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Abstract The OLS estimator of the intergenerational earnings correlation is biased
towards zero, while the instrumental variables estimator is biased upwards. The
first of these results arises because of measurement error, while the latter rests on
the presumption that the education of the parent family is an invalid instrument.
We propose a panel data framework for quantifying the asymptotic biases of these
estimators, as well as a mis-specification test for the IV estimator.
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1 Introduction

Researchers often agree that the level of the intergenerational earnings elasticity is a
useful benchmark for measuring the degree of attainment in an equal opportunities
social justice objective. There is more debate however and less convergence, regard-
ing the opinions held on the process through which income status is transmitted
from parent to child. According to [8] for instance, parents determine the level of
human capital they wish to invest in children, depending on their offsprings’ levels of
cultural and learning attributes, known as endowments. If credit markets are perfect,
the intergenerational elasticity of earnings reflects the inheritance of endowments
between parents and children. There also exists a literature where family optimizing
behaviour does not feature prominently, yet also yielding important predictions
about the mechanisms of income transmission [12, 17].
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The last decade has certainly witnessed a renewed interest in questions pertaining
to the distribution of income at one point in time, and also in the extent to which
children inherit the economic status of their parents. In the empirical intergenera-
tional mobility literature, researchers have had to deal with the challenging question
of estimating the elasticity between life-time incomes of parents and children using
short time series, and at times a unique observation, on family resources. It has
been immediately recognized in early contributions to the literature [7, 11] that the
use of annual income measures to proxy permanent incomes produced an errors
in variables problem, and as a result, the ordinary least squares estimator of the
intergenerational earnings elasticity was biased towards zero.

As a response to this problem, researchers working with panel data have averaged
the resources of the parent family (i.e. the explanatory variable) over typically
three to five years in order to reduce the bias resulting from the estimation of
the standard relation linking the incomes of parents and children, known as the
Galtonian regression model. Illustrations of averaging methods can be found in
Behrman and Taubman [9], Solon [28], Zimmerman [30], Björklund and Jantti [10],
Mulligan [26] and others. A problem remaining though, is that not all data sets
provide repeated observations on the parent family’s resources. A typical example
in this context is the UK’s National Child Development Study (see for instance [13]
for a discussion). When no time series variation is available on the parent family’s
resources, it is typical then to instrument the unique measurement on this variable
using the education of the family head. A standard argument formalized by Solon
[28] is that when the parent family head’s education features as an explanatory
variable in a model of the determinants of the child’s income, the instrumental
variables estimator of the intergenerational elasticity is biased away from zero.

Thus it has become a known result that the ordinary least squares and instrumen-
tal variables estimators bracket the intergenerational elasticity.1 There have been
several efforts in quantifying the bias of the ordinary least squares estimator since
the work of Bowles [11], and estimates provided by Zimmerman [30], Abul Naga
[1] and Mazumder [24] suggest that the extent of the resulting bias is perhaps in
the order of 30% or more. Little is known however about the degree to which the
instrumental variables methodology over-estimates the intergenerational elasticity.
A key quantity in evaluating the bias of the ordinary least squares estimator is the
variance ratio of permanent to total income. A remaining question then is what
comparable parameters (for which, prior knowledge of their magnitudes is required)
play a similar role in the correction of the bias of the instrumental variables estimator.

There are two reasons why we feel that this exercise may be of direct relevance
to researchers and policy makers. Firstly, having an order of magnitude about the
bias of the instrumental variables estimator provides another route to refining our
knowledge on the extent of income continuities across generations. More impor-
tantly though, if it is found that the bias of the instrumental variables estimator is
small, or negligible,2 earlier results which may have been read to exaggerate the
underlying intensity of income inheritance in the population, may be re-appraised
in a different light.

1This result is often emphasized in the literature. See for instance Björklund and Jantti [10] and
Dearden et al. [13].
2Solon [28], referring to related empirical evidence from the United States, entertains this hypothesis.



Biases of the ordinary least squares and instrumental... 325

Our starting point in this paper is a structural model of income transmission
where the child’s permanent income is explained by the parent family’s permanent
income and education. We shall then be testing the assumption that the structural
model is under-identified in the context of cross-section data where a unique noisy
measurement is available on the parent family’s permanent income. Essentially, this
approach will amount to testing the null hypothesis that the parent family’s education
is a valid instrumental variable. The difficulty with such a task is that under the
alternative hypothesis (i.e. when education is not a valid instrument) the structural
model is no longer identified in the cross-section environment. Thus one is inevitably
led to formulate a more general model which remains identified under both the null
and alternative hypotheses.

Aigner et al. [3] point to three major directions in trying to overcome under-
identification. Firstly, one may specify an additional structural equation, from which
one or several over-identifying restrictions may be sought. This approach is sys-
tematically developed in the context of the simultaneous equations literature. A
second approach is to assume the existence of multiple equations yielding alternative
indicators on an error-ridden variable. Clearly, panel data provide a specific context
of this second approach. Thirdly, the specification of a dynamic structure for the
variable measured subject to noise may increase the scope for identification.

Here we shall pursue successively the second and third approaches to resolving
the under-identification problem. Firstly, in order to evaluate the biases of the
ordinary least squares and instrumental variables estimators we use panel data to
derive consistent estimators for economic relations observed subject to measurement
error.3 As a by-product of our discussion therefore, we also propose a consistent
estimator of the intergenerational elasticity when repeated measurements are avail-
able on the parent family’s income. Likewise, a test for evaluating the claim that
the instrumental variables estimator of the intergenerational elasticity is upwardly
inconsistent becomes feasible in the panel data context where the model remains
generally identified under both the null and alternative assumptions of interest. A
test of this hypothesis, which exploits the information on the time series variation in
earnings, has not been proposed to date in the literature.

Secondly, we show that when we part with the assumption that the permanent
income of the parent family is a time-invariant quantity, the specification of a
dynamic structure for this variable allows us to identify a more general class of
income transmission models. Such models allow for correlated heterogeneity and
the presence of child-specific permanent income trends. These developments form
the basis of a later section of the paper devoted to the elaboration of various research
directions.

In order to analyze the large sample biases of the ordinary least squares [OLS]
and instrumental variables [IV] estimator in a joint framework, we express these as
functions of the structural parameters of a model of income transmission. We then
inquire about the nature of the data required in order to recover these unknown
structural parameters from the biases of the two estimators. It turns out that the
two fundamental quantities required in order to perform this exercise are (1) the
correlation between education and permanent income and (2) the variance ratio of

3As shown by Griliches and Hausman [19], Hsiao and Taylor [23] and others, a wide range of errors
in variables models are identifiable in the panel data context.
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permanent to total income. In turn, we propose estimators for these quantities when
panel data are available to the researcher. The proposed consistent estimator of the
intergenerational elasticity and test for the instrumental variables estimator also arise
from our study of the identification of the structural model of income transmission.

We then use the panel study of income dynamics, a longitudinal survey from the
United States, in order to evaluate numerically the biases of the OLS and IV estima-
tors. Our results suggest that the first of these under-estimates the intergenerational
elasticity by about 20 to 40%, while the latter over-states it by 1 to 32%.

In the next section we examine the identification of a structural model of income
transmission initially suggested by Solon [28], where the OLS estimator is biased
towards zero, and IV is biased away from zero. In Section 3 we discuss in what ways
panel data may allow the researcher to identify the structural parameters of a model
of income inheritance and to test for mis-specification of the instrumental variables
estimator. In Section 4 we provide a brief description of our data. In Section 5 we
present estimates of the biases resulting from these two methods using our US data.

Section 6 is devoted to the elaboration of various research directions. In particular,
we consider more general specifications for the income transmission model, inspired
from the micro-econometrics panel data literature (e.g. [5]). There, we show that in
presence of correlated heterogeneity4 the rule stating that the OLS and IV estimators
bracket the intergenerational elasticity need no longer hold. We also discuss what
type of processes are required to govern the time-series evolution of income in
order to identify the structural model under these alternative assumptions. Section 7
concludes the paper. Three technical appendices to the paper are available from the
author upon request.

2 Biases of OLS and IV

In this section we study the biases of the ordinary least squares and instrumental
variables estimator of the intergenerational elasticity. We show that without repeated
measurements on parental income, these biases cannot generally be quantified.

The framework we consider is a Galtonian regression of the child’s long-run
income, log(Ic) on that of her/his parents’, log(Ip) , where log(.) is the logarithmic
function. Let ηc = log(Ic) − E(log(Ic)) and ηp = log(Ip) − E(log(Ip)). ηc and ηp

are the logarithms of the long-run incomes of children and parents, measured in
deviation from their respective means, which we shall denote below in more simple
terms as permanent incomes. The Galtonian regression model may be written as:

ηci = βηpi + ζi (1)

where i = 1, ..., n indexes data on family i, and it is in general assumed that
E(ζi|ηpi) = 0 for all i. The interpretation of long-run income as a time-invariant
quantity follows a long tradition in the estimation of the Galtonian model. In
Section 6 however we shall return to this assumption and to the assumption that
E(ζi|ηpi) = 0.

4By correlated heterogeneity it is meant that in the structural model of income inheritance the
disturbance term is correlated with the explanatory variables.
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In contrast with the theoretical model 1, it is assumed that the researcher observes
annual data yit and xis which are taken as noisy measurements on the permanent
incomes ηci and ηpi:

yit = ηci + νit (2)

xis = ηpi + uis (3)

It is to be noted that most often in practice t �= s. In the context of the Panel Study
of Income Dynamics for instance it has become common to regress the child’s 1990s
income on that of the parent family in the late 1960s. This practice is motivated by
an attempt to measure earnings of parents and children at a similar stage of the life-
cycle (around the age of 40). There it is believed that the magnitude of the earnings
transitory variance component is considerably reduced in comparison to its level in
the early years of the life-cycle.

We are working in the context of a micro panel where n is large relative to the
time dimension. All expectations below therefore pertain to the cross-section. Define
e∗ as the education of the parent household head and e = e∗ − E(e∗), as education
measured in deviation from its mean. We shall make the following assumptions
regarding errors of measurement, for all individuals i, and for all time periods
s and t :

E(νitηci) = E(uisηpi) = 0 (4)

E(νitei) = E(uisei) = 0 (5)

E(νitηpi) = E(uisηci) = 0 (6)

E(νituis) = 0 (7)

That is, measurement errors ν and u are mutually uncorrelated, and are also
uncorrelated with the permanent incomes of children and parents as well as the
education of the parent family.

Below we shall assume that all data are measured in deviation from their cross-
sectional means. The researcher regresses yit on xis by ordinary least squares to
obtain an estimator β̂OLS:

β̂OLS =
∑

i

yitxis/
∑

i

x2
is (8)

Because xis is a noisy measurement on ηpi, the above estimator is biased towards
zero. An alternative estimation strategy for the Galtonian model 1 consists in instru-
menting xis using ei. This produces the following instrumental variables estimator:

β̂IV =
∑

i

ei yit/
∑

i

eixis (9)

In order to formalize the argument that the instrumental variables estimator may
be upwardly biased, we shall assume, following Solon [28], that parental education
features as an explanatory variable in a structural model of the determinants of the
child’s income:

ηci = δ0ηpi + δ1ei + vi : δ1 ≥ 0 (10)
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where vi is taken to be uncorrelated with ei and ηpi:5

E(viei) = 0 and E(viηpi) = 0 (11)

It is to be noted that education is not the only instrument that has been used in
practice. For instance, in Zimmerman [30], Fortin and Lefebvre [15] and Oreopolous
[27] variables such as socioeconomic status, occupational status or neighborhood
status perform the role of identifying instruments. Also, one important issue pointed
out by Ermisch and Francesconi [14] is that the proposed instrument itself may be
subject to measurement error. Furthermore, in the structural model 10–11 there may
be several, not just one variable alongside ηp featuring as determinants of ηc. These
two extensions of the above structural model are discussed in turn in Appendix 2 of
the paper.

Returning to the model 10–11, from Eq. 1 we have that β = E(ηpηc)/E(η2
p).

Hence, it also follows from Eq. 10 that E(ηpηc) = δ0 E(η2
p) + δ1 E(ηpe), i.e. that

β = δ0 + δ1
E(ηpe)
E(η2

p)
(12)

In what follows, we shall refer to β as the intergenerational elasticity, and δ0 as the
intergenerational slope coefficient. Also, while we refer to Eq. 1 as the Galtonian
model, we shall call the relation 10 the structural model of income transmission.
Clearly, these definitions coincide when δ1 = 0.

Returning to Eq. 12, Solon shows that if parental education is a determinant of the
child’s income, β̂IV and β̂OLS respectively provide upper and lower bound estimates
of the intergenerational elasticity β, in the sense that

p lim(β̂OLS) < β < p lim(β̂IV) (13)

where p lim(.) is the probability limit operator. Probability limit formulas for these
two estimators are given in Solon [28]. Here we shall write them in slightly different
forms, as functions of the parameters of the structural model 10:

p lim(β̂OLS) = δ0 E(η2
p) + δ1 E(ηpe)

E(η2
p) + E(u2)

(14)

p lim(β̂IV) = δ0 + δ1
E(e2)

E(ηpe)
(15)

By defining λ = E(η2
p)/[E(η2

p) + E(u2)] as the variance ratio of permanent to total
income, also known as the signal to total variance ratio, we may use Eq. 12 in order
to obtain a more familiar expression for p lim(β̂OLS):

p lim(β̂OLS) = βλ (16)

from which it comes out more clearly that β̂OLS is asymptotically biased downwards,
as the variance ratio λ is smaller than one. The instrumental variables estimator on
the other hand is biased away from zero provided δ1 > 0 and education is positively

5We shall relax this assumption in Section 6.
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correlated with permanent income. Define ρ = E(ηpe)/
[

E(η2
p)E(e2)

]1/2
as the cor-

relation coefficient between permanent income and education. The following result
is a direct consequence of Eq. 15:

Proposition 1 Let the structural model mapping the permanent incomes of parents
and children be given by Eq. 10–11 where δ1 > 0. Then the large sample bias of β̂IV

is decreasing in the correlation ρ between education and permanent income; the bias
vanishes as ρ → 1.

Solving the above system 14 and 15, it may be verified that δ0 and δ1, the
parameters of Eq. 10, relate to the population second moments in the following
manner

δ0 = p lim(β̂OLS)/λ − ρ2 p lim(β̂IV)

1 − ρ2
(17)

δ1 =
[

p lim(β̂IV) − p lim(β̂OLS)/λ
]

E(ηpe)/E(e2)

1 − ρ2
(18)

That is, because a single measurement xis will not identify the variance of permanent
income, it is not possible to evaluate λ or ρ. From this observation it also follows that
under such circumstances it is not possible either to identify the structural model 10,
nor is it possible to evaluate the large sample biases of the OLS and IV estimators.

3 Panel data and measurement error

With panel data however, we show that the process of income transmission is
identified; hence we may readily derive formulas to evaluate numerically the biases
of these estimators. Let xis and xiτ be two measurements on family income for periods
s and τ . Zimmerman [30] assumes that the measurement error exhibits an auto-
regressive structure of order one, so that the correlation between uis and uiτ in Eq. 3
diminishes as the time distance between periods s and τ increases. On the other
hand, Altonji and Dunn [4] and Abul Naga and Krishnakumar [2] suggest that errors
of measurement exhibit a moving average structure. That is, passed a certain time
period – most probably two years according to their respective findings – changes
in annual earnings are serially uncorrelated (see Table 1). The study of Mazumder
[24] departs from the three studies discussed above in several respects, two of which
are highlighted in the Table. Firstly, parental permanent income rather than being
treated as a time-invariant fixed effect, is allowed to vary over time and is modelled
as a random walk. Secondly, a distinction is drawn between measurement error and
transitory earnings components, and the variance of the latter is allowed to vary over
time. Finally, Haider and Solon [20] while treating permanent income as a fixed
effect, model measurement error as being mean-reverting, a process considerably
different from classical errors in variables.

We shall return to the Mazumder and Haider and Solon contributions in Section 6.
For now, we note that it is possible to generalize the approaches of the first three
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Table 1 Various models of the permanent and transitory/measurement error earnings components
used in the intergenerational mobility literature

Study Permanent Component Transitory / measurement
error component

Altonji and Dunn [4] Time invariant fixed effect MA(2)
Zimmerman [30] Time invariant fixed effect AR(1)
Abul Naga and Krishnakumar [2] Time invariant fixed effect MA(2)
Mazumder [24] Random walk Transitory component separate

from measurement error
Transitory variance component

changes over the life cycle
Haider and Solon [20] Time invariant fixed effect Mean reverting

studies surveyed in Table 1 by considering an ARMA specification for the error
process. Consider an ARMA(1, q) form:

uis = φuis−1 + εis + θ1εis−1 + · · · + θqεis−q (19)

The case considered by Zimmerman [30] sets θτ = 0 for all τ , while Abul Naga and
Krishnakumar [2] set φ = 0, and θτ = 0 for all τ > 2.

Now consider the identification of E(η2
p) in the light of Eq. 19. For this purpose, it

is useful to consider moments of the type E[(xiτ − φxiτ−1)xis]. Noting that φxiτ−1 =
φηpi + φuiτ−1, we have that

xiτ − φxiτ−1 = (1 − φ)ηpi + εiτ + θ1εiτ−1 + · · · + θqεiτ−q (20)

That is, the above quasi-difference is an MA(q) process. Furthermore,

E[(xiτ − φxiτ−1)xis] = E
[(

(1 − φ)ηpi + εiτ + θ1εiτ−1 + · · · + θqεiτ−q
) (

ηpi + uis
)]

(21)

Provided therefore that τ − q > s, i.e. τ > s + q, the above ε terms are uncorrelated
with uis and Eq. 21 simplifies to (1 − φ)E(η2

p). Accordingly, with an ARMA(1, q)

specification, and provided φ �= 1,6 we can identify E(η2
p) using the moment

condition

E(η2
p) = E[(xiτ − φxiτ−1)xis]

1 − φ
τ > s + q (22)

It is instructive to consider how the above moment condition simplifies in presence
of the AR(1) and MA(2) specifications discussed above. For the auto-regressive
specification the terms εiτ−1 to εiτ−q vanish from Eq. 21, so that Eq. 22 becomes valid
subject to the weaker requirement τ > s. Under the moving average specification
φ = 0, so that Eq. 22 reduces to E(η2

p) = E(xiτ xis), with |τ − s| > q for a general
MA(q) process.7

6The case φ = 1 (known in the literature as the unit-root model) is taken up in Section 6.
7That is, in this case both lags and leads of xis may be used to identify E(η2

p).
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With this extra condition we may note that it is now possible to identify the
structural model Eq. 10 for the determinants of the child’s income. Write m(x, y) as
the sample covariance between variables x and y, and let m[(xiτ − φxiτ−1)xis] denote
the ratio of Eq. 22. Let

λ̂ = m[(xiτ − φ̂xiτ−1)xis]
m(x2

is)
(23)

ρ̂ = m(xisei)
[
m[(xiτ − φ̂xiτ−1)xis]m(e2

i )
]1/2 (24)

denote estimators for λ and ρ, where φ̂ is any consistent estimator of φ.8 λ̂ is
consistent for λ under condition Eq. 22,9 while ρ̂ is consistent under the additional
assumption that transitory income is uncorrelated with educational attainment.10

Note finally that any estimator α̂ consistently estimates p lim(α̂) so that we may
consistently estimate δ0 and δ1 using the following expressions:

δ̂0 = β̂OLS/λ̂ − ρ̂2β̂IV

1 − ρ̂2
(25)

δ̂1 =
[
β̂IV − β̂OLS/λ̂

]
m(xisei)/m(e2

i )

1 − ρ̂2
(26)

We may note that Eq. 26 provides a direct test for the null hypothesis that β̂IV is
consistent, against the alternative that it is upwardly inconsistent. If δ1 is estimated
to be statistically not different from zero, it may be concluded that p lim(β̂IV)=
p lim(β̂OLS/λ̂) = β, i.e. that the instrumental variables estimator is consistent. Under
the alternative, taking probability limits in Eq. 26,11 we obtain the following result:

Proposition 2 Let the structural model mapping the permanent incomes of parents
and children be given by Eq. 10–11 and assume ρ < 1. Then δ1 > 0 implies that
plim(β̂IV) > β.

By going back to the structural model 10 we obtain an alternative intuition for
this test. The argument is as follows: if δ1 = 0, this implies that parental education
is not a determinant of the child’s income, and hence the instrumental variables
estimator achieves consistency. An evaluation of the hypothesis that β̂IV is consistent
is therefore undertaken here by treating Eq. 10 as an extended regression of Eq. 1,
where it is maintained, under the null hypothesis, that δ1 = 0.

8An Anderson–Hsiao procedure is used here to estimate φ. See Appendix 1 for further detail.
9When several moment conditions of the type Eq. 22 are available, say m1 and m2, λ̂ is constructed
as an average of these, say (m1 + m2)/2m(x2

is); more on this in Section 5 below.
10This statement follows from the fact that under the assumption E(uisei) = 0, we have that
E(xisei) = E

[
(ηpi + uis)ei

] = E(ηpe).
11Alternatively, returning to Eq. 18.



332 R.H. Abul Naga

Substituting Eqs. 25 and 26 into Eqs. 12 – alternatively, using Eq. 16 – entails the
following estimator for β:

b = β̂OLS/λ̂ (27)

which is a feasible form for the consistent adjusted least squares estimator [25].
In our empirical applications we shall evaluate the large sample biases of the

OLS and IV estimators in percentage terms, i.e. in the form λ = p lim(β̂OLS)/β and
γ = p lim(β̂IV)/β. In the sample these may be evaluated by the quantities Eq. 23 and

γ̂ = λ̂
β̂IV

β̂OLS

(28)

The above equation highlights one important relation between the calculated biases
of the two estimators: the higher λ is (viz. the smaller the bias of OLS), the higher
the bias γ imputed to β̂IV . One important question therefore for the data analyst is
whether the choice of an error process may affect the biases of the two estimators
in any systematic direction. Let λ(φ, θ1, θ2) denote the signal to total variance
ratio underlying an ARMA(1, 2) error process in relation to Eq. 19. Using this
notation, define λ(φ, θ1, 0), λ(φ, 0, 0) and λ(0, θ1, θ2) respectively as the signal to total
variance ratio underlying an ARMA(1, 1), an AR(1) and an MA(2) error process.
The following proposition states sufficient conditions on the structural parameters
φ, θ1 and θ2 for the signal to total variance ratio to increase in moving from an
ARMA(1, 2) error process to each of the three nested error processes stated above:12

Proposition 3 Let the relation between observed income and permanent income be
given by Eqs. 3 and 19 where E(ηpiuis) = 0, εis are iid disturbances and q = 2. Then,

(1) φ(φ + θ1)θ2 ≥ 0 entails λ(φ, θ1, θ2) ≤ λ(φ, θ1, 0)

(2) φ[(φ + θ1)θ2 + θ1] ≥ 0 entails λ(φ, θ1, θ2) ≤ λ(0, θ1, θ2)

(3) φ[(φ + θ1)θ2 + θ1] ≥ 0 also entails λ(φ, θ1, θ2) ≤ λ(φ, 0, 0)

The proposition states that for nested specifications of the error process, condi-
tions may be met so that the signal to total variance ratio is no higher in the context
of the more general specification.13 On the other hand, such comparisons cannot be
made in the context of non-nested specifications such as an AR(1) versus an MA(2)

error process. There, the researcher cannot anticipate which of the two specifications
will entail a higher λ.

In Section 5 we use data from the panel study of income dynamics in order
to estimate the biases of these two estimators of the intergenerational elasticity
parameter β in relation to various error processes nested within the ARMA family.

12See Appendix 1 for a proof of the proposition. The results are limited here within the confines of
an ARMA(1, 2) error process as we shall not exceed this level of generality in our applications of
Section 5. Comparisons however may also generally be made between nested specifications within
the context of an ARMA(1, q) error process.
13Note that these conditions are not necessary: the bias of OLS may fall in moving from an
ARMA(1, 2) to an MA(2) specification, yet the conditions (2) of the proposition may not be met.
Note however that often in practice θ1 ≤ 0, θ2 ≥ 0 and |θ1| < |φ|, so that these conditions are quite
likely to be satisfied in relation to income processes.
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4 Data

In order to quantify the biases of the ordinary least squares and instrumental vari-
ables estimators of the intergenerational elasticity, we look at earnings continuities in
a US sample of parents and children. Our data are extracted from the SRC file, the
random sample, of the University of Michigan’s Panel Study of Income Dynamics
(PSID). A full account of the PSID, its history and main data files, can be found in
Hill [22].

For our main sample, we have data on the earnings of fathers over the five-year
period 1967–71, and the resources of sons are observed in 1991. We have 721 such
parent and child pairs. The income concept taken here is the total labour income of
the household head (measured in 1967 dollars – the year prior to which the survey
was started). Fathers and sons are at least 25 years of age when their earnings are
observed, and we have selected one child per parent family. The average age was
40.5 years for fathers in 1967, and 36.5 years for sons in 1991. Finally, as earnings are
bound to vary over the life cycle in a non-random way, we have run prior regressions
of the logarithm of labour income on age and age squared of the household head
in each given year, and have chosen to work with the residuals from these initial
regressions in the results reported below.

A first look at the covariance/correlation matrix of fathers’ age-adjusted earnings
is called for in order to have an idea as to what kind of error process may be
postulated for the x data. The diagonal elements of Table 2A contain the cross-
sectional variances. The above diagonal (s, τ ) entries contain covariances, while
the corresponding correlations between year s and year τ earnings are reported in
the (τ, s) sub-diagonal entries. Though we shall not be dealing with this topic until
Section 6, we note that there may be some non-stationarity in the data as the cross-
sectional variance oscillates between 0.43 (1968) and 0.49 (1969). The one year auto-
correlation is somewhere around 0.85 while the two-year correlation averages 0.80.
Beyond two years, the pattern of decline is slower, with the 4-year correlation taking
a value of 0.72. Because the drop in the auto-correlation is most rapid in the first two
subsequent years, it is unlikely that an AR(1) specification for the error component
will adequately summarize the covariance structure of fathers’ earnings. Conversely,
because the auto-correlation declines in the ensuing years, an MA(2) structure seems
also too tight. In this sense, an ARMA error process, nesting both AR and MA
specifications may constitute a more flexible attempt for modelling the error process
of earnings x.

Table 2A The correlation / covariance matrix of fathers’ earnings in levels

1967 1968 1969 1970 1971

1967 0.447 0.376 0.381 0.350 0.328
1968 0.860 0.429 0.404 0.364 0.336
1969 0.809 0.876 0.496 0.394 0.367
1970 0.789 0.839 0.843 0.440 0.375
1971 0.718 0.752 0.764 0.828 0.466

The income concept is total labour income of the household head, measured in 1967 dollars.
Correlations appear as the sub-diagonal (s,t) entries pertaining to the (t,s) covariances.
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Table 2B The correlation / covariance matrix of fathers’ earnings in first differences

1968 1969 1970 1971

1968 0.102 −0.021 −0.006 −0.004
1969 −0.205 0.104 −0.058 −0.004
1970 −0.047 −0.472 0.145 −0.038
1971 −0.030 −0.029 −0.258 0.152

The year t variable is �xt = xt − xt−1 where xt are earnings at time t.
Correlations between �xs and �xt appear as the sub-diagonal (s,t) entries pertaining to the (s,t)
covariances.

In Table 2B we report the covariance/correlation matrix of first time differences
�xis. Once again we note that the variance of �xis increases over time. However,
unlike the levels data, we notice that passed two periods, the correlation between
�xis and �xiτ is very small. Thus, as a first approximation, a non-stationary MA(1)

process may provide an adequate modelling framework for the first difference in x.

The fact that sub-diagonal elements of Table 2B are all negative suggests that the
parameter θ1 of the MA(1) error process for �xis is negative.

Section 6 builds non-stationary models for �xis and for differences in differences
of x. Because in practice such processes require more time-series variation in the
data than processes estimated in levels, we have used a sub-sample of the Table 2A
data with the additional sampling restriction that parents report non-zero earnings
over the six year period 1967–1972. There are 694 such observations.

5 Evidence from the PSID

Our baseline regression is that of the child’s 1991 age-adjusted earnings on those of
the father in 1967. For this regression we initially consider two estimators: OLS and
IV, which are intended to bracket the true value for the intergenerational elasticity
β. In our sample these take on respectively the values 0.36 and 0.59, reported in the
top line of Table 3 Next, we quantify the biases of these estimators by considering
auto-regressive processes (Section 5.1), moving average processes (Section 5.2) and
ARMA processes (Section 5.3) for the error component u of the father’s earnings x.

In Section 5.4 we test for mis-specification of the IV estimator. Section 5.5 deals with
tests of over-identifying moment restrictions.

5.1 AR(1) process

Under the assumption that the transitory component of earnings follows an AR(1)

process, we use Eq. 22 for τ = 2, ..., 5 and s = 1 (where year 1 pertains to 1967
earnings) in order to estimate the variance of permanent income. That is, each of
(xi2 − φxi1)xi1, · · · , (xi5 − φxi4)xi1 can be used in the numerator of Eq. 22, and an
average of these is taken in order to estimate E(η2

p). We discuss in turn the estimates
of the parameters φ, λ, b , γ, ρ, δ0 and δ1 reported in Table 3.

• The parameter φ of the auto-regressive component is estimated at 0.08, sug-
gesting that serial correlation in errors of measurement is minor (a conclusion
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that will shortly be reversed). With a standard error of 0.07, this estimate is not
statistically different from zero.

• The parameter λ is then constructed as the estimate of E(η2
p) divided by the

sample variance of 1967 earnings (see Eq. 23). In our data this produces an
estimate of 0.80 for the signal to total variance ratio. This is suggestive of a
moderate bias for the OLS estimator in comparison to conclusions reached
by other authors in this respect. Though Bowles [11] reports estimates for λ

ranging between 0.70 and 0.83 using various income concepts, Zimmerman [30]
estimates this ratio to be 0.73 for wages and 0.66 for earnings, while Abul Naga
[1] estimates this quantity to be in the range of 0.57 for family incomes and 0.62
for earnings.

• Our estimate of λ in turn can be used to correct the bias of the OLS
estimator using Eq. 27. Given the correction factor underlying the AR(1)

model findings, the estimator b implies a value of 0.45 for the intergenerational
elasticity β.

• Using Eq. 28, we evaluate the large sample bias of the instrumental variables
estimator. The estimate of γ corresponding to the AR(1) scenario is equal to
1.31, implying that β̂IV over-estimates the intergenerational elasticity by 30%.

• The moment condition 22 providing an estimate of the variance of ηp, is used
again in the estimation of the correlation ρ between education and permanent
income (cf. Eq. 24). The estimate of ρ corresponding to the second line of
Table 3 is equal to 0.65. We are not aware of other estimates of this para-
meter based on micro data. The simple correlation between education and
age-adjusted annual earnings (i.e. λ1/2ρ), taking a value of 0.58 in our 1967 data,
would typically provide a lower bound estimate for ρ, since the presence of an
earnings transitory variance component would inflate the denominator of such
an expression.

• The parameters δ0 and δ1 of the structural model 10 for the determinants
of the child’s permanent income are estimated using Eqs. 25 and 26. As δ̂0 and
δ̂1 are complicated functions of the sample moments m(xisxiτ ), m(xisei), etc., the
delta method is used here in order to derive expressions for their standard errors
(see Appendix 1 of the paper for further details). δ0 is estimated at 0.35 with a
standard error of 0.06 while δ1, the effect of the father’s education on the child’s
permanent income, is estimated at 0.05 with a standard error of 0.02. It may be
noted from this second finding that δ̂1 is statistically different from zero – a point
we shall take up again below.

5.2 Moving average processes

Given the near zero above estimate of φ, a first hand approximation to the AR(1)

solution is provided by the MA(q) model estimates where q = 0, i.e. a model where
errors of measurement are taken to be uncorrelated.

MA(0) process: uncorrelated errors

The MA(0) process is the sub-case of Eq. 22 where φ = 0 and τ > s (given q = 0).
The results pertaining to this model are reported in the third line of Table 3. The
variance of permanent income, E(η2

p), is now estimated as an average of the sample
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covariances m(xiτ xis) for τ = 2, · · · , 5. It may be noted that the solution is indeed
very similar to the AR(1) estimates. For instance, λ is estimated at 0.80 in both
specifications, and the percentage bias of IV is only one point larger in the MA(0)

solution.

MA(1) process

In the next line of Table 3, the MA(1) estimates, we allow the correlation between
transitory earnings to be non-null in any two consecutive years, but we assume that
it is zero for data observed two or more years apart. The MA(1) estimates will
therefore be consistent under the assumption that the MA(0) specification is correct.
The reverse however is not true, since the estimate of λ would then be inflated in the
numerator by the covariance between transitory earnings components of years s and
s + 1. The estimate of the variance ratio λ however drops only by 1%, to 0.79, the
bias of IV is 30% and the remaining parameter estimates are essentially similar to
those of the second and third lines of Table 3.

MA(2) process

This same exercise is further repeated in the fifth line of Table 3, under the
assumption that errors of measurement follow an MA(2) process. The estimate of
λ now drops to 0.76 when the covariances between 1967 and 1970, and 1967 and
1971 earnings are used to evaluate the numerator of Eq. 23. As a result, b re-scales
the 0.36 OLS estimate of β by a factor of 1.32 to arrive at an estimate of 0.47 for
the intergenerational elasticity. The percentage bias implied by the instrumental
variables estimator appears smaller, and γ is now estimated at 1.25, rather than in
the earlier range of 1.30.

5.3 ARMA processes

Some changes are to be noted when we consider the more general class of ARMA
error processes.

ARMA(1,1) process

Starting with the ARMA(1, 1) results, the sixth line of Table 3, we note that φ, the
parameter of the auto-regressive component of the error term, is estimated at 0.71
and is statistically significant (it was estimated at 0.08 under the AR(1) assumption).
In turn, λ is estimated at 0.70, bringing it more in line with other available estimates
for the signal to total variance ratio. The estimate of ρ, the correlation between
education and permanent income, is also revised upward from the earlier 0.65 range,
to a value of 0.69. The bias of IV is now 16%, and the consistent adjusted least squares
estimate of the intergenerational elasticity, b , takes a value of 0.51.

ARMA(1,2) process

Next, moving on to the ARMA(1, 2) results, the estimate of λ drops further, to
0.61. Of more direct concern to the question addressed in this paper, the percentage
bias of IV becomes virtually nil (1%) as a result of the downward revision of the
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estimate of λ Eq. 23. In presence of ARMA(1, 2) errors the consistent adjusted least
squares estimator b estimates the intergenerational elasticity at 0.58. This finding is
very much in line with the IV estimate of 0.59 (first line of Table 3). This last set of
results therefore reverses the earlier conclusions of the AR(1) and MA(0) to MA(2)

specifications which pointed to something in the order of a 20% bias for OLS , and a
25% to 30% bias for IV (in the opposite direction).

5.4 Mis-specification of the IV estimator

Of particular relevance to our discussion is a test of the assumption that β̂IV is
inconsistent and biased away from zero. Inspecting Eq. 18, it may be noted that δ1

equals zero either if p lim(β̂IV) = p lim(β̂OLS)/λ = β, or if the correlation between
education and permanent income is zero (a very unlikely assumption given many
years of research on human capital). Assuming a positive correlation between
education and permanent income, a rejection of the null hypothesis that δ1 = 0 would
imply that the instrumental variables estimator is inconsistent. It may be inferred
from the results of Table 3 that the t-statistic for δ1 is above 2.0 for the AR(1) and
MA(0) to MA(2) results, in the order of 1.30 for the ARMA(1, 1) solution and 0.03
for the ARMA(1, 2) estimates.

If the alternative to the null is the assumption that δ1 > 0 – i.e. that β̂IV is upwardly
inconsistent, then the critical size of the test at the 5% level is 1.64 rather than 1.96.
Evidence supporting the postulate that the instrumental variables estimator is biased
away from zero is therefore only limited: it does not carry through when errors of
measurement are modelled as ARMA processes. We have more faith however in the
ARMA(1, q) test results since the related estimators are consistent either when the
AR(1) or MA(q) assumptions are valid. The reverse, the AR(1) or MA(q) solutions
being consistent when the error process is an ARMA(1, q), is however not true. On
the basis of our results therefore we wish to cast some doubt on the presumption that
the IV estimator is upwardly inconsistent.

5.5 Tests of over-identifying restrictions

There is a last question we wish to address before we close this section of the
paper. If the ARMA(1, q) assumption is valid, this also means that xiτ − φxiτ−1

(τ > s + q) provides a within equation instrument in a regression of yit on xis [19].
To distinguish this new estimator from β̂IV (where education featured as an out of
equation instrument) we shall denote the panel data IV estimator as β̂P−IV .

An important difference is also to be noted between panel data IV estimators
and consistent adjusted least squares procedures such as Eq. 27. For the latter to
be consistent, a full knowledge of the covariance structure of the error process is
required. On the other hand, β̂P−IV is consistent as long as the underlying instrument
is uncorrelated with the error component u of observed income x.14

14For example, if the signal to total variance ratio λ varies with the age of parents, a consistent
adjusted least square procedure which takes λ to be constant in the cross-section will not consistently
estimate β; a problem Grawe [18] refers to as a life-cycle bias. The estimator β̂P−IV however is robust
to such a bias.
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Table 4 Sargan tests for panel data IV estimators

x5−φx4 x4−φx3 x3−φx2 x2−φx1 x4 x3 x2 β
χ2

[P−val]

ARMA(1,2) + + 0.536 (0.094) 0.003 [0.957]
ARMA(1,1) + + + 0.488 (0.066) 0.529 [0.768]
MA(2) + + 0.454 (0.051) 0.450 [0.502]
MA(1) + + + 0.438 (0.049) 1.319 [0.517]
MA(0) + + + + 0.425 (0.051) 1.798 [0.615]
AR(1) + + + + 0.504 (0.066) 2.880 [0.411]

A + sign indicates that the variable is included in the set of instruments.
Standard errors appear inside parentheses. P-values appear inside square brackets.

The resulting panel data IV estimate when xi5 − φxi4 and xi4 − φxi3
15 are used to

instrument xi1 produces an estimate of 0.54, with a standard error of 0.09 (first line
of Table 4). With xi5 − φxi4 providing an additional instrument, the ARMA(1, 2)

specification is testable by means of Sargan-type tests of over-identifying restrictions
(Godfrey [16]; pp. 168–174). The resulting χ2 test statistic (with a single degree of
freedom) takes on a value of 0.003, corresponding to a P value of 0.96, suggesting
that the ARMA(1, 2) assumption is very plausible. We may then be tempted to
evaluate the plausibility of more restrictive assumptions pertaining to the error
process. For instance, if Zi is the set of instruments used to estimate β, in presence
of ARMA(1, 1) errors Zi is extended to include xi3 − φxi2. The resulting panel IV
estimator of β takes a value of 0.49, and the P value of the test is 0.77. Accordingly,
the ARMA(1, 1) assumption is not rejected.

In the following line of Table 4 we test the MA(2) assumption. Partition Zi

into Zi1 and Zi2, and let Zi1 = xi5 − φxi4. While Zi2 = [xi5 xi4] provides two valid
instruments in the MA(2) context, these cannot be jointly tested for exogeneity
when Zi1 = xi5 − φxi4, as the latter is a linear combination of the columns of Zi2.

Accordingly, in the Table we test for the exogeneity of xi4. While the test does
not reject the exogeneity assumption (its P value is in the order of 0.5), it is
important to note that the panel data IV estimate of β drops from 0.54 (in the
ARMA(1, 2) context) to 0.45. Recalling that an IV estimator that utilizes Zi1 and
Zi2 can be decomposed into a weighted sum of the IV estimator based on Zi1, and
one based on the latter, this result shows that using future earnings (that is, in levels)
as an instrument depresses considerably the panel data estimate of β. The over-
identifying instruments pertaining to the MA(1), MA(0) and AR(1) assumptions
are subsequently tested. The results are similar to those of the MA(2) tests: we do
not reject the exogeneity assumption and the β̂P−IV estimate of β is in the range of
0.40 to 0.50.

The failure to reject any of the assumptions tested in Table 4 is partly due to
the large sampling variance of the β̂P−IV estimate of the ARMA(1, 2) model. The
following account may provide some intuition for understanding these test results:
with an estimate of 0.54, and a standard error of 0.09, the panel data IV estimator of
the ARMA(1, 2) specification spans a confidence interval for β with values ranging

15In the discussion that follows φ is replaced by its estimate of 0.714 obtained from the ARMA(1, 2)

specification (cf. last line of Table 3).
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between 0.35 and 0.72. The MA(q) and AR(1) panel data estimates reported in
Table 4 are however all within the tighter range of 0.43 to 0.50, making it less likely
for the test to detect departures from the exogeneity assumptions.

In a further attempt to discriminate between the various time series assumptions
pertaining to the error term, we have considered an alternative test, motivated by
the discussion contained in Arellano and Bond [6]. Note first that β̂P−IV may be used
as a preliminary estimator in the construction of more efficient GMM estimators. In
the present panel data context, the efficient GMM estimator is essentially a weighted
two-step IV method.16 A heteroscedasticity robust version of the Sargan test (see Eq.
10 of Arellano and Bond) has been considered, as evidence presented by the authors
suggested that this form was more powerful in rejecting incorrect assumptions than
the standard test of over-identifying restrictions. On the whole though, our data have
produced very close GMM estimates, and the test results were qualitatively similar
to those of Table 4.17

Though we were not able to reject the validity of the over-identifying restrictions
related to simpler error structures, we may summarize our results by noting that
they largely conform to the predictions of Proposition 318: under the more general
ARMA(1, 2) specification the bias of OLS is considerably large, while that of β̂IV is
virtually zero. The bias of OLS drops, and that of IV increases in the ARMA(1, 1)

specification, and the pattern is further confirmed in the case of the nested simpler
error structures. Furthermore, in the light of the specification test based on δ̂1,

evidence supporting the claim that education results in an upwardly biased IV
estimator is only found in relation to the AR(1) and MA(0) to MA(2) model
estimates.

6 Some research directions

If we relax the assumption that permanent income is a time-invariant quantity,
we can attempt to estimate the intergenerational elasticity under less restrictive
assumptions. Specifically, introducing time variation in the permanent incomes of
children and parents allows us to identify the structural model 10 in presence of
correlated heterogeneity, that is to relax Eq. 11 (see Arellano [5], pp. 51–52 for a
general discussion). We therefore introduce time subscripts for permanent incomes
below, and we replace Eqs. 2 and 3 with the following assumptions

yit = ηcit + νit (29)

xis = ηpis + uis (30)

We also generalize the earnings process for x in several respects. Firstly, we shall
introduce a stochastic process for permanent income, writing ηpis as the sum of last

16Squared residuals from the initial regression are used to provide the relevant weights.
17The P-values of the tests corresponding to those of the first to sixth line of Table 3 are respectively
0.956, 0.693, 0.470, 0.358, 0.426 and 0.428.
18In the context of our ARMA(1, 2) error process, φ is estimated at 0.714 (Table 3, last line), while
θ̂1 = −0.0035, and θ̂2 = 0.2118 (results not shown). Thus, we have φ̂(φ̂ + θ̂1)θ̂2 = 0.107 and φ̂[(φ̂ +
θ̂1)θ̂2 + θ̂1] = 0.105. These estimates thus verify the sufficient conditions of the Proposition.
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period’s permanent income and a disturbance. Secondly, we shall allow for non-
stationarity in the earnings process, by assuming that the variance of the permanent
income disturbance varies over time.

There are several insights to be obtained from such an exercise. Firstly, we show
that in presence of correlated heterogeneity, the inequality 13 regarding the OLS
and IV estimators and the parameter β need no longer hold (Section 6.1). Second,
we show that in presence of correlated heterogeneity, the parameter β becomes
somewhat uninformative about the structural relation between the permanent in-
comes of the parent and child families, even so when δ1 = 0. Finally, by introducing
children specific permanent income trends (thus generalizing further the structural
relation 10) we are able to explain why the OLS estimate 8 of the parameter β rises
as children age (Section 6.3) without having to appeal to the Haider and Solon [28]
hypothesis that measurement error is mean-reverting. Thus, the Section is also of
independent interest in that it shows that a panel data modelling approach is rich
enough to explain a major empirical puzzle of the literature within a classical errors-
in-variables framework.

Noting that our estimate of φ in Table 3 for the general ARMA process is in
the order of 0.7 with a standard error of 0.3 to 0.4, we shall begin this section with
a simplifying assumption, namely that φ = 1. Then, substituting this value for φ in
Eq. 20, would amount to writing the first difference in x as a general MA process:

�xis = εis + θ1εis−1 + · · · + θqεis−q (31)

Now that permanent income is allowed to vary over time, assume that it is the first
difference in permanent income, rather than the first difference in earnings, which
exhibits a general moving average structure:

ηpis = ηpis−1 + ξis (32)

ξis = �is + κ1�is−1 + · · · + κl�is−l (33)

Together, Eqs. 30, 32, 33) would imply the following process for the first difference
in x :

�xis = �is + κ1�is−1 + · · · + κl�is−l + �uis (34)

Thus, if we abstract from measurement error (�uis = 0), and l = q, Eqs. 34 becomes
a process observationally equivalent to Eqs. 31 or 20 when φ = 1.

The present context is also useful to consider in that it completes the discussion
of Section 3 in studying the identification of the structural model 10 under the
assumption that φ = 1; a case that could not be handled in the context of a model
where the permanent incomes of parents and children are time-invariant quantities.

As shown in Appendix 3, in what follows it will be sufficient for identification
purposes to model measurement error in x as an MA(q) process:

uis = εis + θ1εis−1 + · · · + θqεis−q (35)

where εis are iid error terms, uncorrelated with �it,

E(εitεis) = 0 s �= t (36)

var(εis) = σ 2
ε > 0 f or all s (37)

E(�itεis) = 0 f or all t, s (38)
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and to consider the permanent income process in the context of l = 1 (viz. an
ARMA(1, 1) process), where the permanent income shock ξis is non-stationary:

ξis = �is + κ1�is−1 (39)

E(�is�it) = 0 s �= t (40)

E(�is�it) = E
(
� 2

s

)
s = t (41)

The general stochastic process for earnings x we shall retain below therefore consists
of Eqs. 30, 32, 35 and 39. Variances and covariances of disturbances are given by Eqs.
36–38 and Eqs. 40–41.

Modelling permanent income as an ARMA(1, 1) process with a unit root (φ = 1)

will provide us with a platform to begin to explore the estimation of the structural
model of income transmission using data in differences, as a means to control for
various forms of unobserved heterogeneity.

6.1 Correlated random effects

As a first extension of the model of Section 2, we presently consider a structural
model

ηcit = δ0ηpis + δ1ei + vi (42)

with the assumptions

E(viei) �= 0 and E(viηpis) �= 0 (43)

In the above model the component vi performs as a family specific random effect,
which is posited to be correlated with the explanatory variables.

In a family utility model where parents are able to undertake efficient investments
in their children’s human capital, where the inheritance of ability follows a first order
Markov process, and permanent income is a time-invariant concept, the resulting
relation between ηp and ηc is given by Eq. 1 with the important difference that
E(ζi|ηpi) �= 0 [8]. Thus, returning to our specification 42, if δ1 = 0 (as in the Becker
and Tomes efficiency model), we could equally envisage that E(vi|ηpis) < 0 because
vi is a function of a luck term which together with parental ability determines ηpis.
More generally δ1 could be non-zero because parental investments are not efficient
and, or, parental education is a useful index of family background, which has an
impact on the child’s attainment. Also, the scenario E(viei) �= 0 is easily conceivable:
it arises for instance when vi captures the effect of omitted determinants of ηcis, and
such effects are correlated with education.19

In the present context, the parameters β, δ0 and δ1 become related through the
following relation

β = δo + δ1 E(ηpse) + E(ηpsv)

E(η2
ps)

(44)

19Other sources of heterogeneity may pertain to the degree of parental altruism, and to whether
parents are able to undertake efficient investments in their children’s human capital. The various
sources of heterogeneity affect intergenerational earnings and consumption inheritance differently.
See Han and Mulligan [21] for a discussion.



Biases of the ordinary least squares and instrumental... 343

and the probability limits of the OLS and IV estimators are given by

plim(β̂OLS) = δo E(η2
ps) + δ1 E(ηpse) + E(ηpsv)

E(η2
ps) + E(u2)

(45)

plim(β̂IV) = δ0 + δ1 E(e2) + E(ev)

E(ηpse)
(46)

It is to be noted now that with the assumption Eq. 43 replacing Eq. 11, the inequality
13 bounding the parameter β is no longer valid: while the OLS estimator remains
biased toward zero, it can no longer be claimed that the IV estimator is biased
upwards;20

Proposition 4 Let the structural model mapping the permanent incomes of parents
and children be given by Eqs. 42–43. Then the inequality Eq. 13 need no longer hold.

Note furthermore that under the present set-up, it is no longer the case under the
null hypothesis δ1 = 0 that β coincides with δ0. While δ0 remains a slope parameter,
it is no longer straightforwardly clear what interpretation ought to be given to β in
the light of Eq. 44, and what is its exact relevance as an index of justice attainment.
As such, our interest ought to be recentered around a direct estimation of δ0 and δ1

from the measurement model pertaining to Eq. 42.
Replacing Eqs. 29 and 30 into Eq. 42 we obtain the required relation:

yit = δ0xis + δ1ei + vi + νit − δ0uis (47)

If we were to take first differences in Eq. 47 we would, eliminate vi to obtain the
estimator

δ̂0,FD =
∑

i(yit − yit−1)(xis − xis−1)∑
i(xis − xis−1)2

(48)

which is purged from heterogeneity biases. To estimate δ1 one would need to
construct a further regression. Define y+

i = ȳi − δ̂0,FDx̄i and consider the regression

y+
i = δ1ei + vi + ν̄i − δ0ūi (49)

Below we calculate an estimator δ̂1,FD obtained by fitting the above regression via
OLS:

δ̂1,FD =
∑

i y+
i ei∑

i e2
i

(50)

The estimators δ̂0,FD and δ̂1,FD remain inconsistent because of measurement error in
x. Furthermore, because under Eq. 43, ei is correlated with vi, δ̂1,FD is inconsistent
independently of measurement error biases. However, an instrumental variables

20For instance if δ1 = 0 and

E(ev) ≤ E(ηpse)E(ηpsv)

E(η2
ps)

then it is the case that p lim(β̂IV) ≤ β.
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estimator using leads of x as instruments consistently estimates δ0 (see Appendix 3).
In particular, if measurement error u is an MA(q) process, we consider the estimator

δ̃0 =
∑

i(yit − yit−1) xiτ∑
i(xis − xis−1) xiτ

τ > s + q (51)

to identify δ0 in the present context.
By analogy with Eq. 49, δ1 may be estimated by considering a further regression.

Define then ỹi = ȳi − δ̃0 x̄i and consider the regression

ỹi = δ1ei + vi + ν̄i − δ0ūi (52)

Since E(viei) �= 0, if zi is some variable correlated with ei but uncorrelated with vi

and the remaining error terms, the estimator

δ̃1 =
∑

i ỹizi∑
i eizi

(53)

will identify δ1.

6.2 Individual specific trends

There may also be some interest in generalizing Eq. 42 further in order to introduce
an individual specific trend in the child’s permanent income:

ηcit = v0i + v1it + δ0ηpis + δ1ei (54)

where v0i is the intercept, and v1i the slope, of the individual permanent income trend.
We consider estimation of δ0 and δ1 under the assumptions

E(v jiei) �= 0 and E(v jiηpis) �= 0 j = 0, 1 (55)

We maintain below that the measurement error component of parental earnings,
uis, is uncorrelated with the intercept and slope of the individual-specific permanent
income trend:

E(v0iuis) = 0 E(v1iuis) = 0 f or all s (56)

The parameters β, δ0 and δ1 now become related through the following relation:

β = δo + δ1 E(ηpse) + E(ηpsv0) + t.E(ηpsv1)

E(η2
ps)

(57)

Under Eq. 54 both the intercept v0i and slope v1i of the time trend become individual
specific. The main reason for considering such a specification is motivated by the
findings of a recent literature [18, 24] which has widely documented the pattern that
estimates of the intergenerational elasticity parameter β of the simple Galtonian
model 1 rise as children’s earnings are observed at later stages of the life cycle.

If children raised in wealthier families are the ones who study longer, such persons
typically begin their careers with low salaries and experience higher earnings growth
over time. Under such circumstances we could conceive that E(v0iηpis) ≤ 0 and
E(v1iηpis) ≥ 0. In addition, if wealthier parents are also highly educated, we could
also envisage that E(v0iei) ≤ 0 and E(v1iei) ≥ 0.
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If v1i is positively correlated with ηpis, and ei then both the OLS and IV estimates
of β would rise as children age:

plim(β̂OLS) = δo E(η2
ps) + δ1 E(ηpse) + E(ηpsv0) + t.E(ηpsv1)

E(η2
ps) + E(u2)

(58)

plim(β̂IV) = δ0 + δ1 E(e2) + E(ev0) + t.E(ev1)

E(ηpse)
(59)

Proposition 5 Let the structural model mapping the permanent incomes of parents
and children be given by Eqs. 54–55. Then:

(1) β rises as children age if E(ηpsv1) ≥ 0.

Furthermore, under the classical errors in variables assumptions 29–30,
(2) plim(β̂OLS) rises as children age if E(ηpsv1) ≥ 0
(3) plim(β̂IV) rises as children age if E(ev1) ≥ 0.

The above result is of direct relevance to the literature since it shows that, under
the classical errors in variables assumptions, a rise in the β̂OLS estimate as children
age can be explained by the presence of a child specific permanent income trend. As
such, while mean-reverting measurement error accounts well for this finding, it is not
the only possible explanation.

Next consider the estimation of Eq. 54. The underlying measurement model takes
the form:

yit = v0i + v1it + δ0xis + δ1ei + νit − δ0uis (60)

Taking a difference in first differences in the above equation eliminates the random
parameters of the time trend:

�yit − �yit−1 = δ0(�xis − �xix−1)

+ (�νit − �νit−1) − δ0(�uis − �uis−1) (61)

OLS estimators for the difference in first difference equations are given by δ̂0,DFD

(OLS fitted to Eq. 61) and δ̂1,DFD obtained by fitting the equation

y++
i = δ1ei + vi + ν̄i − δ0ūi (62)

by ordinary least squares, where y++
i = ȳi − δ̂0,DFDx̄i.

Because of the problem of measurement error, consistent estimation of δ0 and
δ1 further requires instrumentation of Eq. 61. Accordingly, when uis is an MA(q)

process, the estimator

˜̃δ0 =
∑

i(�yit − �yit−1) xiτ∑
i(�xis − �xis−1) xiτ

τ > s + q (63)

is a consistent differences in first differences instrumental variables (DFD-IV)
estimator (see Appendix 3 of the paper).

If we define the fitted slope

v̂1i = 1

2

[
(�yit + �yit−1) −˜̃δ0(�xis + �xis−1)

]
(64)
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and

˜̃yi = ȳi −˜̃δ0 x̄i − v̂1it

then, the analogue of Eq. 52 is a regression

˜̃yi = δ1ei + v0i + ν̄i − δ0ūi (65)

which identifies δ1 using some instrument zi for education:

˜̃δ1 =
∑

i
˜̃yizi∑

i eizi
(66)

6.3 Further results

We reconsider the estimation of the structural model of income transmission in
presence of unobserved heterogeneity. As discussed in the above sub-sections, our
efforts are now centered around a direct estimation of δ0 and δ1. One new concern
here is a preliminary evaluation of how well estimators based on differencing and
difference in first differences perform in practice in identifying the above model.

In Table 5 we consider six estimators for the structural model of income
transmission.

• The OLS estimator in levels abstracts from measurement error in x as well as
potential correlated heterogeneity. Fitting Eq. 47 by OLS we obtain an estimate
of 0.25 for δ0. This estimate is considerably smaller than the 0.36 OLS estimate of
β in Table 3, as the coefficient on parental education is estimated to be significant
(a 0.07 value with a standard error of 0.017).

Table 5 Levels, first difference and difference in first differences estimations

MA(1) MA(2)
measurement error measurement error

δ0 δ1 δ0 δ1 δ0 δ1

OLS-levels 0.254 0.072
(0.050) (0.017)

OLS-FD 0.063 0.103
(0.050) (0.012)

OLS-DFD −0.075 0.119
(0.061) (0.020)

IV-levels 0.356 0.053 0.363 0.052
(0.065) (0.018) (0.071) (0.019)

IV-FD −0.493 0.373 −0.713 0.454
(0.629) (0.040) (0.817) (0.045)

IV-DFD 0.347 0.096 0.385 0.080
(0.647) (0.052) (0.652) (0.052)

IV-levels estimates are robust to measurement error but not to heterogeneity biases.
IV-FD estimates are robust to measurement error and correlated random effects.
IV-DFD estimates are robust to measurement error and child specific income trends.
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• The next line of the Table, OLS-FD, reports the estimate of δ0 obtained via
Eq. 48. This estimator eliminates heterogeneity biases when it is taken that v

is correlated with e and ηps. Because first differencing aggravates measurement
error problems, the resulting estimator is likely to be biased downwards to a
greater extent than OLS in levels. The resulting estimate of 0.06, with a standard
error of 0.05 however is hard to reconcile with a story of measurement error bias.

• The OLS-DFD estimates of δ0 and δ1 (cf. Eqs. 61 and 62) are robust to correlated
heterogeneity in intercept and slope of the permanent income trend, but not to
measurement error. The estimate of δ0 (−0.08 with a standard error of 0.061) is
again problematic.

It is thus necessary to reconsider the levels and differencing procedures in the
light of measurement error. This is the purpose of the next three estimators which
instrument the levels, first difference and difference in differences equations. There
are two sets of estimates reported in each line of Table 5, depending on whether the
error component uis is modelled as an MA(1) or MA(2) process.

• The IV-levels estimator instruments 1967 earnings in Eq. 47 using available leads
xτ , where τ ≥ s + 1 in the MA(1) specification, and τ ≥ s + 2 in the MA(2)

specification. The estimator is robust to measurement error, but not to the forms
of correlated heterogeneity discussed in the sub-sections above. The estimates
of δ0 now rise from 0.25 for OLS in levels to 0.36 in the fourth line of results in
Table 5.

• The IV-FD estimator is an instrumented version of OLS-FD. The estimates of δ0

(−0.50 when us is modelled as an MA(1) specification, and −0.71 in the MA(2)

specification) are again indicative of a specification bias.
• Finally, the IV-DFD estimator estimates δ0 at 0.35 in the MA(1) specification

and 0.39 in the MA(2) specification.

In this sense, the specification of a permanent income trend, allowing for individ-
ual specific intercepts and slopes appears in the light of these results to offer a more
promising avenue for future research on the estimation of the structural model of
income transmission in the context of correlated heterogeneity.

Note however one major drawback of differencing estimators in comparison to
equations estimated in levels. The standard error of the estimate of δ0 is large, thus
resulting in a statistically not different from zero estimate. The result points to the
fact that the time-series variation in earnings panels such as the PSID may turn out
to be insufficient for the use of differencing procedures to be statistically informative
for parent and child permanent income elasticities. However, this problem may be
overcome in the context of other data sources where parent and child samples sizes
are well over 700.

The estimates of δ1 are obtained using auxiliary regressions based on Hausman
and Taylor procedures. For the IV-FD (IV-DFD) estimator to be robust to the
presence of correlated random effects (individual specific trends), the regressions
52 and 65 must be instrumented. To the extent that a race dummy is a correlate of
education, but is orthogonal to the heterogeneity components, the resulting IV-FD
and IV-DFD estimators of δ1 will be consistent. If we set aside the IV-FD solutions,
all estimates vary in the range [0.05–0.12]. The estimate of δ1 is statistically significant
in the OLS, levels, first difference and difference in first differences procedures,
which do not treat the measurement error problem.
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The IV-levels estimator of δ1 is also significant. The IV-DFD estimate of δ1

however has a t-statistic of 1.85 in the context of the MA(1) specification and a
t-statistic of 1.54 in the MA(2) specification. This last result is certainly to be treated
with caution. Nonetheless it points again to the fact that, having controlled for
parental income, supporting evidence in favour of the claim that education is a
determinant of the child’s permanent income is fairly limited.

7 Conclusions

By providing repeated measurements on error-ridden variables, panel data allow
the researcher to identify a wide range of errors in variables models, of which the
Galtonian model of the intergenerational mobility literature is an example. We have
used this result in the present paper in order to quantify the large sample biases of the
ordinary least squares and instrumental variables estimators of the intergenerational
elasticity. The key quantities in evaluating the biases of these estimators were shown
to be the signal to total variance ratio and the correlation between education and
permanent income, for which consistent estimators have been provided. As a by-
product of our discussion we have proposed a test to investigate the null hypothesis
that the instrumental variables estimator is consistent, against the alternative that it
is inconsistent and biased away from zero.

In the paper we have estimated models of income transmission using panel data
where earnings were measured in levels, in first differences and as differences in first
differences. For the earnings data measured in levels, we have found that a tight
specification of the auto-correlation in the error process (for instance AR(1) and
MA(1) processes) tends to inflate the signal to total variance ratio, thus making the
relative bias of the OLS estimator appear moderate, and that of IV large. The results
of this paper suggest that the estimate of the signal to total variance ratio falls when
we introduce more flexibility in the specification of the error process.

Estimators based on first differences in earnings are robust to biases arising from
correlated random effects, but are sensitive to measurement error. In principle, if
the estimate of the intergenerational elasticity is higher than in the levels data,
this suggests that parental permanent income is negatively correlated with the
unobserved random effect. Our estimates based on first differences, with and without
correction for measurement error, turned out however to be unsatisfactory.

If the OLS and IV estimates increase as children age, this may be indicative of
mean reverting measurement error, as has been suggested in several recent studies.
An alternative explanation we have explored in Section 6, is that the rise in the
estimates may be due to the presence of a child specific permanent income trend in
the structural model of income transmission; for which difference in first differences
estimation is a suitable empirical strategy. Estimates of the structural model of
income transmission based on this latter approach were found to be more plausible
than for data constructed in first differences, yet they exhibited large standard errors.
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