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The emergence of new variants of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) is a major concern given their
potential impact on the transmissibility and pathogenicity of the
virus as well as the efficacy of therapeutic interventions. Here, we
predict the mutability of all positions in SARS-CoV-2 protein
domains to forecast the appearance of unseen variants. Using
sequence data from other coronaviruses, preexisting to SARS-CoV-2,
we build statistical models that not only capture amino acid conser-
vation but also more complex patterns resulting from epistasis. We
show that these models are notably superior to conservation pro-
files in estimating the already observable SARS-CoV-2 variability. In
the receptor binding domain of the spike protein, we observe that
the predicted mutability correlates well with experimental measures
of protein stability and that both are reliable mutability predictors
(receiver operating characteristic areas under the curve ∼0.8). Most
interestingly, we observe an increasing agreement between our
model and the observed variability as more data become available
over time, proving the anticipatory capacity of our model. When
combined with data concerning the immune response, our approach
identifies positions where current variants of concern are highly
overrepresented. These results could assist studies on viral evolution
and future viral outbreaks and, in particular, guide the exploration
and anticipation of potentially harmful future SARS-CoV-2 variants.

SARS-CoV-2 j mutability j data-driven models j epistasis j direct coupling
analysis

The emergence of variants of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) is a major global

health concern. Mutations observed in circulating variants of
interest (VOIs) or variants of concern (VOCs) have been asso-
ciated with increased transmissibility (1, 2), reduced efficacy of
antibody treatments (3, 4), and lower antibody neutralization
(5). It is currently under investigation how far circulating or
future mutants can escape the human immune response
induced by vaccination or previous infection (6).

Since the beginning of the COVID-19 pandemic, genomic
surveillance of SARS-CoV-2 strains has played a pivotal role in
tracking new mutations as they appear and expand. Viral
sequences sampled from infected individuals from various parts
of the world have been continuously deposited in the GISAID
database (https://www.gisaid.org/) (7), and—as of May 2021—
more than 1,500,000 genomes are available. Genome-wide
analysis of circulating strains (8, 9) has shown that mutated
positions are heterogeneously distributed across SARS-CoV-2
proteins: While the vast majority of positions have remained
largely invariant to date, a restricted set is accumulating diver-
sity. According to Nextstrain (10) global analysis (May 2021,
3,883 genomes), no mutational event has occurred for 58% of
the entire proteome, while only 14% has experienced more
than two events. In particular, the protein cores tend to be less
variable as mutations in the core usually have a deleterious
effect on the stability of the protein (11, 12). In contrast, the
exposed regions of the spike protein have accumulated a large

number of mutations resulting in variants with increased affin-
ity with the human ACE2 receptor (13, 14) and transmissibility
(1, 2) and reduced antibody neutralization (5). Each residue of
the SARS-CoV-2 proteome is subjected to different selective
pressures which affect the evolution of the virus, thus constrain-
ing the variability of SARS-CoV-2 sequences. This suggests that
statistical patterns in sequences could be used to distinguish
mutable from constrained positions.

In recent years, data-driven models trained on sequence data
of patients affected by HIV have been used in this spirit. They
identify regions subject to strong selective constraints and
therefore less likely to variate (15, 16), guiding the immunogen
design of therapeutic strategies being effective against current
and future HIV strains (17, 18). Such approaches are trained
on large amounts of HIV sequence data, resulting from deca-
des of study and high rates of intrapatient evolution (19). One
of the most important lessons of these studies is the importance
of epistasis, i.e., the dependence of mutational effects on other
preexisting mutations: Epistatic models outperform significantly
simpler nonepistatic modeling approaches based on indepen-
dent conservation patterns of individual residue positions.

Significance

During the COVID pandemic, new severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) variants emerge and
spread, some being of major concern due to their increased
infectivity or capacity to reduce vaccine efficiency. Anticipat-
ing mutations, which might give rise to new variants, would
be of great interest. We construct sequence models predict-
ing how mutable SARS-CoV-2 positions are, using a single
SARS-CoV-2 sequence and databases of other coronaviruses.
Predictions are tested against available mutagenesis data
and the observed variability of SARS-CoV-2 proteins. Inter-
estingly, predictions agree increasingly with observations, as
more SARS-CoV-2 sequences become available. Combining
predictions with immunological data, we find an overrepre-
sentation of mutations in current variants of concern. The
approach may become relevant for potential outbreaks of
future viral diseases.
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The techniques used for studying HIV sequences are not
directly applicable to SARS-CoV-2, for which less than 2 y of
data are available, and intrapatient evolution is more limited
due to the typically short duration of SARS-CoV-2 infections.
We therefore use a strategy which requires only a single SARS-
CoV-2 genome to be known; this genome serves as a reference
to build alignments of homologous but diverged sequences,
which in our case belong mostly to other coronaviruses. These
sequences are used to train statistical sequence models, which
in turn can be used to predict the mutability of each position in
the proteins of the reference SARS-CoV-2. The advantage of
this approach is that predictions rely exclusively on data avail-
able very early in the outbreak, and predictions can be tested
while more data accumulate.

Current approaches predict the mutability along the SARS-
CoV-2 proteome using conservation profiles built from multiple
sequence alignments (MSA) of SARS-CoV-2 and other related
coronaviruses (20, 21). The resulting models (hereinafter inde-
pendent models, or IND) have few parameters and can be
trained using limited sets of data. Unfortunately, they also have
only limited predictive power as they assume that positions
within a protein evolve independently from each other, disre-
garding that residues can affect each other’s evolution via epi-
static interactions.

In this work, we construct unsupervised probabilistic models
to predict SARS-CoV-2 mutable and constrained positions. We
base our approach on the direct coupling analysis (DCA) (22)
that overcomes the aforementioned limitations by explicitly
including pairwise epistatic terms in our modeling. The DCA
models are trained using families of homologous sequences,
broadly collected from all known coronavirus genomes, allow-
ing us to model the general selective pressures acting on the
family of coronaviruses. While the use of other coronaviruses
substantially enlarges the datasets, making data-driven model-
ing more robust, we may, however, partially lose information
about host-specific constraints like the interaction with host-cell
receptors (e.g., ACE2 for SARS-CoV-2) or with the host’s
immune system.

While models are learned from diverged homologs, the pre-
diction of mutable sites requires a SARS-CoV-2 genome (in
our case the Wuhan-Hu-1 strain) to be used as reference: Our
models assign a mutability score to each position in each
SARS-CoV-2 protein. This score reflects the constraints acting
on a position when mutating away from the reference strain.
Other SARS-CoV-2 genomes are only required to test our pre-
dictions: We assess the predictive power of our approach and
of IND models by validating the predictions with the mutations
actually observed in SARS-CoV-2 proteomes deposited in
GISAID (7). We carry out a detailed study of the receptor
binding domain (RBD) as it plays a pivotal role in viral attach-
ment, fusion, and entry and is the primary target for antibody
therapies and vaccine development (23, 24). For this specific
domain, additional deep mutational scanning (DMS) data are
available measuring how amino acid mutations of RBD affect
protein expression (a proxy of protein stability) and binding to
the human ACE2 receptor (25), allowing us to investigate more
deeply their relationship with the DCA mutability score and
with the observed variability across SARS-CoV-2 variants.

Most observed mutations are neutral and do not affect the
virus phenotype (26); however, mutations occurring in SARS-
CoV-2 immunogenic regions, i.e., targets of human B and T
cells, may allow the virus to evade the immune response
induced by vaccination or previous infection. By combining our
DCA-mutability scores with data from the Immune Epitope
Database [IEDB (27)], we identify a restricted set of positions
in the RBD that are expected to be both mutable and highly
immunogenic. Interestingly, we observe that most circulating
SARS-CoV-2 VOCs or VOIs have mutations in a subset of

those positions. This combined approach also suggests novel
positions that are more likely to mutate in the future and whose
mutations could induce a reduction in immune response. In
this sense, our predictions may help the rational design of new
immunogenic or therapeutic strategies, such as monoclonal
antibodies or vaccines, to become more efficient against poten-
tial future SARS-CoV-2 strains by targeting less-mutable
positions.

Data are highly dynamic during the ongoing pandemic. A
new variant, Omicron (B.1.1.529), has recently emerged and
was rapidly declared a VOC during the final revision of this
paper. Due to the great interest in characterizing this variant,
we have included a new analysis of its RBD mutations. As com-
pared to all preexisting variants, Omicron increases even the
number of mutable and immunogenic positions.

Also, beyond the case of SARS-CoV-2, our study can be
seen as a proof-of-concept study. Since we need only a single
reference genome to search for distant homologs and make
predictions, the approach can be applied very early in any
potential viral outbreak in the future. Such predictions may be
particularly valuable in situations where observational data on
newly emerging pathogens are missing.

Results
According to the Pfam protein-domain family database (28),
the SARS-CoV-2 proteome (isolate Wuhan-Hu-1) contains 39
protein domains (see SI Appendix, Table S1) covering 81%
(7,860 out of 9,748 residues) of the entire proteome. For each
of these domains, we predict the mutability using both the epi-
static DCA and the independent IND models following the
general scheme illustrated in Fig. 1 and detailed in Materials
and Methods:

• For each protein (domain), we extract MSA of homologous
sequences from public sequence databases. These sequences,
which belong almost exclusively to other Coronaviridae,
diverged during up to ∼103 to 108 y from their common
ancestors with SARS-CoV-2 (29). They are used to train IND
and DCA models. These models are applied to the protein
sequences of the SARS-CoV-2 reference strain Wuhan-Hu-1
to predict the mutability of each site. Note that only a single
SARS-CoV-2 sequence is needed in this step.

• We validate the models using DMS data measuring protein
expression, which are currently available only for the RBD of
the SARS-CoV-2 spike protein. To this aim, we compare
experimentally measured mutational effects with model-
based predictions.

• We use SARS-CoV-2 sequences extracted from GISAID to
estimate the empirical variability among circulating SARS-
CoV-2 strains and to test our predictions. Note that these
data are independent from the data used in the first step.

In both approaches, IND and DCA, we thus use the MSA of
distant homologs to learn a family-specific sequence landscape
Eða1,…,aLÞ, or “statistical energy,” which provides low values
to good (functional) and high values to bad (nonfunctional)
sequences. In this context, ða1,…,aLÞ stands for an aligned
sequence, i.e., the entries may be any of the 20 natural amino
acids or an alignment gap. Any variant containing one or more
mutations with respect to the reference sequence in Wuhan-
Hu-1 can now be characterized by the statistical-energy change
ΔE ¼ EðreferenceÞ �EðvariantÞ assigning positive values to
variants predicted to be beneficial and negative values to var-
iants predicted to be deleterious. To obtain a position-specific
(but not amino acid-specific) mutability score, we average ΔE
over all amino acid changes in this position reachable by a sin-
gle nucleotide mutation; see Materials and Methods for the pre-
cise definition of Eða1,…,aLÞ and the derived mutability scores.
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For testing these mutability scores, we use the same 39 pro-
tein domains for extracting a second MSA with variants of
SARS-CoV-2 from the GISAID database. To minimize fre-
quency biases due to the extremely heterogeneous sequencing
efforts in different countries, we decided to remove redundant
amino acid sequences and keep each distinct sequence only
once. The position-specific observed variability is now defined
as the number of distinct sequences in the resulting MSA hav-
ing a mutation in the position under consideration, when com-
pared to the Wuhan-Hu-1 reference amino acid sequences (see
Materials and Methods for more details).

In the case of the RBD, these data (predicted mutability and
observed variability) are complemented with the experimental
measures for protein expression, used as a proxy for protein
stability by Starr et al. (25). This type of data currently exists
only for the RBD; we therefore decided to use the RBD for
extensive validation of our predictions and to report predictions
for the other 38 domains only at the end of Results.

Data-Driven Sequence Landscapes Predict Mutability and Mutational
Effects in the RBD. To assess our prediction framework, we pro-
ceed with the following steps. First, we show that the muta-
tional effect predictions of single-site amino acid mutations are
correlated with the protein expression changes measured in the
aforementioned deep mutational scan. Second, we show that
the RBD variants available in the GISAID database are signifi-
cantly more neutral than a randomized sequence library of the
same sequence divergence from the Wuhan-Hu-1 reference,
the latter showing an accumulation of deleterious mutations.
These two observations allow us to use predicted close-to-neu-
trality of a position as an indicator of its high mutability, while
positions predicted to have mostly deleterious mutations are
expected to be of low mutability. We use extensive comparisons
with the sequence variability derived from GISAID to test
this hypothesis.

As a first test, we compare the agreement of the computa-
tionally predicted mutational effects with the experimental pro-
tein expression. Taking into consideration the region of the
RBD domain defined by the Pfam profile bCoV_S1_RBD
(PF09408, aligned length L¼ 178), we compare our predictions
with the experimentally measured single-site mutations. We
focus on the position-specific mutability, obtained by averaging
both predictions and experiments over all accessible amino acid

changes in a position (Materials and Methods). The DCA model
is well correlated with experimental expression (Fig. 2A; Spear-
man’s ρ = 0.54), clearly superior to the IND model (SI
Appendix, Fig. S1A; ρ = 0.32). We also check that individual
position and amino acid-specific predictions follow a similar
trend (SI Appendix, Fig. S1B; ρ = 0.49 DCA and SI Appendix,
Fig. S1C; ρ = 0.29 IND). In brief, we observe that the protein
expression and the epistatic model are well correlated, notably
better than for the IND model. We note that the model pre-
dicts some mutations to be deleterious which are neutral in the
expression experiments. Two reasons are possible: 1) In limited
datasets of functional sequences, undersampled neutral variants
may appear deleterious and 2) mutations without effect on
expression may be deleterious for other phenotypes contribut-
ing to protein fitness. This observation agrees with what has
been observed across other protein families (30–32) where
phenotypes better describing fitness also correlate better to
sequence-based predictions.

Our DCA and IND models are built from MSAs of diverged
species, where we explicitly remove sequences similar to the
Wuhan-Hu-1 reference (Materials and Methods) to avoid over-
laps with the GISAID sequences used to estimate the local
SARS-CoV-2 observed variability. We compare how fit, accord-
ing to the DCA model, the natural sequences are compared
to sequences having the same number of random mutations.
This can be achieved by comparing the statistical-energy differ-
ences ΔE ¼ EðreferenceÞ �EðvariantÞ between the two sets of
sequences. Fig. 2B shows that the natural SARS-CoV-2 variants
are significantly better according to the model than randomly
mutated sequences, i.e., the naturally occurring mutations are,
according to the model, significantly more neutral than the pre-
dominantly deleterious random mutations, as is to be expected
by evolution under purifying selection. This finding indicates
the capacity of DCA trained on diverged homologs to capture
local constraints acting on the evolution of SARS-CoV-2 proteins.

The combination of these two observations is key for our
work: The epistatic model is able to capture mutational effects,
and the SARS-CoV-2 variants, which emerged over the last
months, are significantly more neutral than random mutations.
Can we use this to predict possible new variants of SARS-CoV-2
by identifying positions with favorable mutability scores? To test
this idea, we compare the currently observable SARS-CoV-2 vari-
ability with the one predicted using the model-based mutability

Reference protein

Receptor Binding Domain

DMS protein stability

Reference protein

Coronaviridae

SARS-CoV-2 
genomes

MSA distant sequences

~103-108 years of evolution

Site-specific effect

Single mutations

MSA close sequences

~1-2 years of evolution

Learn statistical  
sequence landscape:

    DCA model
    IND  model

Predict mutable/
constrained sites

Validate model:

Compare with experimental 
effect of protein stability

Test model predictions:

Compare with observed
variability in SARS-CoV2

Fig. 1. Scheme of the protocol and data used in the study. The DCA (epistatic) and IND (independent) models are trained with MSA of diverse sequences
coming from large sequence databases. For the RBD, we add results of DMS experiments for protein expression (a proxy for stability) (25) which are used
as a first independent validation of the models. Model-based predictions are tested against the observed variability, which is derived from SARS-CoV-2
genomes available in GISAID. The estimate on the years of evolution in MSAs of distant sequences provided here (29) is indicative; it can vary strongly
between distinct protein domains of SARS-CoV-2.
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score and with the mutations expected by the experimental pro-
tein expression. As mentioned before and illustrated in Fig. 1, we
operationally assess the observable variability by the number of
distinct GISAID sequences having a variant amino acid (com-
pared to the reference Wuhan-Hu-1) in the specific position
under study. We observe that the DCA model and expression are
similarly correlated with variability (Spearman’s ρ = 0.61 and 0.6,
respectively), while the correlation is weaker for the IND model
(ρ = 0.34). This trend can also be observed in Fig. 2C by looking
at the distribution of mutational scores after grouping positions
by their observed variability; they grow accordingly with the vari-
ability (note that the scores are not comparable between meth-
ods, but P values indicate a higher significance for DCA and
expression than for IND).

We analyze in detail the performance of these different
measures as a predictor of SARS-CoV-2 mutability through
receiver operating characteristic (ROC) curves and the result-
ing areas under the curve (AUC), which range from 0.5 for
random to 1.0 for perfect predictions. We perform the ROC
analysis using a variability cutoff of 12, because it splits the set
of positions into two balanced subsets of positions with low

(≤12, n = 93) or high (>12, n = 85) variability. The DCA model
and protein expression (AUC 0.76 and 0.77) show a remarkable
performance in distinguishing positions with low or high vari-
ability, clearly outperforming the IND model (AUC 0.63). This
result is not dependent on the particular cutoff chosen, as a
similar trend is observed for a large range of variability cutoffs
(SI Appendix, Fig. S2B). The protein expression and the DCA
model perform similarly (see SI Appendix, Fig. S2B; averaged
ROC AUC of 0.83 and 0.81, respectively), followed by the IND
model (0.66). The experiment-based predictor performs com-
paratively better at high variability while the sequence-based
ones are better at low variability (SI Appendix, Fig. S2B), which
is probably related to the fact that highly conserved positions
are usually very relevant to the function of the protein (34).
In conclusion, we observe that the different measures have a
substantial predictive power of the mutability, although the
IND model is worse compared to the others. The performance
of the DCA models is surprisingly competitive, with a perfor-
mance similar to the experimental measurements, with an
advantage for lower mutabilities and a slight disadvantage for
higher mutabilities (cf. Fig. 2B).

A B C

D GFE

Fig. 2. (A) DCA-predicted mutational scores for the 178 positions of the RBD as a function of the experimental protein expression. (B) ΔEnergy of GISAID
sequences and random sequences compared to the reference RBD sequence (from isolate Wuhan-Hu-1) indicating how well they fit the DCA model as a
function of their Hamming distance. (C) Distributions of scores from the three predictors for positions with low (L, cutoff: <9, n = 61), medium (M, [9,16],
n = 57) and high (H, >16, n = 60) observed variability in GISAID. The P values are obtained with the Wilcoxon signed-rank test. L, M, and H in the x axis
correspond to low, medium, and high observed variability, respectively. (D) ROC curves for the DCA model for positions with low (cutoff: ≤12, n = 93) vs.
high (>12, n = 85) observed variability for the three predictors. (E) ROC curves for positions with low versus high observed variability, where the observed
variability is quantified with the SARS-CoV-2 genomes available at July 2020, December 2020, and May 2021 (SI Appendix, Fig. S2A), i.e., with increasing
accuracy. (F and G) RBD 3D structure [Protein Data Bank ID code: 6M0J (33)] colored according to three levels of mutational scores from the DCA model
(F) and the protein expression (G). Lower mutational scores are shown in yellow, medium in blue, and higher in green. The width (wider for higher vari-
ability) in both panels corresponds to three levels of the observed variability (same cutoffs as in C). In all ROC curves, the AUC of the ROC is shown in the
legend. Cutoffs to define positions with low and high variability in the ROC analyses were chosen to split into balanced subsets with the most similar
number of observations possible in each subset (SI Appendix, Fig. S2A), i.e., the median is used as the cutoff. ROC curves for the other combinations of
predictors and dates are shown in SI Appendix, Fig. S3.
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The performance measured in the previous analysis is not
only dependent on the intrinsic predictive power of each
method but also on how well the ground truth is defined, in
this case the variability estimated from GISAID data. Although
only a fraction of all possible variants emerged in the short
time since SARS-CoV-2 appeared, the observed variability has
greatly evolved over time due to the great effort of sequencing
SARS-CoV-2 genomes (SI Appendix, Fig. S2A). As an example,
the number of RBD positions without observed variants has
shrunk from 58 out of 178 in July 2020 to only 3 in May 2021.
Interestingly, we observe a great increase in predictive perfor-
mance when evaluated against more recent and richer variant
libraries considered in the estimation of variability. As shown in
Fig. 2E, the performance has increased from an AUC of only
0.52 considering sequences collected until July 2020 up to 0.76
with sequences until May 2021 (at each time point, the median
variability is used to partition data into low vs. high variability;
see SI Appendix, Fig. S2B and Materials and Methods for
details). This improvement is not only evident from the ROC
analysis but also by looking at the correlation between the
DCA model and the variability with Spearman correlations of
ρ = 0.13, 0.35, and 0.61 in July 2020, December 2020, and May
2021, respectively (cf. SI Appendix, Fig. S4). This result indi-
cates that the remarkable increase of SARS-CoV-2 genomes
has led to a much better estimation of the variability. More
importantly, it shows that our computational model is able to
anticipate future variability; it suggests that the performance
could be even higher with more data, leading to an even better
estimation of the variability. We have complemented this analy-
sis also for mutability predictions done using the IND score or
protein expression (SI Appendix, Fig. S3); all show the tendency
to improve with the increase of SARS-CoV-2 data available in
the GISAID database. Only the IND score-based analysis
shows no clear trend between December 2020 and May 2021.

Recently deep learning has been used to improve mutational
predictions in the case of large training MSA, but the accuracy
for viral proteins remains rather limited (35). To explore this
issue, we have used DeepSequence (35). Its predictions correlate
well with the DCA model predictions (ρ = 0.6; SI Appendix,
Fig. S5C), but the correlations with protein expression (0.31;
SI Appendix, Fig. S5A) and observed variability (0.35; SI
Appendix, Fig. S5D) are smaller than those of the DCA model
(ρ = 0.54 and 0.61), congruent with the prior observations for
other viral proteins.

To conclude the comparison of computational predictions,
observed variability, and experimental DMS data for the
RBD, we explore how these are distributed within the three-
dimensional RBD structure (Fig. 2 F and G). Apart from an
overall agreement between the three quantities, there is a clear
trend for lower values in the core of the RBD and higher in the
exposed parts of the structure, probably related to the greater
impact of mutations on the stability in the core and the selec-
tive pressure for immune escape in the surface.

As a summary of this section, we conclude that the epistatic
DCA prediction for the position-specific mutability of RBD posi-
tions in SARS-CoV-2 is highly informative about the observable
variability across the increasing number of sequenced SARS-
CoV-2 variants. The increased accuracy when compared to the
most recent versions of GISAID proves the anticipatory power of
our approach: The positions that are predicted as mutable by our
approach are more likely to be associated with future SARS-
CoV-2 variants.

Combining Mutability Predictions with Immune Response Frequencies
Identifies Mutations Present in Several SARS-CoV-2 VOCs. Nonsy-
nonymous mutations of SARS-CoV-2 occurring in immuno-
genic regions can cause the virus to (partially) escape the
human B and T immune response induced by vaccination or

previous infection. B and T cells target specific regions of the
viral proteome, known as B/T cell epitopes. Epitope mutations
can reduce the ability of the immune cells to recognize and bind
epitopes and thus the effectiveness of the immune response.

Antibody-escaping mutations are already present in circulating
variants (4, 36). On 18 May 2021 the World Health Organiza-
tion’s weekly epidemiological report on COVID-19 (available at
https://www.who.int/publications/m/item/weekly-epidemiological-
update-on-covid-19—18-may-2021) classified six SARS-CoV-2
variants as VOIs and four—posing an increased risk to global
public health—as VOCs. Both VOIs and VOCs are likely to
affect transmission, diagnostics, therapeutics, or immune escape
(37). Within the RBD domain, only seven positions of VOI and
VOC strains are mutated with respect to the Wuhan-Hu-1 refer-
ence strain (Fig. 3A).

The IEDB (27) collects experimentally validated B and Tcell
epitopes. Most of the SARS-CoV-2 epitopes are localized on
the spike protein: a total of 913 epitopes, 459 B cell and 463
Tcell epitopes, as of 16 May 2021.

Each position of the spike protein is associated with a site
response frequency (RF) (Materials and Methods). The RF is
calculated as the number of positively responding subjects rela-
tive to the total number of those tested, averaged over all epito-
pes mapped to that position. Nonsynonymous mutations in
position with high RF typically modify multiple epitopes with
the risk of negatively affecting the human immune response.

In Fig. 3B we plot the IEDB RF versus the DCA mutability
score for each position of the SARS-CoV-2 RBD domain.
Interestingly, only a restricted set of positions has high DCA
and RF scores at the same time (the upper right corner of
Fig. 3B), and four of them are observed in circulatining VOCs
and VOIs, including the well-known positions N501 and E484.
SI Appendix, Fig. S6 shows analogous plots of the RF vs. the
IND score or the expression data; the enrichment of VOC/VOI
mutations becomes less pronounced as compared to the DCA
score. These results highlight the potential for our approach to
identify positions that are likely to mutate (high DCA score)
and whose mutations may cause immune escape (high IEDB
RF). The first 20 predictions, sorted according to the DCA
mutability score, are given in Table 1. Note that nine predic-
tions have a high RF (>0.3, highlighted in bold), and several of
them are not yet part of current VOCs and VOIs. Our results
suggest them as potentially dangerous positions likely to mutate
in future SARS-CoV-2 strains.

As the virus is constantly changing through mutation, other
circulating SARS-CoV-2 VOCs/VOIs have emerged during the
redaction of the paper. Also, more epitopes have been tested
and immunological data are rapidly accumulating, and statisti-
cally more reliable IEDB RFs are now available. In December
2021 we repeated the same analysis using updated IEDB data
(downloaded 22 November 2021) and the five current VOCs.
The results reported in SI Appendix, Fig. S7 confirm the enrich-
ment of dangerous mutations in the upper right corner, which
is particularly pronounced for the newly emerged Omicron
(B.1.1.529) variant. Indeed, of the 14 RBD mutations present
in Omicron, 6 (K417, N440, E484, Q493, Q498, N501) are in
the first top 20 DCA predictions (Table 1). Remarkably, muta-
tions in positions N440, Q493, and Q498 occur for the first time
in Omicron; they are not shared by other VOIs and VOCs.

We repeated our analysis distinguishing between Tand B cell
epitopes (SI Appendix, Fig. S8). While for B cell epitopes it is
still possible to clearly identify a subset of positions with high
DCA and RF scores, this is not the case for T cell epitopes.
This is expected as B cell antibodies directly bind the pathogen,
while T cell epitope must be presented by the human leukocyte
antigens (HLAs)—one of the most polymorphic genes in the
human genome—and have a much larger sequence variability.
Limited T cell data makes it arduous to obtain a statistically
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reliable T cell IEDB RF, even after restricting the analysis to a
subset of T cell epitopes shared by a large fraction of the popu-
lation (SI Appendix, Fig. S9) (39).

Mutability Predictions Are Extendable to All SARS-CoV-2 Proteins.
Thanks to the wide availability of sequence data as compared
to experimental data, a key advantage of our data-driven
modeling approach is the possibility to obtain predictions for
all the protein domains in the SARS-CoV-2 proteome. We
extend the analysis to all 39 protein domains covering 81% of
the entire proteome (8,037 out of 9,748 positions). First, we

observed that both the mutational scores from DCA and
IND models systematically grow with the observed variability
(Fig. 4A), with a more pronounced change for the DCA model
reflected by smaller P values. The performance is influenced by
both the quality of the models, which depends on the available
sequence data, and the definition of the ground truth, i.e., the
observed variability. In accordance with previous findings for
the RBD, we observe that the performance of the DCA model
improves as more data are used to estimate the variability; the
ROC AUC goes from 0.59 in July 2020 to 0.71 in May 2021.
The increased performance observed in the RBD can be
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Fig. 3. (A) SARS-CoV-2 strains classified in May 2021 as VOCs (red, now also named Alpha [B.1.1.7], Beta [B.1.351], Gamma [P.1], and Delta [B.1.617.2])
and VOIs (green). The figure shows the corresponding amino acid mutations with respect to the Wuhan-Hu-1 reference in the RBD domain and the geo-
graphical area where they were first detected. The B.1.617 lineage is divided into three sublineages; the E484Q and T478K (with asterisks) mutations are
not shared by all sublineages. The same is true for E484K and S477N in the B.1.526 lineage. (B) The IEDB RF and the DCA mutability score for each posi-
tion of the RBD domain. The upper right corner contains potentially dangerous positions, as they are predicted to be mutable (high DCA mutability score)
and are shared by multiple positively responding epitopes (high IEDB RF). Mutated positions observed in VOCs and VOIs strains are depicted in red, and
darker shades correspond to the most frequent mutations. The size of each point is inversely proportional to the IEDB 95% CI [size ∼1/(upper bound �
lower bound)], thus larger points correspond to more statistically reliable IEDB RF.

Table 1. The first 20 predictions, sorted according to the DCA mutability score, with the corresponding IEDB
RF and the VOIs and VOIs in which the position has mutated

Position AA Wuhan-Hu-1 DCA mutability score IEDB RF (95% CI) Pango lineage (ref. 38)

519 H 0.22 0.10 (0.08:0.14)
403 R 0.06 0.28 (0.24:0.32)
490 F 0.05 0.41 (0.38:0.45)
493 Q 0.04 0.43 (0.40:0.46)
372 A 0.01 0.39 (0.32:0.46)
501 N 20.04 0.44 (0.40:0.47) B.1.1.7; B.1.351; P.1; P.3
445 V �0.06 0.18 (0.15:0.21)
498 Q �0.11 0.24 (0.21:0.28)
441 L �0.20 0.15 (0.12:0.19)
440 N �0.21 0.10 (0.08:0.14)
484 E 20.21 0.48 (0.45:0.51) B.1.351; P.1; B.1.617; B.1.525; P.2; P.3
486 F 20.21 0.43 (0.40:0.47)
443 S �0.31 0.08 (0.05:0.11)
494 S 20.32 0.38 (0.35:0.42)
483 V 20.32 0.39 (0.36:0.43) B.1.616
460 N �0.37 0.16 (0.13:0.19)
444 K �0.41 0.13 (0.10:0.16)
417 K 20.43 0.44 (0.40:0.48) B.1.351; P.1
439 N �0.44 0.07 (0.04:0.10)
402 I �0.50 0.08 (0.05:0.11)

Positions with IEDB RF above 0.3 are shown in bold.
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partially attributed to a better estimation of the variability, as
it is one of the most variable regions of the SARS-CoV-2
proteome (40). Another important factor is the impact of the
available sequence data (SI Appendix, Table S1). To take into
consideration this factor, we split the 39 protein domains into
two sets with at least 50 or fewer than 50 effective sequences
(i.e., nonredundant at 80% identity; see Materials and Methods).
As expected, the performance is greater when more sequence
data are available to build the models, as shown in SI Appendix,
Fig. S10. A systematic comparison between the models reveals
that the DCA model is better than the IND in most cases, espe-
cially in those with a higher number of effective sequences
(Fig. 4C).

Beyond the RBD domain, other protein domains have an
important role in triggering an immune response in humans.
We extend the analysis of the previous section (combining
immunological data with DCA predictions) to all the protein
domains of the SARS-CoV-2 proteome. The results are avail-
able on the GitHub page.

Our predictions are based on individual Pfam protein domains.
While we argued that epistasis is a crucial ingredient to our
models, we currently do not include epistasis between distinct
domains. The main reason is that multidomain studies risk again
limiting available sequence data. To get a first impression of the
potential role of epistasis between distinct protein domains in
SARS-CoV-2 evolution, we have used DCA to detect epistatic

couplings between all 741 pairs of the 39 present domains (SI
Appendix, SI Text). As is shown in Fig. 4D, we find a sparse net-
work of only 12 potentially coupled domain pairs, out of the 601
pairs providing sufficient data for our analysis (SI Appendix, SI
Text). While the sparsity of this network makes it unlikely that our
mutability predictions suffer from our domain-centric modeling
approach, our results suggest the existence of interdomain and
interprotein epistasis in SARS-CoV-2. This conclusion is coherent
with that of ref. 41, which differently from our analysis is based
entirely on an analysis of the SARS-CoV-2 genomes deposited in
GISAID. It is worth mentioning that the strongest epistatic cou-
pling found in our analysis is between the domain Cov_NSP2_N
and bCov_viroporin (SI Appendix, Table S3), which is also
highlighted in ref. 41. However, a biological interpretation of
these findings is not obvious due to the limited availability of
experimental information about potential physical or functional
interactions between SARS-CoV-2 proteins.

Discussion
In this work, we propose to use statistical models to predict the
mutability of individual positions in SARS-CoV-2 proteins. The
models are based on MSAs coming from various coronaviruses.
The inclusion of epistasis in the DCA-based modeling frame-
work allows us to capture local evolutionary constraints specific
to the SARS-CoV-2 sequence background. Using several tests

BA

D

C

ORF1bORF1a Spike

ORF3a
Envelope

NucleocapsideMembrane

ORF6
ORF7a

ORF7b
ORF8

Weight

Fig. 4. (A) Distribution of DCA and IND scores as a function of the variability (L, low <7, n = 2,757 positions; M, medium = [7,15], n = 2,647; H, high >15,
n = 2,554) for the entire SARS-CoV-2 proteome (P values from the Wilcoxon signed-rank test). L, M, and H in the x axis correspond to low, medium, and
high observed variability, respectively. (B) ROC curve for the classification provided by the DCA model for positions with low (≤3, n = 4,873 in December
2020) or high (>3, n = 3,085 in December 2020) variability, where the variability is estimated from data until May 2021, December 2020, or July 2020. (C)
Comparison of ROC AUC obtained by the DCA and IND models for the 39 domains in the proteome. The variability cutoff for each domain is chosen to
give rise to two balanced subsets of positions. (D) The nodes represent the Pfam domains in the proteome with a link between pairs of domains when
they have at least one relatively strong epistatic coupling. The width of the link is proportional to the strength of the signal, or weight, which comes
from the strongest coupling among all the interdomain pairs of positions. Protein domains codified within the same open reading frame (ORF) share the
same color.
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for the RBD of the spike protein, for which the most extensive
experimental datasets are available, we were able to establish
that our computational predictions are able to anticipate posi-
tion mutated in variants of SARS-CoV-2 from sequence align-
ments not containing SARS-CoV-2 sequences. This fact is
particularly evident in Fig. 2E, which shows that more recent
and thus richer releases of the GISAID database of SARS-
CoV-2 genomes follow more accurately our model predictions.
The inclusion of epistasis in the modeling was found to be
essential to improve the quality of the mutability predictions.

The combination of our predictions with available immune
response frequencies allows for identifying a relatively small
group of 9 positions out of the 178 positions in the RBD which
are highly mutable and have a high potential for immune
escape. Interestingly, four out of these nine positions are
mutated in the current VOCs or VOIs. The other five positions
are predicted to potentially give similar advantages for emerg-
ing SARS-CoV-2 variants. In fact, a new variant was declared a
VOI in June 2021 (lineage C.37, or Lambda). This variant has
two RBD mutations in positions L452 and F490. While the first
is shared with other lineages (even if substituted to another
amino acid), the second one was not part of any previous VOI
or VOC, but it is the third predicted position in terms of muta-
bility and the first with high RF (cf. Table 1). Even more
recently, in November 2021, the variant Omicron (B.1.1.529)
emerged and was declared a VOC; it shows new mutation in
positions Q493, Q498, and N440, which were not mutated in
preexisting VOIs and VOCs but take ranks 4, 8, and 10 in
Table 1 (cf. also SI Appendix, Fig. S7). Our approach therefore
highlights the importance of monitoring these positions, which
could also be taken into account when exploring potential ther-
apeutic or vaccine targets.

This can be illustrated by the following example. A monoclo-
nal antibody was recently isolated which has neutralizing activ-
ity against all SARS-CoV-2 VOCs identified to date (42). The
antibody targets a region of about 600 Å2 of the spike protein
surface centered in residue F486. This residue is predicted to
be quite mutable (rank 12 in Table 1, next to E484), and muta-
tions might have immunological relevance as indicated by a
high IEDB RF—so a mutation in F486 emerging in a new vari-
ant might decrease the neutralizing capacities of the antibody.
However, this residue is also in contact with the ACE2 human
receptor, and thus a mutation might also decrease the affinity
with the host protein, resulting in an evolutionary disadvantage
for the virus. While our model, trained on long-term evolution-
ary data, does not contain specific knowledge about the
RDB–ACE2 interaction, it suggests that positions like F486
should be carefully studied with complementary structural and
experimental approaches and considered when designing anti-
bodies effective against novel strains.

Being based on readily available sequence data is one of the
advantages of our approach over more labor-intensive experi-
mental approaches like the DMS data, such as the effect of
mutations on RBD expression and binding to the human ACE2
receptor, allowing us to provide useful predictions of mutability
for most of the SARS-CoV-2 proteome. It also has its limita-
tions, most importantly its dependence on the availability of
sufficiently large and diverged sequence ensembles. In fact, we
observe that a greater number of sequences usually increases
the performance of the approach (Fig. 4C and SI Appendix,
Fig. S10). However, it is important to note that the inclusion of
more divergent sequences might not always be the best strategy
as the model might capture constraints that are not relevant for
the specific SARS-CoV-2 context. This trade-off will be
explored in future work.

Our approach can be extended in several ways. One is to
include how different domains might constrain the variability
of other domains. However, according to our analysis in the

previous section, interdomain epistasis seems to play only a
minor role, even if more sequence data might be needed to bet-
ter estimate the influence of interdomain or interprotein epista-
sis. Another is to model constraints due to specific virus–host
interaction, which is currently out of our scope, as we do not
consider host sequences in the MSAs. Indeed, we observe the
correlation of experimental binding to ACE2 and our predic-
tions (Pearson’s r = 0.27) can be fully explained through the
protein expression (Pearson’s r partial correlation controlled by
expression = �0.02). In an attempt to explore this issue, we
built coalignments of RBDs with homologs of ACE2 present in
the hosts of other coronaviruses. Since the binding mechanism
between RBD and ACE2 homologs is present only in sarbecovi-
ruses, the resulting coalignment of RBD and ACE2 homologs
contains only seven effective sequences (nonredundant sequences
at 80% identity; cf. Materials and Methods), a number insufficient
to capture the complex virus–host interactions.

Predicting evolution is an undoubtedly daunting task (43, 44).
While there is little, if any, hope to predict specific future evolu-
tionary events, we have shown that data-driven approaches
capturing statistical patterns in sequence data can effectively
identify more general evolutionary trends, such as which posi-
tions are more likely to mutate and represent a concern to cur-
rent therapeutic interventions. In this sense, our work is a step
forward to a more precise characterization of the SARS-CoV-2
evolution fueled by a huge worldwide effort of research and
monitoring of the virus, whose evolution is unfolding in almost
real time at an unprecedented level of detail.

While the main application of our work is the insights pro-
vided on SARS-CoV-2, our study can also be seen as a proof of
concept. In the case of emergence of a new viral pathogen, a
single sequenced genome can be used as the reference to first
extract families of homologous sequences from public data-
bases, which allow for learning the statistical models needed
for mutability predictions. These predictions can therefore be
done in very early stages of a possible outbreak, before large
amounts of observational or experimental data become avail-
able, forecast future variability, and thereby help to direct our
attention to as-yet-unobserved mutations.

Materials and Methods
Sequence Data. Sequence data in FASTA format were downloaded from the
following databases: GISAID (ref. 7, release 16 May 2021), Uniref90 (ref. 45,
release December 2020), ViPR (ref. 46, downloaded in September 2020), NCBI
viral genomes (ref. 47, downloaded in September 2020), and MERS corona-
virus database (ref. 48, downloaded in September 2020). The amino acid
sequence of isolate Wuhan-Hu-1 was used as the reference proteome (Gen-
Bank accession no. MN908947). Protein domains were detected using the
HMMER suite (ref. 49, version 3.1b2) and the HMMprofiles from Pfam.

A global database including distant species was built by combining
Uniref90, ViPR, NCBI viral genomes, and the MERS coronavirus database and
used to train the DCA and IND models. We built MSAs by running jackhmmer
with five iterations and starting both with the full-length reference protein
sequence (except for the ORF1ab) and with the trimmed domain sequence
(see SI Appendix, SI Text for more details). For each domain, we selected the
MSA with more nonredundant sequences between the two resulting MSAs
for further analysis, which increases the amount of available sequence data.
As quality controls, all sequences including nonstandard amino acids were
removed as well as repeated sequences or sequences covering less than 80%
of the reference; predictions are robust when modifying this threshold (cf.
SI Appendix, Fig. S11A). To separate training from test data, all sequences
closer than 90% sequence identity to theWuhan-Hu-1 reference were filtered
out (i.e., all SARS-CoV-2 sequences, including close relatives in nonhuman
hosts). The exclusion of SARS-CoV-2 reference sequences has a negligible
influence on the predictions, e.g., the spearman’s correlation on the RBD of
the DCA scores with protein expression with and without the reference
sequence is the same (ρ = 0.54) as well as in the case of the observed variability
(ρ = 0.61).

For the GISAID database, a MSA for each domain sequence was built with
only one iteration in jackhmmer as the GISAID sequences are very similar to
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the reference sequences. We applied the same quality controls as before
but kept sequences closer than 90% sequence identity and removing sequences
corresponding to a nonhuman host. The July and December 2020 subsets of
sequences were collected until the 16th of the corresponding month. The
alignments of GISAID sequences were used exclusively for testing our
predictions.

The random sequences in Fig. 2B are generated by randomly selecting a
position and variant following a uniform distribution. For each GISAID
sequence, a random sequence is produced with the same number of muta-
tions to the reference.

Statistical Models. For each protein domain in the reference proteome we
built an independent-site model (IND) and an epistatic model (DCA) using the
previously described global MSA containing a diverged set of species but no
SARS-CoV-2 sequences.
Independent or sequence profile model. Assuming statistical independence
of positions, a simple probabilistic model PINDða1,a2,…,aLÞ, where ða1,
a2,…,aLÞ represents an aligned sequence of amino acids (with the gaps “—“

to account for insertions or deletions) of length L, for a protein family is
defined by

PINDða1,…,aLÞ ¼ ∏
L

i¼1
fiðaiÞ :

The factors fiðaÞ equal the empirical frequencies of amino acid a in column
i ¼ 1,…,L of the global MSA (with L columns). Therefore, the probability
that any sequence of length L belongs to the protein family is factorized into
the individual position-specific contributions of each of its amino acids. Simi-
lar to ref. 30, the effect of an amino acid mutation ai ! b can be computed
as

ΔEIND i,bð Þ ¼ logPIND a1,…,ai,…,aLð Þ � logPIND a1,…,b,…,aLð Þ
¼ log fi aið Þ � log fiðbÞ:

In contrast to previous work (30), positive values correspond to beneficial
mutations while negatives correspond to deleterious mutations. Therefore,
this value can be more naturally interpreted as a proxy of the selective pres-
sure acting across coronaviruses.
DCA or epistatic model. It is possible to overcome the assumption of indepen-
dence between positions by introducing two-site coupling terms as done in
DCAmodels:

PDCAða1,…, aLÞ ¼ 1
Z
exp ∑

1≤i≤L
hiðaiÞ þ ∑

1≤i<j≤L
Jijðai, ajÞ

 !
,

where Z is a normalization constant. The inference of model parameters is a
computationally hard task and a number of approximations have been
proposed (50–53). In this work, we rely on the widely used asymmetric
plmDCA approach (52), which provides one of the best trade-offs between
computational cost and performance. Following standard practice (50), we
apply a sampling correction by counting the number of sequences with higher
than 80% identity and reweighting them (results are robust to the specific
value of this parameter; see SI Appendix, Fig. S11B). The number of effective
sequences refers to the number of sequences that are not redundant at 80%
sequence identity. As before, the effect of a single mutation ai ! b can be
computed as the difference between a wild-type sequence and single-mutant
sequence:

ΔEDCA i,bð Þ ¼ logPDCAða1,…,ai,…,aLÞ � logPDCAða1,…,b,…,aLÞ:
As we focus on the mutability of each position in the SARS-CoV-2 proteome,
for each of the models IND and DCA we derive a single mutational score
SIND=DCA for each position i as

SIND=DCA ið Þ ¼ 1
q
∑
q

k¼1
ΔEIND=DCA i,bkð Þ,

whereΔEði,bkÞ is the effect of the k th single mutations (ai ! bk) in position i.
We restrict the set of amino acids to the ones reachable by a single nucleotide
missense mutation from the corresponding codon in the Wuhan-Hu-1 refer-
ence genome (i.e., the alphabet size q depends on the specific codon used in

position i). To make the quantification more interpretable and comparable
between distinct domains, we divide the mutational score by the average
score considering all the positions in the domain:

MSIND=DCAðiÞ ¼ SIND=DCAðiÞ=∑L
j¼1SIND=DCAðjÞ:

This final mutational score is positive for beneficial mutations and negative
for deleterious mutations. Values close to 0 can be interpreted as neutral, val-
ues in the range (�1, 0) as better than average, and lower than �1 as worse
than average andmore deleterious.

Estimating Variability of SARS-CoV-2 Sequences from GISAID Data. The vari-
ability of each position was estimated by counting the number of sequences
that have a different amino acid in the corresponding position compared to
the reference. Only nonidentical sequences were considered to avoid the
strong sequencing bias due to the highly diverse number of genomes
sequenced in different countries. This corresponds to the standard reweight-
ing procedure used in DCA but at a 100% similarity threshold adapted to the
high sequence similarities between SARS-CoV-2 strains. Results are robust
with respect to this procedure, since the empirical variability estimated with-
out any reweighting shows, in the RBD, a Pearson correlation of 0.89 (Spear-
man correlation of 0.92) to the reweighted estimates.

DMS Data. The DMS data measuring protein expression and the binding to
ACE2 obtained by Starr et al. (25) was collected from https://github.com/
jbloomlab/SARS-CoV-2-RBD_DMS trimmed to the RBD alignment (which con-
tains 178 Pfam positions instead of the 201 in the experiment) and merged
into our framework.

IEDB data. B and T cell epitope data were collected from the IEDB webserver
by selecting Organism SARS-CoV-2 (ID: 2697049, SARS2) and restricting to B
and T cells assay. For each protein of the SARS-CoV-2 proteome, a list of exper-
imentally validated epitopes is provided. Following the definition of https://
help.iedb.org/hc/en-us/articles/114094147751, it is possible to introduce an RF
for each position i of the proteome. RF is defined as the number of positively
responding subjects relative to the total number of those tested, averaged
over all epitopes mapped to that position. Large values thus correspond to
positions of high potential for immune escape.

The IEDB website only reports the upper and lower bounds of the 95% CI
for the RF score—and not the RF score itself—to correct for the sample size. In
our analysis we compute the mean RF score from the IEDB epitope data and
use the 95% confidence upper and lower bounds provided by the IEDB to
compute the confidence interval (CI = upper bound � lower bound) for each
position.

Performance Evaluation. All ROC analyses were performed in R (ref. 54, ver-
sion 3.6.3) using the package pROC (ref. 55, version 1.16.2). Controls and cases
were defined by a variability cutoff parameter. Cutoffs for the variability,
which define the subset of positions with low or high variability, were chosen
to split into balanced subsets with the most similar number of observations
possible in each subset, i.e., using the median. Positions with higher variability
than the cutoff are considered positives.

Data Availability. To ensure reproducibility and access to our results we provide
at https://giancarlocroce.github.io/DCA_SARS-CoV-2/ the data generated in the
course of this research and a Jupyter notebook to reproduce key figures and
guide data analysis. This notebook will also contain data updated as compared
to the datasets used in this article. The code to generate the predictions for the
IND and DCA models is available at https://github.com/juan-rodriguez-rivas/
covmut. All other study data are included in the article and/or SI Appendix.
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