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Abstract

We have investigated the postprandial transcriptional response of blood cells to increasing caloric doses of a meal challenge to test whether the dynamic
response of the human organism to the ingestion of food is dependent on metabolic health.

The randomized crossover study included seven normal weight and seven obese men consuming three doses (500/1000/1500 kcal) of a high-fat meal. The
blood cell transcriptome was measured before and 2, 4, and 6 h after meal ingestion (168 samples). We applied univariate and multivariate statistics to
investigate differentially expressed genes in both study groups.

We identified 624 probe sets that were up- or down-regulated after the caloric challenge in a dose-dependent manner. These transcripts were most
responsive to the 1500 kcal challenge in the obese group and were associated with postprandial insulin and oxidative phosphorylation. Furthermore, the data
revealed a separation of the obese group into individuals whose response was close to the normal weight group and individuals with a transcriptional response
indicative of a loss of metabolic flexibility.

The molecular signature provided by the postprandial transcriptomic response of blood cells to increasing caloric doses of a high-fat meal challenge may
represent a sensitive way to evaluate the qualitative impact of food on human health.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Many genetic and environmental factors are responsible for the
development of obesity, including a changing food environment
facilitating the consumption of energy-dense/high-fat diets, which are
strongly and positively associated with overweight [1]. Therefore, one
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current focus of nutrition research is to understand how metabolic,
physiological and genetic processes globally differ betweenhealth and
disease, in particular, obesity [2].

Irrespective of whether a person is obese (OB) or has a normal
weight (NW), food intake stresses the organism, shifting it constantly
between fasting and postprandial conditions. The scientific
. http://www.ncbi.nlm.nih.gov/geo/) and can be retrieved using the code

, Switzerland. Tel.: +41-58-465-30-31.
ib.swiss (N. Zangger), charlottesoneson@gmail.com (C. Soneson),
Delorenzi), flurina.schwander@gmail.com (F. Schwander), katrin.kopf@bfh.ch
r@agroscope.admin.ch (B. Walther), kurt.laederach@insel.ch (K. Laederach),

, CH-8057 Zurich, Switzerland and SIB Swiss Institute of Bioinformatics,

rland.
ral, Forest and Food Sciences HAFL, CH-3052 Zollikofen, Switzerland.

er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnutbio.2017.02.012&domain=pdf
http://www.sciencedirect.com/science/journal/09552863
http://dx.doi.org/10.1016/j.jnutbio.2017.02.012
http://dx.doi.org/10.1016/j.jnutbio.2017.02.012
http://dx.doi.org/10.1016/j.jnutbio.2017.02.012
http://www.clinicaltrials.gov
http://www.ncbi.nlm.nih.gov/geo/
mailto:doreen.gille@agroscope.admin.ch
mailto:nadine.zangger@sib.swiss
mailto:charlottesoneson@gmail.com
mailto:ueli.buetikofer@agroscope.admin.ch
mailto:mauro.delorenzi@isb-sib.ch
mailto:flurina.schwander@gmail.com
mailto:katrin.kopf@bfh.ch
mailto:magali.chollet@agroscope.admin.ch
mailto:barbara.walther@agroscope.admin.ch
mailto:kurt.laederach@insel.ch
mailto:guy.vergeres@agroscope.admin.ch
http://dx.doi.org/10.1016/j.jnutbio.2017.02.012


157D. Gille et al. / Journal of Nutritional Biochemistry 43 (2017) 156–165
community made use of this phenomenon to discuss the concept of
“dysmetabolism” in the context of the postprandial response [3–10].
In this model, subjects with a physiologically fit metabolism increase
their metabolic activity after the consumption of a meal challenge but
efficiently return within a few hours in direction of the baseline
activity — their metabolism thus reacts in a flexible manner to food
ingestion. In contrast, subjects with an impaired metabolism, such as
metabolically unhealthy OB people, may react less flexibly to the
ingestion of meals, the control mechanisms responsible for returning
to the baseline value being inefficient [3] — they can be regarded as
metabolically inflexible. The value of this model was recently
illustrated by the work of Kardinaal et al. [6] showing, with a set of
61 selectedmarkers, that men suffering from themetabolic syndrome
are characterized by an impaired phenotypic flexibility after consum-
ing a high-fat challenge of ~3200 kcal. Metabolic inflexibility had also
been previously observed in insulin-resistant individuals in the form
of slow responses in gene and protein expression to changes in
nutrient load [5,7,11].

Alterations in metabolic flexibility can thus be identified by
conducting a dynamic evaluation of the postprandial response of
subjects to ameal challenge [6]. However, the question of what caloric
dose is necessary to identify alteration in the metabolic response of
subjects has not been addressed until recently [12]. Indeed, particular
attention was made to the study design of Schwander et al. [12,13] on
which this transcriptomic report is based. Using a set of clinical
chemistry parameters covering metabolic, inflammatory and hor-
monal processes, these authors investigated the caloric dose-
dependent effect of a high-fat meal on the postprandial response of
NW and OB subjects. This study showed that insulin could clearly
differentiate NW from OB subjects at each of the three-caloric doses
studied. However, the ability of the other parameters to differentiate
the two study groups was specifically dependent on the choice of the
caloric dose of the high-fat meal challenge. These results indicate that
challenge studies may lead to wrong interpretations of the metabolic
status of a subject, if the dose–response dimension is not considered.

In the past, traditional nutritional research strongly relied on
classical clinical parameters such as insulin, glucose or blood lipid
profiles to identify metabolic dysfunctions. In order to achieve holistic
insights into the metabolic pathways mediating these processes,
technologies like transcriptomics or metabolomics, which provide
high-coverage data, are now increasingly being used. In this regard,
the informative content of the report by Schwander et al. [12] was
limited to a small set of clinical chemistry parameters. To obtain
deeper mechanistic insights into the postprandial metabolic changes
taking place in NW and OB subjects after the consumption of
increasing caloric doses of a high-fat meal, we now report data
obtained with the blood cell transcriptome of seven NW subjects and
seven OB subjects randomly chosen from the primary study [12].

2. Material and methods

2.1. Study

The study assessed the postprandial kinetics of gene expression in blood cells of NW
and OB subjects after consumption of three caloric doses of a high-fat meal. The study
was conducted at the University Hospital Bern, Switzerland. The clinical chemistry
parameters of the whole cohort have been published elsewhere [12]. All procedures
were in accordance with the ethical standards of the responsible committee on human
experimentation andwith theHelsinki Declaration of 1975, as revised in 2000. Approval
for the study was obtained from the Ethics Committee of the Canton Bern KEK number
006/11. All participating subjects provided informed consent.

2.1.1. Study design
In the crossover study design, each subject had to consume, in random order, three

different caloric doses of a high-fat meal (500, 1000 and 1500 kcal) with at least 1 week
between eachmeal. Blood was collected with an indwelling peripheral venous catheter
from overnight fasted subjects prior to the consumption of each test meal, as well as at
three (2, 4, 6 h for gene expression) or four time points (1, 2, 4, 6 h for clinical chemistry)
after the ingestion of the test meal. For 6 h after test meal consumption, the subjects
were not allowed to consume any additional foods or beverages except L of water.

2.1.2. Subjects
NW [body mass index (BMI) 20–25 kg/m2, waist circumferenceb94 cm] and OB

(BMIN30 kg/m2N102 cm) male subjects, between 25 and 55 years, were recruited from
the region Bern, Switzerland. Whole blood was collected from seven subjects of each
group. The sample size of seven subjects was selected based on a previous postprandial
crossover study of six healthymale individuals having ingested dairy breakfasts with an
energy content of approximately 350 kcal. This caloric dose and number of subjects has
been shown to be sufficient to identify statistically significant and biologically
meaningful postprandial changes in over 500 transcripts expressed in blood cells [14].

2.1.3. Test meals
The high-fat meals consisted of plain bread, palm fat, salami and boiled eggs,

obtained from Swiss supermarkets. The three high-fat meals had the same macronu-
trient compositionwith 61% of the energy coming from fat, 21% from carbohydrates and
18% from protein and differed only in their energy content, that is, 500, 1000 and 1500
kcal. Two hundred, 400 and 600ml of Vittel water had to be drunk during consumption
of the first, second and third meal, respectively.

2.2. Clinical chemistry

Blood was collected for genome-wide gene expression analysis and for evaluating
the impact of meal consumption on clinical parameters including total cholesterol,
high-density lipoprotein (HDL) cholesterol, triglycerides, endotoxin, glucagon–like
peptide 1 (GLP-1), high-sensitivity C-reactive protein (CRP), glucose and insulin as
described previously [12].

2.3. Processing of blood samples for gene expression analysis

2.3.1. Blood sampling
RNA for the microarray experiments was isolated from 168 whole blood samples

taken before (0 h, fasting condition) and2, 4 and 6h after the consumption of each of the
three different high-fat meals by seven NW and seven OB subjects. Whole blood was
collected in PAXgene blood RNA tubes (2×2.5 ml, PreAnalytiX GmbH, CH, USA) and left
at room temperature overnight. Afterwards, the PAXgene tubes were frozen at −80°C
until further treatment.

2.3.2. RNA processing
Total RNAwas extracted using PAXgene Blood RNA Kit (Qiagen, CH) according to the

manufacturer's recommendations. In a second step, total RNA was purified and
concentrated with RNeasy MinElute Cleanup Kit (Qiagen, CH). The quantity and quality
of total RNA was measured with a NanoDrop spectrophotometer (NanoDrop, USA) and
Agilent 2100 Bioanalyzer (Agilent Technology, USA). The next treatment included the
depletion of globin mRNA with the GLOBINclear™ hybridization capture technology
(Ambion, USA) according to the recommendations of the manufacturer. Genome-wide
transcript profiling was performed with HG-U219 oligonucleotide expression probe
arrays (Affymetrix, USA), targeting more than 36,000 transcripts. Before the sample
hybridization on the Affymetrix 3′-expression array strips, globin-removed RNA under-
went reverse transcription to synthesize first-strand cDNA, which was then transformed
into a double-stranded DNA template for the transcription process. In vitro transcription
synthesized amplified RNA (aRNA) and incorporated a biotin-conjugated nucleotide. The
aRNA was then purified to remove salts, enzymes, unincorporated NTPs and inorganic
phosphate. Finally, the biotin-labeledaRNAwas fragmentedandhybridizedonto thearray
strip. Afterwashingand staining steps, the arraysweremeasuredwith the imaging station
of the Affymetrix GeneAtlas™ System. All experiments were performed according to the
manufacturer's recommendations and protocols.

2.4. Statistical methods

2.4.1. Baseline characteristics of NW and OB subjects
Baseline differences of clinical chemistry parameters between NW and OB subjects

were assessed with Mann–Whitney U test using the SYSTAT software (Version 13,
Systat Software Inc., CA, USA). Differences were considered as significant when P≤.05.

2.4.2. Processing of gene expression data
Affymetrix Human Genome 219 raw data were processed by RMA (Robust

Multichip Average) using the limma R package (Version 3.26.9) to perform background
correction, log2 transformation and quantile normalization of gene expression
measures [15]. Exploratory analyses revealed the presence of an unknown confounding
factor in the data. To address this problem, we took advantage of replicate samples
(three baseline samples for each participant), since changes among replicates are
caused by unwanted variation factors. All replicates were used to estimate W, a matrix
of k unwanted variation factors as described in Jacob et al., 2016 [16]. Wwas applied to
the full dataset following the naïve RUV-2 (Removal of Unwanted Variation) approach
[17] with three factors of variation (k=3) to produce sufficient correction. All
subsequent analyses are based on corrected data.



Table 1
Basic characteristics of studied population group

NW subjects (n=7) OB subjects (n=7)

Age (year) 45.3±9.8 42.4±8.7
Height (cm) 178.3±6.4 ⁎ 175.0±7.5
Weight (kg) 75.2±8.3 ⁎ 129.3±11.1
BMI (kg/m2) 23.6±1.5 ⁎ 42.2±2.9
Waist circumference (cm) 84.7±5.7 ⁎ 131.6±7.4
Glucose (mmol/L) 4.9±0.4 ⁎ 5.3±0.7
Insulin (mU/L) 4.3±1.7 ⁎ 19.4±6.3
Triglyceride (mmol/L) 0.8±0.3 ⁎ 2.1±1.2
Total cholesterol (mmol/L) 5.2±0.7 ⁎ 6.1±0.9
HDL-cholesterol (mmol/L) 1.6±0.2 ⁎ 1.2±0.3
Ratio cholesterol/HDL 3.2±0.5 ⁎ 5.4±1.4
CRP (mg/L) 0.6±0.6 ⁎ 2.7±2.0
Endotoxin (EU/ml) 2.2±0.4 3.0±1.7
GLP-1 (pmol/L) 20.2±9.0 ⁎ 49.7±23.3

Data are presented as means ± S.D. Mann–Whitney U test was used to determine
significant differences between NW and OB subjects.
⁎ Differences were considered as significant when P≤.05.
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2.4.3. Subtraction of baseline expression
For each participant andmeal, we computed the difference between the expression

profile of postprandial samples (t=2, 4 or 6 h) and the expression profile of the
corresponding baseline sample (t=0). These differences, interpretable as log2-fold
expression changes (log2FC) from baseline, were used for the subsequent analysis.

2.4.4. Measurement of the postprandial response with the incremental area under the
curve (iAUC)

To summarize the postprandial gene expression changes for a given probe set in a
given subject for a given meal, we defined the incremental area under the log2-fold
change curve (iAUC). In analogy to the routine clinical use of the AUC of postprandial
glucose as a risk factor, the AUC approach integrates the quantity of the gene expression
signal over time. The iAUC analysis offers the advantage, over an analysis of individual
postprandial time points, to deliver a robust, biologically meaningful picture of
postprandial gene expression. Indeed, the amount of protein that can be expressed by a
specific mRNA obviously depends both on its expression level and its duration of
expression as recently discussed in detail by Palumbo et al. [18]. In addition, shifts in the
kinetics of the postprandial response due to treatment effects and intraindividual
variability in the digestive process might complicate the analysis of the data by driving
the study results toward a level of detail that would be difficult to interpret. In that
context, in addition to simplifying the data, the iAUC approach can more robustly cope
with such changes as it purposely minimizes the impact of moderate kinetic shifts on
the study results.

The continuous log2FC curve was obtained by linearly interpolating the three
log2FC values (relative to baseline) at time points 2, 4 and 6 h. The iAUCwas defined as
the area under the resulting curve, computed using the trapezoidal rule by means of
the caTools R package (Version 1.17.1) (‘postprandial response’: iAUCNW,500,
iAUCNW,1000, iAUCNW,1500, iAUCOB,500, iAUCOB,1000, iAUCOB,1500). We further used the
R package limma (Version 3.26.9) to calculate moderated t-statistics, P-values and
false discovery rates (FDR) by fitting a linearmodel by generalized least squares (GLS)
to allow for correlation between expression arrays from the same subjects.

The postprandial response of the clinical parameters (net iAUC) was calculated as
described previously [12].

2.4.5. Identification of differential caloric-responsive genes
We used the R package limma (Version 3.26.9) to calculate differences in iAUC

between meals (log fold change (LFC) of iAUC), moderated t-statistics, P-values and FDR
by fitting a linear model by GLS (‘caloric-response’: iAUCNW,1000–500, iAUCNW,1500–1000,
iAUCNW,1500–500, iAUCOB,1000–500, iAUCOB,1500–1000, iAUCOB,1500–500). Probe sets with LFC of
|iAUC| N 2 and P≤.05 (corresponding to 20% FDR) in at least one of the six meal
comparisons were selected as “caloric-responsive probe sets” for subsequent analyses.
The average variance of caloric-responsive genes was computed in NW and in OB group,
and the difference of variance between the two groups was assessed with Wilcoxon-
signed rank test. The term caloric-responsive probe sets denotes that the transcripts on the
microarrayprobedby these probe sets responded in termsofdecreasedor increased levels
of expression. This term will be used throughout the text.

2.4.6. Correlation of caloric-responsive genes with clinical chemistry parameters
Spearman rank correlation coefficients were calculated with R in order to identify

caloric-responsive probe sets whose postprandial regulation significantly correlates
with postprandial clinical chemistry parameters in the NW and OB subjects (P≤.05). For
this purpose, weused the net iAUCof clinical chemistry parameters and the iAUC of each
caloric-responsive probe set. Two correlation analyses were conducted: (a) seven NW
subjects at each of the three-caloric conditions and (b) seven OB subjects at each of the
three-caloric conditions. Glucosewas excluded from the correlation analyses as the first
postprandial time point investigated for gene expression, that is, 2 h, was collected too
late to detect the major postprandial changes in glucose metabolism that take place
15–30 min after consumption of meals.

2.4.7. Multivariate analyses of caloric-responsive genes
Unsupervised principal component analysis (PCA) was applied to the matrix of caloric-

responsive probe sets (iAUC and individual time points) using SIMCA software Version 13.0
(Umetrics, Sweden). Based on the PCA of the iAUC data, metabolically active (MA) and
metabolically normal (MN) subjects were defined. We further conducted supervised
orthogonal partial least squares-discriminant analysis (OPLS-DA) with SIMCA software with
the caloric-responsive probe sets of the 42 samples (14 subjects, 3meals). Pareto scalingwas
applied on the data, theOPLS-DAmodelwas testedwith a sevenfold cross-validation and the
corresponding Q2 and R2 values were used to assess the robustness of the model.
Subsequently, the variable importance parameter values (VIP-values) were calculated by
SIMCA to identify probe sets that contribute the most to the separation of volunteers. Probe
sets with VIP-valuesN1.0 were used for further functional analysis.

2.4.8. Functional analyses of caloric-responsive genes differentiating MA from MN and NW
from OB subjects

The GeneGO MetaCore™ software (Version 6.26, Thomson Reuters, GeneGO Inc.,
USA) [19] was used to identify pathways with significant enrichment of VIP-value
selected caloric-responsive probe sets. Metacore is an integrated software suite for
functional analysis of microarray data, among others. There is no peer-reviewed
publication available describing the details of the Metacore pathway analysis method.
Mitrea et al. [20] made an attempt to uncover some of these details and stated that
Metacore uses two types of proprietary knowledge which includes canonical pathways
and interaction database. The software applies centrality measures or a variation of
these measures to score nodes in a given pathway. Centrality measures such as degree
centrality, betweenness or eigenvector centrality describe the importance of a node
relative to all other nodes in a network. Metacore uses a measure similar to node
betweenness in order to score genes. Our gene lists consisting of probe sets from the
OPLS-DA analysis with a VIP-value higher than 1.0 were uploaded to the software.
Thresholds for pathway mapping were predefined by the system and background list
was set to HG-U219. To account for multiple hypothesis testing, we extracted only
pathways with FDRb0.05. Genes being enriched in these pathways were tested for their
postprandial up- or down-regulation (usingmean iAUC and testing its difference from0
with Wilcoxon-signed rank test, P≤.05).

The function of the genes that also significantly correlatedwith insulin andHDLwas
investigated with a pathway analysis using the MetaCore software.

A functional analysis of the caloric-dependent probe sets significant in each of the
six groups NW1500–1000, NW1500–500, NW1000–500, OB1500–1000, OB1500–500 andOB1000–500

was also conducted with MetaCore, separating up-regulated genes from down-
regulated genes.

Finally, the BMI-dependent genes proposed by Homuth et al. [21] to be signatures for
attenuated insulin signaling (251 genes), erythrocyte to reticulocyte ratio shift (168
genes) and reduced defense against oxidative stress (62 genes) were inspected for their
expression values throughout the six groups of the NW and OB subjects (NW500, NW1000,
NW1500, OB500, OB1000, and OB1500).

2.4.9. CellMix test for estimating blood cell composition
The proportion ofwhite blood cells in each samplewas predictedwith CellMix gedBlood

function [22]using17gene signaturesof blood immunecells defined inSupplementaryTable
1 of Abbas et al. [23]. The method was applied to raw expression data according to the
developer's descriptions. The significance levels for postprandial differences in cell
composition were evaluated with Mann–Whitney U test (P≤.05).

3. Results

3.1. Clinical chemistry of NW and OB subjects

To conduct gene expression analysis, we selected seven NW and
seven OB subjects randomly from the main cohort [12]. Their baseline
characteristics are summarized in Table 1. As for the main cohort,
statistically significant differences in parameters related to obesity
were observed between the two groups, including increased weight,
BMI, waist circumference, glucose, insulin, triglycerides, ratio total
cholesterol/HDL cholesterol and decreased HDL-cholesterol in the OB
group. The postprandial responses (net iAUC) of clinical parameters
for each participant after each caloric dose of the high-fat meals are
listed in Suppl. Table 1.

3.2. Identification of differential caloric-responsive genes

Wefirst extracted probe setswhose postprandial expression |iAUC|
was above 2 and was significantly different (P≤.05) in at least one of
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the six comparisons of the caloric response (iAUCNW,1000–500, iAUC-
NW,1500–1000, iAUCNW,1500–500, iAUCOB,1000–500, iAUCOB,1500–1000, iAUC-
OB,1500–500). The P-value of ≤0.05 corresponds to an FDR-value of 20%.
Though being high, this FDR cutoff is acceptable as nutritional studies
tend to produce small signals and have high variability.

A total of 624 probe sets from the 49,386 measured probe sets
fulfilled these criteria and were selected for subsequent analyses (see
Suppl. Table 1). Fig. 1 graphically shows the postprandial regulation of
each of these probe sets for theNWandOB subjects at each of the three
caloric doses of the high-fat meal (upper panel) as well as their caloric
response (lower panel). A large fraction (32%) of the 624 probe sets
were significantly up-regulated (iAUCN2) in OB subjects having
consumed 1500 kcal (iAUCOB,1500). This behavior is reflected by the
caloric comparisons, iAUCOB,1500–1000 and iAUCOB,1500–500 showing
larger effects than iAUCOB,1000–500. In contrast, NW subjects showed
lower postprandial and caloric responses. Furthermore, we computed
the variance of the 624 regulated genes in NW and OB subjects and
observed a higher variance in OB (mean=6.2) in comparison to NW
(mean=2.4) subjects (Pb.001).
3.3. Correlation of caloric-responsive genes with clinical chemistry
parameters

In order to investigate if there is a link between the postprandial
regulation of the caloric-responsive genes and postprandial clinical
Fig. 1. Postprandial (upper panel) and caloric (lower panel) regulation of the caloric-responsiv
showed a statistically significant (P≤.05, corresponding FDR 20%) difference in iAUC between tw
six caloric comparisons (iAUCNW,1000–500, iAUCNW,1500–1000, iAUCNW,1500–500, iAUCOB,1000–500

illustrates the postprandial response (iAUCNW,500, iAUCNW,1000, iAUCNW,1500, iAUCOB,500, iAUCOB

characteristics: dark blue: P≤.05 and iAUCb−2, light blue: P≤.05 and−2 b iAUCb0, dark red: P≤
postprandial values. For the lower panel, iAUC refers to the caloric response, that is, to the chang
the mean caloric response (iAUC) over all six conditions. The probe sets (in columns) are in th
chemistry parameters, we calculated Spearman rank correlation
coefficients on the set of 42 samples (separately for NW and OB
subjects) (Fig. 2). The significant correlation coefficients for the NW
subjects range between 0.43 and 0.74 for positive correlations and
between −0.43 and −0.72 for negative correlations. The significant
correlation coefficients for the OB subjects range between 0.43 and 0.78
for positive correlations and between −0.44 and −0.76 for negative
correlations (P≤.05). The number of caloric-responsive probe sets with
significant correlation coefficients differs notably between the two
groups of subjects;whereas, hardly anypositiveornegative correlations
occur for the NW subjects, many correlations appear between probe
sets and clinical chemistry parameters for the OB subjects. In particular,
insulin is the clinical chemistry parameter with the highest correlation
coefficient and the largest number of significant correlations (OB
subjects: 216probe setswithpositive correlation and66probe setswith
negative correlation; NW subjects: 20 probe sets with positive
correlation and 11 probe sets with negative correlation). HDL also
showed a large number of significant correlations for the OB subjects
(OB subjects: 173 probe setswith positive correlation and 69 probe sets
with negative correlation; NW subjects: 21 probe sets with positive
correlation and 18 probe sets with negative correlation). In the OB
subjects, insulin and HDL share 127 probe sets with significant
correlation coefficients (101 positive and 26 negative).

The highest number of probe sets with significant correlation
coefficients in the group of NW subjects is present for endotoxin (OB
subjects: 6 probe sets with positive correlation and 4 probe sets with
e probe sets for the NW and obese OB subjects. The behavior of the 624 probe sets that
o caloric doses of the high-fat meal with amagnitude of at least two in at least one of the
, iAUCOB,1500–1000, iAUCOB,1500–500) is presented in the lower panel. The upper panel
,1000, iAUCOB,1500) of the same probe sets. In both panels, the colors indicate the following
.05 and iAUCN2, light red: P≤.05 and 0 b iAUCb2. For the upper panel, “iAUC” refers to the
e in expression between two caloric doses. Genes in both panels are ranked according to
e same order for both panels.



Fig. 2. Spearman's rank correlation coefficients of clinical chemistry parameters and expression of caloric-responsive probe sets. The 624 caloric-responsive probe sets are ranked
according to the mean of the three conditions of the postprandial response of NW subjects (iAUCNW,500, iAUCNW,1000, iAUCNW,1500) (upper panel) and OB subjects (iAUCOB,500,
iAUCOB,1000, iAUCOB,1500) (lower panel). The colors indicate the following Spearman's correlation coefficients (P≤.05): dark blue: −0.8 N ρ≥−1.0, medium blue: −0.6 N ρ≥−0.8, light
blue: −0.4 N ρ≥−0.6, dark red: 0.8 N ρ≥1.0 medium red: 0.6 N ρ≥0.8 light red: 0.4 N ρ≥0.6.
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negative correlation; NW subjects: 51 probe sets with positive
correlation and 19 probe sets with negative correlation). Of note, the
postprandial net iAUCs for endotoxin are mainly positive among the
subjects (see Suppl. Table 1 for details).

As the strongest and most significant correlations between the
caloric-responsive probe sets and clinical chemistry parameters
appeared for insulin in OB subjects, a functional analysis of the
group of 216 caloric-responsive probe sets that positively correlated
with this parameter was conducted. From 167 enriched pathways,
oxidative phosphorylation (oxphos) was the only FDR-significantly
enriched pathway in the set of 216 positively correlating probe sets
(FDR=0.0008). The 173 caloric-responsive probe sets that correlate
positively with HDL were also significantly enriched in the oxphos
pathway (FDR=0.002).
3.4. Multivariate analyses of caloric-responsive genes

Multivariate analyses were conducted with the caloric-responsive
probe sets on the 42 samples composed of 14 subjects and 3 caloric
doses of the high-fatmeal in order to evaluate the individual impact of
the caloric dosing on gene expression in the blood cells of both
population groups. First, we carried out an unsupervised PCA with
iAUC data (Fig. 3A) as well as with the expression data for each time
point, that is, with 126 samples (Suppl. Fig. 1) of the 624 caloric-
responsive probe sets. The first principal component (PC1) of the
model computed with iAUC data in Fig. 3A explains 40% and second
principal component (PC2) 15% of the variability. As the PCA score plot
indicates, the samples align along the PC2 according to theirmetabolic
status (NW and OB subjects). Furthermore, the postprandial gene
expression of the OB subjects appears more heterogeneous in
comparison to the NWsubjects, who cluster closer together. However,
we also observed a segregation of the samples in two major regions
along the PC1 axis. The six right-most points on the PC1 axis represent
the postprandial response of three OB individuals to the caloric dose of
1500 kcal and of one OB individual (subject 29) to each of the three
caloric doses. An almost identical pattern emerged with the data from
the individual time points (see Suppl. Fig. 1) validating the ability of
iAUC to reflect postprandial changes in gene expression. These
findings motivated an investigation of a potential functional segrega-
tion of the “outlier group,” which from now on is referred to as the
metabolically active (MA) group, from the main population group,
which is referred to as metabolically normal (MN) group. In order to
identify genes whose expression differed the most between the two
newly generated groups, we conducted a supervised OPLS-DA with
the iAUC of the 624 caloric-responsive probe sets and observed a clear
separation of the MA andMN groups (Fig. 3B). The degree of variation
explained by the OPLS-DAmodel (R2) is 0.81, and the value explaining
the models predictive ability (Q2) is 0.78. The model is significant
based on the cross validation–analysis of variance technique (CV-
ANOVA, Pb.001).
3.5. Functional analysis of caloric-responsive genes discriminating MN
from MA and NW from OB individuals

To conduct a functional analysis of probe sets discriminating MN
fromMA individuals, we first calculated the VIP-values of each caloric-
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Fig. 3. Multivariate analyses conductedwith the 624 caloric-responsive probe sets and all of the 42 samples (14 subjects, 3 caloric doses). Fig. 3A shows the unsupervised PCA score plot
with the two first principal components plotted on the x- and y-axis computed with iAUC data of the 624 caloric-responsive probe sets. Data points indicate the subject and meal
condition. Green data points belong to the NW group, and blue ones to OB subjects. Color-framed boxes point at a separation of samples in two groups: on the left (yellow frame) the
metabolically normal (MN) subjects and on the right (red frame) the metabolically active (MA) subjects. Fig. 3B represents a supervised OPLS-DA score plot also conducted with the
iAUC of the 624 caloric-responsive probe sets. The yellow color represents the group of MN subjects and, the red data points, the MA subjects.
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responsive probe set from Fig. 3B. In total, 247 probe sets with a VIP-
valueN1.0, ranging between 2.41 and 1.01,were selected for functional
analysis. Again, oxphos appeared, with 13 from 77 probe sets, as the
pathway with the highest level of significance (FDR=0.0002), the
following eight genes represented by the probe sets being significantly
increased: NDUFB1, NDUFB3, NDUFS4, NDUFS5, NDUFA4, UQCRB,
COX6C and ATP5I. The second pathway with the highest statistical
significance was ubiquinone metabolism (FDR=0.0086), which
shares five caloric-responsive genes with the oxphos pathway. The
13 caloric-responsive probe sets of the oxphos pathwaydifferentiating
MA from MN individuals are compiled in Table 2. Furthermore, we
included the mean iAUC of each of the 13 probe sets as well as the
standard error of themean (S.E.M.) for the group of 10MN individuals
and fourMA subjects. The iAUC of theMN groupwas negative for nine
(iAUC between −0.026 and −0.886) and positive for four probe sets
(iAUC between 0.020 and 0.461), seven of them being significantly
different from0 (P≤.05), thus demonstrating a postprandial activity. In
the MA group, all 13 probe sets had positive iAUC ranging from 3.540



Table 2
Characteristics of the caloric-responsive probe sets of the oxphos pathway
differentiating MA from MN individuals including the Affymetrix ID, gene symbol,
mean iAUC and standard error of themean (S.E.M.) of each probe set for theMN andMA
subjects

Affymetrix ID Gene
symbol

MN group (n=36) MA group (n=6)

Mean iAUC S.E.M. Mean iAUC S.E.M.

11715889_a_at ATP5I −0.467 ⁎ 0.20 3.550 ⁎ 0.49
11715890_x_at ATP5I −0.388 ⁎ 0.22 4.262 ⁎ 0.53
11754444_x_at COX6C −0.634 ⁎ 0.27 7.729 ⁎ 0.80
11717634_a_at COX6C −0.371 0.28 7.765 ⁎ 0.78
11754079_s_at NDUFA5 0.461 ⁎ 0.16 4.993 ⁎ 0.91
11721296_a_at NDUFB1 0.170 0.18 5.599 ⁎ 0.78
11764061_s_at NDUFB3 0.326 0.21 5.419 ⁎ 0.70
11717159_a_at NDUFB3 −0.406 0.25 5.751 ⁎ 0.72
11716340_a_at NDUFS4 −0.602 ⁎ 0.27 4.461 ⁎ 0.42
11757665_x_at NDUFS5 −0.784 ⁎ 0.24 3.540 ⁎ 0.38
11762275_x_at UQCRB −0.026 0.13 4.530 ⁎ 0.79
11751680_a_at UQCRB 0.020 0.12 5.826 ⁎ 1.10
11716469_x_at UQCRB −0.886 ⁎ 0.49 10.635 ⁎ 1.28

⁎ iAUC values of probe sets were tested to be significantly different from 0 with
Wilcoxon-signed rank test (P≤.05).
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to 10.635, all of them being significantly different from 0 (P≤.05). In
agreementwith the results of themultivariate analyses, the regulation
of genes such as UQCRB, COX6C and ATP5I differed strongly between
individuals (Suppl. Fig. 2), especially among the OB subjects: subjects
24, 23 and28 showed a larger increase in the expression of these genes
after the consumption of 1500 kcal, in comparison to the response
after 500 kcal and 1000 kcal; subject 29 exhibited a high activation of
these genes after the ingestion of each of the three caloric doses. The
other three OB subjects behaved similarly to the seven NW subjects.

To extend the functional analysis beyond the OPLS-DA analysis of
theMN andMA subjects, we have conducted a pathway analysis of the
caloric-dependent probe sets significantly present in each of the NW
and OB groups (NW1500–1000: 24 up and 14 down; NW1500–500: 28 up
and 19 down; NW1000–500: 30 up and 72 down; OB1500–1000: 132 up
and 33 down; OB1500–500: 225 up and 86 down; OB1000–500: 26 up and
112 down). With the exception of the oxphos pathways for the
comparison OB1500–500 (8 up-regulated genes: ATP5I, COX VIc,
NDUFA5, NDUFB, NDUFB3, NDUFS4, NDUFS5, UQCRB; FDR=0.0005)
and the comparison OB1500–1000 (4 up-regulated genes: COX VIc,
NDUFB3, NDUFS5, UQCRB; FDR=0.046) aswell as the related pathway
“ubiquinone metabolism” for the comparison OB1500–500 (5 up-
regulated genes: NDUFA5, NDUFB1, NDUFB3, NDUFS4, NDUFS5;
FDR=0.004) no significant pathways with more than three differen-
tially expressed genes were observed.

Among the 624 caloric-responsive probe sets, only few were also
identified as being part of one of the three major BMI-dependent
functional gene expression signature identified in whole blood by
Homuth et al. [21], namely, attenuated insulin signaling (7 from 251
genes), erythrocyte to reticulocyte ratio shift (14 from 168 genes) and
reduced defense against oxidative stress (2 from 62 genes). In addition,
a box plot of the distribution of the iAUCs of the genes belonging to each
of these three expression signatures did not reveal differences in their
distribution throughout the six groups of the NW and OB subjects
(NW500, NW1000, NW1500, OB500, OB1000 and OB1500) and well as
throughout the six groups of the MN and MA subjects (MN500, MN1000,
MN1500, MA500, MA1000 and MA1500) (data not shown).

3.6. CellMix function for estimating blood cell composition

In order to estimate the postprandial changes in blood cell
composition in NW and OB subjects, we applied the CellMix function
published by Gaujoux and Seoighe [22]. Fig. 4 shows the CellMix plot
predicting the blood cell type proportions (based on cell type-specific
gene signatures). The composition does not appear to be affected by
BMI, since there is no major difference between samples from obese
and normal weight subjects. All samples are close to the expected
“normal” cell-type composition (red lines in each plot), except for
some samples of subject 29, who was anyhow in a different metabolic
status than the other subjects (as already mentioned in Section 3.5).
Fig. 4 clearly indicates that the interindividual difference in cell
distribution is the most variable parameter, being high in comparison
to intraindividual differences. Finally, we could not observe significant
postprandial changes (PN.05) in blood cell composition by applying
the CellMix test on samples fromNWandOB subjects or samples from
MN and MA subjects.

4. Discussion

Nutrient excess is associatedwith insulin resistance aswell as with
inflammation and obesity[24]. In that context, Homuth et al. reported
attenuated insulin signaling and reduced defense against oxidative
stress with increasing BMI in thewhole blood transcriptome of fasting
subjects [21]. In addition, consumption of aMediterranean diet aswell
as a diet rich inmonounsaturated fatty acids, comparedwith a diet rich
in saturated fatty acids, decreased the expression of oxphos genes in
peripheral blood mononuclear cells of abdominally overweight
subjects [25]. These reports suggest that transcriptomic profiling
could also be used to monitor the postprandial impact of food
ingestion on cellular metabolism using blood cells as a model system
[14]. In addition, applying a caloric dose–response challenge to the
human organismmay allow to better differentiate subtle difference in
metabolic fitness of individuals [13]. We have therefore explored the
postprandial transcriptome of 168 whole blood samples contributed
by seven NW and seven OBmale subjects before (0 h) and 2, 4 and 6 h
after the consumption of three caloric doses of a high-fat meal. Our
study represents the first genome-wide transcriptomic dose-
dependent analysis of the response of the human organism to
increasing caloric doses of a meal.

Caloric-dependent changes in gene expression could clearly be
observed in blood cells in response to the high-fat meal in NW and OB
subjects. In particular, the intensities and number of significantly
expressed genes differed according to the metabolic status of the
subjects and the caloric dose that they consumed. We have identified
624 caloric-responsive probe sets that react in a quantitative manner
to the increase in the caloric dosing of the high-fat meal. Out of the six
conditions tested (iAUCs of NW500, NW1000, NW1500; OB500, OB1000,
OB1500), the OB subjects responded with the largest changes in
expression of these genes after the ingestion of 1500 kcal showing that
the metabolic status of the subjects is correlated with their
postprandial response to increasing caloric doses of the high-fat
meal. That NWsubjects react differentially to the three caloric doses in
comparison to OB subjectswas also highlighted by the classical clinical
chemistry parameters for the main cohort of this randomized
crossover intervention study [12]. The initial trial studying the
postprandial responses of the main cohort (19 NW subjects, 17 OB
subjects) revealed significant caloric dose-dependent differences for
some metabolic, inflammatory and hormonal parameters in both
groups. However, the only variable that could differentiate the
postprandial response of normal weight and obese subjects at each
of the three caloric doses of the high-fat meal was insulin [12].

Out of the 624 caloric-responsive probe sets, one third correlated
positively with the postprandial insulin response in the OB subjects,
whereas gene expression of NW subjects showed hardly any
significant correlation with this hormone. This finding suggests that
the postprandial blood cell transcriptome and postprandial serum
clinical chemistry are linked to each other in individualswith impaired
metabolism. The correlation patterns of Fig. 2 further highlight the
heterogeneous responsive character of the individuals belonging to



Fig. 4. Predicted distribution of lymphocytes, neutrophils and monocytes in the fasting and postprandial blood samples after ingestion of each of the three caloric doses of the high-fat
meal. The x-axis represents the time postingestion (0–6 h). The y-axis gives the predicted proportion of cells using the CellMix algorithm. The red line indicates the reference relation of
the corresponding blood cell type. Each color-coded line represents the kinetic behavior of a NW subject (P12-P19) or an OB subject (P21-P29).
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the two groups of subjects. The NW subjects showed weaker
correlations than the OB subjects between clinical chemistry param-
eters and gene expression. That the postprandial transcriptome of the
OB subjects reacted less homogenously to the caloric challenges was
indicated by the analysis of variance of the 624 selected probe sets.
Taken together, our data indicate that the obese individuals —
although all of themweremetabolically healthy based on their clinical
chemistry parameters at baseline— respond differently at a molecular
level that can be highlighted with the postprandial gene expression
signature of their blood cells. In order to follow up that assumptionwe
used the caloric-responsive probe sets being positively and negatively
associated with insulin for functional analyses. The caloric-responsive
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genes that were positively correlated with postprandial insulin were
also highly significantly enriched in the oxphos pathway. This
pathway is a central part of human energy metabolism being
responsible for the energy production (ATP) in mitochondria. A
permanent excess of nutrients leads to the dysfunction of mitochon-
dria, which in turn causes obesity-related pathologies probably due to
the negative effects of reactive oxygen species [26]. A disturbed
activity of the oxphos pathway in fasting samples of OB subjects has
already been identified in the fasting whole blood transcriptome [27]
and furthermore in other tissues such as liver [28], peripheral blood
mononuclear cells [25], adipose tissue [26] and skeletal muscle [5,29].
However, data were not in agreement, depending on the type of meal
or diet administered as well as the health status of the study
participants (e.g., insulin-resistant individuals) [25,27]. In our study,
we showed that the oxphos pathwaywas activated postprandially in a
manner that is dependent on the metabolic status of the subjects and
the amount of consumed calories, suggesting an interaction between
these two components. However, this metabolic status is not solely
defined by the BMI of the subjects— ourmultivariate analyses showed
different individual postprandial responses of the OB subjects to the
increasing caloric doses of the high-fat meal. In particular, the
consumption of 1500 kcal by the OB subjects led to a separation of
this group into “outliers” [metabolically active (MA)] and the other
individuals, who responded to the high-fat meal in a manner that was
similar to the “metabolically normal” (MN) group of NW subjects.

Esser et al. [30] have showed that the blood cell composition
changes after the consumption of proinflammatory high-fat drinks
(88% energy from fat) in lean and obese subjects. In particular, the
relative cell count of neutrophils, which represent the major white
blood cell populationwith relative cell counts ranging between 65 and
72%, increased by 6–10% 4 h after ingestion of the drinks. In addition,
themetabolic status of the subjects can be one possible factor affecting
gene-expression via alteration of the blood cell composition as
suggested by Homuth et al. [21] in the form of a BMI-dependent
shift in the erythrocyte-reticulocyte ratio. The postprandial tran-
scriptome of whole blood might thus be dependent on its cell
composition. A limitation in our study is that we did not count the
blood cells after the consumption of the meals to directly evaluate the
impact of such changes on the measured gene expression program.
Using a range of cell-specific gene expression signatures, we have
addressed, in our gene expression dataset, the presence of postpran-
dial changes in cell distribution in the normalweight and obese groups
of subjects. However, we have obtained no evidence for such effects.
Furthermore, the 624 caloric-responsive probe sets discussed in this
report were selected based on the postprandial dose-dependent
increase or decrease by comparing the changes in iAUC of each subject.
This approach should minimize the impact of postprandial fluctua-
tions in blood cell composition on the overall transcriptome as only
differential changes resulting from the increase in caloric dose should
influence the overall blood cell transcriptome. Taken together,
although we could not exclude that postprandial changes in cell
distribution do take place in our dataset, changes in gene expression is
the most likely explanation for our findings.

We hypothesize that this difference between the MA and MN
groups might be explained by control mechanisms with negative
feedback activity which impairs the digestion or absorption of large
amounts of macronutrients in MN individuals and which may be less
efficient in the MA individuals [31–34]. With this hypothesis, the
postprandial nutrient composition of blood might be differentially
altered in the MA individuals in comparison to MN subjects, which
may in turn differentially effect gene expression in the blood cells.
Alternately, the ability of the blood cells to postprandially respond to
the same nutrient content may differ due to individual intrinsic
differences in themetabolic fitness of these cells [10]. In linewith both
hypotheses, we assume that the difference in behavior of the caloric-
responsive genes highlights a shift from protective mechanisms
involving metabolic saturation in MN individuals to a loss of these
control mechanisms in MA individuals [35–37]. Interestingly, the
postprandial kinetics of expression of the caloric-responsive genes
associatedwith the oxphos pathway do not indicate a return to fasting
values at 6 h in theMA individuals, in particular after ingestion of 1500
kcal of the high-fat meal. It is therefore interesting to speculate that
the expression of caloric-responsive genes in blood cells of subjects
exposed to a high-fat challenge can be used as a biomarker to identify
individuals with an impaired metabolic flexibility [3,5,11].

One special case in the MA group was Volunteer 29, who not only
responded “actively” after consuming 1500 kcal of the high-fat meal
but also after 500 and 1000 kcal. In addition, the clinical parameters
revealed anomalies compared to other obese subjects for what reason
this subject was excluded from the data analysis of clinical chemistry
parameters [12]. We hypothesize that the regulation of the caloric-
responsive genes highlights a subclinically impaired insulin sensitivity
[21,27].

DeJong et al. [38] as well as Olza and Calder [13] highlighted the
importance of dose–response studies in nutrition research. In analogy
to pharmacology, such study designs take into account thermody-
namic processes characterizing the interaction of nutrients with their
receptors. By integrating a kinetic component into our study, we have
introduced one additional dimension to the dose–response relation-
ship allowing us to further characterize this interaction. Indeed, the
caloric dose dependency as well as the variability in the kinetic
patterns observed in our study indicates that these parameters should
be carefully considered while investigating the mechanisms taking
place during the acute response of the organism to the ingestion of
food, even more when subjects with different metabolic status are
studied. If not considered, the conclusions that could be extrapolated
from more restricted study designs lacking the dose–response and
kinetic dimensions could risk validity of their conclusions [12].

Despite the limited number of subjects investigated in our study,
our analytical “matrix” strategy combining a kinetic postprandial
analysis of the blood cell transcriptomic response of two metabolic
groups of subjects to three caloric doses of the high-fat meal in a
crossover design allowed us to identify 624 statistically significant
caloric-responsive probe sets, as well as biologically meaningful
functional links to the oxphos pathway and insulin. The absence of
significant pathways apart from “oxidative phosphorylation” in the
624 caloric-dependent probe sets is striking. This lack of additional
differentially expressed pathwaysmay result from a research deficit in
the literature on functional aspects related to the postprandial
response of blood cells. On the other hand, most of the changes in
gene expression that take place under postprandial conditions in
blood cells appear to be of small magnitude so that many of these
pathways may be missed when the cutoff values for the selection of
the differentially expressed genes are set relatively high, as itwas done
in this report. At the same time, our finding highlights the potential of
the oxphos pathway in blood cells as a robust biomarker for the quality
of the postprandial response of thehumanorganism to the ingestionof
meals. In light of the limited number of subjects in both groups, the
validity of these conclusions for broader populations should be
questioned, and the results should be replicated in other studies.
Nonetheless, Ghosh et al. [27] also identified the oxphos pathway as
being differentially expressed in the blood cell transcriptome of lean
and obese subjects supporting the validity of our finding.

Transcriptomic analytical strategies offer the enormous advantage
of allowing, in a single measure, a genome-wide semiquantitative
evaluation of the reactivity of the entire cellular genome in response to
a stimuli, in our particular case, a dietary challenge. On the other hand,
the posttranscriptional process is complex, and gene expression is
only indicative of potential changes at the protein and metabolite
levels. In particular, genes of the oxphos pathway mostly code for
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enzymes, and their protein abundance and enzymatic activity are not
always concordant with gene expression. In that context, and despite
its limitation in the identification of metabolites, metabolomics is a
powerful approach to complement gene expression data with
downstream data along the cellular flow of information. Further,
integrating transcriptomic and metabolomic data provides holistic
insights into biological processes as shown by Bartel et al. [39] for the
human blood transcriptome and serum metabolome. Consequently,
we are currently conducting metabolomic analyses of the samples of
this study with liquid and gas chromatography–mass spectrometry
(LC–MS and GC–MS).

In summary, we observed an altered postprandial transcriptomic
regulation in the blood cells of OB subjects compared to NW subjects
after increasing caloric doses of a high-fat meal challenge. This
response was associated with postprandial insulin and with the
oxphos pathway. A more detailed analysis of the data allowed us to
separate individuals in the group of OB subjects into individualswhose
response was close to the NW subjects and a second group of
individuals with a transcriptional response, whichmight be indicative
of a loss of metabolic flexibility, in particular after consumption of the
highest caloric dose. We propose that the molecular signature
provided by the postprandial transcriptomic response of blood cells
to a meal challenge provides a sensitive and physiologically mean-
ingful way to evaluate the qualitative impact of food on human health
[12,13].

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jnutbio.2017.02.012.
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