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Lack of SMARCB1 expression characterizes a
subset of human and murine peripheral
T-cell lymphomas

A list of authors and their affiliations appears at the end of the paper

Peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) is a hetero-
geneous group of malignancies with poor outcome. Here, we identify a sub-
group, PTCL-NOSSMARCB1-, which is characterized by the lack of the SMARCB1
protein and occurs more frequently in young patients. Human and murine
PTCL-NOSSMARCB1- show similar DNA methylation profiles, with hypermethyla-
tion of T-cell-related genes and hypomethylation of genes involved inmyeloid
development. Single-cell analyses of human andmurine tumors revealed a rich
and complex network of interactions between tumor cells and an immuno-
suppressive and exhausted tumor microenvironment (TME). In a drug screen,
we identified histone deacetylase inhibitors (HDACi) as a class of drugs
effective against PTCL-NOSSmarcb1-. In vivo treatment of mouse tumors with
SAHA, a pan-HDACi, triggered remodeling of the TME, promoting replenish-
ment of lymphoid compartments and reversal of the exhaustion phenotype.
These results provide a rationale for further exploration of HDACi combina-
tion therapies targeting PTCL-NOSSMARCB1- within the TME.

PTCL-NOS is among the most common forms of mature T-cell
lymphoma1,2. It comprises a heterogeneous group of aggressive
malignancies that predominantly affect adults3 and less frequently
children, adolescents and young adults (CAYA) below the age of 25
years4. Because patients respond poorly to current treatment regi-
mens, identification of new therapeutic strategies is required.
According to the 5th edition of the WHO classification of lymphoid
neoplasms, PTCL-NOS represents a heterogeneous diagnostic cate-
gory that is differentiated from, e.g., nodal T-follicular helper cell
lymphoma5. High expression of either TBX21 or GATA3 characterizes
two molecular variants PTCL-TBX21 and PTCL-GATA3, indicating pro-
grams in T1 and T2 helper cells, respectively6. Epigenetic mechanisms
play a particularly important role in the pathogenesis of PTCL-TBX21,
since DNA or histone methylation genes are often mutated in this
entity7,8.

Chromatin remodeling genes, such as SMARCA4, ARID1A, and
other members of the SWI/SNF complex, can also be mutated in dif-
ferent lymphomas9–14. SMARCA4 and ARID1A form part of the human
SWI/SNF complex BAF (BRG1/BRM-associated factor), whichmobilizes
nucleosomes along the DNA15,16. The loss of SMARCB1, another BAF

subunit, generally results in reduced chromatin accessibility and
transcriptional repression17. The biallelic inactivation of this tumor-
suppressor gene is intimately linked to the development of pediatric
embryonal cancer and rhabdoid tumors18, while mono-allelic inacti-
vating mutations in the germline are the molecular basis of the rhab-
doid tumor predisposition syndrome type 119,20. SMARCB1 has key
roles in human lymphocyte development and function21, but little is
known about its role in lymphoma pathogenesis, despite SMARCB1
deletions and mutations described in T-cell prolymphocytic leukemia
and cutaneous T-cell lymphoma22–24 and, recently, biallelic SMARCB1
loss was also associated with aggressive hematopoietic malignancy25.
In a genetic mouse model (CD4-Cre Smarcb1fl/fl) Smarcb1 inactivation
in mature T-cells triggers the development of oligoclonal TdT–, TCR+,
CD3+, CD8+, and CD4– mature PTCL26 and, rarely, also rhabdoid
tumors27.

Herewedescribe a subgroup of human PTCL, referred to as PTCL-
NOSSMARCB1−, characterized by the loss of SMARCB1 and predominantly
affecting younger individuals. Through comparative epigenomic
studies of human PTCL-NOSSMARCB1− and murine tumors from the
Smarcb1-knockout model, we characterize common pathways of
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lymphomagenesis in these tumors. We further describe the tran-
scriptional landscape of this entity at the single-cell level and investi-
gate the functional interaction network between lymphoma cells and
their microenvironment. Finally, we show that SAHA (suberoylanilide
hydroxamic acid/vorinostat), a pan-HDACi, is able to remodel the
cellular immune landscape of PTCL-NOSSmarcb1− in a favorable manner
and thus could be a useful therapeutic agent in this type of cancer.

Results
A SMARCB1-negative subgroup of PTCL-NOS is predominant in
younger patients
In amouse tumormodel, a reversible conditional Smarcb1 allele causes
themajority ofmice to develop amature T-cell lymphomawithin a few
weeks upon loss of Smarcb127. Building on this observation, we eval-
uated SMARCB1 expression in different human mature T-cell lym-
phoma cohorts (Fig. 1A; Suppl. Fig. 1).

We first investigated T-cell prolymphocytic leukemia (T-PLL), a
mature T-cell leukemia. SMARCB1 gene loss was present in 2 out of 16
T-PLL cases aswell as in the T-PLL-like cell line SUP-T11 (Table S1). Gene
expression and DNA methylation data revealed no significant differ-
ence in SMARCB1 expression and promoter methylation in T-PLL
samples compared to non-malignant T-cells28 (Suppl. Fig. 2). SMARCB1
protein expression was confirmed in lysates of T-PLL patients and in
SUP-T11 cells (Suppl. Fig. 2).

We next performed immunohistochemical analysis of SMARCB1
expression in 15 cases of mycosis fungoides (MF), a type of cutaneous
T-cell lymphoma. Only one case displayed a few scattered negative
elements with irregular nuclear profiles located in the superficial der-
mis (5%). All the remaining MF cases showed indistinctively intense
nuclear staining (Table S2; Suppl. Fig. 3). Immunohistochemical ana-
lysis of SMARCB1 expression in intestinal lymphomas (enteropathy-
associated T-cell lymphoma, EATL, and monomorphic epitheliotropic
intestinal T cell lymphoma,MEITL) also showed SMARCB1 positivity in
the majority of samples (Table S3; Suppl. Fig. 3). As we did not detect
common loss of SMARCB1 expression in T-PLL, MF, EATL and MEITL,
these entities do not appear to be the human counterpart to the
mature T-cell lymphomas in the Smarcb1-deficient mouse model.

Finally, we examined transcriptomic data of 225 mature T-cell
lymphomas from the TENOMIC database29–35, including 76 cases of
PTCL-NOS and 100 cases of angioimmunoblastic T-cell lymphoma
(AITL) as well as 19 Natural killer cell (NK)/T-cell lymphomas, 11 hepa-
tosplenic T-cell lymphomas and 19 ALK-negative anaplastic T-cell
lymphomas (ALK-ALCL). SMARCB1 gene expression was hetero-
geneous within the different entities (Fig. 1B). Nevertheless, very low
SMARCB1 expression levels were significantly more frequent in the
PTCL-NOS than in the AITL group (Fig. 1B; adjusted p <0.0001, Wil-
coxon test). Therefore, we focused on PTCL-NOS in further assess-
ment. SMARCB1 protein expression was examined in selected PTCL-
NOS in the TENOMIC dataset, as well as in additional adults (over 25
years) and CAYA (Fig. 1C, G; Table S4). While in the original screening
cohort, only 1 out of 28 (3.6%) adult PTCL-NOS patients was negative
for SMARCB1 staining, this number increased to 4 out of 13 cases (31%)
in the CAYA age group (Fig. 1D; p <0.05, Fisher’s exact test). This was
an unexpected finding given the fact that adult samples selected for
protein analysis show the lowest SMARCB1 RNA expression. The
extended cohort included cases specifically selected for SMARCB1
protein loss (n = 5). Combining both cohorts revealed an even
increased enrichment of SMARCB1-negative cases in CAYA patients
(47% compared to 7% in adult patients, p = 0.0026, Fisher’s exact test).
In both cohorts SMARCB1 protein deficiency significantly correlated
with younger age in PTCL-NOS (Fig. 1E).

Molecular characterization of SMARCB1-negative PTCL-NOS
We performed RNA profiling of three SMARCB1-positive and three
SMARCB1-negative PTCL-NOSs. Comparing gene expression of

common T cell genes did not reveal a specific pattern of the PTCL-
GATA3 or PTCL-TBX21 subtype. (Fig. 1F). Whereas one SMARCB1-
negative case showed characteristics of cytotoxic PTCL-NOS (CD8+,
patient 5), theotherwasCD4/8-positive (patient 1) arguing for aunique
subtype of SMARCb1-deficient PTCLs. All cases were Tdt and CD30
negative and showed expression of at least one T cell marker (Fig. 1G).

Next, we addressed potential molecular explanations for the lack
of SMARCB1 expression in human PTCL-NOS. Genomic profiling of
nine SMARCB1-negative CAYA samples via (targeted) NGS (n = 9) and
OncoScan array (n = 7) showed biallelic mutations/deletion in three
cases (Fig. 1H–J). In one case biallelic loss was confirmed using FISH
(Table S5; Suppl. Fig. 4). One additional case showed an exon 1 loss
leading to SMARCB1 absence on protein level (Suppl. Fig. 4). Addi-
tionally, three cases showed heterozygous mutations or copy number
alterations in SMARCB1, while two cases did not show any genetic
alterations (Fig. 1J; Table S5).

As genomic profiling did not provide conclusive evidence for
biallelic mutation as common cause of SMARCB1 inactivation, which is
typical for rhabdoid tumors, we next investigated DNAmethylation as
an alternative mechanism for gene silencing. The DNA methylation
profile revealed higher SMARCB1 promoter methylation in four
SMARCB1-negative PTCLs, including two cases without genomic
alterations, compared to normal T cells and other malignant T cell
populations (Wilcoxon test: p < 0.001 and p <0.01, respectively)
(Table S6; Suppl. Fig. 5).We conclude that loss of SMARCB1 expression
in human PTCL largely occurs via somatic mutation and/or epigenetic
silencing, whereas germline SMARCB1 mutations have not yet been
observed in all samples tested.Moreover, no specific loss of other SWI/
SNF member genes was detected in PTCL-NOS (Suppl. Fig. 5).

For further insight into the molecular properties of this PTCL
subtype, we established a mouse model by inactivating murine
Smarcb1 inmatureT cells usingCd4-cre::Smarcb1fl/flmice26. Thesemice
develop an enlarged spleen and a concomitant loss of red/white pulp
organization with 100% penetrance after 9 to 12 weeks (Table S7;
Suppl. Fig. 6). We then recorded the DNAmethylation profiles of these
murine tumors (n = 5) as well as those of human SMARCB1-negative
PTCL-NOS samples (n = 5)with non-neoplastic CD3 + T cells (Table S8).
The tumor DNA was globally hypomethylated compared to that from
non-malignant T cells (Fig. 2A, B). Comparison between human and
murine tumors showed similar proportions of differentially hypo- and
hypermethylated gene loci (hypo: mouse 34.9%, human 23.4%; hyper:
mouse 65.1%, human 76.6%, t-test: σ/σmax >0.4, q < 0.01).

Given the similar proportions of differentially hypo- and hyper-
methylated loci in both species, the question arose if the same biolo-
gical processes and pathways are affected. Within these differently
methylated loci we found 104 genes concordantly hypomethylated
and 534 genes concordantly hypermethylated in human and murine
lymphomas (Fig. 2C; Supplementary Data S1). Remarkably, gene
ontology analyses revealed an enrichment of genes concordantly
linked to hypomethylated CpGs involved in myeloid leukocyte differ-
entiation (e.g., CDK6) (Fig. 2D; Supplementary Data S1). By using a
more stringent false discovery rate (t-test: σ/σmax>0.4, q < 1e-5), the
number of concordantly hypermethylated genes in both species was
reduced to 28 genes covering a network around cancer/T-cells related
genes (e.g., CTLA4, ETS1) (Supplementary Data S2). Genes linked to
concordantly hypermethylated CpGs are significantly enriched in
regulators of myeloid apoptosis and lymphocyte differentiation
(Fig. 2D; Table S9). Taken together, this suggests that SMARCB1 dys-
function in these tumors is associated with lineage infidelity and/or
plasticity of the lymphoid compartment.

The cellular and transcriptomic landscapeof SMARCB1-negative
PTCL-NOS
To shedmore light on this putative PTCL subtype, we used single-cell
RNA sequencing (scRNA-seq). Tumor material was isolated from
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archival formalin-fixed, paraffin-embedded (FFPE) blocks from three
female and two male patients aged between 7 and 12 years and
subjected to scRNA-seq using Chromium Fixed RNA Profiling tech-
nology from 10X Genomics (Fig. 3A, Table S10). After integrating the
five individual data sets, a total of 19,678 single cells were assigned to
19 different clusters (Fig. 3B; Suppl. Fig. 7A). Differentially expressed

genes (DEG) analysis was then performed and cluster-specific cell
types annotated through an interplay of bioinformatic analyses and
manual curation (Suppl. Methods; Supplementary Data S3). Tumor
cells were differentiated from non-malignant cells of the tumor
microenvironment (TME) using the following five criteria: (i) negli-
gible SMARCB1 expression, (ii) CD2 positivity (as a marker of the
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mature T-cell origin of PTCL); (iii) EZH2 positivity (frequently over-
expressed in PTCL-NOS36, (iv) KIT positivity (based on our previous
observations) and (v) high proliferative activity as exemplified by
strong expression of MKI67 (Suppl. Fig. 7B). Five clusters met these
criteria. The remaining clusters were classified as T-cells, B- and
plasma B-cells, monocytes/macrophages (Mono/Mac), OSCAR+
osteoclasts (OCL), plasmacytoid and conventional type 1 dendritic
cells (pDC and cDC1) and LAMP3+ mature DCs enriched in immu-
noregulatory molecules (mregDC). In addition, we identified a rich
compartment of non-hematopoietic cells (NHC), whichmatchedwith
a single-cell atlas of stromal cells in human lymph nodes and
lymphoma37. These included blood and lymphatic endothelial cells
(BEC and LEC), pericytes (PC), non-endothelial stromal cells (NESC)
as well as CCL19+/CCL21+ fibroblastic reticular cells (FRC) (Fig. 3C;
Suppl. Fig. 7C). The heterogeneity of the Tumor/T-cell as well as the
myeloid Mono/Mac compartment (hereafter Myeloid) were exam-
ined at higher resolution by separation and re-clustering of the cor-
responding subsets. This procedure resulted in 13 new clusters
T0-T12 for the first subset, eight of which were identified as EZH2-
positive tumor cell clusters (gray color code) and the rest as T-cells
(green color code) (Fig. 3D). From the two initial Myeloid clusters, six
new clusters M0–M5 emerged (Fig. 3E).

Functional gene expression programs were determined via
alignment with recently described cancer hallmark metaprograms
(MPs)38. A number of tumor cell clusters showed clear matches to
various MPs, whereas the T-cell clusters behaved inconspicuously
(Fig. 3F, Supplementary Data S4, 5). T5 was associated with cell cycle
programs (e.g., 49 hits of T5 DEGs on the 50 signature genes of
MP1_G2/M), so we refer to it as “Cycling” hereafter (Fig. 3G). T1 showed
33/50 hits on MP20_MYC (i.e., oncogenic MYC signaling; hereafter
“T1_MYC”), and cluster T9 showed 36/50 hits on MP12_EMT I (i.e.,
epithelial-to-mesenchymal transition; hereafter “T9_EMT”). Within the
Myeloid subset, a dichotomous distribution was observed: cluster M3
was assigned as Cycling and cluster M0 as EMT, while clustersM2, M4,
and M5 each showed the strongest agreement with the metaprogram
MP5_Stress (Fig. 3H, SupplementaryData S6, 7). Apparently, functional
metaprograms manifest in surprisingly similar ways in devel-
opmentally unrelated cell populations of tumor and TME, suggesting
extensive communication within the local tumor niche. This is further
illustrated by the violin plot in Suppl. Fig. 8A, which shows that sub-
populations of tumor and myeloid cells express identical signature
genes of the Cycling, MYC, and EMT programs. Gene ontology (GO)
annotation andgene set enrichment analysis (GSEA) of the T9/M0EMT

program confirmed the central role of the consensus signature genes
in theorganizationof the extracellularmatrix (ECM) in the tumorniche
(Suppl. Fig. 8B–D). A functional gene network analysis was performed
for the shared stress programofM2,M4 andM5, which revealed that it
is associated with tumor necrosis factor (TNF) signaling via NFKB and
clusters around a central core of the AP-1 (JUN/FOS) transcription
factor family (Suppl. Fig. 8E, F).

Next, we focused on a thorough analysis of the phenotypic char-
acteristics and functional states of individual clusters. Immune gene
profiling of the Tumor/T-cell compartment revealed the absence of
innate lymphoid cells. We found neither significant expression of cell
type-defining marker genes for NK cells (CD56 and/or CD16) nor for
mucosal-associated invariant T (MAIT) cells. The five T-cell clusters
could be resolved into the CD4/CD8 double-negative (DN) clusters T0
andT7, the CD8-positive clusters T3 andT10, and a single CD4-positive
cluster T11 (Fig. 3I). Strikingly, three of the five clusters expressed
neither CD3 genes nor LCK, a T-cell receptor (TCR) complex-
associated kinase with an important function in TCR signaling. We,
therefore, define these clusters as phenotypically compromised. The
functional state of the individual Tumor/T-cell clusters was further
evaluated by comparison with a single-cell reference atlas of tumor-
associated T-cells39. The majority (6/8) of the tumor cell clusters
showed a precursor-exhausted (Tpex)-like expression profile char-
acterized as PD-1 (PDCD1)/TIGIThigh and HAVCR2/LAG3low. Of the two
CD8+ T-cell clusters, T3 showed a terminally exhausted (Tex) profile
(HAVCR2/LAG3high), while cluster T10, which represented only a minor
fraction (i.e., 8%) of all non-malignant T-cells (Fig. 3J, K), met the cri-
teria for a functional cytotoxic T lymphocyte (CTL) cluster with high
expression of granzyme and perforin genes (Fig. 3L). The DN T-cell
cluster T0 exhibited a Tpex profile, and theDN cluster T7 that of naive-
like T-cells. Finally, T11, the smallest of the five T-cell clusters at 5%, was
identified as a CD3-/CD4+ regulatory T-cell (Treg) cluster based on the
expressionofmarkers suchas FOXP3. A similarphenotypicmappingof
the Myeloid subset revealed that almost all clusters exhibited strong
immunosuppressive features, including CD14high, an M2-like profile, a
C1Q+ profile of tumor-associated macrophages (TAM) that has been
correlated with T-cell exhaustion40. Cluster M4 displayed an M-MDSC
(mononuclear myeloid-derived suppressor cell) profile with high
expression ofmarker genes suchasS100A8/941 (Fig. 3M). In addition to
these immunosuppressive features, we also found evidence of partial
transdifferentiation, namely macrophage-to-myofibroblast transition
(MMT), in a subset ofM3/M0cells.Myofibroblasts are aheterogeneous
cell population that may arise from inflammatory macrophages

Fig. 1 | Thirty-one percent of PTCL-NOS are SMARCB1-negative in pediatric and
young patients. A Overview of patient cohorts and methods for genetic char-
acterization of patients with T-cell lymphomas and exact patient number for each
cohort. B SMARCB1 RNA expression in samples from the TENOMIC study (n = 225).
Normalizedexpression is shown. Thedashed line represents themedian expression
value of all subgroups. Wilcoxon test (two-sided), all significant adjusted p values
(Benjamini–Hochberg) are indicated. Boxplot settings: middle, median; lower
hinge, 25% quantile; upper hinge, 75% quantile; upper/lower whisker, largest/
smallest observation less/greater than or equal to upper/lower hinge ±1.5 × IQR.
C Immunohistochemistry of SMARCB1. Exemplary images of sections from
SMARCB1-positive and negative human PTCL-NOS cases compared to control tis-
sue (tonsils). Scale bars: 50 µm. The experiment was performed for five SMARCB1-
negative lymphomas. D 31% of PTCL-NOS patients under 25 years old (CAYA)
(n = 4/13) and 3.6% of adults (n = 1/28) present loss of SMARCB1 protein expression.
Fisher’s exact test (two-sided), *p =0.0284. Adding the extended cohort, 47%
(n = 8/17) of CAYA patients and 7% (n = 2/29) of adults were negative for SMARCB1
expression. Fisher’s exact test, *p =0.0026. Protein expressionwas evaluated using
IHC. E Correlation of SMARCB1 protein expression and age in PTCL-NOS patients.
Protein expression was evaluated using IHC. Negative cases with no SMARCB1
expression are labeled with ‘0’ while cases with complete or partial SMARCB1
expression are labeled with 1. Data is shown for 42 patients (14 CAYA patients, 28

adults). Wald test from binomial generalized linear model (two-sided),
*p value = 0.0459. Adding the extended cohort, the p value decreases to 0.0061.
F Transcriptomic profiling of three SMARCB-negative PTCL-NOS patient samples
(patient 1, 4, and 5) and three control SMARCB1-positive PTCL-NOS samples (C1-3).
HTG transcriptome panel was used and normalized gene expression is shown for
genes connected to PTCL-NOS subtypes.G Immunohistochemical characterization
of nine SMARCB1-negative cases. H, I Copy number profiling of seven SMARCB1-
negative cases using OncoScan. The proportion of gains and losses is shown for all
autosomes (H) and chromosome 22 in detail (I). J Summary of copy number and
mutational profiling in nine SMARCB1-negative cases. Source data of B,D and E are
provided as a Source Data file. A Created with BioRender.com released under a
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International
license. PTCL-NOS Peripheral T cell lymphoma not otherwise specified, AITL
Angioimmunoblastic T cell lymphoma, NKTCL Natural killer/ T cell lymphoma,
HSTLHepatosplenic T cell lymphoma,ALCL-ALK-ALK-negative anaplastic large cell
lymphoma, T-PLL T-cell prolymphocytic leukemia, MF mycosis fungoides, MEITL
monomorphic epitheliotropic intestinal T cell lymphoma, EATL enteropathy-
associated T-cell lymphoma, CAYA children adolescents and young adults, IHC
immunohistochemistry, GEPs gene expression profiles, CNAs copy number
alterations, pos positive, neg negative, part partial expression, P1-9 patient 1–9,
hom homozygous, LOH loss of heterozygosity.
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Fig. 2 | Human and murine SMARCB1-deficient PTCLs share common methy-
lation profiles. AMedian global DNAmethylation in human PTCLs (n = 4) and CD3
T cells (n = 5). UMAP analysis based on the 10,000 most variable CpGs and 5
neighbors. Heatmap showing 10,000most variableCpGs. Boxplot settings:middle,
median; lower hinge, 25% quantile; upper hinge, 75%quantile; upper/lowerwhisker,
largest/smallest observation less/greater than or equal to upper/lower hinge
±1.5 × IQR. BMedian global DNA methylation in murine PTCLs (n = 5), splenic cells
(n = 5) and Cd3 T cells (n = 5). UMAP analysis based on the 10,000 most variable
CpGs and 5 neighbors. Heatmap showing 10,000 most variable CpGs. Boxplot
settings: middle, median; lower hinge, 25% quantile; upper hinge, 75% quantile;
upper/lower whisker, largest/smallest observation less/greater than or equal to

upper/lower hinge ±1.5 × IQR. C Overlap of genes hyper- or hypomethylated in
murine in human PTCLs compared to Cd3 T cells. Hypomethylated cutoff:
σ/σmax>0.4, q <0.01, Hypermethylated cutoff: σ/σmax>0.4, q < 1e-5.D Biological
process-associatedGO terms assigned to concordantly hyper- and hypomethylated
genes in PTCLs compared to Cd3 T cells. Over-representation analysis was per-
formed using WebGestalt (https://2024.webgestalt.org/) with adjustment for mul-
tiple testing (Benjamini–Hochberg) (Table S9). Only gene sets with more than 10
genes were considered. (x axis, Enrichment ratio). Source data ofA–D are provided
as a Source Data file. A–C Created with BioRender.com released under a Creative
Commons Attribution-NonCommercial-NoDerivs 4.0 International license.
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through an EMT-related process42. These cells showed co-expression
of macrophage and myofibroblast markers such as CD68 and alpha-
smooth muscle actin ACTA2 (Fig. 3N).

Based on the observation of shared regulatory programs in
developmentally distinct cell populations, we sought to further eluci-
date possible underlying communication pathways. We utilized

CellPhoneDB43 in conjunctionwith InterCellar44 to probe potential cell-
cell interactions (CCIs) between different cell populations. According
to the total number of CCIs, three main interaction hubs emerged in
this analysis, namely the myeloid TAM compartment, the tumor
compartment, and the stromal NHC compartment (Fig. 4A). It was
possible to crystallize several cancer-relevant communication paths
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from a large number of significant ligand-receptor (L-R) pairings. Of
particular interest here are several chemokine signaling axes that are
involved in TME remodeling through processes such as EMT and
immunosuppression45. These include the CXCL12-CXCR4 axis with
stromal NESC and FRC clusters and the CCL19-CCR7 and CXCL9-
CXCR3 axes with FRC as senders; for all three signaling axes, different
tumor/myeloid clusters such as T9/M0_EMT or T5/M3_Cycling repre-
sent the receiver cells (Fig. 4B–F). Activation of CXCL12-CXCR4 and
CXCL9-CXCR3promotes EMTand themobilization of cancer cells into
the pre-metastatic niche46,47 and is linked to immunosuppression and
T-cell exhaustion48,49. Other signaling axes include NESC and PC clus-
ters as sender of the extracellular matrix (ECM) protein fibronectin
(FN1) to the integrin receptor complexes ITGA4/B1 and ITGA5/B1 on
several tumor and myeloid receiver clusters as well as BEC and LEC
clusters as sender of the adhesion molecule PECAM1 to CD38+ tumor
andmyeloid cell populations (Fig. 4G, H). Fibronectin can induce EMT
in human cancer cells50, and PECAM1-CD38 signaling is involved in the
formation of an immunosuppressive TME51. Finally, we identified two
interaction axes between clusters of the same cellular compartment:
first, the L-R pairing CD70-CD27 in the tumor cell compartment [both
in the autocrine mode of the two clusters T5_Cycling and T1_MYC
(T5::T5 and T1::T1) and in a paracrine mode with the receiver clusters
T4, T6 and T9_EMT], secondly, the COL6A2-ITGA1/B1 pairing between
different sender and receiver clusters in the NHC compartment
(Fig. 4B, I). In hematological malignancies, co-expression of CD70 and
CD27 has been shown to promote tumor stemness and proliferation52,
while collagens and integrins are closely linked to EMT and function-
ally involved in the metastasis of tumor cells53.

Amousemodel recapitulates essential features of human PTCL-
NOSSMARCB1−

Since we were unable to include matching controls in our scRNA-seq
analysis of the five human FFPE samples, we resorted to the PTCL
mousemodel to gain insights into the transformation process and the
differences between tumor and healthy cells. For this purpose, the
spleens of two tumor-bearingmicewere isolated, and single cells were
processed using the 10x Chromium platform. The sequence data
obtained were merged with publicly available scRNA-seq data from
two control spleens of healthy mice54. In this integrated object, 14,588
single cells were grouped into 24 different clusters, which were then
annotated as described above. (Fig. 5A; Suppl. Fig. 9, Supplementary
Data S8, 9). A comparison of mouse and human tumors revealed
similar proportions of the various cell compartments, e.g., lymphoid
populations such as non-malignant T- andB-cells (Fig. 5B). Especially in
the latter, however, a large difference to healthy mouse spleens
became apparent, in which B-cells accounted for 70% of the total cell
number, while this number dropped to 10% and 8% in mouse and
human tumors, respectively. At the same time, a significant increase in
tumor-infiltrating myeloid cell populations was observed, from 5% in
healthy spleens to over 30% and 20% in themouse and human tumors,
respectively. This inverse correlation between the number of B-cells

and myeloid cells when comparing WT to PTCL samples is further
illustrated by the pie charts in Fig. 5B. We were able to confirm this
phenomenon by multiplex immunofluorescence in murine spleen
samples. Through a combination of specific antibodies for the tumor
cell marker Ezh2, the pan B-cell marker B220/CD45R, and the neu-
trophil marker Ly6g, a significant decrease of splenic B-cells with a
concomitant increase in Ly6g+ myeloid cell infiltration in tumors was
revealed (Fig. 5C, D).

Differences between mouse and human tumors were
observed at the level of specialized cell types. For example, in
contrast to human tumors, which have a clearly monocyte/mac-
rophage-dominated phenotype in the myeloid compartment,
neutrophils form the largest myeloid lineage in the mouse. At the
functional level, however, this difference is offset by the occur-
rence of similar (if operationally defined) cell types such as
monocytic M-MDSC in human (Fig. 3M) and granulocytic PMN-
MDSC in murine PTCL (Fig. 5A). The latter are found in cluster 9
and characterized by high expression of Ly6g, interleukin-1 beta
(Il1b) and histidine decarboxylase (Hdc) (Suppl. Fig. 9A). Inter-
estingly, Hdc+ PMN-MDSC have been linked to EMT and increased
metastasis in murine tumor models55. The functional similarities
also extend to CD14high cells: in human PTCL they can be found in
M-MDSC cluster M4 (Fig. 3M), in murine tumors in PMN-MDSC
cluster 9 (Fig. 5G). Cd14high cells are markers for an immunosup-
pressive TME and associated with tumor progression in the
mouse spleen41.

As with the human tumors, we also carried out a comparison of
upregulated DEGs of each mouse cluster with cancer metaprograms
(Fig. 5E, Supplementary Data S10, 11). This analysis revealed clear
similarities with the functional tumor programming in patients. Sig-
nificant matches with MPs weremostly found in tumor cell or myeloid
clusters, such as a singular cell cycle cluster in the tumor and myeloid
compartment (cluster 3 and cluster 20, respectively) and multiple
EMT, MYC and Stress clusters, the latter being limited to the myeloid
compartment as in human tumors (Fig. 5E, F). Furthermore, we found
highly similar functional remodeling of the immune cell landscape in
human and mouse tumors, characterized in both species by the
exhaustion of T-/NK cells and by the infiltration of immunosuppressive
myeloid cells. This is illustrated by the violin plot analysis in Fig. 5G,
which shows that specific marker genes for T-/NK cell exhaustion and
myeloid immunosuppression are selectively expressed in cells of the
murine PTCL TME.

Analysis of the cell-cell interactions between tumor and infiltrat-
ing immune cells in the murine tumors revealed a consistent picture:
the immune landscape, just as in patients, turns out to be highly
immunosuppressive, proinflammatory and proangiogenic (Suppl.
Fig. 10, Supplementary Data S12). As with human PTCL-NOSSMARCB−,
tumor-TME CCIs in the mouse are also strongly associated with EMT-
related processes such as cell-matrix adhesion, cell migration and ECM
organization (Suppl. Fig. 10B), in part via the same signaling axes (e.g.,
Cxcl9, Pecam1) (Suppl. Fig. 10C).

Fig. 3 | Single-cell landscape of human PTCL-NOSSMARCB1-. A Overview of the five
patient samples P1-P5 with information on gender, age, and tumor location.
B Uniform manifold approximation and projection (UMAP) plot of the integrated
scRNA-seq dataset. C Violin plot showing expression of cell type-specific marker
genes in individual clusters. OCL osteoclast, DC dendritic cell, pDC plasmacytoid
DC, cDC1 conventional type 1 DC, mregDC mature DC enriched in immunor-
egulatory molecules, NHC non-hematopoietic cell. D UMAP plot of the Tumor/T-
cell subset and (E) the Myeloid subset after re-clustering. F Heatmap showing
overlaps of cluster-specific DEG sets with signatures of cancer hallmark
metaprograms38. Z-scores were calculated on a row-by-row basis. G Averaged
expression levels of the identified gene signatures of tumor cell clusters T5
(Cycling), T1 (MYC) and T9 (EMT), and (H) of myeloid clusters M3 (Cycling and
MYC), M0 (EMT) and M2/4/5 (Stress). I Classification of tumor and T-cell clusters.

NK natural killer cell, MAITmucosal-associated invariant T-cells, Gen. generic T-cell
marker, TCR T-cell receptor, Signal. TCR signaling. J Cell numbers of the individual
tumor clusters (gray bars) or T-cell clusters (green bars), andK relative proportions
of T-cell clusters as a circular diagram. L Different functional states of the tumor
and T-cell clusters based on marker gene expression. Treg regulatory T-cell, Early
Act. early activation state, EM effector memory T-cell, Tex terminally exhausted
state, Tpex precursor-exhausted state. M Immunosuppressive features within the
Myeloid subset. MyoFB myofibroblasts, Mono monocytes, M1/2 M1/2 polarization,
M-MDSC mononuclear myeloid-derived suppressor cells. N ACTA2 expression in
the Myeloid subset. Source data of J and K are provided as a Source Data file.
A Created with BioRender.com released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license.
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SAHA treatment mimics Smarcb1 re-expression in an in vitro
model of PTCL-NOSSmarcb1−

The above observations suggest that epigenetic mechanisms con-
tribute significantly to the development and progression of SMARCB1-

negative PTCL-NOS. This motivated us to conduct preclinical experi-
ments that could uncover possible therapeutic targets. We performed
a drug screen with 140 epigenetically active compounds using the
Smarcb1-negative murine PTCL cell line T15 as an in vitro model
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(Supplementary Data S13). The highest number of active compounds
was found in the histone deacetylase inhibitor (HDACi) group (Suppl.
Fig. 11A). This group also showed high efficacy in murine Smarcb1-
negative PTCL compared to other non-Hodgkin lymphoma (NHL) cell
lines (Fig. 6A). For further experiments, we selected SAHA (sub-
eroylanilide hydroxamic acid/vorinostat) because it is FDA-approved
and has been shown to be an effective agent in Smarcb1-negative
rhabdoid tumors in our previous studies56. While SAHA treatment of
the Smarcb1-negative PTCL cell line T15 did not induce significant cell
cycle effects in the submicromolar range, at higher concentrations

(1 µM and 5 µM) it resulted in a strong induction of apoptosis with well
over 90% dead cells (Fig. 6B, C; Supplement Fig. 11B, C).

In the next step, we planned to further investigate the effects of
SAHA treatment of T15 cells on a global level using RNA sequencing
(RNA-seq). At the same time, we also wanted to find out which genes
are epigenetically silenced by the loss of Smarcb1. To this end, we
modified the T15 cell line model by introducing a Smarcb1 conditional
re-expression system (Smarcb1-RE) (Fig. 6D, E). After re-expression, a
significant reduction in cell growth was observed (Fig. 6F), while cell
viability and cell cycle were not affected.
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We performed RNA-seq with three replicates, each of untreated
T15 control cells, of SAHA-treated T15 cells, and of Smarcb1-RE cells
(Fig. 6G). Subsequent bioinformatic analysis revealed a high level of
agreement regarding enriched gene ontology (GO) terms in both
treatment groups and included gene sets that are associated with
(nervous system) developmental processes, but also gene sets that are
functionally involved in cell growth, adhesion, motility, and cell-cell
communication (Fig. 6H). More specifically, an overlap of 607 upre-
gulated genes involved in cell growth and development is found in
SAHA-treated and Smarcb1-expressing T15 cells (Fig. 6 I, J). In addition,
the comparisonbetweenSAHA-treated anduntreatedT15 cells showed
that HDACi leads to an upregulation of genes that are functionally
involved in the differentiation of myeloid cells (Fig. 6K). This implies a
reversal of the epi-phenotype of murine and human PTCL tumors,
where we previously observed that genes particularly affected by DNA
hypomethylation also include those of myeloid differentiation
(cf. Fig. 2D). Taken together, SAHA treatment mimics the transcrip-
tional changes seen by reintroducing Smarcb1 expression in T15 cells.

SAHA treatment leads to remodeling of the immunosuppressive
TME and reversal of the exhaustion phenotype
To investigate the effect of SAHA treatment in vivo, tumor-bearing
mice were treated with SAHA for three weeks, then their spleens were
isolated and analyzed with scRNA-seq. These sequence data (SAHA
hereafter) were combined with those from untreated tumors (PTCL)
and control spleens (WT) and then evaluated bioinformatically (Sup-
plementary Data S14). Cell distribution and sample composition are
shown in Fig. 7A. SAHA resulted in a moderate decrease in tumor cells
and myeloid infiltration compared to untreated PTCL, while reversing
the loss of B-cells (at least partially) and of non-malignant T-/NK cells
(almost completely). When the number of B-cells is related to the
number of myeloid cells, the effect of SAHA treatment, namely the
replenishment of B-cells while suppressing myeloid infiltration,
becomes very clear (see pie charts in Fig. 7A).

Next, we took a closer look at the quantitative and qualitative
changes in the B-cell and T/NK cell compartments. Regarding B-cell
subtypes, SAHA treatment elicited the replenishment of the B-cell
compartment as it restored the pool of mature B-cells in the mouse
spleen (Suppl. Fig. 12). In addition, the appearance of a progenitor B-
cell-like population was observed, accounting for almost one-third of
the total B-cell population in SAHA-treated animals (Suppl. Fig. 12C).
Another cell population, termed PTCL B-cells because it originated in
the tumor and was different from all other populations in healthy
samples, almost completely disappeared from the spleens of SAHA-
treated mice.

Analysis of T-cell subtypes in SAHA-treated versus untreated PTCL
revealed (i) a relative increase in the proportion of Cd8+ effector
T-cells, (ii) of Cd4+ andCd8+naive T-cells, (iii) of NKTandNKcells, and
(iv) an almost complete extinction of terminally exhausted T-cells in

SAHA (Fig. 7B–D). A more detailed comparison of the expression of
canonical marker genes in WT compared to PTCL and SAHA clearly
shows the re-emergence of a functional T-/NK cell compartment in the
latter, namely the recovery of cytotoxic properties with almost dis-
appearing exhaustion features (Fig. 7E). Finally, we derived pseudo-
time trajectories for both groups to correlate the contrasting activity
states of Cd8+ effector cells in PTCL versus SAHA with potentially
divergent differentiation pathways (Fig. 7F). While PTCL T-cells follow
a pseudo-developmental trajectory from the naive to the terminally
exhausted state, in SAHA this trajectory ends in the state of cytotoxic
effector cells. Taken together, these data underscore the ability of
SAHA to restore the functionality of key effector components of the
adaptive and innate immune system in Smarcb1-negative PTCL-NOS.

Discussion
PTCL-NOS is a rare, aggressive, and highly heterogeneous tumor
entity6,57,58. Its clinical outcome with standard antiproliferative che-
motherapies is currently unsatisfactory59. A deeper molecular char-
acterization of this entity is required for the development of more
efficient therapies.

Here we describe SMARCB1-negative PTCL-NOS as a potential
molecular subtype of PTCL with relatively higher occurrence in chil-
dren and young adults versus older adults. In parallel to this study,
there were three SMARCB1-deficient cases described in children60,
further underlining the clear age association of this subtype. While the
molecular origin of the loss of SMARCB1 in the human PTCL might be
heterogeneous, including single nucleotide and structural genomic
variants as well as probably epigenomic changes, we were able to
model the disease phenotype in a targeted mouse model by inacti-
vating Smarcb1 in mature T-cells. A strong concordance between
naturally occurring SMARCB1-deficient PTCL in humans and in the
targeted mouse model was found with regard to both the extent and
direction of DNA methylation changes. Remarkably, the tumors of
both species showed enrichment of DNA hypermethylation linked to
genes involved in T-cell function andofDNAhypomethylation in genes
linked to myeloid cell differentiation. The increase of myeloid cell
populations was confirmed in the human and murine tumors by
scRNA-seq analyses. Considering that the development of PTCL has
been intimately linked to features of clonal hematopoiesis (CHIP) in
both species61, it is intriguing to speculate that SMARCB1 plays a
pathogenic role in differentiation processes in early hematopoietic
cells leading to PTCL.

By analyzing SMARCB1 RNA and protein expression levels in
multiple subtypes of mature T-cell lymphomas, we could exclude
T-PLL,MEITL, EATL,MF, AITL andALK-negative ALCL being the human
counterpart of the phenotype observed in Smarcb1-deficient mice.

While the tumor-suppressor function of SMARCB1 is well
explained by its role in regulating chromatin accessibility, enhancer
binding and differentiation22,24,62, the role of the TME in the

Fig. 5 | Murine PTCL-NOSSmarcb1− recapitulates key features of human tumors.
A UMAP plot showing 24 clusters of the integrated scRNA-seq dataset from two
control spleen samples (WT) and two PTCL-NOSSmarcb1− tumor samples. B Relative
abundance of different cell types in murine WT spleens (left), PTCL spleens (mid-
dle), and human tumors (right; NB: in order to ensure comparability, the stromal
cells were removedbeforequantification). The pie charts in the lowerpart show the
ratio between B-cells and myeloid cells. C Multiplex immunofluorescence (IF)
images of FFPE sections of murine PTCL-NOSSmarcb1− and control spleen samples
(WT: upper panels; tumor: lower panels). For better visualization, the white boxed
areas (a to f) are enlarged (2.5x; scale bar = 100 µm). DAPI (gray) provides a nuclear
counterstain, Ezh2 (yellow) definesmalignant cells (Ezh2hi), B220 (blue) is used as a
pan B-cell marker (B220+), and Ly6g (pink) as a marker for neutrophils (Ly6g+).
D Quantitative analysis of IF images from (C). Four representative regions of
interest (ROIs; size: 1500 × 1500 µm)were selected and analyzed formouseWT and

Tumor samples. A Wilcoxon-Mann-Whitney test was calculated to determine if
there are differences between WT and Tumor samples for all comparisons
(*p =0.0286). Boxplot settings: middle, median; lower hinge, 25% quantile; upper
hinge, 75% quantile; upper/lower whisker, largest/smallest observation less/greater
than or equal to upper/lower hinge ±1.5 * IQR. E The heatmap shows the overlap
between cluster-specific DEG lists and the cancer hallmark metaprograms.
F Signature plots of the programs Cycling, MYC, EMT and Stress in cells from WT
(left) and tumor (right) samples.G A split violin plot (left/gray half: WT; right/black
half: tumor) illustrates the increase in T-cell exhaustion features (Exhaust.) with a
simultaneous decrease in NK cytotoxicity (Cytotox.) markers (e.g., Ncr1/NKp46) as
well as infiltration of immunosuppressive myeloid cells in tumor versus WT sam-
ples. Source data of B and D are provided as a Source Data file. B Created with
BioRender.com released under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International license.
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progression of SMARCB1-negative tumors is far less explored. In lym-
phomas and other cancers, it has emerged that the TME plays a deci-
sive role in the pathogenesis and response to therapy63–65. In PTCL-NOS
patients, specific immune cell signatures were found to be associated
with superior clinical outcome66. We therefore paid particular atten-
tion to the TME and its interaction with the tumor cells in our study.

One central observation of our single-cell analyses of human and
murine SMARCB1-negative PTCL was the extensive network of tumor-
TME interactions. Yet, there are species-specific differences in the

detailed cellular architecture of the TME. First, we note the absence of
stromal cells in mouse tumors, and second, the myeloid compartment
is dominated by monocytes/macrophages in humans and by neu-
trophils in mice. This could have several possible reasons, including
different tumor locations (spleen versus lymph nodes), different
immune cell responses in mice compared to patients67, or different
isolation and/or processing procedures (fresh tumor tissue versus
archival FFPE material). Despite this, there are many similarities at the
functional level. The first striking feature is the adaptation of similar
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transcriptional metaprograms (Cycling, MYC, EMT, Stress) in the
respective tumor cell and TME compartments. Furthermore, in both
species, identical and/or similar signaling axes appear to serve this
remarkable alignment of gene expression (re)programming. We were
also able to observe similar patterns when comparing the relative
proportions of higher-level cell compartments in human and mouse
tumors. One of these patterns is the inverse correlationofmyeloid and
lymphoid (in particular B-cell) infiltration in PTCL. Our data suggest an
immunosuppressive landscape that is promoted by multiple interac-
tions between tumor cells, myeloid cells and, in the case of human
PTCL, stromal cells in lymph node-localized tumor samples. Main
characteristics are diminished infiltration of T-cells and NK cells which
at the same timehavehighly activated and exhaustedphenotypes. This
relationship has already been well described62,63,68. Immunosuppres-
sive cells of myeloid origin such as M-MDSC and PMN-MDSC inhibit
anti-tumor immune responses by impairing the activation and func-
tion of T- and NK cells64,69,70. Furthermore, neutrophils can build
extracellular neutrophil traps (NETs) around the tumor, which prevent
T-cells and NK cells from being recruited to the TME65. Overall, we
observed clear signs of a chronically inflamed TME. It is known that
such a chronic inflammatory condition contributes to the depletion of
immune effector cells; furthermore, it promotes angiogenesis and
facilitates metastasis64. In addition, continuous triggering of signaling
axes like CD70-CD27 (Fig. 4I) can also reduceNK cell numbers through
apoptosis induction71.

Effective therapeutic targeting will have to address both the
malignant clone and the pathological TME. We propose SAHA, a pan-
HDACi, as a promising therapeutic agent against SMARCB1-negative
PTCL-NOS. Efficacy of several HDACi including SAHA is described for
various hematological neoplasms72. SAHA is FDA-approved and in
clinical use for relapsedor refractory (R/R) cutaneous T-cell lymphoma
(CTCL) with tolerable toxic effects73. Romidepsin, a selective HDAC1
and 2 inhibitor, and belinostat, a broad-spectrum HDACi, are FDA-
approved for R/R PTCL74. Our previous studies have demonstrated
SAHA as an effective agent in Smarcb1-negative rhabdoid tumors56. In
this context, it is also noteworthy that SAHA was identified as a potent
drug for inducing reversal of epithelial-to-mesenchymal transition75, a
process that emerged in our study as a prominent motif within the
tumor-TMEcommunication of PTCL. Additionally, several studies have
shown that EMT in tumors is related to the number of immunosup-
pressive cells in their TME76. Here we found that SAHA treatment
mimics the transcriptional effects of Smarcb1 re-expression in the TME
of PTCL. Zhang et al.77 described that HDACi treatment of exhausted
lymphocytes restores their cytotoxic functionality in vivo, which could
in part explain our observations. Removal of inhibitory signals could
improve the trafficking of fully functional T-cells into the TME, turning
it from a “cold” into a “hot” state, as previously reported with epige-
netic modifiers65,78. Immunotherapy with immune checkpoint

inhibitors has emerged as a promising approach for the treatment
of hematologic malignancies, however, patients frequently do not
respond or they become resistant to the treatment59,79. Specifically,
patients with relapsed/refractory PTCL and CTCL treated with single-
agent immunotherapy presented a high overall response rate but a
very short progression-free survival80, highlighting limited single-
agent efficacy81,82. The identification of promising partners for future
combination therapieswith immune checkpoint inhibitors is an area of
active clinical investigation79. As there is evidence for the reversibility
of CD8 +T-cell exhaustion after immune checkpoint blockade,
checkpoint inhibitors might be a potential treatment option for these
patients in future combinatorial clinical studies. Our results provide
the rationale for further investigations of combination therapies,
including SAHA in PTCL-NOSSmarcb1−.

Methods
Ethical approval
This study complies with all relevant ethical regulations. The SMARCB1
expression analysis in T-PLL has been approved by the Institutional
Ethical Review Board of the Medical Faculty of Ulm University (21/16
and 463/19 (02.13. 2020)), in PTCLs from the TENOMIC Consortium
Biobank by the Comité de Protection des Personnes Ile de France 08-
009, in MEITL/EATLs by the Commission nationale d’éthique de la
recherche sur l’être humain (CER-VD, protocol 382/14). CAYA PTCL-
NOS patients were registered into the NHL-BFM study center database
after written informed consent of the legal guardians had been
obtained (Ethikkommission der Ärztekammer Westfalen-Lippe und
der Westfälischen Wilhelms Universität; file number: 2017-077-f-S). As
this study describes a very rare disease, we included all patients and
did not select for age or sex/gender in advance. Sex/gender of patients
was determined based on self-report.

SMARCB1 expression analysis
SMARCB1 gene expression levels of T-cell lymphoma and T-PLL sam-
ples were mined from the TENOMIC database (LYSA consortium29–35)
and from Patil et al.28. Additionally, the human T-cell leukemia cell line
SUP-T11 (DSMZ, #ACC605)was analyzed. SMARCB1protein expression
was investigated by immunohistochemistry (IHC) in 15 PTCL-NOS
patients from the TENOMIC tissue bank, 39 MEITL (monomorphic
epitheliotropic intestinal T-cell lymphoma)83 and 15 EATL (entero-
pathy-associated T-cell lymphoma)84 patients using anti- SMARCB1
antibody (BD Bioscience, Clone 25/BAF47, #612110; 1:400 dilution).
For PTCL-NOS, SMARCB1 protein expression was assessed in 14 adult
patients85 and 12CAYApatients86. Additional SMARCB1-deficient PTCL-
NOS cases were included as extension cohort (Table S4, Suppl. Fig. 4).
RNA expression of pediatric PTCL-NOS cases was analyzed using the
HTG Transcriptome analysis (details in supplements). SMARCB1 pro-
tein expression was also analyzed in a cohort of MF patients.

Fig. 6 | SAHA treatment recapitulates Smarcb1 re-expression in PTCL-
NOSSmarcb1−. A Effect of HDAC inhibitors on the viability of T15 cells versus seven
non-Hodgkin lymphoma (NHL) cell lines. Cells were treated twice with 1 µM inhi-
bitor over the course of five days and measured using an MTT assay. T15 cell
viability was set in relation to NHL cells and is shown as log2 fold change. B Scheme
of SAHA treatment. C Dosage-dependent cytotoxic effects of SAHA on T15 cells
(n = 4 biological replicates; data are presented as means +/– SD). D Scheme of
Smarcb1 re-expression (Smarcb1-RE). T15 cells were transduced with an empty
control vector or a Smarcb1 expression vector and induced by doxycycline (Dox;
0.5μg/μl). E Representative immunoblots showing Dox-induced Smarcb1 re-
expression. Beta-actin serves as a loading control.F Effect of Smarcb1 re-expression
on T15 cell growth. The boxplots showmedian (center line), first and third quartile
(bounds) and minima/maxima (whiskers) of Dox-treated (0.5 µg/µl; 72 h) T15 con-
trol and Smarcb1-RE cells (n = 3 biological replicates; paired two-sided T test;
****p = 2.17E-05). Boxplot settings:middle,median; lowerhinge, 25%quantile; upper
hinge, 75% quantile; upper/lower whisker, largest/smallest observation less/greater

than or equal to upper/lower hinge ±1.5 × IQR. G RNA sequencing (RNA-seq)
analysis of T15 control cells, SAHA-treated (1 µM, 72 h) cells or Dox-induced
(0.5 µg/µl, 72 h) Smarcb1-RE cells (3 biological replicates each). The heatmap shows
the averaged gene expression values (avg. exp.) of significantly up- and down-
regulated genes. H ToppGene (https://toppgene.cchmc.org/) was used to deter-
mine significantly enriched gene ontology (GO) terms associated with upregulated
genes in SAHAor Smarcb1-RE cells. Shown are p values adjusted formultiple testing
(Benjamini–Hochberg). I Venn diagram showing the overlap of SAHA and Smarcb1-
RE upregulated genes. J GO analysis of overlapping genes using REVIGO98. The dot
plot shows cluster representatives based on semantic similarities, where dot color
indicates ToppGene-derived p values and dot size the frequency of the GO term in
the underlying database. K Functional gene network analysis using STRING,
showing that SAHA treatment regulates genes involved in myeloid cell differ-
entiation (p value adjusted formultiple testing using Benjamini–Hochberg). Source
data of A, C, E, F and H–K are provided as a Source Data file.
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Mouse model and treatment
Protocols and animal housing were in accordance with all local reg-
ulatory authority guidelines (reference number TVA-84-02.04.2018.
A296; State Government of North Rhine-Westphalia, Germany). Mice
were housed under specific pathogen-free conditions in a 12-h light-

dark cycle and received food and water ad libitum. Cd4-cre::Smarcb1fl/fl

animals were obtained by crossing Cd4-cre87 (kindly provided by Dr.
Maren Lindner, University Hospital Münster) and Smarcb1fl/fl mice27

(The Jackson Laboratory). In these mice, tumor formation typically
occurs between week 9 and week 12; however, no specific maximum
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tumor size is defined in this model. Lymphomas manifest by infiltra-
tion of the spleen and lymph nodes, and tumor formation is generally
accompanied by deterioration of the general condition and palpable
splenic enlargement. Mice were monitored daily using a score sheet
for these characteristics and other clinical/behavioral symptoms such
as apathy, reduced food/water intake, respiratory difficulties, ormotor
abnormalities. Experimentswere terminated and animals euthanized if
animals showedpoorgeneral condition or anyof the above symptoms.
For HDACi in vivo experiments, SAHA (Cayman Chemical Company,
#10009929) was applied intraperitoneally three times per week for
three weeks in a concentration of 50mg/kg. See Table S7 for further
details.

DNA methylation analysis
Mouse spleens were dissected and treated with StemPro Accutase
(Gibco, #A1110501), Cd3+ T-cells isolated by FACS and genomic
DNA extracted using Quick-DNA Microprep Kit (Zymo Research,
#D3020). DNA methylation profiles of primary human PTCL
(n = 4) were generated using the Infinium MethylationEPIC Bead-
Chip (Illumina). For comparison, we mined publicly available data
of different T-cell subpopulations generated with the Infinium
HumanMethylation450 BeadChip (Illumina)88–95 (see Table S6). In
addition, DNA methylation profiles of the PTCL-NOSSmarcb1− mice
(n = 5) and corresponding control groups including non-
neoplastic samples isolated from the spleen (n = 5) and splenic
Cd3+ sorted cells (n = 5) were generated using a custom service
for Infinium Mouse Methylation BeadChip.

Mouse tissue analysis
Isolated murine spleens were fixed and H&E-stained according to
standard protocols. IHC stains were performed on a Ventana Bench-
Mark XT using the ultraView Universal DAB detection Kit (Roche,
#760-500) with anti-SMARCB1 antibody (BD Bioscience, Clone 25/
BAF47, #612110; 1:50 dilution). Images were capturedwith anOlympus
BX43 microscope.

Bulk RNA sequencing of T15 cells
RNA was isolated from cell pellets of T15 control cells, SAHA-
treated (1 µM, 72 h) T15 cells, or Dox-induced (0.5 µg/µl, 72 h)
Smarcb1-RE cells (3 biological replicates each) using the RNeasy
Mini Kit (Qiagen, Hilden, Germany; #74104) according to the
manufacturer’s protocol. Quality, purity and concentrations of
individual RNAs were determined using the 2100 Bioanalyzer
instrument (Agilent Technologies, CA, USA). RNA-seq libraries
were prepared using the NEBNext Ultra II Directional RNA Library
Prep Kit (New England Biolabs, MA, USA; #E7765) according to
the manufacturer’s instructions. All libraries were sequenced as
single-end reads using the NextSeq 500 sequencing platform
(Illumina, CA, USA) with the NextSeq 500/550 reagent kit v2.5 at
the Core Facility Genomics (CFG) of the University Hospital
Münster (Münster, Germany).

Single-cell RNA sequencing of murine and human tumor
samples
Sample preparation for SMARCB1-negative murine and human PTCL-
NOS samples for scRNA-seq is described in detail in the Suppl. Meth-
ods. The murine samples were processed using the Chromium Single-
Cell 3’ Gel Bead Kit v2 (10X Genomics, CA, USA) according to the
manufacturer’s protocol and sequenced by the CFG on the NextSeq
500 sequencing platform (high performance kit, 75 cycles, v2 chem-
istry). Human samples were processed using 10x Genomics’ protocols
for Chromium Next GEM Single-Cell Fixed RNA Profiling technology.
Human samples were sequenced as dual-index libraries by CFG on
Illumina’s NextSeq 2000 and NovaSeq 6000 sequencing systems. See
Suppl. Methods for further details.

Drug screen
Cell lines used in the drug screen were murine Smarcb1-negative T15
cells (gift from Charles W. M. Roberts, Dana-Farber Cancer Institute,
Boston, USA) and the human Non-Hodgkin lymphoma (NHL) cell lines
Jurkat (T-ALL), Karpas-299, SR-786, SU-DHL-1 (all ALCL), Raji, Daudi
(Burkitt lymphoma) and U-937 (histiocytic lymphoma). All cells were
maintained at 37 °C and 5% CO2 and cultured as described in Supple-
mentary Table 11. The epigenetic drug library (Cayman Chemical,
#11076, lot #0522205) comprised 140 compounds (see Supplementary
Data S13). Cells (4 × 103 cells/50μL)wereused infive replicates at afinal
concentration of 1μM. Cell viability was measured 120 hours after the
first treatment using MTT assay96. Log2FC values were determined for
each cell line and the results from T15 cells were referenced to the
mean of all other NHL cell lines to evaluate the relative efficacy of
the drugs.

Multiplex immunofluorescence
For multiplexed immunofluorescence analysis, slices of PTCL-
NOSSmarcb1− and corresponding murine control spleens were stained
in the MACSima imaging system using antibodies against B220 (RA3-
6B2, Miltenyi Biotec, APC, 1:50), Ly6G (1A8, Miltenyi Biotec, PE, 1:50)
and EZH2 (REA907, Miltenyi Biotec, APC, 1:50). For further details see
Suppl. Methods.

Smarcb1 re-expression
For re-expression in T15 cells, Smarcb1 cDNA was introduced in the
plasmid pInducer20 (Addgene, MA, USA; Plasmid #44012). Lenti-
viruses were generated by co-transfection of Smarcb1-pInducer2097

and the twopackaging plasmids psPAX2 and VSV-G (Addgene; Plasmid
#12260 and #8454) into the Lenti-X 293 T cell line (Takara Bio USA,
Inc., #632180) using the transfection reagent transIT®-lenti (Mirus Bio,
WI, USA; #6600). 48hours after transfection, the supernatant was
harvested and frozen. After thawing the virus supernatants, T15 cells
(1 × 106) were transduced for 8 hours with 750 µl of viral supernatant,
250 µl of freshmediumand freshly thawedPolybrene (10 µg/ml; Sigma-
Aldrich; #TR-1003). The cells were then harvested, centrifuged twice
(1200 rpm for 6min), resuspended in fresh medium and seeded on a
six-well plate. Antibiotic selection was carried out for at least 14 days
with Geneticin/G418 sulfate (Thermo Fisher Scientific, #11811-023) and
several independent, stable clones were established. Protein expres-
sion was determined by quantitative real-time qPCR and by Western
blot analysis.

Statistics and reproducibility
Methods used for statistical hypothesis testing and exact n numbers
are directly stated in the figure legends. In general, the significance
level was set to 0.05. Where applicable, p values were corrected for
multiple testing using Benjamini–Hochberg. Boxplots were generated
using the default ggplot2 geom_boxplot settings (middle, median;
lower hinge, 25% quantile; upper hinge, 75% quantile; upper/lower
whisker, largest/smallest observation less/greater than or equal to
upper/lower hinge ±1.5 × IQR).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Full descriptions of experimental procedures and bioinformatic
methods canbe found in the SupplementalMethods.We used publicly
available scRNA-seq data of mouse control spleens from the Tabula
Muris Consortium available at figshare (https://figshare.com/articles/
dataset/Single-cell_RNA-seq_data_from_microfluidic_emulsion_v2_/
5968960). Raw data generated in this study have been deposited on
Gene ExpressionOmnibus (GEO) under accession numbersGSE190273
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for bulk RNA-seq data of T15 cell lines, GSE190274 for mouse PTCL
single-cell RNA-seq, GSE249566 for human and murine PTCL DNA
methylation array data and GSE254299 for human PTCL single-nuclei
RNA-seq data. Source data are provided with this paper.

Code availability
No source code or custom scripts were developed in this study. Data
analysis was performed using publicly available packages. Details are
available upon request.
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