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8 # Springer-Verlag 2006

12 Abstract Determining the evolutionary basis of variation
13 in reproductive skew (degree of sharing of reproduction
14 among coexisting individuals) is an important task both
15 because skew varies widely across social taxa and because
16 testing models of skew evolution permits tests of kin
17 selection theory. Using parentage analyses based on micro-
18 satellite markers, we measured skew among female eggs
19 (n=32.3 eggs per colony, range=20–68) in 17 polygynous
20 colonies from a UK field population of the ant Leptothorax
21 acervorum. We used skew among eggs as our principal
22 measure of skew because of the high degree of queen
23 turnover in the study population. Queens within colonies
24 did not make significantly unequal contributions to queen
25 and worker adult or pupal offspring, indicating that skew
26 among female eggs reflected skew among daughter
27 queens. On average, both skew among female eggs
28 (measured by the B index) and queen–queen relatedness
29 proved to be low (meansTSE=0.06T0.02 and 0.28T0.08,
30 respectively). However, contrary to current skew models,
31 there was no significant association of skew with either

32relatedness or worker number (used as a measure of
33productivity). In L. acervorum, predictions of the concession
34model of skew may hold between but not within populations
35because queens are unable to assess their relatedness to other
36queens within colonies. Additional phenomena that may help
37maintain low skew in the study population include indis-
38criminate infanticide in the form of egg cannibalism and split
39sex ratios that penalize reproductive monopoly by single
40queens within polygynous colonies.

41Keywords Kin selection . Polygyny . Reproductive skew .

42Social evolution . Social insect

43Introduction

44The extent to which coexisting breeding individuals share
45reproduction varies greatly across animal societies. Societies
46with high reproductive skew are those in which one or a few
47individuals monopolize reproduction; societies with low
48reproductive skew occur when breeders share reproduction
49more evenly. The extension by Reeve (1991) and Reeve and
50Ratnieks (1993) of the original skew models of Vehrencamp
51(1979, 1983) and Emlen (1982a,b) has led to a wealth of
52new models aimed at explaining skew variation within and
53between species, along with a growing number of empirical
54tests of these models. The importance of these studies arises
55because skew models offer a potential explanation for the
56wide variation in skew observed across animal societies. In
57principle, skew models also provide a means of testing kin
58selection theory (Hamilton 1964), on which they are based.
59The many skew models now present in the literature
60differ in both their assumptions and in the predictions they
61make regarding the expected genetic, ecological, demo-
62graphic and social correlates of skew (Table 1). Empirical
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63 studies of skew in both invertebrates and vertebrates
64 (reviews in: Keller and Reeve 1994; Emlen 1997; Reeve
65 and Keller 2001) have tended to lag behind the develop-
66 ment of new models. This is because the assumptions of
67 skew models are either not met or are difficult to verify,
68 skew and its predicted correlates are not always simple to
69 measure and different skew models make overlapping
70 predictions (Clutton-Brock 1998; Magrath and Heinsohn
71 2000; Table 1). The social Hymenoptera have been
72 recognized as a particularly apt group for empirical tests
73 of skew models because skew varies widely even among
74 closely related species, a relatively large number of social
75 groups can be sampled and insects lend themselves to
76 experimental manipulation. However, conclusions from
77 empirical studies have been mixed. Some studies have
78 found support for concession models of reproductive skew
79 (e.g., social wasps: Reeve et al. 2000; Sumner et al. 2002;
80 see also Nonacs et al. 2004), some for tug-of-war models

81(e.g., social wasps: Seppä et al. 2002; social bees: Langer et
82al. 2004, 2006) and others have found no clear support for
83any current model (e.g., social wasps: Field et al. 1998;
84Fanelli et al. 2005; Liebert and Starks 2006; Nonacs et al.
852006; ants: Fournier and Keller 2001; Rüppell et al. 2002;
86Hannonen and Sundström 2003a; Fournier et al. 2004). One
87reason for these mixed results could be that not all tested
88species share the same model assumptions (Table 1).
89Whatever its causes, this situation creates a clear need for
90additional empirical studies so that the balance of evidence
91can be properly assessed.
92The leptothoracine ants represent a group in which an
93understanding of the factors underlying variation in skew
94would be especially valuable because some species exhibit
95multiple-queen societies in which a single queen monopo-
96lizes reproduction (i.e., functional monogyny), whereas in
97other multiple-queen (polygynous) species, reproduction is
98more evenly distributed among queens (Buschinger 1974;

t1.1 Table 1 Assumptions of models of reproductive skew and the models_ predicted correlations

Transactional models Compromise
models

Synthetic
model

Results
of present
studyt1.2 Concession

models
Resource
inheritance
models

Restraint
models

Tug-of-war
modelst1.3

Main
assumptions:

1. Dominant
controls group
membership

1. Dominant
controls group
membership

1. Dominant
controls group
membership

1. Limited control
by both parties

1. Synthesized
assumptions of
transactional and
compromise
models

t1.4

2. Dominant
controls skew

2. Dominant
controls skew

2. Subordinate
controls skew

2. Gaining share
of reproduction
is costly

t1.5

3. Subordinate
inherits dominant_s
resource

t1.6

Predictions:t1.7
1. Skew vs
relatedness

Positivea,b,c

or Negativeb,c
Positive
or Negative

Negative Negative or no
correlation

Positive
or negative

No
correlationt1.8

2. Skew vs
degree of
ecological
constraint

Positivea,b – Negative No correlation Positive
or negative

Not studiedt1.9

3. Skew vs
per capita
productivity

Positivea – Negative No correlation Positive
or negative

No
correlationt1.10

4. Relatedness
vs group
productivity

No correlationa – No correlation Positive – No
correlationt1.11

Selected
references

Reeve and Ratnieks
(1993)a; Cant and
Johnstone (1999)b;
Johnstone et al. (1999)c

Kokko and
Johnstone (1999);
Ragsdale (1999)

Johnstone and
Cant (1999b)

Reeve et al.
(1998)

Johnstone (2000)t1.12

t1.13 Superscripts indicate predictions varying depending on detailed assumptions. –, no prediction made or not considered in this study. See also Cant
(1998, 2006), Johnstone and Cant (1999a), Cant and Johnstone (2000), Reeve (2000), Reeve and Emlen (2000), Kokko (2003) and Zink
and Reeve (2005).
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99 Bourke and Heinze 1994). Leptothoracines most closely
100 match the assumptions of concession models of skew
101 (Bourke and Heinze 1994; Rüppell et al. 2002). For
102 example, the maintenance of functional monogyny by
103 aggressive dominance (Heinze and Lipski 1990; Heinze
104 and Smith 1990) suggests that complete control of skew by
105 dominants is possible (Table 1). In addition, the presence of
106 subordinates increases the productivity of dominant queens,
107 although the mechanism underlying this effect is unclear
108 (Heinze and Oberstadt 2003). Consistent with concession
109 models, broad-scale comparisons in leptothoracines (i.e., at
110 the between-population and between-species level) suggest
111 positive correlations of skew with relatedness (Heinze
112 1995; Heinze et al. 1995b; Bourke et al. 1997) and inferred
113 levels of ecological constraint (Bourke and Heinze 1994;
114 Felke and Buschinger 1999). In contrast, a comprehensive
115 study of L. rugatulus on skew variation among colonies
116 (which either had been kept in the laboratory for 11 months
117 or were artificially composed) found no support for
118 concession models (Rüppell et al. 2002). However, to date,
119 no study has examined skew as a function of predicted
120 correlates among colonies within a field population of
121 leptothoracines.
122 We investigated the covariation of skew, relatedness and
123 productivity within a field population of the facultatively
124 polygynous Leptothorax acervorum. We did not include
125 ecological constraint (Table 1) in our study. This is because it
126 is unlikely that L. acervorum queens are able to assess
127 within-population levels of ecological constraint since
128 readopted queens in polygynous colonies almost certainly
129 mate near the nest and, if they disperse following the
130 initiation of reproduction, do so on foot (Douwes et al.
131 1987; Bourke and Heinze 1994; Felke and Buschinger 1999;
132 Hammond et al. 2001). Therefore, queens are most likely to
133 have evolved to adjust their reproductive output in response
134 to the average, population-level degree of ecological con-
135 straint, which is invariant for queens within a population.

136 Methods

137 Field collection and colony sampling

138 We studied L. acervorum in Thetford Forest, Norfolk, UK.
139 In this population, approximately 20–50% of colonies are
140 polygynous with a mean of two to five related queens per
141 colony, 95% of which are singly mated (Chan and Bourke
142 1994; Heinze et al. 1995a; Bourke et al. 1997; Hammond et
143 al. 2001–2003). Sex ratios are split, with monogynous
144 colonies producing mainly females and polygynous
145 colonies producing mainly males (Chan and Bourke
146 1994; Chan et al. 1999; Hammond et al. 2002). Collections
147 of colonies were made in 1999 (FSD99_ colonies) and 2000

148(FSD00_ colonies). The SD99 colonies (n=46, collected on
149June 3 and June 10) are the same as those whose collection
150is described by Hammond et al. (2001) and for which we
151have previously presented genetic analyses of traits other
152than reproductive skew (Hammond et al. 2001–2003). The
153SD00 colonies (n=100, collected between July 27 and
154August 24) came from a site approximately 1 km away. We
155have not previously presented data on the SD00 colonies.
156All SD99 colonies and 39 SD00 colonies were located by
157random searching (the remaining 61 SD00 colonies were
158located by searching in the area defined by a circle of 2-m
159radius centred on each of the focal 39 colonies). Only data
160from the 39 SD00 colonies located by random searching are
161presented in the current paper. After discovery, all colonies
162in both samples were collected using methods described in
163Chan and Bourke (1994). All adults and brood were
164extracted from their twigs within a few days of collection
165and frozen for later genetic analysis. Colony composition
166therefore reflected that found in the field at the time of
167collection.
168We investigated reproductive skew in a subset of 17
169polygynous colonies (9 SD99 colonies and 8 SD00
170colonies). Polygynous colonies were defined as those
171containing more than one dealate, mated queen (henceforth,
172Fqueens_; dealate queens are those that have shed their
173wings). We determined the insemination status of queens by
174noting the presence of a full or empty sperm receptacle
175upon ovarian dissection (Bourke 1991; Hammond et al.
1762001). We selected 9 polygynous colonies with 2–8 queens
177per colony (meanTSD=3.6T1.8 queens) from the SD99
178sample (i.e., the 9 polygynous colonies in Table 1 of
179Hammond et al. 2001). In the SD00 sample, 11 of the 39
180focal colonies proved to be polygynous, but we omitted 3
181of these 11 colonies from our skew analysis. In two of the
182omitted colonies, parentage analyses could not be con-
183ducted because both colonies contained high numbers (16
184and 17) of closely related queens, which therefore shared
185many alleles. Omitting these colonies is unlikely to have
186biased our results since, in the remaining colonies,
187relatedness varied across the whole spectrum of likely
188values (j0.01–0.89), indicating that the exclusion of these
189two colonies did not truncate variability in relatedness.
190The third SD00 colony was omitted because it contained
191no eggs. In the eight SD00 colonies in which we
192measured skew, there were 2–7 queens per colony
193(meanTSD=3.4T2.0 queens).

194Molecular methods

195We genotyped individuals using the microsatellite loci
196LXAGT1, LXAGA1, LXAGA2 (Bourke et al. 1997),
197MYRT3 (Evans 1993), LXGT223 (Hamaguchi et al.
1981993) and L18 (Foitzik et al. 1997), using methods

Behav Ecol Sociobiol

JrnlID 265_ArtID 257_Proof# 1 - 21/08/2006



U
N
C
O
R
R
EC
TE
D
PR
O
O
F

199 described by Hammond et al. (2001). In the Thetford Forest
200 population, these loci have a mean expected heterozygosity
201 of 0.88 and a mean of 23 alleles per locus (Hammond et al.
202 2001). In the SD99 colonies, a total of 32 queens and the
203 contents of 29 corresponding sperm receptacles (3 were lost
204 during dissection) were genotyped at a mean of 6.0 loci
205 (range=4–6), as described in Hammond et al. (2001). In the
206 SD00 colonies, a total of 27 queens and the contents of 27
207 corresponding sperm receptacles were genotyped at a mean
208 of 3.6 loci (range=2–4). Genotyping of the contents of
209 sperm receptacles had a high failure rate (38% in SD99
210 samples and 30% in SD00 samples). In SD99 colonies, as
211 described in Hammond et al. (2001), we also typed a per
212 colony mean of 12.8 adult workers (Fold workers_,
213 range=0–15), 13.9 callow workers or worker pupae (Fnew
214 workers_, range=0–19), 10.3 adult males (range=0–19) and
215 6.7 alate (winged) queens or queen pupae (Fnew queens_,
216 range=0–21) at a mean of 6.0 loci. Finally, across both sets
217 of colonies, we genotyped a mean of 42.6 eggs per colony
218 at a mean of 2.0 loci (range=1–4). These consisted of a
219 mean (range) of 54.9 (36–89) eggs from the SD99 colonies
220 (the samples described in Hammond et al. (2003) plus a
221 few additional SD99 eggs) and a mean (range) of 28.8
222 (20–38) eggs from the SD00 colonies. Eggs were genotyped
223 at loci found to be diagnostic for parentage analyses on the
224 basis of the genotypes of queens and the queens_ mates
225 (the genotypes of the queens_ mates being deduced from
226 those of the contents of the sperm receptacles or those of
227 female progeny). Within colonies, we attributed female
228 (diploid) eggs to one of the queens using exclusion criteria.
229 The high degree of genetic variation per locus, together with
230 the absence of relatedness between L. acervorum queens
231 and their mates and between mates of coexisting queens
232 (Hammond et al. 2001), meant that almost all eggs could be
233 assigned to individual queens (see FParentage analysis_
234 under FResults_).

235 Relatedness

236 We estimated regression relatedness among coexisting
237 queens in the SD00 colonies and, for the SD99 colonies,
238 used relatedness values calculated previously (Hammond
239 et al. 2001–2003). In the SD00 colonies, we calculated
240 Queller and Goodnight_s (1989) regression relatedness
241 from genotype data with the program RELATEDNESS
242 5.07 (Goodnight Software: http://www.gsoft.smu.edu/
243 Gsoft.html).

244 Colony productivity

245 In both the SD99 and SD00 colonies, we used the number
246 of adult workers as a surrogate measure of colony
247 productivity. This was justified because, based on previous

248data from polygynous colonies in the study population in
249Chan et al. (1999), we found colony sexual production
250(measured as biomass of either new queens, or males or
251new queens and males combined) to be highly correlated
252with number of adult workers (all Pearson_s r>0.47, all
253n=30, all P<0.009).

254Queen turnover

255Previous work has shown that polygynous colonies of
256L. acervorum in the study population have a high rate of
257queen turnover, with large proportions of old workers, new
258queens and males being unattributable to resident queens
259(Bourke et al. 1997; Hammond et al. 2001). In the present
260study, we estimated the degree of queen turnover in SD99
261colonies only since no adults or pupae were genotyped in
262SD00 colonies. We estimated the genetically effective
263turnover of queens (t) across pairs of female age cohorts
264using Eq. 4 in Pedersen and Boomsma (1999). This defines
265100% turnover as occurring when all queens contribute to
266one cohort only and 0% turnover as occurring when all
267queens contribute to both cohorts. The variables used in the
268estimation of t are the relatednesses within and between the
269two age cohorts being compared. We measured related-
270nesses within and between female eggs, new workers, old
271workers and new queens. Relatednesses were averaged
272across colonies for the estimation of population-level
273turnover. Since L. acervorum workers overwinter once as
274larvae, whereas queens usually overwinter twice
275(Buschinger 1973), we assumed that, relative to eggs, new
276workers were 0–1 years older, old workers were >1 year
277older and new queens were 2 years older. These relative
278ages are approximate because some workers may be close
279in the year that they were laid as eggs, the longevity of
280adult workers in unknown, and some queens may overwin-
281ter as larvae only once. Nonetheless, comparing relatedness
282within and between female eggs and these cohorts allowed
283us to estimate queen turnover across an ever-increasing age
284interval.

285Reproductive skew

286The likely occurrence of high queen turnover meant that
287reproductive skew could not easily be calculated from the
288genotypes of adult or pupal progeny. We therefore
289measured skew in samples of female eggs (SD99 colonies:
290mean=44.8 female eggs per colony, range=28–77; SD00
291colonies: mean=25.0 female eggs per colony, range=20–33).
292This assumed that individual queens within colonies did
293not differ in the queen-to-worker ratio among their
294progeny (we consider other assumptions in FDiscussion_).
295We were able to test this assumption by comparing the
296proportion of either caste attributable to each queen in four
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297 SD99 colonies with sufficient numbers of new workers and
298 new queens. In one of these colonies (SD99.54), we included
299 as a maternal queen an individual that was not present at
300 collection but whose existence could be inferred from the
301 genotypes of her daughters, i.e., a Flost_ queen (Hammond et
302 al. 2003). In each colony, a minority of new workers and
303 new queens could be not be assigned to either resident or
304 lost queens. We therefore grouped these progeny into a
305 Fqueen unknown_ parentage class.
306 We did not investigate reproductive skew among male
307 eggs for two reasons. First, the sample sizes for male eggs
308 in each colony were small because in L. acervorum, only a
309 small minority of eggs laid by queens (16%) are male and
310 workers lay very few male eggs (Hammond et al. 2002,
311 2003). Second, parentage assignment of males, being
312 haploid, was much more difficult than for females because
313 queens often shared a high proportion of alleles (frequently,
314 it was the paternal alleles in females that allowed parentage
315 assignment). However, in five SD99 colonies, the sample
316 size of adult, queen-produced males was large enough and
317 parentage assignment was possible. In these colonies, we
318 investigated whether reproductive skew differed between
319 sexes of progeny by comparing the proportion of adult
320 males and new workers attributable to each queen within
321 the colonies. We did not compare adult males and new
322 queens because such a comparison would have been
323 confounded by year since usually queens take 2 years to
324 develop, whereas workers and males take only 1 year
325 (Buschinger 1973). As in our comparison of skew between
326 castes, progeny that could not be assigned to either resident
327 or lost queens were grouped into a Fqueen unknown_
328 parentage class.
329 We used Nonacs_s B index (Nonacs 2000, 2003) to
330 quantify skew in female eggs. Using the program SKEW
331 CALCULATOR 2003 (Nonacs 2003), we calculated B, the
332 95% confidence limits of B (using 10,000 randomizations)
333 and, given the queen number in each colony, the maximum
334 (where only one queen reproduces in each colony) and
335 minimum (where all queens reproduce equally) possible
336 values of B. To control for the maximum and minimum
337 values of B varying across colonies (P. Nonacs, personal
338 communication), we also calculated an adjusted B index
339 (Badj). We calculated this as the absolute difference between
340 the observed and minimum B values divided by the
341 absolute difference between the maximum and minimum
342 B values.

343 Statistical methods

344 Queen–queen relatedness (Frelatedness_), colony size
345 (Fworker number_, i.e., number of old workers), reproduc-
346 tive skew (as measured by B or Badj) and the number of
347 queens per colony (Fqueen number_) were all normally

348distributed (Kolmogorov–Smirnov tests, all P>0.05). There
349was no significance difference in any variable across
350sampling years (SD99 vs SD00: all t15<1.07, all P>0.30),
351so data were pooled across years for further analyses. We
352tested relationships predicted by the skew models (Table 1)
353in two general linear models (GLM). First, in Fskew GLM_,
354we tested whether skew (B or Badj) varied with relatedness,
355queen number and worker number (as a measure of
356productivity). We also tested whether skew varied with
357productivity per queen by testing in these analyses for an
358interaction between queen and worker number. Second, in
359Fproductivity GLM_, we tested whether worker number
360varied with relatedness. In addition, in Fqueen number
361GLM_, we tested whether relatedness varied with queen
362number. All GLM analyses were carried out with SPSS
363(version 12.0.0). To compare skew between castes (new
364queens vs new workers) and sexes (males vs new workers),
365we used exact tests calculated by the program R�C [Miller
366MP (1997) R�C: a program for the analysis of contingency
367tables, 1.0 edn. Department of Biological Sciences, North-
368ern Arizona University, Flagstaff]. Where multiple tests
369were performed on the same data, we applied sequential
370Bonferroni correction (Rice 1989).

371Results

372Relatedness and queen turnover

373Average queen–queen relatedness (meanTSE) was
3740.28T0.08 (n=59 queens from 17 colonies). The genetical
375effective turnover of queens (t) was 50.3% (comparing
376eggs vs new workers, n=8 colonies), 43% (comparing eggs
377vs old workers, n=8 colonies) and 67.2% (comparing eggs
378vs new queens, n=5 colonies). Therefore, queen turnover
379was substantial and, as expected, showed evidence of rising
380as the age interval between cohorts increased (with the
381reversal of values between eggs vs new workers and eggs
382vs old workers, relative to those expected, presumably
383stemming from high overlap between the ages of new and
384old workers and from sampling error in the underlying
385relatedness estimates). These results, coupled with the
386complementary finding that a mean of 27% of new
387workers, new queens and old workers were not assignable
388to resident queens (see below) and with previous findings
389from the same population (Bourke et al. 1997), provided
390support for measuring skew among eggs in this study.

391Parentage analysis

392We could successfully attribute 91% (550 out of a total
393n=603) of all female eggs to individual resident queens.
394The remaining 9% were either not attributable to any
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395 resident collected queen (8%) or were equally likely to be
396 the offspring of two or more resident queens (1%). Almost
397 half of the eggs that were unattributable to resident queens
398 were found in two colonies (SD99.74 and SD99.96);
399 omitting these raised the proportion of successfully
400 assigned eggs to 95%. In our analysis of skew (see below),
401 we ignored the small fraction of unattributed eggs and
402 analyzed skew in the large majority of eggs whose
403 maternity we could deduce. Furthermore, we included all
404 colonies since the omission of the two colonies with the
405 highest proportions of unattributable eggs did not alter the
406 results. Compared to female eggs, a lower proportion of
407 adult males (82%), new queens (64%), new workers (69%)
408 and old workers (85%) could be attributed to resident
409 queens.

410 Variation in skew as measured across castes and sexes

411 There were no significant differences between the propor-
412 tion of new queens and new workers attributable to each
413 resident queen in all four SD99 colonies where compar-
414 isons were possible (Table 2), supporting our assumption
415 that skew in female eggs provides an accurate estimate of
416 reproductive skew in new queens. However, there were
417 significant differences between the proportion of males and
418 new workers attributable to each resident queen in all five
419 SD99 colonies where comparisons were possible (Table 3).
420 Queens coexisting within the same colony therefore
421 differed in their relative success at producing male and
422 female offspring, with some concentrating on male produc-
423 tion and others on female production.

424 Average reproductive skew

425 Reproduction was relatively equitably distributed among
426 queens, with only 4 of 59 resident queens (6.8%) failing to
427 contribute any female eggs (Fig. 1). The highest proportion

428of eggs contributed by a single queen was 69.2% in a
429colony with 3 queens (colony SD00.129; Fig. 1). Average
430skew across colonies was low, with the overall mean (TSE)
431of B equalling 0.06T0.02 and of Badj equalling 0.12T0.03
432(Fig. 2). The mean level of B (randomization test,
433P<0.0001) and skew in 5 of 17 colonies (randomization
434test, P<0.004, corresponding to an overall alpha of 0.05)
435was significantly greater than that expected by chance
436(Fig. 2). However, even in the 5 colonies with significant
437skew, skew estimates were nearer their minimum than their
438maximum level (Fig. 2).

439Relationship of reproductive skew with relatedness, worker
440number and queen number

441We found no significant relationship of skew with
442relatedness, queen number or worker number (skew GLM,
443B: F4,12=0.99, P=0.45; Badj: F4,12=0.73, P=0.59; Fig. 3).
444There was also no significant interaction between queen
445number and worker number (B: F1,12=2.91, P=0.11; Badj:
446F1,12=2.52, P=0.14). Bivariate linear regressions showed
447that our analyses had relatively high power because the
448standard deviations of the relevant regression coefficients
449were small (B vs relatedness: bTSD=j0.03T0.06,
450F1,15=0.18, r2=0%, P=0.67; B vs queen number:
451bTSD=0.01T0.01, F1,15=0.96, r

2=0%, P=0.34; B vs worker
452number: bTSD=0.00T0.00, F1,15=0.08, r

2=0%, P=0.79; B
453vs worker number per queen: bTSD=0.00T0.00, F1,15=0.21,
454r2=0%, P=0.65; Badj vs relatedness: bTSD=j0.03T0.09,
455F1,15=0.12, r2=1%, P=0.74; Badj vs queen number:
456bTSD=0.00T0.02, F1,15=0.68, r2=1%, P=0.80; Badj vs
457worker number: bTSD=0.00T0.00, F1,15=0.01, r2=0%,
458P=0.95; Badj vs worker number per queen: bTSD=
4590.00T0.00, F1,15=0.09, r

2=1%, P=0.77). We also found that
460relatedness did not vary significantly with worker number
461(productivity GLM: F1,15=0.04, P=0.84) or queen number
462(queen number GLM: F1,15=0.01, P=0.91).

t2.1 Table 2 Number of new queens and new workers attributable to individual queens in four polygynous L. acervorum colonies

Colony A B C D E F G H U Totals P valuet2.2

SD99.53 New queens 0 2 7 2 – – – – 4 15 0.630t2.3
New workers 0 1 4 3 – – – – 7 15t2.4

SD99.54 New queens 0 2 0 10 – – – – 9 21 0.247t2.5
New workers 1 3 0 4 – – – – 11 19t2.6

SD99.55 New queens 2 4 4 – – – – – 5 15 0.681t2.7
New workers 3 5 5 – – – – – 2 15t2.8

SD99.94 New queens 1 0 0 0 0 4 0 0 0 5 0.196t2.9
New workers 1 2 2 3 1 2 0 1 3 15t2.10

t2.11 Individual queens (differing across colonies) are labelled A, B, C, etc. The final column (U) in each sequence per colony includes progeny
of unknown parentage (i.e., progeny that could not be attributed to any queen within the colony). The queens in SD99.54 also include one Flost_
queen whose presence was inferred from progeny genotypes (see FReproductive skew_ under FMethods_). P value is from exact probability
tests of the null hypothesis that, within colonies, individual queens do not differ in the ratio of new workers and new queens produced.
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463 Discussion

464 Using parentage analyses based on microsatellite markers,
465 we measured skew among female eggs in a sample of 17
466 polygynous colonies taken from a field population of the
467 ant L. acervorum. Skew tended to be low, consistent with
468 previous data showing that nearly all queens participate in
469 egg laying (Bourke 1991) and that the maternity of new
470 queens is shared (Bourke et al. 1997). However, despite

471wide variation in queen–queen relatedness, we found no
472significant association of skew with relatedness. We also
473found no significant association of skew with productivity
474(as measured by worker number) or per capita productivity.
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Fig. 1 Relative proportions of female eggs produced by queens
within 17 polygynous Leptothorax acervorum colonies. Alternating
black and white segments of each bar represent the proportion of
female eggs attributable to different queens within a given colony.
Numbers above bars equal the number of female eggs per colony that
were successfully attributed to resident queens (total n=550)
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Fig. 2 Reproductive skew, as estimated by the B index among female
eggs, in 17 polygynous L. acervorum colonies. For each colony, upper
horizontal bar (F—_) denotes the maximum value of B (i.e., value if
one queen monopolizes all reproduction), given the observed number
of queens in the colony; upper F�_ denotes the upper 95% confidence
limit of B, based on 10,000 randomizations; filled circle denotes
observed B; lower F�_ denotes lower 95% confidence limit of B,
based on 10,000 randomizations; lower horizontal bar (F—_) denotes
the minimum value of B (i.e., value if all queens share reproduction
equally), given the observed number of queens in the colony.
Following Bonferroni correction, skew was significantly greater than
expected by chance in five colonies (SD99.54, SD99.55, SD99.94,
SD00.126 and SD00.129) and marginally greater than expected by
chance in a sixth colony (SD00.143)

t3.1 Table 3 Number of males and new workers attributable to individual queens in five polygynous L. acervorum colonies

Colony A B C D E U Totals P valuet3.2

SD99.55 Males 0 9 0 – – 6 15 0.008t3.3
New workers 3 5 5 – – 2 15t3.4

SD99.61 Males 0 7 – – – 9 16 0.005t3.5
New workers 0 14 – – – 1 15t3.6

SD99.64 Males 10 0 2 – – 2 14 <0.0001t3.7
New workers 0 7 8 – – 8 23t3.8

SD99.74 Males 0 0 0 1 6 0 7 <0.0001t3.9
New workers 1 1 1 4 0 8 15t3.10

SD99.78 Males 0 0 17 – – 0 17 <0.0001t3.11
New workers 2 8 4 – – 1 15t3.12

t3.13 Individual queens (differing across colonies) are labelled A, B, C, etc. The final column (U) in each sequence per colony includes progeny
of unknown parentage (i.e., progeny that could not be attributed to any queen within the colony). The queens in SD99.64 and SD99.74 also
each include one Flost_ queen whose presence was inferred from progeny genotypes (see FReproductive skew_ under FMethods_). P value is from
exact probability tests of the null hypothesis that, within colonies, individual queens do not differ in the ratio of males and new workers
produced. All P values are also significant after sequential Bonferroni correction.
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475 These findings were contrary to the predictions of the
476 concession model of reproductive skew (Table 1). Further-
477 more, contrary to the prediction of the tug-of-war model
478 (Table 1), we found no significant association of relatedness
479 and productivity (as measured by worker number). The
480 absence of a significant association between relatedness and
481 queen number was consistent with our previous findings
482 from an overlapping data set (Hammond et al. 2001).
483 Overall, our results failed to match any single current skew

484model predicting an association of skew with the variables
485that we investigated (Table 1). In this, our results are
486consistent with the majority of similar, within-population
487studies of the expected correlates of skew in other social
488Hymenoptera, especially ants (see FIntroduction_).
489Our principal measure of reproductive skew was the
490degree to which coexisting queens shared the parentage of
491female (diploid) eggs. We selected this measure because of
492the high turnover among L. acervorum queens in the study
493population (Bourke et al. 1997; present study), which
494meant that offspring sampled as adults would no longer
495have been assignable to resident queens. This measure of
496skew assumed that egg-to-adult survival of female eggs
497does not vary with parentage, that queens do not differ in
498the chances of their female eggs developing into adult
499queens or workers and that skew among female progeny
500matches skew among male progeny. The first of these
501assumptions is plausible because, although differential
502mortality stemming from nepotism has been found in the
503polygynous ant Formica fusca (Hannonen and Sundström
5042003b), L. acervorum queens, although known to eat eggs,
505do not discriminate eggs by their maternal origin (Bourke
5061994). Likewise, as regards the second assumption,
507although coexisting queens have been shown to differ in
508their relative contributions to worker and queen progeny in
509some polygynous ant species (Ross 1988; Pamilo and
510Seppä 1994), in the present study, we found that L.
511acervorum queens contributed similar shares to worker
512and queen progeny (see also Rüppell et al. 2002). This
513finding is consistent with queen–worker caste fate being
514environmentally determined in Leptothorax (Wesson 1940).
515It also suggests that the workers_ biasing of caste fate that
516we have previously described in L. acervorum (Hammond
517et al. 2002) is exercised randomly with respect to female
518parentage. Contrary to our third assumption, we found that
519coexisting L. acervorum queens exhibited significant
520variation in their relative contributions to female and male
521progeny (cf. Fournier and Keller 2001). In general, skew
522among male progeny was higher than among female
523progeny (B=0.56 and 0.15 among males and new workers,
524respectively, and Badj=0.67 and 0.28 among males and new
525workers, respectively; data from five colonies in Table 3),
526from which it follows that skew among sexual progeny as a
527whole would be higher than skew estimated among females
528only. However, this does not necessarily affect our main
529conclusions regarding the lack of association between skew
530and its predicted correlates across colonies. This is because
531it seems unlikely that skew in males would vary as a
532function of variables with which we found skew among
533females to be uncorrelated.
534Previous evidence suggests that leptothoracine ants
535exhibit a positive relationship of skew with relatedness at
536the between-population and between-species level, as the

Fig. 3 Variation in reproductive skew, as estimated by the B index
among female eggs, in 17 polygynous L. acervorum colonies as a
function of queen–queen relatedness within colonies (upper figure),
queen number (middle figure) and number of old (adult) workers
(representing a measure of productivity; lower figure)
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537 concession model of skew evolution predicts (see
538 FIntroduction_). However, within-population studies reveal
539 either no relationship (present study) or a negative
540 relationship (Rüppell et al. 2002). Applied within popula-
541 tions, skew models assume that coexisting breeders are
542 capable of assessing within-group relatedness and adjusting
543 their share of reproduction accordingly. At first sight, two
544 pieces of evidence suggest that L. acervorum queens in
545 polygynous colonies could be capable of assessing queen–
546 queen relatedness. The first is the negative relationship of
547 skew and relatedness in L. rugatulus (Rüppell et al. 2002).
548 The second is the existence of worker-controlled sex ratios
549 associated with variation in relative colony-level related-
550 ness asymmetry (relative relatedness to the sexes) in L.
551 acervorum and other ant species (Chan and Bourke 1994;
552 Sundström 1994; Evans 1995; Sundström et al. 1996), a
553 precondition for which is workers_ assessment of related-
554 ness asymmetry. However, in L. rugatulus (but not L.
555 acervorum), queens are dimorphic, with small-bodied
556 queens (microgynes) producing relatively more sexuals
557 than large-bodied queens (macrogynes) (Rüppell et al.
558 2002). Furthermore, microgynes tend to be less related
559 than macrogynes (Rüppell et al. 2001). Therefore, unlike
560 L. acervorum queens, L. rugatulus queens may have a
561 physical cue (frequency of nestmate microgynes) that
562 covaries with relatedness and, at least partly, predicts
563 nestmates_ share of reproduction. As regards workers_
564 assessment of relatedness asymmetry, it is likely that such
565 assessment, which occurs on the basis of chemical cues
566 (Boomsma et al. 2003), is an easier chemosensory task than
567 queens_ assessment of queen–queen relatedness since it
568 almost certainly requires discriminations on a coarser scale.
569 Therefore, it remains possible that L. acervorum queens in
570 polygynous colonies are unable to assess within-colony
571 relatedness and that this is why they fail to adjust their
572 levels of skew as a function of relatedness varying within
573 populations.
574 Not only processes in the concession models operating at
575 the population level, other factors may also contribute to
576 the maintenance of low skew in the study population of
577 L. acervorum (and other polygynous ants sharing its
578 biology). One is indiscriminate infanticide in the form of
579 indiscriminate egg cannibalism (Bourke 1991, 1994).
580 Coupled with low costs of offspring (egg) production, this
581 is predicted to promote low skew by a model of Johnstone
582 and Cant (1999a). Another is split sex ratios (Chan and
583 Bourke 1994; Chan et al. 1999; Hammond et al. 2002).
584 These could interact with skew evolution to reward the
585 maintenance of low skew in polygynous colonies, given
586 that queens achieving reproductive monopoly within
587 polygynous colonies should lose fitness through their
588 workers rearing less-valuable daughters from the sexual
589 brood (Bourke 2001; Nonacs 2002). Future work in L.

590acervorum and other species should therefore concentrate
591on (a) further testing of which assumptions of the differing
592skew models are applicable, (b) greater integration of the
593differing skew models into a single comprehensive frame-
594work (e.g., Johnstone 2000) and (c) the experimental
595testing of the models_ predictions (e.g., Langer et al. 2004).
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