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Abstract

In the framework of collective risk theory, we consider a compound Poisson risk model for the
surplus process where the process (and hence ruin) can only be observed at random observation
times. For Erlang(n) distributed inter-observation times, explicit expressions for the discounted penalty
function at ruin are derived. The resulting model contains both the usual continuous-time and the
discrete-time risk model as limiting cases, and can be used as an effective approximation scheme for
the latter. Numerical examples are given that illustrate the effect of random observation times on
various ruin-related quantities.
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1 Introduction

In the classical Cramér-Lundberg risk model, the surplus process of an insurance portfolio {C(t)}t≥0 is
given by

C(t) := x+ ct− S(t) = x+ ct−
N(t)∑
i=1

Yi, t ≥ 0, (1.1)

where x = C(0) ≥ 0 is the initial surplus level, c > 0 is the constant premium income per unit time,
and the aggregate claims process {S(t)}t≥0 is a compound Poisson process, comprising a homogeneous
Poisson process {N(t)}t≥0 with rate λ > 0, and independent and identically distributed (i.i.d.) claim
sizes {Yi}∞i=1 that are independent of {N(t)}t≥0 and distributed as a generic continuous random variable

(r.v.) Y with c.d.f. FY (·), density fY (·) and corresponding Laplace transform f̃Y (s) =
∫∞
0 e−syfY (y)dy.

Ruin of the risk process is the event that C(t) < 0 for some t ≥ 0.
In this classical model it is possible to observe the current value of the surplus (and hence also to observe
possible ruin) continuously. In practice, however, it may be more reasonable to assume that the balance
of the books is only checked on a periodic basis, which naturally leads to the study of discrete-time
risk models (see e.g. Asmussen & Albrecher [2] for a recent survey). However, discrete-time risk mod-
els have the distinctive disadvantage that they usually do not lead to explicit expressions for the ruin
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probability and related quantities. Therefore, we propose in this paper to use a computational bridge
between the continuous-time and the discrete-time collective risk models that still enables explicit ex-
pressions. This will turn out to serve as a quite satisfying approximation of the discrete-time counterpart.

Concretely, assume that the compound Poisson risk model (1.1) can only be observed at random
times {Zk}∞k=0 (i.e., Zk is the k-th observation time, with Z0 = 0). Let Tk = Zk − Zk−1 be the k-th
inter-observation time and assume that {Tk}∞k=1 is an i.i.d. sequence with generic r.v. T , independent of
the claim number process {N(t)}t≥0 and the claim sizes {Yi}∞i=1. Letting U(k) = C(Zk), the resulting
process {U(k)}∞k=0 can be described recursively by

U(k) = U(k − 1) + cTk − [S(Zk)− S(Zk−1)], k = 1, 2, . . . ,

with initial surplus U(0) = C(0) = x. Then the time of ruin in this modified model is τ = Zk∗ , where
k∗ = inf{k ≥ 1 : U(k) < 0}. Note that if the surplus of (1.1) becomes negative, but is again positive at
the next observation, the process is not ruined (see e.g. the sample path in Figure 1, where ruin is only
declared at t = Z5). One may interpret the random walk {U(k)}∞k=0 as the one embedded in a dependent

Sparre Andersen risk model with generic ‘interclaim time’ T and ‘claim size’
∑N(T )

i=1 Yi (see Cheung et al.
[6]). The safety loading condition for this model is – as in the original continuous-time risk model – still
c > λE[Y ].

Figure 1: The value of the compound Poisson surplus process is only observed at random times Zk (k = 0, 1, . . .)

For the purpose of this paper, we assume T to be Erlang(n) distributed with density

fT (t) :=
γntn−1e−γt

(n− 1)!
, t > 0, γ > 0

and corresponding Laplace transform f̃T (s) = [γ/(γ + s)]n. The case n = 1 refers to exponentially
distributed observation intervals, i.e. lack of memory of the time until the next observation. If, on the
other hand, ones fixes E[T ] = h and chooses n sufficiently large, this approximates the discrete-time
risk model with deterministic time steps h, since the Erlang distribution for n → ∞ and fixed expected
value E[T ] = h converges in distribution to a point mass in h. Finally, if γ → ∞ for fixed n, then T
converges in distribution to a point mass at 0, and this limit corresponds to the classical continuous-time
risk model {C(t)}t≥0 described by (1.1) (i.e. continuous observation of the process and monitoring of
potential ruin).
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Note that for the calculation of finite-time ruin probabilities in the continuous model (1.1), a ran-
domization of the time horizon by an Erlang r.v. (called Erlangization) was successfully employed in
Asmussen et al. [3] (see also Ramaswami et al. [14] and Stanford et al. [15, 16] for extensions).
In this paper, the Erlangization is used on another level, namely for each inter-observation time Tk of
the risk process. The focus will be on the expected discounted penalty function at ruin, introduced by
Gerber & Shiu [10], which comprises information on the time of ruin, the surplus prior to ruin and the
deficit at ruin. The natural adaption of this function in our context is

mδ(x) := E
[
e−δτw

(
U(k∗ − 1), |U(k∗)|

)
I{τ<∞}|U(0) = x

]
, x ≥ 0. (1.2)

As usual, δ ≥ 0 can be interpreted as a force of interest or as the Laplace transform argument with respect
to the ruin time τ , I{·} is the indicator function and w(x1, x2) is a penalty function depending on the
surplus prior to ruin U(k∗−1) and the deficit at ruin |U(k∗)|. Throughout, we assume that w(·, ·) satisfies
some mild integrability conditions such that the expectation in (1.2) exists. Since U(k∗ − 1) corresponds
to the surplus immediately after the second-last claim before ruin in the afore-mentioned dependent
Sparre Andersen risk model (see Badescu et al. [4, Section 5] and Cheung et al. [5]), various structural
properties derived in Cheung et al. [6] can be applied to the study of mδ(x), and at the same time help
to carry over some of the properties of the classical continuous-time model to the discretized version. In
the sequel paper [1], we will investigate the effects of random observation times on the performance of
dividend strategies.

The remainder of the paper is organized as follows. Section 2 studies Gerber-Shiu functions for which
the penalty function only depends on the deficit at ruin (i.e. w(x1, x2) ≡ w2(x2)). For exponential inter-
observation time T and exponential claim size Y , we exploit the Markov structure of the resulting risk
process to derive integro-differential equations (IDEs) for mδ(·), which can then be reduced to differential
equations. In Section 3 we characterize the Gerber-Shiu function (1.2) in a general model framework as
the solution of a defective renewal equation. The discounted density of the increment between successive
observations plays an important role in the analysis. Section 4 treats this discounted increment density
in detail for claim size distributions with rational Laplace transform and gives explicit expressions for
mδ(·) for penalty functions of the type w(x1, x2) ≡ w2(x2). Finally, numerical examples are given in
Section 5 to illustrate the effect of random observations on some ruin-related quantities.

2 Method of integro-differential equations when w(x1, x2) ≡ w2(x2)

In this section, we consider the Gerber-Shiu function (1.2) for the case where the penalty function depends
on the ruin deficit only, i.e. w(x1, x2) ≡ w2(x2), where w2(x2) is a continuous function for x2 ≥ 0. If the
inter-observation times are exponentially distributed, then the process is Markovian and we will restrict
our focus in this section on that case. For more general inter-observation time distributions see Remark
2.2 below.

2.1 IDEs for exponential inter-observation times

With observations and claims arriving (independently) at Poisson rates γ and λ respectively, we consider
a time interval (0, h) and condition on whether an observation time occurs in this interval before a claim

3



occurs, or a claim occurs before an observation time occurs, or neither a claim nor an observation time
occurs until time h. We then arrive at

mδ(x) = e−(δ+λ+γ)hmδ(x+ ch) +

∫ h

0
e−(λ+δ)tγe−γt

[
mδ(x+ ct)I{x+ct≥0} + w2(−(x+ ct))I{x+ct<0}

]
dt

+

∫ h

0
e−(δ+γ)tλe−λt

∫ ∞

0
mδ(x+ ct− y)fY (y) dy dt, x ∈ R. (2.1)

Note that if a claim occurs before an observation time, it is possible for the surplus level to drop below
zero without being observed. Therefore, the domain of mδ(x) has been extended to x ∈ R, even if
eventually one usually will declare time 0 an observation time. The right-continuity of mδ(x) on R, in
particular in x = 0, is established by letting h→ 0, because the integrands are (locally) bounded. Taking
the derivative of (2.1) with respect to h and letting h→ 0, we obtain the system of IDEs

0 = cm′
δ(x)− (λ+ γ + δ)mδ(x) + γw2(−x) + λ

∫ ∞

0
mδ(x− y)fY (y) dy, x < 0, (2.2)

0 = cm′
δ(x)− (λ+ δ)mδ(x) + λ

∫ ∞

0
mδ(x− y)fY (y) dy, x ≥ 0. (2.3)

A priori, the derivatives above are right-hand derivatives, but by starting the same conditioning argument
at some point x− ch for small h > 0, one not only establishes the left-continuity of mδ(.) on R but also
finds that the left-hand derivatives of mδ(·) still fulfill (2.2) and (2.3). Consequently, mδ(x) is indeed
differentiable for x ∈ R \ {0}, and at x = 0 we have

cm′
δ(0−)− cm′

δ(0+) = γ mδ(0)− γ w2(0),

so that in general mδ(x) is not differentiable at x = 0.
Let us rewrite mδ(x) as

mδ(x) :=

{
mδ,L(x), x < 0,
mδ,U (x), x ≥ 0,

where the extra subscripts ‘L’ and ‘U ’ stand for ‘lower’ and ‘upper’ layer, respectively. Then the IDEs
(2.2) and (2.3) can be rewritten as

0 = cm′
δ,L(x)− (λ+ γ + δ)mδ,L(x) + γw2(−x) + λ

∫ ∞

0
mδ,L(x− y)fY (y) dy, x < 0, (2.4)

0 = cm′
δ,U (x)− (λ+ δ)mδ,U (x) + λ

∫ x

0
mδ,U (x− y)fY (y) dy + λ

∫ ∞

x
mδ,L(x− y)fY (y) dy, x ≥ 0.

(2.5)

For a complete characterization of the solution of the above system, one can use the continuity condition

mδ,L(0−) = mδ,U (0+), (2.6)

as well as the boundary conditions for limx→−∞mδ,L(x) and limx→∞mδ,U (x) which depend on the form
of the penalty function w2(·). The next subsection shows how this can be carried out in the case of
exponential claims.
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2.2 Constructing a solution - the exponential claim case

Assume that the claim size density is given by fY (y) = νe−νy, y > 0, for some parameter ν > 0. We
proceed by applying the operator (d/dx+ ν) to (2.4) and (2.5), respectively. For the lower layer x < 0,
this leads to

cm′′
δ,L(x) + [c ν − (λ+ γ + δ)]m′

δ,L(x)− (γ + δ) ν mδ,L(x) = γ w′
2(−x) + γ ν w2(−x), x < 0, (2.7)

where we assume that w2(·) is differentiable. This second-order differential equation with constant coef-
ficients has characteristic equation (in ξ)

ξ2 +

(
ν − λ+ γ + δ

c

)
ξ − (γ + δ)ν

c
= 0, (2.8)

which has a positive root ργ > 0 and a negative root −Rγ < 0. Note that the above equation is equivalent
to the usual Lundberg’s fundamental equation in the classical model with continuous observation when
γ = 0. The solution of (2.7) will now depend on the nature of the penalty function w2(·) involved in the
inhomogeneous term. For the upper layer x ≥ 0, the same procedure leads to a second-order homogeneous
differential equation for mδ,U (x). The latter also has characteristic equation (2.8) but with γ = 0, and
the resulting roots are denoted by ρ0 ≥ 0 and −R0 < 0. Hence, one has

mδ,U (x) = A1e
ρ0x +A2e

−R0x, x ≥ 0, (2.9)

for some constants A1, A2.

Let us now choose the penalty function w2(x2) = e−r2x2 for r2 ≥ 0, so that mδ(x) corresponds to the
bivariate Laplace transform of the time of ruin τ and the deficit at ruin |U(k∗)| (clearly, this choice of
penalty function is not very restrictive). Then the inhomogeneous term in (2.7) is proportional to er2x

and the solution mδ,L(x) will be of the form

mδ,L(x) = C1e
ργx + C2e

−Rγx + C3e
r2x, x ≤ 0, (2.10)

for some constants C1, C2, C3. Note that both ν −Rγ and ν −R0 are positive and therefore the integrals
in (2.4) and (2.5) exist.

The coefficients in (2.9) and (2.10) can now be determined by exploiting the boundary conditions
at −∞ and +∞. First, under positive safety loading (or, alternatively, whenever δ > 0), the bound
mδ,U (x) ≤ E

[
e−δτI{τ<∞}|U(0) = x

]
for x ≥ 0 implies the natural condition limx→∞mδ,U (x) = 0. An

immediate consequence is that A1 = 0, since ρ0 ≥ 0. Next, the condition at x→ −∞ depends on whether
r2 = 0 or r2 > 0. If r2 = 0, then mδ(x) is simply the Laplace transform of the time of ruin. But as
x → −∞, ruin occurs (almost surely) at the time of the first observation Z1 = T1 which is exponential
with mean 1/γ. In contrast, if r2 > 0, x → −∞ implies infinite deficit at ruin, so that mδ,L(x) tends to
0. Thus,

lim
x→−∞

mδ,L(x) =

{
E[e−δT ] = γ

γ+δ , r2 = 0,

0, r2 > 0.

The boundedness of limx→−∞mδ,L(x) and Rγ > 0 imply that C2 = 0. To determine the remaining
constants A2, C1 and C3, we substitute (2.9) and (2.10) into the IDEs (2.4) and (2.5). For (2.4), equating
the coefficients of eργx does not yield any information, whereas comparing the coefficients of er2x gives

C3 = − γ

c r2 − (λ+ γ + δ) + λ ν
ν+r2

.
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Similarly, for (2.5), the coefficients of e−R0x lead to no extra information, whereas the coefficients of e−νx

imply

A2
1

ν −R0
= C1

1

ν + ργ
+ C3

1

ν + r2
. (2.11)

Finally, the continuity condition (2.6) in x = 0 gives

A2 = C1 + C3, (2.12)

and the system of linear equations (2.11) and (2.12) can easily be solved to give A2 and C1. Altogether,
we arrive at

mδ,L(x) =
γ
(

1
ν+r2

− 1
ν−R0

)
eργx(

cr2 − (λ+ γ + δ) + λ ν
ν+r2

)(
1

ν+ργ
− 1

ν−R0

) − γ er2x

cr2 − (λ+ γ + δ) + λ ν
ν+r2

, x ≤ 0,

and

mδ,U (x) =
γ
(

1
ν+r2

− 1
ν+ργ

)
e−R0x(

c r2 − (λ+ γ + δ) + λ ν
ν+r2

)(
1

ν+ργ
− 1

ν−R0

) , x ≥ 0,

respectively. In view of the identity

c r2 − (λ+ γ + δ) + λ
ν

ν + r2
=
c (r2 − ργ)(r2 +Rγ)

ν + r2
,

these formulas simplify to

mδ,L(x) =
γ

c (r2 − ργ)(r2 +Rγ)

(
(ν + ργ)(r2 +R0)

ργ +R0
eργx − (ν + r2) e

r2x

)
=

γ(ν + ργ)

c(ργ +Rγ)

(
1

r2 − ργ
+

Rγ −R0

(ργ +R0)(r2 +Rγ)

)
eργx

− γ

c(ργ +Rγ)

(
ν + ργ
r2 − ργ

− ν −Rγ

r2 +Rγ

)
er2x, x ≤ 0, (2.13)

and

mδ,U (x) =
γ(ν −R0)

c(ργ +R0)(r2 +Rγ)
e−R0x

=
Rγ −R0

r2 +Rγ
e−R0x, x ≥ 0. (2.14)

The Laplace transform inversion with respect to r2 of (2.13) and (2.14) will give the discounted density
of the deficit at ruin h∗δ,L(y|x), i.e.

mδ,L(x) =

∫ ∞

0
e−r2yh∗δ,L(y|x) dy, x < 0 and mδ,U (x) =

∫ ∞

0
e−r2yh∗δ,U (y|x) dy, x ≥ 0 (2.15)
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with

h∗δ,L(y|x) =
γ(ν + ργ)

c(ργ +Rγ)

(
eργy +

Rγ −R0

ργ +R0
e−Rγy

)
eργx

− γ

c(ργ +Rγ)

[
(ν + ργ) e

ργ(x+y) − (ν −Rγ) e
−Rγ(x+y)

]
I{y>−x}

=
γ(ν + ργ)(Rγ −R0)

c(ργ +Rγ)(ργ +R0)
eργx−Rγy +

γ(ν + ργ)

c(ργ +Rγ)
eργ(x+y)I{y≤−x}

+
γ(ν −Rγ)

c(ργ +Rγ)
e−Rγ(x+y)I{y>−x}, y > 0, (2.16)

and
h∗δ,U (y|x) = (Rγ −R0)e

−R0x−Rγy, y > 0. (2.17)

Remark 2.1 It is instructive to note that having identified the discounted densities in (2.16) and (2.17),
the Gerber-Shiu functions mδ,L(x) and mδ,U (x) for an arbitrary penalty function w2(·) are given by (2.15)
simply with e−r2y replaced by w2(y). �

Example 2.1 The Laplace transform of the time to ruin is obtained for r2 = 0, and so we get from
(2.13) and (2.14)

E
[
e−δτI{τ<∞}|U(0) = x

]
=

(
1− R0

Rγ

)
e−R0xI{x≥0} +

γ

c ργRγ

(
ν − ν + ργ

1 + ργ/R0
eργx

)
I{x<0}. (2.18)

For γ → ∞, we have ργ → ∞, Rγ → ν and ργ/γ → 1/c (by Vieta’s rule for (2.8)), so that we indeed
obtain the formula

E
[
e−δτCLI{τCL<∞}|C(0) = x

]
=

(
1− R0

ν

)
e−R0xI{x≥0} + I{x<0}

for the classical compound Poisson risk model with continuous observation in the limit (see e.g. Gerber
& Shiu (1998)). Note that for δ = 0 we further have R0 = ν − λ/c and the formula further simplifies to
the classical ruin probability

ψCL(x) =
λ

ν c
e−(ν−λ/c)xI{x≥0} + I{x<0}.

�

Example 2.2 The expected discounted deficit at ruin is obtained from (2.13) and (2.14) by taking the
(negative) derivative with respect to r2 at r2 = 0. Together with Vieta’s rule this leads to

E
[
e−δτ |U(k∗)| I{τ<∞}

∣∣U(0) = x
]
= I{x≥0}

Rγ −R0

R2
γ

e−R0x

+ I{x<0}
γ(ν + ργ)

c (ργ +Rγ)

(
1

ρ2γ
− Rγ −R0

(ργ +R0)R2
γ

)
eργx

− I{x<0}

(
γ(c− λ/ν)

(γ + δ)2
+

γ

γ + δ
x

)
. (2.19)
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Note that the same result can also be derived by multiplying the discounted densities in (2.16) and (2.17)
by y and then integrating with respect to y (see Remark 2.1). By the same limit operation as in Example
2.1, we obtain for γ → ∞

E
[
e−δτCL |C(τCL)| I{τCL<∞}

∣∣C(0) = x
]
=
ν −R0

ν2
e−R0xI{x≥0} − xI{x<0},

which is the expected discounted deficit at ruin for the classical compound Poisson risk model with
continuous observation (see again Gerber & Shiu (1998)). �

Remark 2.2 In principle, the method of this section can be extended to the case of phase-type observa-
tion intervals (as well as more complicated claim size distributions), by increasing the dimension of the
state space (and hence regaining the Markovian structure in this new state space). However, this leads
to considerable effort, since one has to keep track of two layers for each of the n phases which results
in 2n interacting IDEs in the case of Erlang(n) intervals. In the next section, we discuss an alternative
approach that not only avoids these difficulties but also allows for the study of the general Gerber-Shiu
function (1.2) including the surplus prior to ruin. �

3 Defective renewal equation and discounted increments

3.1 A defective renewal equation for mδ(x)

Recall from Section 1 that the sequence {U(k)}∞k=0 can be interpreted as surplus levels after each claim in

a dependent Sparre Andersen risk model with generic ‘interclaim time’ T and ‘claim size’
∑N(T )

i=1 Yi. Since
the surplus prior to ruin U(k∗ − 1) in the present model corresponds to the surplus after the second-last
claim before ruin in that dependent Sparre Andersen risk model, we can utilize some results of Cheung
et al. [6] for our purpose.

Given U(0) = x, the form of the discounted joint density of the pair (U(k∗ − 1), |U(k∗)|) depends on
whether ruin occurs at the first positive observation time Z1 or not. For ruin at time Z1, one has the
deterministic relationship U(k∗ − 1) = U(0) = x and only requires the discounted density of |U(k∗)| at
y, which we denote by h∗1,δ(y|x). On the other hand, for ruin after Z1, the discounted joint density of
(U(k∗ − 1), |U(k∗)|) at (z, y) is denoted by h∗2,δ(z, y|x). The Gerber-Shiu function mδ(x) defined by (1.2)
can now be represented as

mδ(x) =

∫ ∞

0
w(x, y)h∗1,δ(y|x) dy +

∫ ∞

0

∫ ∞

0
w(z, y)h∗2,δ(z, y|x) dz dy, x ≥ 0,

and the discounted density of the deficit at ruin is

h∗δ(y|x) = h∗1,δ(y|x) +
∫ ∞

0
h∗2,δ(z, y|x) dz, y > 0,

which corresponds to h∗δ,U (y|x) of the previous section. Then, by considering the first drop in surplus
below its initial level in the associated dependent Sparre Andersen risk model, one has

mδ(x) =

∫ x

0
mδ(x− y)h∗δ(y|0) dy +

∫ ∞

x
w(x, y − x)h∗1,δ(y|0) dy

+

∫ ∞

x

∫ ∞

0
w(z + x, y − x)h∗2,δ(z, y|0) dz dy, x ≥ 0. (3.1)
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Because of
∫∞
0 h∗δ(y|0) dy = E

[
e−δτI{τ<∞}|U(0) = 0

]
< 1 under δ > 0 (or under positive safety loading),

this is a defective renewal equation (for its solution, see e.g. Willmot & Lin [18, p.154]). Hence, once
the discounted densities h∗1,δ(·|0) and h∗2,δ(·, ·|0) are determined, the Gerber-Shiu function mδ(·) can
be determined in full generality. Section 3.3 will deal with expressions for h∗1,δ(·|0) and h∗2,δ(·, ·|0) for
Erlang(n) distributed observation intervals.

3.2 Discounted increments between successive observations

Consider now Erlang(n) distributed observation intervals and an arbitrary claim size distribution. Let
us return to the embedded random walk interpretation for {U(k)}∞k=0. Concretely, the pairs (Tk, U(k −
1) − U(k)) (k = 1, 2, . . .) form an i.i.d. sequence with generic distribution (T,

∑N(T )
i=1 Yi − cT ) and joint

Laplace transform

E
[
e
−δT−s

(∑N(T )
i=1 Yi−cT

)]
= E

[
e−(δ−cs)TE

[
e−s

∑N(T )
i=1 Yi

∣∣T]] = E
[
e−{(δ−cs)T+λ[1−f̃Y (s)]T}

]
=

(
γ

γ + δ − cs+ λ[1− f̃Y (s)]

)n

. (3.2)

On the other hand, one may also write

E
[
e
−δT−s

(∑N(T )
i=1 Yi−cT

)]
=

∫ ∞

−∞
e−sygδ(y) dy, (3.3)

where gδ(y) represents the discounted density of the increment
∑N(T )

i=1 Yi − cT between successive obser-
vation times. It will be useful to decompose gδ(y) into

gδ(y) = gδ,−(−y)I{y<0} + gδ,+(y)I{y>0}, −∞ < y <∞. (3.4)

Remark 3.1 To give a formal definition of the above discounted densities, consider the increment∑N(t)
i=1 Yi − ct from time 0 to time t (with t > 0 being fixed). Note that the distribution of

∑N(t)
i=1 Yi − ct

has a point mass at −ct with probability e−λt (for the case when there is no claim within [0, t]). Denoting

the density part of
∑N(t)

i=1 Yi − ct at y by g(y, t) for −∞ < y <∞ and t > 0, we have

E
[
e
−s

(∑N(t)
i=1 Yi−ct

)]
=

∫ ∞

−∞
e−syg(y, t) dy + e−s(−ct)e−λt,

and it will be convenient to write

g(y, t) = g−(−y, t)I{y<0} + g+(y, t)I{y>0}, −∞ < y <∞, t > 0. (3.5)

Clearly g(y, t) = 0 for y ≤ −ct so that g−(y, t) = 0 for y > ct. By the tower property and a change of
variables this leads to

E
[
e
−δT−s

(∑N(T )
i=1 Yi−cT

)]
= E

[
e−δTE

[
e
−s

(∑N(T )
i=1 Yi−cT

)∣∣∣T]]
=

∫ ∞

0
e−δt

[∫ ∞

−∞
e−syg(y, t) dy + e−s(−ct)e−λt

]
γntn−1e−γt

(n− 1)!
dt

=

∫ ∞

−∞
e−sy

∫ ∞

0

γntn−1e−(γ+δ)t

(n− 1)!
g(y, t) dt dy +

1

c

∫ 0

−∞
e−sy γ

n
(
−y

c

)n−1
e

λ+γ+δ
c

y

(n− 1)!
dy,

9



so that a comparison with (3.3) gives

gδ(y) =

∫ ∞

0

γntn−1e−(γ+δ)t

(n− 1)!
g(y, t) dt+

1

c

γn
(
−y

c

)n−1
e

λ+γ+δ
c

y

(n− 1)!
I{y<0}, −∞ < y <∞.

Due to (3.4) and (3.5), one concludes that gδ,−(·) and gδ,+(·) are given by

gδ,−(y) =

∫ y
c

0

γntn−1e−(γ+δ)t

(n− 1)!
g−(y, t) dt+

1

c

γn
(y
c

)n−1
e−

λ+γ+δ
c

y

(n− 1)!
, y > 0, (3.6)

and

gδ,+(y) =

∫ ∞

0

γntn−1e−(γ+δ)t

(n− 1)!
g+(y, t) dt, y > 0, (3.7)

respectively. Although the definitions (3.6) and (3.7) via g(y, t) will not be used in our subsequent
analysis, they may be helpful to clarify the meaning of the discounted densities gδ,−(·) and gδ,+(·). �

The denominator in the bracket on the right-hand side of the double-sided Laplace transform (3.2) of
gδ(y) is in the form of a Lundberg-type equation (in ξ)

c ξ − (λ+ γ + δ) + λf̃Y (ξ) = 0, (3.8)

which, due to γ + δ > 0, has a unique positive root ργ > 0 (note that equation (2.8) was the special case
of exponential claims). To make the following analysis more transparent, we will use the Dickson-Hipp
operator Ts (see e.g. Dickson & Hipp [8]), which for any integrable function f(·) on (0,∞) and any
complex number s with Re(s) ≥ 0 is defined as

Tsf(y) =
∫ ∞

y
e−s(z−y)f(z) dz =

∫ ∞

0
e−szf(z + y) dz, y ≥ 0.

Equation (3.2) can then be expressed as

E
[
e
−δT−s

(∑N(T )
i=1 Yi−cT

)]
=

(
γ

c(ργ − s)− λ[f̃Y (s)− f̃Y (ργ)]

)n

=

 γ

c ργ

ργ
ργ − s

1

1− λ
c

f̃Y (s)−f̃Y (ργ)
ργ−s

n

=

(
γ

cργ

ργ
ργ − s

1

1− ϕf̃L(s)

)n

=

(
γ

γ + δ

)n( ργ
ργ − s

)n
(

1− ϕ

1− ϕf̃L(s)

)n

, (3.9)

where

ϕ =
λ

c
T0TργfY (0) = 1− γ + δ

cργ
< 1, (3.10)

and

f̃L(s) =
TsTργfY (0)
T0TργfY (0)

(3.11)

is the Laplace transform of the proper density

fL(y) =
TργfY (y)
T0TργfY (0)

, y > 0,
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which corresponds to a generic r.v. L. Here we have used the fact that the Dickson-Hipp operator
satisfies

Ts1Ts2f(y) = Ts2Ts1f(y) =
Ts1f(y)− Ts2f(y)

s2 − s1
, y ≥ 0 (3.12)

for all complex numbers s1 ̸= s2 (see e.g. Li & Garrido [12, Sec. 3]).

It is instructive to note that in the expression (3.9), [ργ/(ργ − s)]n is the Laplace transform (with

argument −s) of an Erlang(n) r.v. with density ρnγy
n−1e−ργy/(n−1)!, whereas [(1−ϕ)/(1−ϕf̃L(s))]n is the

Laplace transform (with argument s) of a compound negative binomial r.v. with primary probability mass
function at k (k = 0, 1, . . .) being

(
n+k−1
n−1

)
ϕk(1−ϕ)n and secondary density fL(·). Since [γ/(γ+ δ)]n ≤ 1,

comparison of (3.3) and (3.9) reveals that gδ(y) is the density of the compound negative binomial r.v.
minus an independent Erlang(n) r.v., which is defective when δ > 0. Hence gδ,−(·) represents the density
when the Erlang r.v. is larger while gδ,+(·) is the case where the compound negative binomial r.v. is
larger. Using this observation, we first consider gδ,−(·). Noting that the above compound binomial r.v.
has a point mass at 0, we arrive at

gδ,−(y) =

(
γ

γ + δ

)n
[
(1− ϕ)n

ρnγy
n−1e−ργy

(n− 1)!
+

∫ ∞

y

ρnγz
n−1e−ργz

(n− 1)!

∞∑
k=1

(
n+ k − 1

n− 1

)
ϕk(1− ϕ)nf∗kL (z − y) dz

]

=
(γ
c

)n [yn−1e−ργy

(n− 1)!
+

∞∑
k=1

(
n+ k − 1

n− 1

)
ϕk
∫ ∞

y

zn−1e−ργz

(n− 1)!
f∗kL (z − y) dz

]
, y > 0, (3.13)

where the last equality follows from (3.10). Here f∗kL (·) denotes the k-fold convolution of fL(·) with itself
defined recursively via f∗kL (y) =

∫ y
0 f

∗k−1
L (y − z)fL(z) dz for k ≥ 2 and f∗1L (·) = fL(·). The integral term

above can further be written as∫ ∞

y

zn−1e−ργz

(n− 1)!
f∗kL (z − y) dz =

1

(n− 1)!

∫ ∞

0
(z + y)n−1e−ργ(z+y)f∗kL (z) dz

=
1

(n− 1)!

n∑
j=1

(
n− 1

j − 1

)
yj−1e−ργy

∫ ∞

0
zn−je−ργzf∗kL (z) dz

=
n∑

j=1

yj−1e−ργy

(j − 1)!

∫ ∞

0

zn−je−ργz

(n− j)!
f∗kL (z) dz

=
n∑

j=1

yj−1e−ργy

(j − 1)!
T n−j+1
ργ f∗kL (0), (3.14)

where T j
s stands for the multiple Dickson-Hipp operator of order j (see e.g. Li & Garrido [12, Section 3,

Property 5]). Substitution of (3.14) into (3.13) leads to

gδ,−(y) =
n∑

j=1

B∗
j

yj−1e−ργy

(j − 1)!
, y > 0, (3.15)

with

B∗
j =

(γ
c

)n ∞∑
k=1

(
n+ k − 1

n− 1

)
ϕkT n−j+1

ργ f∗kL (0), j = 1, 2, . . . , n− 1, (3.16)
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and

B∗
n =

(γ
c

)n [
1 +

∞∑
k=1

(
n+ k − 1

n− 1

)
ϕkTργf∗kL (0)

]
=
(γ
c

)n ∞∑
k=0

(
n+ k − 1

n− 1

)
ϕk[f̃L(ργ)]

k

=
(γ
c

)n 1

[1− ϕf̃L(ργ)]n
. (3.17)

Note that (3.15) implies that gδ,−(y) is a (defective) mixture of Erlang distributions.
Similarly, one arrives at

gδ,+(y) =

(
γ

γ + δ

)n ∫ ∞

y

∞∑
k=1

(
n+ k − 1

n− 1

)
ϕk(1− ϕ)nf∗kL (z)

ρnγ(z − y)n−1e−ργ(z−y)

(n− 1)!
dz

=
(γ
c

)n ∞∑
k=1

(
n+ k − 1

n− 1

)
ϕk T n

ργ f
∗k
L (y), y > 0. (3.18)

3.3 The discounted densities h∗
1,δ(y|0) and h∗

2,δ(z, y|0)

Recall from Section 3.1 that our goal is to identify the discounted densities h∗1,δ(·|0) and h∗2,δ(·, ·|0). By
definition,

h∗1,δ(y|0) = gδ,+(y), y > 0. (3.19)

As we shall see in this subsection, h∗2,δ(·, ·|0) can also be expressed in terms of gδ,+(·), with gδ,−(·) given
in (3.15) playing a crucial role.

Conditioning on the increment
∑N(T )

i=1 Yi − cT , one arrives at the integral equation

mδ(x) =

∫ ∞

0
mδ(x+ y)gδ,−(y) dy+

∫ x

0
mδ(x− y)gδ,+(y) dy+

∫ ∞

x
w(x, y− x)gδ,+(y) dy, x ≥ 0. (3.20)

W.l.o.g. we choose the penalty function w(x1, x2) = e−r1x1−r2x2 . Substituting the form of (3.15), (3.20)
becomes

mδ(x) =

∫ ∞

0

n∑
j=1

B∗
j

yj−1e−ργy

(j − 1)!
mδ(x+ y) dy +

∫ x

0
mδ(x− y)gδ,+(y) dy +

∫ ∞

x
e−r1x−r2(y−x)gδ,+(y) dy

=

n∑
j=1

B∗
j T j

ργmδ(x) +

∫ x

0
mδ(x− y)gδ,+(y) dy + φδ(x), x ≥ 0, (3.21)

where

φδ(x) =

∫ ∞

0
e−r1x−r2ygδ,+(x+ y) dy, x ≥ 0. (3.22)

Again using Property 5 of Li & Garrido [12, Sec. 3] regarding the Laplace transform of multiple Dickson-
Hipp operators, taking Laplace transforms on both sides of (3.21) results in

m̃δ(s) =
n∑

j=1

B∗
j

(
m̃δ(s)

(ργ − s)j
−

j∑
l=1

T l
ργmδ(0)

(ργ − s)j+1−l

)
+ g̃δ,+(s)m̃δ(s) + φ̃δ(s), (3.23)
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where m̃δ(s) =
∫∞
0 e−sxmδ(x) dx, g̃δ,+(s) =

∫∞
0 e−sygδ,+(y) dy, and

φ̃δ(s) =

∫ ∞

0
e−sxφδ(x) dx =

∫ ∞

0

∫ ∞

0
e−r1x−r2ye−sx gδ,+(x+ y) dx dy. (3.24)

With (3.15), (3.23) can also be written as

[1− g̃δ,−(−s)− g̃δ,+(s)] m̃δ(s) = φ̃δ(s)−
1

(ργ − s)n
Pδ(s),

where

g̃δ,−(−s) =
∫ ∞

0
esygδ,−(y) dy =

∫ 0

−∞
e−sygδ,−(−y) dy,

and

Pδ(s) =
n∑

j=1

B∗
j

j∑
l=1

T l
ργmδ(0)(ργ − s)n−(j+1−l)

is a polynomial (in s) of degree (at most) n− 1. Thus, application of (3.3) gives

m̃δ(s) =
φ̃δ(s)− Pδ(s)/(ργ − s)n

1− E
[
e
−δT−s

(∑N(T )
i=1 Yi−cT

)] .
The denominator of this ratio is the (generalized) Lundberg fundamental equation (in ξ)

E
[
e
−δT−ξ

(∑N(T )
i=1 Yi−cT

)]
= 1, (3.25)

in accordance with the associated dependent Sparre Andersen risk model. In Appendix A it is shown
that this equation has exactly n roots {αi}ni=1 with non-negative real part (under δ > 0 or the positive
loading condition c > λE[Y ]). In what follows, we will assume these n roots to be distinct.

For r1, r2 ≥ 0, m̃δ(s) is a bounded analytic function for Re(s) ≥ 0, so these n zeros of the denominator
also need to be zeros of the numerator. The Lagrange interpolation formula and the Initial Value Theorem
for Laplace transforms then leads to

mδ(0) = φδ(0) +
n∑

i=1

ϑiφ̃δ(αi), (3.26)

where

ϑi =
(ργ − αi)

n∏n
j=1,j ̸=i(αj − αi)

, i = 1, 2, . . . , n.

Substituting (3.22) and (3.24) into (3.26) now yields

mδ(0) =

∫ ∞

0
e−r2ygδ,+(y) dy +

n∑
i=1

ϑi

∫ ∞

0

∫ ∞

0
e−r1z−r2ye−αizgδ,+(z + y) dz dy.

Finally, a comparison of this equation with (3.1) for x = 0 and w(x1, x2) = e−r1x1−r2x2 establishes

h∗2,δ(z, y|0) =
n∑

i=1

ϑie
−αizgδ,+(z + y), z, y > 0. (3.27)

Note that the form of (3.27) resembles Equation (16) of Li & Garrido [13] for the classical Sparre Andersen
risk model with Coxian interclaim time distribution.
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Remark 3.2 For n = 1, it is shown in Appendix B that

lim
γ→∞

h∗1,δ(y|0) = 0 for almost all y > 0, (3.28)

and

lim
γ→∞

h∗2,δ(z, y|0) =
λ

c
e−ρ0zfY (z + y) for almost all z, y > 0. (3.29)

Equation (3.29) is indeed the discounted joint density of the surplus prior to ruin and the deficit at ruin
in the classical compound Poisson risk model for x = 0 (cf. Gerber & Shiu [10, Eqn. (3.3)]). �

Remark 3.3 If time 0 is not an observation time (and hence x ∈ R), and the time until the first
observation is Erlang(n) distributed, then mδ,U (x) (x ≥ 0) is just the mδ(x) studied above, and mδ,L(x)
for x < 0 can be expressed in terms of mδ,U (·) and the discounted densities gδ,−(·) and gδ,+(·) via

mδ,L(x) =

∫ ∞

−x
mδ,U (x+ y)gδ,−(y) dy +

∫ −x

0
w(x,−y − x)gδ,−(y) dy +

∫ ∞

0
w(x, y − x)gδ,+(y) dy, x < 0.

�

4 Analysis for claims with rational Laplace transform

In Section 3, we showed that mδ(x) is the solution of a defective renewal equation that involves, via the
discounted densities h∗1,δ(·|0) and h∗2,δ(·, ·|0), the function gδ,+(·), which in turn is given by (3.18). However,
(3.18) involves (the infinite sum of) multiple Dickson-Hipp operators applied to k-fold convolutions, which
in general does not admit closed-form representations. In this section, we will illustrate that for claim sizes
Y with rational Laplace transform, more tractable expressions for gδ,+(.) and gδ,−(.), and subsequently
for mδ(x), can be obtained.

Suppose therefore in the remainder of this section that

f̃Y (s) =
Q2,r−1(s)

Q1,r(s)
,

where Q1,r(s) is a polynomial in s of degree r and Q2,r−1(s) is a polynomial in s of degree at most r− 1.
W.l.o.g. suppose that Q1,r(s) and Q2,r−1(s) have no common zeros, and Q1,r(s) has leading coefficient 1.

4.1 The discounted densities gδ,−(y) and gδ,+(y)

Applying property (3.12) to (3.11), one can show that f̃L(s) = Q∗
2,r−1(s)/Q1,r(s) where Q

∗
2,r−1(s) is again

a polynomial in s of degree at most r− 1. Denote with {−κi}ri=1 the r roots of the polynomial equation

f̃L(ξ) = 1/ϕ (in ξ), i.e. of
Q1,r(ξ)− ϕQ∗

2,r−1(ξ) = 0,
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and assume for simplicity that all these roots are distinct. Since ϕ < 1, all these roots must have negative
real parts and are in fact also the roots with negative real parts of the Lundberg-type equation (3.8).
Using (3.10), (3.9) becomes

E
[
e
−δT−s

(∑N(T )
i=1 Yi−cT

)]
=

(
γ

γ + δ

)n( ργ
ργ − s

)n((1− ϕ)Q1,r(s)∏r
i=1(s+ κi)

)n

=
(γ
c

)n [Q1,r(s)]
n

(ργ − s)n
∏r

i=1(s+ κi)n
,

which by partial fractions translates into

E
[
e
−δT−s

(∑N(T )
i=1 Yi−cT

)]
=

n∑
j=1

B∗
j

(ργ − s)j
+

r∑
i=1

n∑
j=1

Bij

(s+ κi)j
, (4.1)

where

B∗
j = (−1)n−j

(γ
c

)n 1

(n− j)!

dn−j

dsn−j

[Q1,r(s)]
n∏r

l=1(s+ κl)n

∣∣∣∣
s=ργ

, j = 1, 2, . . . , n, (4.2)

and

Bij =
(γ
c

)n 1

(n− j)!

dn−j

dsn−j

[Q1,r(s)]
n

(ργ − s)n
∏r

l=1,l ̸=i(s+ κl)n

∣∣∣∣
s=−κi

, i = 1, 2, . . . , r; j = 1, 2, . . . , n.

Combining (3.3) and (4.1) shows that gδ(y) is of the form (3.4) with gδ,−(y) given by (3.15) and

gδ,+(y) =

r∑
i=1

n∑
j=1

Bij
yj−1e−κiy

(j − 1)!
, y > 0. (4.3)

We remark that the B∗
j ’s given in (4.2) are identical to those given by (3.16) and (3.17). However, from

a computational point of view, it is more convenient to apply (4.2). With regards to gδ,+(y), (4.3) is also
more tractable than (3.18). Indeed, apart from a constant multiple, the function gδ,+(y) corresponds to
a combination of Erlangs when all {κi}ri=1 are real (which is for instance the case when Y is a mixture
of exponentials).

Example 4.1 For the model considered in Section 2 in which the claim size Y and the observation time
T are both exponentially distributed with mean 1/ν and 1/γ, respectively, we have n = 1 and κ1 = Rγ .
The partial fractions technique above then leads to

gδ(y) =
γ(ν + ργ)

cργ(ργ +Rγ)
ργe

ργyI{y<0} +
γ(ν −Rγ)

cRγ(ργ +Rγ)
Rγe

−RγyI{y>0}, −∞ < y <∞,

which is a (defective) two-sided exponential density. Consequently, from (3.27),

h∗2,δ(z, y|0) =
γ(ν −Rγ)(ργ − ρ0)

c(ργ +Rγ)
e−(Rγ+ρ0)z−Rγy, z, y > 0.

Suppose now w(x1, x2) = e−r1x1w2(x2) (see e.g. Willmot (2007)). Then, with (2.17) at x = 0 and some
simple manipulations, the defective renewal equation (3.1) reads

mδ(x) =

∫ x

0
mδ(x− y)(Rγ −R0)e

−Rγy dy +

∫ ∞

x
e−r1xw2(y − x)

γ(ν −Rγ)

c(ργ +Rγ)
e−Rγy dy

+

∫ ∞

x

∫ ∞

0
e−r1(z+x)w2(y − x)

γ(ν −Rγ)(ργ − ρ0)

c(ργ +Rγ)
e−(Rγ+ρ0)z−Rγy dz dy

= (Rγ −R0)

∫ x

0
mδ(x− y)e−Rγy dy

+
γ(ν −Rγ)

c(ργ +Rγ)

r1 + ργ +Rγ

r1 +Rγ + ρ0

(∫ ∞

0
w2(y)e

−Rγy dy

)
e−(r1+Rγ)x, x ≥ 0.
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Taking Laplace transform with respect to x and then solving for m̃δ(s) yields

m̃δ(s) =
γ(ν −Rγ)

c(ργ +Rγ)

r1 + ργ +Rγ

r1 +Rγ + ρ0

(∫ ∞

0
w2(y)e

−Rγy dy

)
s+Rγ

(s+R0)(s+ r1 +Rγ)

=
γ(ν −Rγ)

c(ργ +Rγ)

r1 + ργ +Rγ

(r1 +Rγ + ρ0)(r1 +Rγ −R0)

(∫ ∞

0
w2(y)e

−Rγy dy

)(
Rγ −R0

s+R0
+

r1
s+ r1 +Rγ

)
.

But this expression can be explicitly inverted to give

mδ(x) =
γ(ν −Rγ)

c(ργ +Rγ)

r1 + ργ +Rγ

(r1 +Rγ + ρ0)(r1 +Rγ −R0)
·

·
(∫ ∞

0
w2(y)e

−Rγy dy

)[
(Rγ −R0)e

−R0x + r1e
−(r1+Rγ)x

]
, x ≥ 0. (4.4)

So in this case we have demonstrated that the defective renewal equation (3.1) can be solved directly via
Laplace transform and inversion. In principle, the arguments also extend to claims with rational Laplace
transform using the expression (4.3), the corresponding analysis is however tedious. �

4.2 Explicit expression for mδ(x) when w(x1, x2) ≡ w2(x2)

Suppose now that the penalty function depends on the deficit only, i.e. w(x1, x2) ≡ w2(x2). Then (3.20)
simplifies to

mδ(x) =

∫ ∞

0
mδ(x+ y)gδ,−(y) dy+

∫ x

0
mδ(x− y)gδ,+(y) dy+

∫ ∞

x
w2(y− x)gδ,+(y) dy, x ≥ 0. (4.5)

For claims with rational Laplace transform, one can indeed directly solve (4.5) for mδ(x) due to the nice
form of the density gδ,+(y) given in (4.3), and this is done in what follows.

Applying the operator (d/dx − ργ)
n
∏r

i=1(d/dx + κi)
n to both sides of (4.5), we observe that mδ(x)

satisfies a homogeneous differential equation in x of order n(r+ 1) with constant coefficients. Therefore,
the solution is of the form

mδ(x) =

n(r+1)∑
i=1

Cie
αix, x ≥ 0, (4.6)

where {Ci}n(r+1)
i=1 and {αi}n(r+1)

i=1 are constants to be determined. Assuming that limx→∞mδ(x) = 0,
we have that Cj = 0 whenever αj ≥ 0 for any j = 1, 2, . . . , n(r + 1). Our next step involves direct
substitution of (3.15), (4.3) and (4.6) into (4.5) to determine the unknown constants. The first integral
on the right-hand side of (4.5) is then given by

∫ ∞

0
mδ(x+ y)gδ,−(y) dy =

∫ ∞

0

n(r+1)∑
i=1

Cie
αi(x+y)

n∑
j=1

B∗
j

yj−1e−ργy

(j − 1)!
dy

=

n(r+1)∑
i=1

Ci

n∑
j=1

B∗
j

(∫ ∞

0

yj−1e−(ργ−αi)y

(j − 1)!
dy

)
eαix =

n(r+1)∑
i=1

Ci

 n∑
j=1

B∗
j

(ργ − αi)j

 eαix.
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We remark that the integral in the second equality only exists when ργ > αi for all i = 1, 2, . . . , n(r+1).
However, if αj ≥ ργ for some j, then the corresponding Cj is 0, and therefore the above equation always
holds true. Next, the second integral in (4.5) is evaluated as

∫ x

0
mδ(x− y)gδ,+(y) dy =

∫ x

0

n(r+1)∑
i=1

Cie
αi(x−y)

r∑
k=1

n∑
j=1

Bkj
yj−1e−κky

(j − 1)!
dy

=

n(r+1)∑
i=1

Ci

r∑
k=1

n∑
j=1

Bkj

(∫ x

0

yj−1e−(κk+αi)y

(j − 1)!
dy

)
eαix

=

n(r+1)∑
i=1

Ci

r∑
k=1

n∑
j=1

Bkj

(κk + αi)j

(
1−

j−1∑
z=0

e−(κk+αi)x
[(κk + αi)x]

z

z!

)
eαix

=

n(r+1)∑
i=1

Ci

 r∑
k=1

n∑
j=1

Bkj

(κk + αi)j

 eαix −
r∑

k=1

n∑
i=1

n(r+1)∑
z=1

Cz

n∑
j=i

Bkj

(κk + αz)j−i+1

 xi−1e−κkx

(i− 1)!
.

Finally, the third integral in (4.5) is given by∫ ∞

x
w2(y − x)gδ,+(y) dy =

∫ ∞

0
w2(y)

r∑
k=1

n∑
j=1

Bkj
(y + x)j−1e−κk(y+x)

(j − 1)!
dy

=

r∑
k=1

n∑
j=1

Bkj

(j − 1)!

j∑
i=1

(
j − 1

i− 1

)(∫ ∞

0
w2(y)y

j−ie−κky dy

)
xi−1e−κkx

=

r∑
k=1

n∑
i=1

 n∑
j=i

Bkj

(j − i)!

∫ ∞

0
w2(y)y

j−ie−κky dy

 xi−1e−κkx

(i− 1)!
.

Substituting all these terms in (4.5) and equating coefficients of eαix, one observes that αi is the root of
the equation (in ξ)

n∑
j=1

B∗
j

(ργ − ξ)j
+

r∑
i=1

n∑
j=1

Bij

(κi + ξ)j
= 1.

Due to (4.1), this is equivalent to the Lundberg equation (3.25). From Appendix A, it is known that
(3.25) has exactly n roots with non-negative real parts. These n roots are denoted by {αi}ni=1 in Section
3 (which is in accordance with the present notation). Therefore, we have that Ci = 0 for i = 1, 2, . . . , n.

The remaining nr roots {αi}n(r+1)
i=n+1 of (3.25) have negative real parts.

Similarly, we now equate the coefficients of xi−1e−κkx to arrive at

n(r+1)∑
z=n+1

Cz

n∑
j=i

Bkj

(κk + αz)j−i+1
=

n∑
j=i

Bkj

(j − i)!

∫ ∞

0
w2(y)y

j−ie−κky dy, k = 1, 2, . . . , r; i = 1, 2, . . . , n.

(4.7)

Hence, (4.7) forms a system of nr linear equations for {Ci}n(r+1)
i=n+1 , and a full characterization of mδ(x) is

then given by (4.6). Note that the size of the system increases with both n and r.
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Example 4.2 When the claim size Y and the observation time T are both exponential (as in Example
4.1), with the above analysis mδ(x) is reduced to

mδ(x) = (Rγ −R0)

(∫ ∞

0
w2(y)e

−Rγy dy

)
e−R0x, x ≥ 0,

since κ1 = Rγ and α2 = −R0. This is consistent with the discounted density given in (2.17). �

5 Numerical illustrations

5.1 Comparison with the classical model

Let us first compare the effect of random observation times (and the value of γ) on ruin-related quantities,
in particular in comparison with the classical case of continuous observation (i.e. γ → ∞). We consider
the situation in Section 2.2, where the inter-observation time T and the claim size Y are exponentially
distributed with mean 1/γ and 1/ν, respectively. Here we always assume ν = 1, λ = 1 and c = 1.5, so
that the positive loading condition holds.

First, we are interested in the ruin probability ψ(x) = P(τ < ∞|U(0) = x), which can be obtained
from (2.18) by letting δ = 0. Figure 2 (left) shows ψ(x) for various values of γ as well as the classical case
of continuous observation. The upper solid line with a discontinuity at x = 0 corresponds to the classical
ruin probability. The lower full line refers to γ = 1, whereas the dotted and dashed lines are for γ = 5
and γ = 10, respectively. One observes that the discontinuity of the classical case at zero is smoothed
out for finite values of γ, and for increasing γ the ruin probability gets closer to the classical case as
expected. Moreover, the ruin probability appears to increase with γ. This makes sense intuitively, as a
larger value of γ implies more frequent observation of the surplus process, leading to a higher chance of
observing ruin.
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Figure 2: Ruin probability and Laplace transform of time of ruin

The Laplace transform of the time to ruin E[e−δτI{τ<∞}|U(0) = x] can be directly computed via
(2.18). The right side of Figure 2 depicts a plot against x for δ = 0.1. One can also see that the effect
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of a finite (but not too small) γ in comparison to γ = ∞ is more pronounced for δ > 0 (right) than for
δ = 0 (left).

The expected time of ruin E[τI{τ<∞}|U(0) = x] can be obtained as the (negative) derivative of the
Laplace transform of the time to ruin with respect to δ, evaluated at δ = 0. The respective values as a
function of x are depicted in Figure 3 (with the line style as in Figure 2). Again, the discontinuity at
zero is smoothed out in the random observations model.
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Figure 3: Expected time of ruin

The expected discounted deficit at ruin E[e−δτ |U(k∗)|I{τ<∞}|U(0) = x] can be evaluated using (2.19)
in Example 2.2. Figure 4 (left) plots the expected discounted deficit for δ = 0.05.
The joint Laplace transform of the time to ruin and the deficit at ruin E[e−δτ−r2|U(k∗)|I{τ<∞}|U(0) = x] is
given by (2.13) and (2.14). From the densities (2.16) and (2.17) it is clear that it exists even for negative
values of r2 as long as r2 > −Rγ . For δ = 0.05, Figure 4 (right) and Figure 5 give the plots of the joint
transform for r2 = −0.5, 0.5, 2. Again, the approximation of the classical solution with increasing γ
works well.
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Figure 4: Expected discounted deficit at ruin and joint Laplace transform of (τ, |U(k∗)|) at r2 = −0.5
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Figure 5: Joint Laplace transform of (τ, |U(k∗)|) at r2 = 0.5 and r2 = 2

5.2 Approximating the discrete-time risk model by Erlangization

Next, we shall compare the ruin probabilities ψ(x) = P(τ < ∞|U(0) = x) under models with Erlang(n)
observation intervals for different values of n. The goal here is to investigate how much the values of
ψ(x) are affected by the ‘randomness’ of the observation times. This is achieved by fixing the expected
time between observations while increasing the value of n. Note that for large values of n the density
of the Erlang(n) distribution gets more and more peaked around its mean, so that one approaches the
case of deterministic periodic observation decision intervals, which is the discrete-time risk model with
an underlying compound Poisson claim process. Let us fix λ = 1 and c = 1.5, and the mean of the
observation intervals E[T ] = 2.5, so that on average there are 2.5 claims between successive observations.
Three different claim size distributions shall be considered, each of which has an expected value of
1. More specifically, we consider a sum of two exponentials with mean 1/3 and 2/3 (Table 1), an
exponential claim size distribution with mean 1 (Table 2) and a mixture of two exponentials with mean
2 and 1/2 (Table 3). The parameters are specified such that the three distributions have the same mean,
but a different amount of variability (variance 0.56, 1 and 2, respectively). Since all three claim size
distributions have rational Laplace transforms, the computational procedure in Section 4.2 can be used.
Tables 1-3 show the respective ruin probabilities for various values of n together with the ruin probability
under the classical case of continuous observation. The last column gives a simulation estimate of the
corresponding discrete-time risk model (using 20,000 simulation paths for each estimate) together with
a 95% asymptotic confidence interval. In fact, for the given accuracy each of those simulation estimates
takes several hours on a usual PC, which illustrates the advantage of the approximations obtained by the
Erlangization techniques. The present approach also serves as a competitive alternative to the calculation
through the usual discrete-time algorithms (see e.g. Landriault (2008)) and discretization of the claim
size distribution (see De Vylder & Goovaerts (1988) and Dickson & Waters (1991)). One also sees that
already small values of n give an excellent approximation.
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Comb Exp Classical n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 15 Discrete (MC)
ψ(0) 0.6667 0.3660 0.3691 0.3686 0.3679 0.3673 0.3668 0.3664 0.3651 0.3689

(± 0.0067)
ψ(5) 0.0757 0.0404 0.0429 0.0439 0.0444 0.0447 0.0449 0.0450 0.0455 0.0471

(± 0.0029)
ψ(10) 0.0083 0.0044 0.0047 0.0048 0.0049 0.0049 0.0049 0.0050 0.0050 0.0042

(± 0.0009)
ψ(15) 0.0009 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

(± 0.0003)

Table 1: λ = 1, c = 1.5, f(x) = 3 e−1.5x − 3e−3x, T ∼ Erlang(n) with E(T ) = 2.5

Exp Classical n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 19 Discrete (MC)
ψ(0) 0.6667 0.3948 0.4011 0.4022 0.4025 0.4025 0.4024 0.4023 0.4019 0.4000

(± 0.0068)
ψ(5) 0.1259 0.0746 0.0786 0.0801 0.0809 0.0814 0.0817 0.0820 0.0829 0.0852

(± 0.0037)
ψ(10) 0.0238 0.0141 0.0149 0.0152 0.0154 0.0155 0.0156 0.0156 0.0158 0.0158

(± 0.0017)
ψ(15) 0.0045 0.0027 0.0028 0.0029 0.0029 0.0029 0.0029 0.0029 0.0030 0.0029

(± 0.0007)

Table 2: λ = 1, c = 1.5, f(x) = e−x, T ∼ Erlang(n) with E(T ) = 2.5

Mixed Exp Classical n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 14 Discrete (MC)
ψ(0) 0.6667 0.4314 0.4397 0.4420 0.4431 0.4437 0.4440 0.4443 0.4450 0.4536

(± 0.0069)
ψ(5) 0.2180 0.1503 0.1569 0.1594 0.1607 0.1615 0.1620 0.1624 0.1636 0.1652

(± 0.0051)
ψ(10) 0.0783 0.0540 0.0566 0.0576 0.0581 0.0584 0.0586 0.0588 0.0593 0.0609

(± 0.0033)
ψ(15) 0.0282 0.0194 0.0204 0.0207 0.0209 0.0210 0.0211 0.0212 0.0213 0.0236

(± 0.0021)

Table 3: λ = 1, c = 1.5, f(x) = 1
6 e

−0.5x + 4
3e

−2x, T ∼ Erlang(n) with E(T ) = 2.5

In terms of the effect of randomness of observations, one observes from Tables 1-3 that, as expected, the
present model under random Erlang(n) inter-observation times always produces lower ruin probabilities
than the classical model. Moreover, as n increases, the value of ψ(x) increases as long as the value of the
initial surplus x is not too small and converges to the value of the discrete-time risk model.

Comparing the same cells across Tables 1-3, one finds that ψ(x) increases with the variance of the
claim size distribution, which is again in agreement with intuition.

Finally, Tables 4-6 give the expected discounted deficit at ruin for the same set of parameters. One
can see that, except for small values of initial capital x, this quantity is not very sensitive to the value of
n for the used claim size distributions.
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Comb Exp Classical n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 15 Discrete (MC)
x = 0 0.5149 0.5158 0.5329 0.5399 0.5436 0.5460 0.5476 0.5488 0.5526 0.5540

(± 0.0157)
x = 5 0.0513 0.0544 0.0569 0.0578 0.0583 0.0586 0.0588 0.0589 0.0594 0.0644

(± 0.0055)
x = 10 0.0054 0.0058 0.0060 0.0061 0.0062 0.0062 0.0062 0.0062 0.0063 0.0053

(± 0.0017)
x = 15 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007 0.0007 0.0006

(± 0.0005)

Table 4: E[e−0.005τ |U(k∗)|I{τ<∞}|U(0) = x]: λ = 1, c = 1.5, f(x) = 3 e−1.5x − 3e−3x, T ∼ Erlang(n)

Exp Classical n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 15 Discrete (MC)
x = 0 0.6602 0.6966 0.7178 0.7264 0.7310 0.7339 0.7359 0.7374 0.7431 0.7449

(± 0.0200)
x = 5 0.1207 0.1274 0.1318 0.1334 0.1343 0.1348 0.1352 0.1355 0.1365 0.1396

(± 0.0090)
x = 10 0.0221 0.0233 0.0241 0.0244 0.0246 0.0247 0.0247 0.0248 0.0249 0.0254

(± 0.0038)
x = 15 0.0040 0.0043 0.0044 0.0045 0.0045 0.0045 0.0045 0.0045 0.0046 0.0037

(± 0.0013)

Table 5: E[e−0.005τ |U(k∗)|I{τ<∞}|U(0) = x]: λ = 1, c = 1.5, f(x) = e−x, T ∼ Erlang(n)

Mixed Exp Classical n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 15 Discrete (MC)
x = 0 0.9825 1.1222 1.1521 1.1642 1.1707 1.1747 1.1775 1.1795 1.1855 1.1737

(± 0.0297)
x = 5 0.3918 0.3980 0.4071 0.4103 0.4119 0.4129 0.4136 0.4141 0.4156 0.4122

(± 0.019)
x = 10 0.1368 0.1390 0.1422 0.1433 0.1439 0.1442 0.1445 0.1446 0.1451 0.1453

(± 0.0115)
x = 15 0.0478 0.0485 0.0497 0.0500 0.0502 0.0504 0.0504 0.0505 0.0507 0.05652

(± 0.0074)

Table 6: E[e−0.005τ |U(k∗)|I{τ<∞}|U(0) = x]: λ = 1, c = 1.5, f(x) = 1
6 e

−0.5x + 4
3e

−2x, T ∼ Erlang(n)

5.3 The last observed reserve before ruin

Finally, let us consider the surplus prior to ruin U(k∗−1) or, equivalently, the last observed reserve before
ruin. We assume exponentially distributed inter-observation time T and claim size Y , with parameters
ν = 1, λ = 1 and c = 1.5. The Laplace transform E

[
e−r1U(k∗−1)I{τ<∞}|U(0) = x

]
of U(k∗ − 1) can be

retrieved from (4.4) by letting δ = 0 and w2(.) ≡ 1. Figure 6 (left) shows its plot against x for r1 = 0.5.
The upper solid line corresponds to the classical model, whereas the lower solid line corresponds to γ = 1.
The dotted and dashed lines represent again γ = 5 and γ = 10, respectively. The corresponding expected
value E

[
U(k∗ − 1)I{τ<∞}|U(0) = x

]
of U(k∗ − 1) is given on the right-hand side of Figure 6. One can

again observe the rate at which the values approach the one of the classical continuous-time model as γ
gets larger.

22



Figure 6: Laplace transform of U(k∗ − 1) at r1 = 0.5 and expected value of U(k∗ − 1)
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A Application of Rouché’s Theorem

The purpose of this section is to show that the Lundberg equation (3.25) has exactly n roots with
non-negative real part. Using (3.2), one can rewrite (3.25) as(

γ

γ + δ − cξ + λ[1− f̃Y (ξ)]

)n

= 1,

By De Moivre’s formula, the roots of the above equation are equivalent to those of the set of n equations

γ + δ − cξ + λ[1− f̃Y (ξ)] = γ

(
cos

2kπ

n
+ i sin

2kπ

n

)
, k = 0, 1, . . . , n− 1. (A.1)

First, note that for k = 0 the above equation reduces to (3.8) with γ = 0, which is well-known to have
a unique non-negative root under δ > 0 or c > λE[Y ]. Thus, we can restrict the focus to the cases
k = 1, 2, . . . , n− 1 in (A.1).
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We aim to show that for each fixed k = 1, 2, . . . , n − 1, the equation (A.1) has a unique root with
positive real part. It will be helpful to write (A.1) in the form of

ς1,k(ξ) = ς2(ξ),

where

ς1,k(ξ) =
λ+ δ + γ

(
1− cos 2kπ

n

)
c

− i

(
γ

c
sin

2kπ

n

)
− ξ and ς2(ξ) =

λ

c
f̃Y (ξ).

To apply Rouché’s Theorem, for ϵ > 0 we consider the contour Cϵ on the complex plane consisting of
(i) the semi-circle of radius ϵ running clockwise from iϵ to −iϵ; and (ii) the part of the imaginary axis
running from −iϵ to iϵ. For ξ on the semi-circle, one has |ξ| = ϵ and |f̃Y (ξ)| ≤ f̃Y (|ξ|) = f̃Y (ϵ) ≤ 1, and
hence

|ς1,k(ξ)| > |ς2(ξ)|

for ϵ sufficiently large. Next, for ξ on the part of imaginary axis of interest, one has the parametric
expression ξ = iaϵ for −1 ≤ a ≤ 1. Then

|ς1,k(iaϵ)| =

∣∣∣∣∣λ+ δ + γ
(
1− cos 2kπ

n

)
c

− i

(
γ

c
sin

2kπ

n
− aϵ

)∣∣∣∣∣
≥
λ+ δ + γ

(
1− cos 2kπ

n

)
c

>
λ

c
≥ |ς2(iaϵ)|,

where the second last line of strict inequality follows from the fact that 1 − cos(2kπ/n) > 0 for k =
1, 2, . . . , n− 1. Therefore we have established |ς1,k(ξ)| > |ς2(ξ)| on the entire contour Cϵ for ϵ sufficiently
large. Now for ϵ→ ∞, the assertion follows from Rouché ’s Theorem.

B Convergence to the classical risk model for γ → ∞

Let n = 1. First we will show (3.28). Due to (3.19), it is sufficient to show that

lim
γ→∞

gδ,+(y) = 0 for almost all y > 0. (B.1)

Using expression (3.18), we consider the Laplace transform

g̃δ,+(s) =
γ

c

∞∑
k=1

ϕkTsTργf∗kL (0) =
γ

c

∞∑
k=1

ϕk

(
[f̃L(s)]

k − [f̃L(ργ)]
k

ργ − s

)

=
γ

c(ργ − s)

(
ϕf̃L(s)

1− ϕf̃L(s)
− ϕf̃L(ργ)

1− ϕf̃L(ργ)

)
. (B.2)

Since ργ > 0 is the unique positive root of (3.8), one observes that limγ→∞ ργ = ∞ and limγ→∞ γ/(cργ) =
1, and hence from (3.10) that limγ→∞ ϕ = 0. Thus limγ→∞ g̃δ,+(s) = 0 and consequently (B.1) holds,
verifying (3.28).
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Next, we shall study the limit of the discounted density h∗2,δ(z, y|0). From (3.27), one has that

h∗2,δ(z, y|0) = e−ρ0z [ργgδ,+(z + y)− ρ0gδ,+(z + y)] , z, y > 0,

since α1 = ρ0 when n = 1. As ρ0 does not depend on γ, the second term in the above equation converges
to 0 for almost all z, y > 0 as γ → ∞. For the first term we have from (B.2)

ργ g̃δ,+(s) =
γ

c(ργ − s)

(
ργϕf̃L(s)

1− ϕf̃L(s)
− ργϕf̃L(ργ)

1− ϕf̃L(ργ)

)
.

The factor in front of the bracket tends to 1, and in view of (3.11) the first term inside behaves like

ργϕf̃L(s)

1− ϕf̃L(s)
=

ργ
λ
c
f̃Y (s)−f̃Y (ργ)

ργ−s

1− λ
c
f̃Y (s)−f̃Y (ργ)

ργ−s

→ λ

c
f̃Y (s) as γ → ∞.

For the second term we have

ργϕf̃L(ργ)

1− ϕf̃L(ργ)
=
λ

c

ργ

1− ϕf̃L(ργ)
T 2
ργfY (0) =

λ

c

ργ

1− ϕf̃L(ργ)

∫ ∞

0
ye−ργyfY (y) dy

≤ λ

c

ργ

1− ϕf̃L(ργ)

(
sup
x>0

fY (x)

)∫ ∞

0
ye−ργy dy

=
λ

cργ

1

1− ϕf̃L(ργ)

(
sup
x>0

fY (x)

)
→ 0 as γ → ∞

under the mild assumption on the claim size density

sup
x>0

fY (x) <∞. (B.3)

Combining the above results gives (3.29) under the assumption (B.3).
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