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Abstract Chemical mass transfer was quantified in a

metacarbonate xenolith enclosed within the granodiorite of

the Quérigut massif (Pyrenees, France). Mass balance

calculations suggest a strong decrease of CaO, SrO and

CO2 contents (up to -90%), correlated with a decrease of

modal calcite content as the contact is approached. Most

other chemical elements behave immobile during metas-

omatism. They are therefore passively enriched. Only a

small increase of SiO2, Al2O3 and Fe2O3 contents occurs in

the immediate vicinity of the contact. Hence, in this study,

skarn formation is characterized by the lack of large

chemical element influx from the granitoid protolith. A

large decrease of the initial carbonate volume (up to

-86%) resulted from a combination of decarbonation

reactions and loss of CaO and CO2. The resulting volume

change has potentially important consequences for the

interpretation of stable isotope profiles: the isotope alter-

ation could have occured over greater distances than those

observed today.

Keywords Mass transfer � Contact metamorphism �
Skarn � Calcite loss � Volume loss � Decarbonation �
Stable isotope

Introduction

Skarn formation is due to metasomatism. This change in

the chemical rock composition is often linked to the

interaction with fluids. Numerous studies have dealt with

the role of chemically reactive fluid flow associated with

mineralogical, isotopic and others chemical changes (For-

ester and Taylor 1977; Taylor and O’Neil 1977; Nabelek

et al. 1984; Ferry 1991, 1994; Cartwright et al. 1997; Ferry

et al. 1998, 2002; Buick and Cartwright 2000; Cartwright

and Buick 2000; Cook and Bowman 2000; Buick and

Cartwright 2002). Processes of diffusion (e.g. Taylor and

O’Neil 1977; Nagy and Parmentier 1982; Cartwright and

Valley 1991) and advection (e.g. Rumble et al. 1982;

Dipple and Ferry 1992; Nabelek and Labotka 1993; Ferry

1994; Gerdes and Valley 1994; Cook et al. 1997; Roselle

et al. 1999; Ferry et al. 2002) have been invoked to explain

mass transfer in such environments. Mass transfer studies

have addressed skarn formation and related ore deposits

(Einaudi and Burt 1982; Harris and Einaudi 1982; Brown

and Essene 1985). Mass transfer from intrusive rocks into

metasedimentary rocks are generally called upon to explain

element changes during contact metamorphism (Ferry

1982; Brown and Essene 1985; van Marcke de Lummen

and Verkaeren 1986; Gieré 1990; Nabelek and Labotka

1993; Gerdes and Valley 1994; Buick and Cartwright 2002;

Abu El-Enen et al. 2004). However, the reverse process is

also conceivable: removal of elements from the metasedi-

mentary rocks, as proposed, for example, by Tracy et al.

(1983) and Ague (2003) during regional metamorphism.
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In this study, we focus on the understanding of chemical

mass transfer inside a metacarbonate xenolith. Mass–bal-

ance calculations indicate that element changes are due to

an element loss which results in a large volume loss. This

has implications for the interpretation of the isotope

alteration fronts.

Geological setting

The Quérigut granitoid massif is one of the late Hercynian

calc-alkaline granitoid complexes within the Axial Zone

(Barnolas and Chiron 1996; Debon et al. 1996; Guitard

et al. 1996) of the Eastern part of the French Pyrénées

(Fig. 1). It was dated at 307 ± 2 Ma by Roberts et al.

(2000). This composite magmatic complex shows a con-

centric petrographic zonation. It is divided into four

igneous units (Leterrier 1972; Marre 1973; Roberts et al.

2000; Durand et al. 2006). It consists of (1) a central bio-

tite–muscovite-bearing monzogranite unit; (2) surrounded

by a biotite-bearing monzogranite unit; (3) a biotite–

hornblende-bearing granodiorite unit which is only present

in the southern margin of the Massif and (4) meter to

hectometre scale mafic and ultramafic lenses of gabbrodio-

rite, amphibolite and cortlandite occurring only in the two

outermost units. This magmatic complex intruded a

deformed Palaeozoic metasedimentary sequence consisting

of metapelites and metacarbonates (Leterrier 1972; Marre

1973; Aparicio 1975; Toulhoat 1982; Takeno 1994; Aubry

1999; Monnot 1999). Metapelites in contact with the

granitoids developed the low-pressure metamorphic

assemblage andalusite ? K-feldspar. This was used to

constrain the PT conditions in the contact aureole at 500–

650�C and 0.2–0.27 GPa (Leterrier 1972; Takeno 1994;

Monnot 1999; Roberts et al. 2000). Paleozoic carbonates

occur either as host rocks or as decametre thick, up to

hundreds of meter long xenoliths. They are fully enclosed

within the intrusive magmatic rocks (Fig. 1). They are

aligned in the sub-vertical igneous, syn-magmatic defor-

mation (Marre 1973; Durand et al. 2006).

Mineralogical evolution in metacarbonate xenoliths

Metacarbonates were sampled along two profiles at Laur-

enti, named d and c. The profiles were horizontally

collected, perpendicular to the intrusive contacts (Fig. 2).

Both profiles are located in the same xenolith. Profile d was

collected towards the main diorite contact, whereas profile

c is adjacent to a metre-thick granitic dyke which cross-

cuts the metacarbonates. Both profiles share the same

starting samples M40 and M41 (black circles, Fig. 2).

Plutonic rocks were also sampled to constrain fluid circu-

lations during the contact metamorphic event using O and

C stable isotopes (Durand et al. 2006).

Details on the mineralogical evolution in metacarbonate

profiles are given in Durand et al. (2006). Salient features

of the mineralogical evolution, from the core of the

xenolith to the exoskarn, are summarized below. Samples

from the xenolith core are essentially calcitic rich marbles

with modal amounts of calcite greater than 90%. They

contain minor amounts of metamorphic minerals (amphi-

bole, anorthite, K-feldspar, biotite, quartz). The

metacarbonates are only thermally affected by the intrusion

and chemically represent the initial protolith. At about

100 cm dramatically. These decreases coincide with the

appearance of clinopyroxene, followed by garnet, wollas-

tonite, and clinozoisite to form a thin, massive exoskarn

zone (some millimetres to centimetres). The presence of

wollastonite in the exoskarn implies a H2O-rich fluid or

very high temperatures (Spear 1995).

Analytic procedure

Bulk rock analyses were obtained by XRF with a Philips

PW2400 XRF spectrometer at the University of Lausanne,

Switzerland. Total iron is given as Fe2O3. The CO2 content

of the samples was measured by coulometry on a JUWE

Coulomat 702 (University of Lausanne, Switzerland).

Reference material Merck 2060 (suprapur CaCO3) yielded

a CO2 value of 44.8 ± 1.0% (n = 20), close to the theo-

retical value of CO2 in pure CaCO3 of 43.97%. Water
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Fig. 1 Simplified geological map of the Quérigut region in the

Eastern Pyrenees, France (after Durand et al. 2006). Metacarbonate

xenoliths (in grey) are localized in the South-Western part of the

Quérigut complex, inside the biotite–hornblende-bearing granodiorite

unit. The location of the profile is given by the black star. Locations

of samples used to define the carbonate protolith are given by grey
stars
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porosity measurements were performed at the University of

Franche-Comté, France, to quantify the total porosity (/t)

and the density of the samples. These measurements were

performed on small rock samples which we subsequently

used for the thin section preparation. The samples were

dried at 60�C, degassed during 24 h in an airtight enclosure

and imbibed by degassed distilled water, under a dynamic

vacuum. The total porosity, expressed in percentage, is

given by:

/t ¼
W2 �Wd

W2 �W1

� 100 ð1Þ

where W1 is the hydrostatic weight of the sample, W2 the

weight of the sample totally imbibed by water and Wd is the

dry weight of the sample.

Chemical mass transfers

Bulk rock chemistry, calcite abundance and density are

listed in Table 1. Figure 3 presents the evolution of SiO2

and CO2 contents versus CaO contents for both profiles.

Also given are samples from other metacarbonate xenoliths

in the Quérigut massif. The content of CaO and CO2

steadily decreases towards the contact with the intrusive

rock, while the SiO2 content increases. This implies

selective chemical mass transfer during contact

metamorphism.

Mass balance calculation

Numerous mass balance approaches have been developed

during the last decades to estimate chemical mass transfers

and volume changes (Gresens 1967; Grant 1986; Brimhall

and Dietrich 1987; Potdevin and Marquer 1987; Ague

1994; Baumgartner and Olsen 1995). Chemical mass

transfers are basically quantified by comparing chemical

composition of an unaltered rock (protolith) with altered

rocks. It is important to accurately define the protolith

composition. In this study, the carbonate protolith com-

position was calculated by averaging nine unaffected

carbonate rocks from xenoliths and host rocks from the

northern and south-western parts of the Quérigut massif.

They consist of calcitic marbles with calcite contents above

90%, close to the chemical composition of the studied

xenolith core. They were sampled far from contact zones

with intrusive rocks (from two metres to hundreds of

metre) and are apparently unaffected by metasomatism.

Immobile chemical elements or volume changes need to

be identified in order to establish the effective mass balance

(Fig. 4). For example, for the same initial rock composition

(25% by volume of element x and 75% by volume of

element y), Fig. 4 shows that it is possible to obtain the

same final rock composition by two opposite mass transfer

scenarios. In the first case, x is mobile and y immobile. An

input of 200% additional x results in the desired rock

composition, producing a volume increase of 50%. In the

second case, x is immobile and y is mobile. A leaching of

66% of the available y produces a volume decrease of 50%.

Again, the same composition is obtained. This illustrates

how important it is for mass balance calculations to (1)

well define the nature of immobile elements or (2) take into

account volume changes.

In this study, mass balances were calculated using the

Isocon approach (Grant 1986) using the least-squares

method assuming a Gaussian or log–normal concentration

distribution (Baumgartner and Olsen 1995). This statistic

treatment takes into account the standard deviation (SD)

for each element of each studied rock population. It allows

the selection of immobile chemical elements by identifying

the maximum number of chemical elements that are, within

their uncertainties, compatible with the same Isocon.

Results obtained are shown in log–log concentration dia-

grams where chemical element concentrations for the

unaltered rock (protolith) are plotted on the x-axis and

those for the altered rock are plotted on the y-axis (Figs. 4,
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Fig. 2 Schematic cross-section

of the studied metacarbonate

xenolith. It is enclosed in a

granodioritic intrusion and

crosscut by a metre-scale dyke

of granite. The sample locations

for profiles c (squares) and d
(stars) are given. Open symbols
are used for the igneous rock

samples, filled symbols are used

for the carbonate samples. Note

that an asymmetric skarn

develop. Endoskarns are larger

than exoskarns
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5). Major and trace element concentrations are expressed in

g/100 g and 10-6 g/100 g, respectively. In such diagrams,

the Isocon is defined by:

log CA
i ¼ log

M0

MA

� �
þ log C0

i ð2Þ

where Ci
0 and Ci

A are the concentrations of an element i in

the protolith (0) and in the altered sample (A), respectively.

M0 and MA are the total masses of the protolith and the

altered sample, for the reference system. Note that the

straight line always has a slope of one in this diagram.

Chemical elements below the Isocon left the system

whereas chemical elements above the Isocon were intro-

duced into the system. If the intercept is negative, a mass

increase occurred during alteration (MA [ M0). If it is

positive, a mass decrease occurred (MA \ M0). Note that

Table 1 Major and trace elements whole rock analyses of metacarbonate rocks from the Quérigut complex

Sample Carbonate protolith Cp Septum core Laurenti c Laurenti d
M40 M41 M37i M37h M37a M37b M37c M39e M39d M39c M39b M39a

Type n = 9 1r Marble Marble Marble Marble Marble Marble Skarn Marble Marble Marble Skarn Skarn

Distance (cm) 180 65 47 18 2 200 150 100 15 5

Cal (Wt %) 94 4 96 91 91 97 47 53 51 81 89 83 29 10

Density 2.70 0.10 2.74 2.73 2.80 2.85 2.99 2.77 2.75 2.79 3.04 3.30

Wt % n = 9 1r Mol %

SiO2 3.18 1.70 2.72 2.46 5.46 2.82 5.44 27.4 23.09 23.89 8.71 4.52 8.45 34.03 46.23

TiO2 0.07 0.04 0.04 0.05 0.08 0.08 0.12 0.47 0.40 0.35 0.18 0.08 0.17 0.34 0.28

Al2O3 1.04 0.52 0.53 0.92 1.48 1.16 1.91 9.26 8.08 7.17 3.79 1.57 3.60 7.31 14.20

Fe2O 0.47 0.25 0.15 0.31 0.73 0.32 0.84 3.22 3.82 3.13 3.14 0.70 2.75 5.01 4.30

MnO 0.05 0.03 0.03 0.03 0.02 0.04 0.15 0.10 0.11 0.13 0.16 0.05 0.17 0.26 0.21

MgO 0.64 0.19 0.82 0.55 0.72 0.45 0.62 1.90 1.74 1.62 0.88 0.71 0.70 0.80 0.66

CaO 52.08 1.23 47.69 52.78 50.48 52.02 49.74 33.23 36.49 39.11 46.03 51.18 46.55 38.73 27.85

Na2O 0.00 0.00 0.00 0.00 0.00 0.01 0.06 0.16 0.13 0.00 0.08 0.00 0.08 0.00 0.24

K2O 0.16 0.15 0.09 0.16 0.45 0.23 0.32 2.54 1.64 0.91 0.63 0.24 0.59 0.00 0.18

P2O5 0.05 0.02 0.02 0.03 0.04 0.02 0.04 0.09 0.09 0.10 0.05 0.06 0.04 0.15 0.13

LOI 41.59 1.30 41.88 39.93 41.92 39.63 20.82 23.46 22.86 35.75 40.09 35.97 13.14 5.14

CO2 41.07 1.16 47.92 42.11 39.93 39.87 42.49 20.89 23.32 22.48 35.65 39.04 36.67 12.77 4.58

Total 99.33 0.14 100.00 99.18 99.38 99.06 98.86 99.20 99.04 99.28 99.39 99.21 99.09 99.75 99.42

ppm n = 9 1r

Nb 2.0 1.2 1.2 2.1 2.0 3.4 11.4 10.2 9.7 4.8 2.8 5.2 9.6 13.9

Zr 29 14 18 23 23 35 108 90 82 44 26 45 88 133

Y 8.9 4.3 4.1 4.8 4.8 10.5 19.3 21.7 21.2 13.0 11.3 13.3 25.3 26.5

Sr 230 40 201 236 182 252 330 299 307 220 271 231 166 233

U \2 \2 \2 \2 \2 \2 \2 \2 \2 \2 \2 \2 24 19

Rb 7.1 4.3 6.4 13.6 8.8 9.4 88.6 59.6 31.2 22.2 8.8 30.5 \1 5.5

Th 3 1 3 4 2 4 8 8 9 4 4 3 9 17

Pb 3 2 2 4 \2 7 9 6 4 13 20 14 4 5

Ga 5 1 5 5 5 5 14 13 12 8 6 7 13 18

Zn 17 11 12 15 10 25 40 41 49 30 37 33 55 45

Ni 2 3 \2 \2 \2 12 16 14 11 9 9 7 141 84

Cr 8 3 7 7 6 7 48 40 38 17 10 17 41 29

V 9 4 5 6 3 6 56 47 40 30 14 26 287 181

Ce 4 4 \3 \3 \3 \3 35 32 30 7 \3 16 24 38

Ba 36 23 41 59 38 93 271 207 192 88 64 133 19 98

La 7 5 \4 2 12 19 25 24 23 9 4 10 30 40

Data for the two profiles were sampled in a single metacarbonate xenolith. Samples M40 and M41 were used for mass balance calculations for

both profiles since they are in the middle of the xenolith. Distances are reported with reference to the granitoid–carbonate contact. M40 is located

at 550 cm from the contact of the granodiorite and M41 is located at 600 cm from the contact of the granite. The average of nine unaffected

carbonate samples, used as the protolith composition, is reported with their SD (1r). Also reported are weight percent total carbonate data and

density data
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concentration changes can occur due to (1) density and/or

volume changes resulting from the formation of a new

mineral assemblage and/or (2) the flux of chemical ele-

ments between the system and its surroundings.

Mass balance modelling

Inspection of the analysis (Table 1) reveals that the

metasomatism is characterized by a decrease in CaO and

CO2 contents correlated with an increase in elements

contained in calc-silicate minerals (e.g. SiO2, Al2O3, FeO,

MgO, etc.). Such a mineralogical and geochemical evo-

lution is typical for the formation of skarns. It is

commonly interpreted as the result of extensive addition

of elements from the intrusion (Einaudi and Burt 1982;

Brown and Essene 1985; Nabelek and Labotka 1993;

Gerdes and Valley 1994; Buick and Cartwright 2002;

Ferry et al. 2002), typically due to the infiltration of

aqueous fluids of magmatic origin which carry with them

abundant silicate, aluminium and bivalent cations (Nab-

elek and Labotka 1993; Gerdes and Valley 1994; Buick

and Cartwright 2002; Abu El-Enen et al. 2004). An
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the volume changes during mass

transfer, by identifying for

example immobile elements.

b Resulting log–log Isocon

diagrams calculated for the

above two mass transfer

scenarios. Both could

potentially explain the

geochemical data observed in

the metacarbonate septa. Model

1: addition of 30 mol of SiO2

and 15 mol of MgO resulting in

a slight volume gain (?12%).

Model 2: a loss of 80 mol of

CaO and CO3 from the

metacarbonate protolith. This

model produces a large volume

loss (-85%)
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alternative process consists in removing chemical ele-

ments initially present in carbonate rocks, like CaO and

CO2, thereby passively increasing the amounts of the

other chemical elements. These two processes involving

are evaluated here.

The mass transfer was coeval with decarbonation reac-

tions leading to the formation of calc-silicate minerals

(Durand et al. 2006). The most common metamorphic

mineral observed in metacarbonate profiles is clinopyro-

xene. For simplicity, we will assume that diopside is the

only metamorphic mineral formed during contact meta-

morphism by a decarbonation reaction:

CaCO3 þ 2SiO2 þMgO! CaMgSi2O6 þ CO2 ð3Þ

An average representative protolith contains 92.5 mol of

CaCO3 ? 5 mol of SiO2 ? 2.5 mol of MgO ? 1 mol of

diverse immobile elements (Table 1). Immobile chemical

elements are used as the reference frame to understand the

behaviour of the mobile elements. Below we present two

models which yield approximately the same both

compositions for the altered rock. Starting protolith

composition, resulting chemical compositions and log–

log diagrams for both models are presented in Tables 1, 2

and Fig. 4b.

Model 1: mass gain

In this model, an input of SiO2 and MgO is imposed from

an external reservoir. This implies a relative decrease in

concentration for immobile elements like, for example,

CaO. 30 mol of SiO2 and 15 mol of MgO are added to the

metacarbonate protolith (Table 2). This element input is

coeval with the formation of diopside and the release of

CO2 by the decarbonation reaction (3). This results in a

composition close to that of the studied samples in the

vicinity of the contact. This process can be written as:

92:5 mol ðCaOþ CO2Þ þ 5 mol SiO2 þ 2:5 mol MgO½
þ 1 mol immobile�ðinitialÞþ 30 mol SiO2½
þ 15 mol MgO�ðinputÞ! 17:5 mol CaMgSi2O6ðformedÞ

þ 75 mol CaCO3ðresidualÞ þ 1 mol immobileðresidualÞ

þ 17:5 mol CO2ðoutput by decarbonation reactionÞ ð4Þ

The resulting logarithmic Isocon diagram is presented in

Fig. 4b. The main features deduced from the diagram are

that (1) CaO and other immobile elements have the same

behaviour and (2) the significant mass input of SiO2 and

MgO induces only a slight mass gain (14.2 ± 3.0%), due

to the release of CO2 by the decarbonation reaction (3).

Sr

CaOCO2

Zr

MnO
P2O5

TiO2

Fe2O3

SiO2

Al2O3
MgO

Nb

Cr

YTh
Ga

0.01 0.1 1 10 100 1000

1000

100

10

1

0.1

0.01

Average protolith

M
40

 -
 p

ur
e 

m
ar

bl
e

major elements : g/100g
trace elements : ppm/100g Sr

CaO
CO2

Zr

MnO

P2O5

Fe2O3

SiO2

Al2O3

MgO

Nb

Cr
Y

Th

Ga

0.01 0.1 1 10 100 1000

1000

100

10

1

0.1

0.01

Average protolith

M
39

c 
- 

m
ar

bl
e

major elements : g/100g
trace elements : ppm/100g

Sr

CaO

CO2

Zr

MnO

P2O5

TiO2

Fe2O3

SiO2

Al2O3

MgO

Nb

Cr Y
Th Ga

0.01 0.1 1 10 100 1000

1000

100

10

1

0.1

0.01

Average protolith

M
39

a 
- 

ex
os

ka
rn

major elements : g/100g
trace elements : ppm/100g

TiO2

Fig. 5 Log–log diagrams for

the profile d showing the

chemical evolution of
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marble and exoskarns is

partially compensated by a
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igneous contact. Chemical

compositions used for mass–

balance calculations are given in

Table 2. Error bars are 1r SD,

based on protolith

heterogeneity. See text for
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Model 2: mass loss

This model involves loss of stoichiometric ‘‘calcite’’, hence

CO2 and CaO are removed from the system. This process

produces a passive concentration increase of all immobile

elements. A total of 80 mol of calcite (CaO and CO2) are

lost from the metacarbonate protolith (Table 2). The calcite

breakdown is associated with formation of diopside and

release of CO2 during decarbonation reactions. This pro-

cess can be summarized by the following reaction:

92:5 molðCaOþ CO2Þ þ 5 mol SiO2 þ 2:5 mol MgO½
þ 1 mol immobile�ðinitialÞ! 2:5 mol CaMgSi2O6ðformedÞ

þ 10 mol CaCO3ðresidualÞ þ 1 mol immobileðresidualÞ

þ 2:5 mol CO2ðoutput by decarbonation reactionÞ

þ 80 molðCaOþ CO2ÞðoutputÞ ð5Þ

The Isocon is defined by the immobile elements including

SiO2 and MgO (Fig. 4b). Both CaO and CO2 plot below the

Isocon because they were lost from the system. It is

noteworthy that CaO plots slightly above CO2 because

additional CO2, produced by the decarbonation reaction (3),

escapes the system (Fig. 4b). In this model the estimated

volume loss is about 85% (assuming a constant density).

Mass balance results

Here, mass balance results obtained from profiles d and c
are presented (Table 3). These results will be compared to

both previous models to identify the mass transfer process

in the metacarbonate xenolith. Three logarithmic Isocon

diagrams for profile d are presented in Fig. 5. They illus-

trate the mass transfer as the contact is approached. The

shown uncertainty corresponds to the protolith SD (1r)

which is considered to represent the uncertainties of ana-

lysis and the heterogeneity of the protolith.

M40 was sampled at 550 cm from the contact. All ele-

ments plot on the same straight line. Hence, all elements

are considered as immobile which suggest no chemical

mass transfer. The mass change ratio, of 1.0116 ± 0.0224,

implies no mass change (no density and volume change).

Hence, sample M40 has not been affected by the grano-

diorite emplacement. This also shows that the nine samples

used to calculate the protolith are indeed similar to the

xenolith carbonates.

The diagrams calculated for the two others samples

(M39c and M39a) sampled at 100 and 5 cm from the con-

tact, respectively, show a significant and increasing change

in composition. CaO, CO2, Sr and MgO are identified as

mobile. They further decrease towards the contact while

most other chemical elements (like SiO2, TiO2, Al2O3,

MnO, Zr, Nb) plot on the straight line, and are hence inter-

preted to be immobile. Note that in the sample closest to the

contact (M39a), an addition of SiO2, Al2O3 and Fe2O3,

probably from the intrusive rock, is suggested, along with a

large loss of CaO, CO2, Sr and MgO (Fig. 6; Table 3).

Figure 6 illustrates well the significant loss in CaO and CO2

contents toward the contact zone. M0/MA ratios evolve from

1.0116 ± 0.0224 (sample M40) toward a maximum value of

4.4732 ± 0.4525 at the contact (sample M39a). The

observed evolution implies a large mass decrease of up to

-78 ± 2% (sample M39a) and hence also a large volume

decrease (up to -81 ± 7%). Note that a density increase

appears toward the contact (up to 17 ± 3% in sample M39a;

Table 3) due to mineral assemblage changes. This accen-

tuates the volume loss. Similar results are obtained for

profile c. A large loss of CaO, Sr and CO2, without any

addition of SiO2, Al2O3 and Fe2O3 in the vicinity of the

contact, explains the data completely. Mass shows again a

significant decrease (-85 ± 2%), accompanied by a vol-

ume decrease (-86 ± 6%). Density again increases

(11 ± 3%) toward the contact (sample M37c; Table 3).

Discussion

Mass transfer in metacarbonates: decarbonation

and calcite loss processes

The mineralogical and geochemical evolution in the

metacarbonate xenolith documents mass transfer during

Table 2 The two different scenarios of mass transfer illustrated in Fig. 4 result in about the same whole rock compositions

SiO2 MgO CaO CO2 Immobile Total

Initial model composition Mol 5.00 2.50 92.50 92.50 1.00 193.50

Mol % 2.59 1.29 47.80 47.80 0.52 100.00

Model 1 (open system) input of ?30 mol SiO2 ? 15 mol MgO Mol 35.00 17.50 92.50 75.00 1.00 221.00

Mol % 15.84 7.92 41.86 33.94 0.45 100.00

Model 2 (closed system) output of -80 mol (CaO ? CO2) Mol 5.00 2.50 12.50 10.00 1.00 31.00

Mol % 16.13 8.06 40.32 32.26 3.23 100.00

The addition of SiO2 and MgO (Model 1) or the loss of CaO and CO2 (Model 2) can potentially account for the observed rock compositions. Note

that the initial and final compositions used in the model are close to the chemical compositions of the carbonate protolith and an altered sample,

respectively
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contact metamorphism. It appears that the ‘‘mass loss’’

model reproduces completely the observed data: (1)

chemical elements, found in carbonates (CaO, MgO, Sr

and CO2), are mobile and partially lost from the system

and (2) a significant volume loss of up to 86% occurred

(Figs. 6, 7; Tables 2, 3). The Sr decrease is linked to the

CaO decrease due to their similar geochemical behaviour

(Rollinson 1993). Most of the other chemical elements are

passively concentrated during calcite loss (Fig. 6). No

large element input from an external reservoir (e.g. adja-

cent granitic rocks) is required. Only a small amount of

SiO2, Al2O3 and Fe2O3 is needed in the immediate vicinity

of the contact in profile d (Fig. 7; Table 3). Despite the

fact, that, e.g. the SiO2 content increases for about

225 ± 64% (sample M39a; Table 3), this increase corre-

sponds to an addition of 7.19 ± 2.05 g SiO2 per 100 g of

rock, probably from the igneous rock. This represents a

minor process in comparison to the loss of 86.5 ± 2.7 g

CaCO3 per 100 g of total rock from the metacarbonate

xenolith (Fig. 6; Table 3).

The passive concentration of immobile elements during

skarn formation can thus be modelled as a function of the

amount of carbonate (100% calcite) removed from the

carbonate protolith. Results for Al2O3, TiO2 and Nb are

presented in Fig. 8. A good correlation is observed between

predicted and observed evolution, which supports the

model of skarn formation by loss of calcite without a large

input of external elements. This diagram also shows that

sample located in the vicinity of intrusive rocks have lost

about 90% of calcite.

In addition to calcite loss, new calc-silicate minerals

appear toward the contact zone by decarbonation reactions

(Cpx, Grt, Wo and Czo). The CaO–CO2 diagram (Fig. 3b)

shows that the loss of CaO was less important than the loss

of CO2. This is consistent with a process of decarbonation

where additional CO2 leaves the system.

Note that the presence of such calcite loss process could

occur in other contact metamorphism environments and

could be overlooked by other effective processes in such

environments.

Volume loss

Mass balance calculations show that up to 86 ± 6% of the

initial volume is lost during contact metamorphism

(Table 3, Fig. 9). However, this maximum value of mass

loss is restricted to the immediate vicinity of the contact.

Some authors make the assumption that volume remains

constant in marbles during contact metamorphism (Ferry

1994; Abu El-Enen et al. 2004). From our results, the

assumption of constant volume during contact metamor-

phism might be incorrect. Volume changes must be taken

into account. In this case, volume variation results from (1)T
a
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the breakdown of calcite, (2) a loss of Ca and volatiles.

Locally, an addition of Al, Si and often Fe partially com-

pensates for this loss. Tracy et al. (1983) also suggest a

strong volume loss in impure marble adjacent to a quartz

vein-filled fracture ([50% of the initial rock volume)

during regional metamorphism.

Effects of volume loss on stable isotope profiles

Volume changes which occur in metacarbonate xenoliths

during contact metamorphism can influence the shape of

stable isotope profiles (Fig. 10). Tracy et al. (1983) have

already discussed the effects of volume loss on Rayleigh

fractionation and box-model calculations.

To illustrate the effect of volume change on O stable

isotope profiles, the initial position of each studied samples

is recalculated by integrating volume losses along each

profile, using an increment of 10 cm (based on linearly

interpolating between samples). Recalculated initial posi-

tions of studied samples are given in Table 4. The actual

lengths of profiles c and d are 800 and 850 cm, respec-

tively. After corrections for volume loss, these two profiles

have lengths of around 1,100 ± 200 and 1,300 ± 380 cm,

respectively. Hence, each profile was significantly longer

before the metasomatic volume loss, by about 300 and

450 cm, respectively.

Oxygen and carbon stable isotope profiles measured

across the metacarbonate—intrusive rock contacts have

already been described in details in Durand et al. (2006). In

order to compare isotopic values of granodioritic and

metecarbonate rocks, the oxygen isotope composition of

calcite in equilibrium with quartz was calculated (at 500�C)

where no carbonate is present. The ‘‘ISOfit’’ program

(personal communication Baumgartner, unpublished) was

used to fit isotope profiles with a 1D transport equation. It

fits analytic solution of the advection–diffusion equation

(Baumgartner and Rumble III 1988) to measured data

using a least-square fitting procedure (Marquardt 1963).

Local equilibrium (Thompson 1959) between carbonate

and fluids is assumed. Output of the model is, among other
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values, the Peclet number, calculated for each profile. The

Peclet number, a dimensionless transport variable, allows

estimating the ratio of infiltration to diffusion during

metasomatism (Bear 1988; Bowman and Willett 1991;

Baumgartner and Valley 2001).

Four different O stable isotope profiles, labelled from 1

to 4, are presented in Fig. 10. Curve 1 represents the actual

state and reports d18O as a function of the measured dis-

tances (Fig. 10a). d18O values decrease toward the contact

from the sedimentary values of 24% which is preserved in

the xenolith core (M40 and M41), towards 14.8% near the

contact. d18O values of calcite in equilibrium with grano-

diorite increase from magmatic values of 11–12.5%, for

samples located far from the contact, to higher values for

altered samples located near the carbonate contact

(d18O = 14.5–15.2%). The observed d18O evolution is

consistent with dominantly diffusive isotopic exchanges

between two contrasting rocks (Taylor and O’Neil 1977;

Valley 1986; Cartwright and Valley 1991; Nabelek 1991;

Turner and Bowman 1993; Cartwright et al. 1997; Buick

and Cartwright 2000; Baumgartner and Valley 2001; Buick

and Cartwright 2002). Least square fit to the data reveal

some infiltration. Small Peclet numbers (5.8 ± 1.5 and

7.6 ± 1.7) result from fits to the c and d profiles, as

expected. This suggests that the profile were mainly con-

trolled by diffusion across the contact, with only limited

fluid flow perpendicular to the granitic rock contact.

The initial d18O composition, before contact metamor-

phism, is given by curve 3 (Fig. 10b). This initial state is

characterized by sedimentary values in metacarbonate

rocks (around 24%) and igneous values in intrusive rocks

(between 12 and 13.5%).

During contact metamorphism, two different processes

affect the initial profile: O alterations by diffusion/advec-

tion in granitic and metacarbonate rocks and volume losses

associated with chemical mass transfers in metacarbonates.

The relative chronology between O alteration and meta-

somatism is unknown, but three different cases can be

invoked: (1) the O isotope alteration is posterior to the

volume loss process, (2) the O isotope alteration is prior to

the volume loss process and (3) the O isotope alteration and

the volume loss processes are contemporaneous. Note that

the alteration profiles in cases (2) and (3) will be strongly

influenced by the volume change.

Here, we present the first two end-member cases

(Fig. 10). If O alteration is posterior to volume loss (1), the

isotope composition does not change during volume loss

and the profile evolves from the curve 3 to the curve 2.

Isotope alteration occurs afterwards. The isotope profile

evolves from the curve 2 to the curve 1. If isotope alter-

ation is prior to volume loss (2), the initial isotope profile

length was greater than the measured length, after volume

loss. In this case, the O alteration evolves from the curve 3,

representing the initial state, to the curve 4. This is fol-

lowing by volume loss during metasomatism and the

alteration profile evolves from curve 4 to the today mea-

sured profile (curve 1). Initial O alteration distances (L)

were about 250 and 1,500 cm, respectively. These have to

been compared with today’s values of 100 and 600 cm for

profiles c and d, respectively. Thus, if isotope alteration is
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prior to volume loss, O alteration occurred over a greater

distance than observed today. Nevertheless, Peclet numbers

only show a slight increase when volume loss is accounted

for: in c, the Peclet number is about 9.1 ± 2.0 and, in d, it

varies between 7.3 ± 2.2 and 8.1 ± 1.8. These results

show, surprisingly, that the ratio of infiltration to diffusion

is not strongly influenced by these calculations.

The most likely scenario is that stable isotope exchange

and calcite loss were probably contemporaneous. This

implies that the effective evolution will have been in

between the two scenarios. Hence, distances of O altera-

tions evolved during contact metamorphism and it is likely

that O alterations could have occurred over greater dis-

tances than those observed today due to volume loss. If the

O isotope alteration occurred prior to the volume loss (case

ii and curve 4 in Fig. 10), this distance would have been

about 2–3 times larger. This observation implies that fluid

flows could be several times greater if volume losses are

taking into account. Given that the Peclet number stayed

roughly constant, this would also imply that diffusion was

2–3 times more important.

Conclusions

Chemical mass transfer during contact metamorphism has

been quantified for a metacarbonate xenolith in the Quérigut

massif (Pyrenees, France). Metacarbonates show a
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Fig. 10 Some possible effects of volume loss on the interpretation of

stable isotopic profiles. a Oxygen stable isotope profiles are plotted

using actually measured distances for samples. Curve 1 gives the

measured values after the O alteration and the volume loss. Curve 2

illustrates the initial conditions if volume loss occurred prior to the

isotope alteration. b Oxygen stable isotope composition profiles are

plotted against distance taking into account the volume loss that

occurred during skarn formation. Curve 3 represents the initial

conditions. Curve 4 gives the case where the isotope alteration is prior

to the volume loss. The curves are the resulting fit to each case, using

program ISOFIT (personal communication Baumgartner, unpub-

lished). The peclet number NPe, does not change significantly, though

infiltration and diffusion distances do. See text for further discussion

Table 4 Integrated profile length, taking into account volume

changes

Sample Actual distance Initial distance

Value Value 1r

Laurenti c 800 1,100 200

M40 800 1,100 200

M41 550 850 200

M37-i 180 480 195

M37-h 65 370 190

M37-a 47 330 160

M37-b 18 120 55

M37-c 2 55 25

Laurenti d 850 1,300 380

M41 850 1,300 380

M40 600 1,045 380

M39 e 200 655 370

M39 d 150 585 355

M39 c 100 500 300

M39 b 15 110 60

M39 a 5 70 25

Distances are given in centimetre. Actually measured distances are

smaller than the initial lengths due to the large loss of CaO and CO2

which is responsible for the volume loss
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significant loss of modal calcite followed by the develop-

ment of a thin exoskarn zone composed of diopside, garnet,

wollastonite and clinozoisite close to the contact. Mass

balance calculations show a large loss of the CaO (up to -

90 ± 3%), Sr (up to -85 ± 18%) and CO2 (up to

-97 ± 3%). The others elements, like SiO2, Al2O3, initially

present in the limestone behave nearly immobile and are

therefore passively concentrated. A small increase of SiO2,

Al2O3 and Fe2O3 contents occurs in one of the profiles in the

immediate vicinity of the contact. Thus, in this study, the

skarn formation is characterized by the lack of large chem-

ical element influx from the granitic protolith. This

geochemical evolution is due to two different processes: (1)

decarbonation reactions leading to calc-silicate minerals and

release of CO2 and (2) stoichiometric ‘‘calcite’’ loss, with

concurrent CaO and CO2 loss. A large volume decrease

results from these processes: up to 86 ± 6% of the initial

volume is lost at the contact with the granitoid intrusions.

This can strongly affect the interpretation of stable isotope

profiles: isotope alteration distances could evolve during

contact metamorphism and the isotope alteration could have

occurred over a greater distance than those observed today.

This study demonstrates that volume variations must be

taken into account in mass transfer studies in contact aure-

oles where carbonates are involved. Furthermore, CO2

release is of importance for the mass budget of CO2. If these

large amounts of CO2 are not trapped in the upper levels of

the continental crust during their ascent, they also could lead

to increase in atmospheric CO2 concentration depending on

the volume amount of metacarbonates involved during the

skarn formation processes, as proposed by Kerrick and

Caldeira (1993) and Roselle and Baumgartner (1997).
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Comté. We would like to thank the two anonymous reviewers for

their constructive remarks.

References

Abu El-Enen MM, Okrusch M, Will TM (2004) Contact metamor-

phism and metasomatism at a dolerite–limestone contact in the

Gebel Yelleq area, Northern Sinai, Egypt. Mineral Petrol

81:135–164. doi:10.1007/s00710-004-0031-y

Ague JJ (1994) Mass transfer during Barrovian metamorphism of

pelites, South-Central Connecticut I: evidence for changes in

composition and volume. Am J Sci 294:989–1057

Ague JJ (2003) Fluid infiltration and transport of major, minor and

trace elements during regional metamorphism of carbonate

rocks, Wepawaug schist, Connecticut, USA. Am J Sci 303:753–

816. doi:10.2475/ajs.303.9.753

Aparicio M (1975) Métamorphisme et déformation au contact d’un
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