate, peak flow rate,
regurgitation volume or regurgitation fraction (RF), peak velocity.
Additional criteria included comparison of two of the following
techniques: 2D flow MRI, 4D flow MRI and 5D flow MRI; and
studies conducted in humans.

The search was specifically targeted on articles focusing on
evaluation of aortic and pulmonary valvulopathies as well as
CHD, particularly rTOF and d-TGA.

After screening, the selected articles were reviewed.

Fifteen papers were finally included for comparison between 2D
and 4D flow MRI, along with four articles addressing 5D flow
MRI.

2.2 | Data Extraction

The following methodological information was collected for
each article (see Table 1): the number and type of participants
(patients or HV), the mean age of participants, the study design
(prospective, retrospective), the techniques compared, and the
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TABLE 2 | Flow parameters.

Parameter Parameter Unit
Forward, backward, mL or L/heartbeat
and net flow volume

Stroke volume mL or L/heartbeat

Flow rate

Peak flow rate

mL or L/s or min

mL or L/s or min

Regurgitation volume mL or L/heartbeat
Regurgitation fraction %
Peak velocity cm or m/s

specific anatomical structures evaluated (vessels or heart valves).
The flow parameters that were extracted are presented in Table 2.

2.3 | Classification of Studies

The selected studies were divided into two main groups for
analysing: 2D versus 4D flow MRI and 2D or 4D versus 5D flow
MRI.

Studies that compared 2D flow MRI and 4D flow MRI were
further classified into subgroups, including AV, rTOF, and d-TGA.
Studies that compared 2D flow MRI and 4D flow MRI included
standard and accelerated 4D flow MRI. For each comparison, it
was specified whether an accelerated method was used.

2.4 | Classification of Quality

The quality of the included studies was assessed using the Critical
Appraisal Skills Programme (CASP) systematic review checklist,
which consists of 10 questions designed to evaluate the quality of
the studies [17].

2.5 | Classification of Comparability

Agreement between flow determination was qualified as follows:
Data from Bland Altman comparisons were summarized as bias
(mean difference between the two techniques) and limits of
agreement or relative difference expressed in percentage of the
mean value or standard deviation.

Correlations were denoted by the Pearson’s correlation coefficient
“r” or the square of the correlation coefficient r* (coefficient
of determination). The following correlation were considered:
r < 0.3 poor; r = 0.3-0.5 low; r = 0.5-0.7 moderate; r = 0.7-0.9

high; r > 0.9 very high.
2.6 | Quantitative Assessment
Due to the heterogeneity of the studies, missing data, and the

diversity of parameters investigated, a generalized meta-analysis
could not be performed. Therefore, we conducted a narrative

review, analyzing the similarities and differences among the
studies.

3 | Results

All results are summarised in Table 1.

3.1 | Comparison 2D and 4D Flow MRI; Aortic
Valve

Six studies were identified comparing 2D flow MRI with 4D flow
MRI, focusing on the evaluation of aortic valvulopathies. In 2013,
Nordmeyer et al. [18] analyzed peak velocity and stroke volume
in the ascending aorta (AA) and main pulmonary artery (MPA)
in 18 patients with aortic or PV stenosis, as well as 7 HV. They
found that in patients, the peak velocity through the stenotic
valves was significantly higher with 4D flow MRI than with 2D
flow MRI (p = 0.025). Additionally, 2D flow MRI underestimated
peak velocity compared to transthoracic echocardiography (TTE),
whereas 4D flow MRI provided more accurate results (TTE vs. 2D
flow MRI: 2.8 vs. 2.4 m/s, p <0.01; TTE vs. 4D flow MRI: 2.8 vs.
2.7m/s, p > 0.05). The correlation between 4D flow MRI and TTE
was strong (r = 0.80 [p < 0.0001]). No significant differences in
peak velocities were observed between 2D and 4D flow MRI in
volunteers (p > 0.05). Bland Altman analysis showed good agree-
ment between 2D flow MRI and 4D flow MRI for quantification of
stroke volume and peak velocity in both HV and patients (visual
assessment of values based on Figure 3 in the article).

Three years later, Rose et al. [19] conducted a study involving 51
patients with bicuspid aortic valve (BAV) and reported similar
findings. They observed that peak velocity measured by 4D flow
MRI was significantly higher than that measured by 2D flow
MRI (p < 0.001). Although Bland Altman analysis and correlation
showed good agreement of peak velocities measured by both
methods (bias 0.35 + 0.38 m/s, r = 0.87, p < 0.001), better corre-
lation and agreement were found between 4D flow MRI and TTE
than between 2D flow MRI and TTE (r = 0.79, p < 0.001, mean dif-
ference 0.02 + 0.57 m/s). The authors used systolic velocity max-
imum intensity projections (MIPs) with 4D flow MRI to improve
peak velocity assessment for the evaluation of valve stenosis.

In 2020, Alvarez et al. [20] reported in 34 patients with aortic
valve regurgitation (AR) an excellent correlation between
4D flow MRI and standard 2D flow MRI for assessing aortic
forward flow volume (r = 0.826, p < 0.001), regurgitation volume
(r = 0.866, p < 0.001), and RF (r = 0.761, p < 0.001), with no
significant differences observed.

In 2023, Hautanen et al. [21] studied 83 subjects with BAV or
TAV, analyzing peak flow rate, RF, and peak velocity at two
levels: the aortic root and mid-tubular aorta. They found that the
correlation between 2D and 4D flow MRI ranged from moderate
to high (r = 0.58-0.90). 4D flow MRI yielded again significantly
higher peak velocities than 2D flow MRI in the tubular aorta
(p < 0.001). At the level of the aortic root, peak velocities and
peak flow rates were significantly higher in the TAV group using
4D flow MRI (p < 0.001), but not different in the BAV group
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(p = 0.6). RFs derived from 4D flow MRI were lower at both
locations in both groups (p < 0.001).

In 2024, Rooijakkers et al. [5] analyzed 21 patients after tran-
scatheter aortic valve implantation (TAVI) and reported good
correlation between 2D and 4D flow MRI for assessing par-
avalvular RF (r = 0.74, p < 0.001). The Bland Altman analysis
showed no significant bias, with a mean bias of 0.3% + 5.4%.
The study demonstrated excellent intra- and inter-observer repro-
ducibility for 2D flow MRI (0.97 and 0.99, respectively) and good

reproducibility for 4D flow MRI (0.92 and 0.90).

In the same year, Gerhardt et al. [22] investigated 31 patients
with congenital AV disease using 2D and 4D flow MRI to
measure flow parameters (antegrade flow volume, net forward
flow volume, and aortic regurgitation) through the AV, with MPA
measurements as a reference. They found that the more distant
from the valve the flow was measured, the more the 2D flow MRI
tended to overestimate flow volumes compared to the 4D flow
MRI. At the AV level, the mean flow difference between 2D and
4D flow MRI was —2.9%, with limits of agreement ranging from
8.7% to 14.3% and r* = 0.7. The net forward flow at the level of
the AV was closer to the measurements of the MPA using 4D flow
MRI, indicating better accuracy than 2D flow MRI.

Conclusions: 4D flow MRI yields in general higher peak velocities
than 2D flow MRI in patients with aortic valvulopathies like
valvular stenosis and regurgitation in both TAV and BAV. These
peak velocities appear to better correspond to those obtained by
TTE, which is considered the non-invasive gold standard. 2D and
4D flow MRI calculated stroke volumes through the AV show
relatively good agreement with a trend to an overestimation by
2D flow MRI. RF appears to correlate well between 2D and 4D
flow MRI.

3.2 | Comparison 2D and 4D Flow MRI: Tetralogy
of Fallot

After rTOF, patients often develop pulmonary valve regurgita-
tion (PR), which can lead to right ventricular dysfunction [23,
24]. Therefore, PR and right ventricular function need to be
monitored, and MRI is considered to be the gold standard for
non-invasive follow-up of PR [6, 23, 24].

In 2021, Elsayed et al. [24] published a systematic review on
4D flow MRI in rTOF: identifying 13 articles comparing it
with 2D flow MRI and four articles comparing it with TTE.
They concluded that 4D flow MRI had good potential in rTOF
assessment, particularly when using valve tracking for evaluation
of standard flow parameters like stroke volume, peak velocity
but also advanced 4D flow parameters such as quantification of
intracardiac kinetic energy, and vortex visualization.

Since this review, two papers were published on the comparison
of 4D flow MRI and 2D flow MRI in rTOF.

Reviewing the above 13 articles, it was noticed that most of them
included a variety of different CHD lesions in addition to rTOF.
To focus on rTOF, we considered only the studies including more
than 20 rTOF patients and a comparison with 2D flow MRI.

Van der Hulst et al. [25] were probably the first, in 2010, to
compare 2D and 4D flow MRI in patients with rTOF. Among 25
patients they found that 4D flow MRI was accurate in assessing
PV flow in patients and healthy children compared with 2D
flow MRI (Pearson’s correlation coefficient forward flow volume:
r = 0.87, p < 0.01; backward flow volume: r = 0.97, p < 0.01).
Interestingly, 2D and 4D flow MRI derived pulmonary forward
flow differed significantly to forward flow derived by planimetry.
The authors also evaluated tricuspid flow, finding that 4D flow
MRI was superior to 2D flow MRI in assessing it.

In 2012, Hsiao et al. [26] compared ejection fractions and flow
rates derived from 4D flow MRI with those obtained using 2D
flow MRI and cine-derived ejection fraction (balanced steady-
state free-precession [bSSFP]) in 29 patients with rTOF. They
found good agreement between 2D and 4D flow MRI for aortic
and pulmonary flow rates (r = 0.90; r* = 0.82, mean difference
12%). Excluding patients with PR, ventricular and stroke volumes
derived from 4D flow MRI were more consistent than those
obtained with 2D flow MRI and SSFP.

Jacobs et al. [6] compared the two techniques in 2020 in 34
patients with rTOF and found good agreement between the two
techniques. Using 4D flow MRI, pulmonary net flow volume
presented the strongest correlation (r = 0.87) and the lowest
mean difference (3.5 + 9.4 mL) compared with net flow volume
at the AV level which was used for evaluation of internal
consistency. Forward pulmonary flow volume and stroke volume
had moderate-strong correlation (4D flow MRI: r = 0.66-0.81,
D < 0.001; 2D flow MRI: r = 0.81-0.84, p < 0.001) with no signif-
icant differences for correlation coefficients or mean differences
between techniques. Ejection fraction had a moderate correlation
(r=0.60-0.75) between 4D flow MRI and 2D flow MRI. The time
advantage of 4D flow MRI over 2D flow MRI was also accentuated
in this study (9 vs. 71 min, p < 0.001).

In 2020, Isorni et al. [27], who conducted the largest retrospective
study with 60 participants, found that for patients with moderate
PR fraction (mean 27 + 17), there was a strong correlation
between 2D flow MRI and 4D flow MRI for several parameters.
They reported the following correlations: PR fraction (r = 0.81,
p < 0.001), pulmonary net flow (r = 0.82, p < 0.001), pulmonary
forward flow (r = 0.90, p < 0.001), pulmonary backward flow
(r =0.92, p < 0.001), and AV net flow (r = 0.80, p < 0.001).
The Bland Altman analyses showed narrow limits of agreement
for these measurements. Similar to the above-cited studies, the
correlation between pulmonary and aortic net flow rate was
higher with 4D flow MRI than with 2D flow MRI (r = 0.89,
p <0.001vs. r=0.71, p < 0.001).

Yao et al. [23] analyzed in 2021 a pediatric population of 30
patients with rTOF and found a moderate to good correlations
between 2D flow MRI and 4D flow MRI for quantification of
net flow, forward flow, peak velocity, and RF in the aorta and
MPA (r > 0.60, p < 0.001) and good agreement in Bland Altman
analysis. As in the study of Jacobs et al., the scan time of 4D
flow MRI was shorter than that of 2D flow MRI (8.10 + 2.25 vs.
34.66 + 7.41 min, p < 0.001).

In 2023, Soulat et al. [28] studied pulmonary flow in 30 adult
patients with PR, including 22 with rTOF. Net flow volume was
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significantly higher with 4D flow MRI than with 2D flow MRI
(p < 0.0001), while regurgitation volume and RF were lower
(p < 0.0001). Regurgitation volume and RF measured by 2D flow
MRI and 4D flow MRI correlated well, but only with moderate
agreement and wide limits of agreement (regurgitation volume:
r = 0.90, mean difference —14 + 12.5 mL; RF: r = 0.72, mean
difference —15% + 13%; all p < 0.0001). 4D flow MRI derived

regurgitation volume correlated better to the decrease of RV size
after surgical repair of PR than those derived by 2D flow MRI.

Conclusions: A relatively large number of studies reported good
correlation and agreement between 2D flow MRI and 4D flow
MRI in assessing pulmonary forward and backward flow, peak
velocity and RF in patients with rTOF. When comparing internal
consistency, 4D flow MRI appears to be superior to 2D flow MRI
and is associated with a reduced scan time.

3.3 | Comparison 2D and 4D Flow MRI:
Transposition of the Great Vessels

One of the most important complications in adult d-TGA patients
treated with arterial switch operation (ASO) is right ventricular
outflow tract (RVOT) stenosis [29, 30]. Peak velocity measure-
ments obtained by MRI allow the assessment of the significance
of stenosis [29].

Jarvis et al. [29] measured peak velocities in 19 patients with d-
TGA after ASO and compared 4D flow MRI with 2D flow MRI.
They found higher peak velocities with 4D flow MRI in the
AA (p = 0.003), MPA (p = 0.002) and right pulmonary artery
(RPA) (p = 0.005), but not in the left pulmonary artery (LPA)
(p = 0.200). Bland Altman analysis showed that the peak velocity
measurements from 4D flow MRI were higher than those from
2D flow MRI, with a mean difference of 0.14 m/s to 0.31 m/s. Peak
velocities did not differ between 2D and 4D flow MRI and Doppler
echocardiography, respectively.

A further complication after ASO, aortic regurgitation (AR), was
evaluated in 2019 by Van Wijk et al. [31], who compared 2D flow
MRI with 4D flow MRI in 81 patients with significant AR. 4D
flow MRI showed a trend towards a higher RF than 2D flow
MRI (8.6% + 4.9% vs. 6.3% + 7.2%, p = 0.09), although this differ-
ence was not statistically significant. Stroke volume assessment
showed moderate agreement between 4D and 2D flow MRI (ICC
= 0.77, p = 0.20), with an underestimation by 2D flow MRI.

In 2024, Warmerdam et al. [30] analyzed 39 patients after ASO
and compared peak velocity and stroke volume in MPA, RPA,
and LPA between 4D flow MRI, 2D flow MRI and TTE. They
found significantly higher peak velocities with 4D flow MRI than
with 2D flow MRI in the MPA, RPA, and LPA (p < 0.001 for
all). There was a good agreement and no significant differences
between the peak velocities measured by 4D flow MRI and TTE.
Stroke volumes measured by 4D flow MRI were not significantly
different from 2D flow MRI.

Conclusions: In d-TGA patients, 4D flow MRI generally provides
higher peak velocities compared to 2D flow MRI, with likely
better agreement to TTE. The results suggest better accuracy of 4D
flow MRI compared to 2D flow MRI for the detection of stenosis.

4D flow MRI showed good agreement but higher values than
2D flow MRI for the assessment of AR in patients after ASO.
However, the number of studies on this topic is limited, and the
sample sizes are insufficient to draw definitive conclusions on the
role of 4D flow MRI in ASO.

3.4 | Comparison 2D and 4D to 5D Flow MRI

As mentioned in the introduction, the data acquisition time with
4D flow MRI depends on the subject’s breathing pattern, limiting
the method’s applicability in the clinical setting [12]. As an
alternative, the recent 5D flow MRI technique provides resolved
cardiac and respiratory motion assessment of velocity maps and
turbulent kinetic energy at fixed scan times (independent of
respiratory behavior or cardiac cycle variations) [12, 13].

Due to the recent introduction of the 5D flow MRI technique, the
available literature is limited. This is reflected in the absence of
studies comparing 2D with 4D and 5D flow MRL

However, three articles compared flow analysis between 4D
flow MRI and 5D flow MRI, and one article published in 2024
compared the 5D technique with standard 2D flow MRI.

In 2019, Walheim et al. [12] analyzed blood flow in the aorta
in 9 HV and found good agreement for 5D flow MRI compared
with 4D flow MRI, with higher peak velocities assessed with 5D
flow MRI (3.1% + 4.4%) and lower peak flow (—2.4% + 6.9%).
The nRMSE (normalized root mean square error) between the
velocity magnitudes obtained with 5D flow MRI and the 4D
flow MRI reference was 8.9% + 2.1%. A fixed 5D flow MRI
protocol of 4 min was used, independent of individual breathing
patterns, whereas the standard 4D flow MRI scan times varied
and averaged 17.8 + 3.7 min (about 4.5 times longer).

Ma et al. [13] in 2020 studied 20 patients with aortic disease and
found a moderate agreement between 4D flow MRI and 5D flow
MRI: 5D flow MRI overestimated net flow volume (up to 26%)
and peak velocity (up to 12%) in the AA and underestimated them
(<12%) in the arch and descending aorta (DA) (p < 0.05 for all).
The 5D flow MRI had shorter examination times than the 4D flow
MRI: on average 7.65 + 0.35 min versus 9.88 + 3.17 min (p < 0.01).
The authors also demonstrated the influence of respiration on
flow in the vena cava.

In 2021, Falcido et al. [32] compared the recently developed pilot
tone (PT) 5D flow MRI with the previously established self-gating
(SG) 5D flow MRI, presented by Ma et al. in 2020, as well as
with 4D flow MRI in a study involving 15 healthy adults and
9 CHD patients. PT navigation is a technique for monitoring
physiological motions in CMR and enables respiratory and
cardiac motion resolved 5D flow MRI. While quantification of
flow and peak velocities did not differ between both 5D flow MRI
techniques, there was a consistent underestimation of net flow at
the level of the aortic arch and DA of flow measured with both 5D
flow MRI techniques compared with 4D flow MRI.

In 2024, Weiss et al. [33] published a study comparing respiratory
resolved 5D flow MRI with real-time 2D flow MRI. They evaluated
net and peak flow in four vessels (AA, MPA, superior, and inferior
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vena cava) in 10 HV and 19 CHD patients. The results showed
good agreement between the two techniques, with no significant
differences in net flow volume and peak flow measurements
derived from 5D flow MRI and 2D flow MRI (p < 0.001). Similar
to the study by Ma et al., the authors investigated the impact of
respiration on venous flow [13].

Conclusions: Studies comparing 5D flow MRI with 2D or 4D flow
MRI are scarce and include only a small number of participants.
However, some conclusions can be drawn: 5D flow MRI allows
predictive and shorter scan times compared to 4D flow MRI (4-8
min). It tends to overestimate net flow and peak velocity in the
AA while underestimating these parameters in the aortic arch
and DA compared to 4D flow MRI. Additionally, 5D flow MRI has
the advantage to investigate the effects of respiration and cardiac
motion on cardiovascular flow and hemodynamics.

4 | Discussion

Based on our analysis, we can conclude that in most studies,
4D flow MRI provides similar results to standard 2D flow MRI.
There is strong agreement between the two techniques, with
4D flow MRI being associated with shorter scan time and a free
breathing approach, which renders the exam more comfortable
for the patient. While 2D flow MRI remains the established
reference technique, it has several limitations, particularly in
evaluating complex flow. Our analysis suggests that 4D flow MRI
shows better agreement with TTE for determining velocities
in stenotic valves [18, 19, 30]. An explanation for this finding is
probably that 4D flow MRI, with its ability to encode velocity in
three dimensions, also depicts excentric flow, which is typically
present in turbulent flow, such as in valvular stenosis [29, 30]. In
contrast, 2D flow MRI only measures flow in a single direction,
resulting in lower maximum velocities [29, 30]. For this reason,
4D flow MRI appears to be superior to 2D flow MRI particularly
in patients with stenotic valulopathies as, for example, in BAV .

For patients with rTOF, the available studies and data suggest
that 4D flow MRI could replace 2D flow MRI in assessing blood
flow. There is strong agreement between 2D and 4D flow MRI
in evaluating pulmonary flow parameters, with 4D flow MRI
demonstrating higher internal consistency and a better correla-
tion with the reduction of RV volume after surgical correction.

In d-TGA after ASO, however, larger studies are still needed
before definitive conclusions can be drawn. The results of existing
studies align with the observations described above regarding
the evaluation of aortic and pulmonary pathologies.

Free running 5D flow MRI offers short and predictable scan times
without requiring ECG triggering and respiratory detection. Early
studies suggested a trend toward overestimating net flow and
peak velocity in the AA and underestimating these parameters
in the arch and DA; however, this was not confirmed in the most
recent study.

Current studies seem to be focused on defining the fastest
MRI technique to assess flow and go beyond comparing new
accelerated methods to the standard 2D flow MRI. A large-scale,
multicenter study evaluating and comparing all three techniques

isurgently needed. The results of such a study would significantly
enhance knowledge in this field and facilitate future practical
applications.

5 | Limitations

Based on the current literature, no definitive conclusions on the
comparability of standard 2D flow MRI with 4D flow MRI and the
new 5D flow MRI sequence can be reached for several reasons:

- The number of available studies on the comparison between
2D and 4D flow MRI is relatively limited and even fewer,
namely only four studies on the comparison of 2D and 4D with
5D flow MRI are available.

- Patient populations are very heterogenous. The population
size in most of the studies is small, with the largest sample con-
sisting of 83 participants [21]. Consequently, the generalization
of results to broader populations is limited.

- Many studies have a retrospective study design.

- In addition, the nature of systematic reviews allows only
existing literature to be used, and the presence of bias and
limitations in the included studies affects the reliability of the
review.

- Despite numerous developments on 5D flow MRI, few stud-
ies have attempted to compare cardiac flow measurement
between 5D flow MRI and 2D and 4D flow MRI. No inves-
tigation has been published so far comparing the three
modalities.

6 | Conclusion

The objective of this literature review was to investigate the
similarities and differences between 2D, 4D, and 5D flow MRI
techniques for assessing cardiac blood flow, with a particular
focus on CHD patients. The review shows that only a limited
number of studies are available. However, despite these limi-
tations, accelerated 4D flow MRI and 5D flow MRI sequences
show significant potential to replace standard 2D flow MRI, as
they allow easy, rapid, and reliable determination of flow in all
vessels. There is an urgent need for prospective studies to validate
these new techniques against the well-established non-invasive
reference method for flow determination, 2D flow MRI. However,
echocardiography should be integrated in these studies for the
validation of peak flow velocities.
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