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NLRC5 shields T lymphocytes from
NK-cell-mediated elimination under inflammatory
conditions
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NLRC5 is a transcriptional regulator of MHC class I (MHCI), which maintains high MHCI

expression particularly in T cells. Recent evidence highlights an important NK–T-cell crosstalk,

raising the question on whether NLRC5 specifically modulates this interaction. Here we show

that NK cells from Nlrc5-deficient mice exhibit moderate alterations in inhibitory receptor

expression and responsiveness. Interestingly, NLRC5 expression in T cells is required to

protect them from NK-cell-mediated elimination upon inflammation. Using T-cell-specific

Nlrc5-deficient mice, we show that NK cells surprisingly break tolerance even towards ‘self’

Nlrc5-deficient T cells under inflammatory conditions. Furthermore, during chronic LCMV

infection, the total CD8þ T-cell population is severely decreased in these mice, a phenotype

reverted by NK-cell depletion. These findings strongly suggest that endogenous T cells with

low MHCI expression become NK-cell targets, having thus important implications for T-cell

responses in naturally or therapeutically induced inflammatory conditions.
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M
ajor histocompatibility complex class I (MHCI)
molecules are ubiquitously expressed surface glycopro-
teins, crucial for the function of CD8þ T and natural

killer (NK) cells. These two cytotoxic lymphocyte subsets mediate
immunity towards infected or transformed cells using comple-
mentary recognition strategies. Cells presenting foreign antigens
in MHCI will be recognized and killed by CD8þ T cells.
Conversely, NK lymphocytes eliminate cells lacking MHCI
expression, a phenomenon known as ‘missing-self recognition’.

Besides NF-kB and interferon regulatory factors, NOD-like
receptor (NLR) caspase recruitment domain containing protein 5
(NLRC5) has recently been identified as a key transcriptional
regulator of MHCI genes1–6. As recently shown by chromatin
immunoprecipitation sequencing, NLRC5 is exclusively dedicated
to regulate the classical MHCI genes H2-K and H2-D, but also
beta-2 microglobulin (B2m) and selected non-classical MHCI
genes by occupying a specific SXY sequence in their promoter2.
This NLR is constitutively expressed at high levels in immune
cells and predominantly in lymphocytes1. Accordingly, its
deficiency moderately affects MHCI expression in conventional
dendritic cells and macrophages, whereas a strong decrease is
observed in lymphocytes, with T cells displaying the most
prominent defect1,2,5.

The relevance of MHCI expression on T cells remains
poorly explored. Interestingly, several studies highlighted an
important crosstalk between T and NK cells, particularly in viral
infections7–18. A recent report suggested that high levels of MHCI
on CD8þ T cells are essential to protect them from NK cell-
dependent elimination during antiviral responses15. In more
detail, antiviral CD8þ T cells deficient for type-I interferon
receptor (Ifnar) were rejected by NK cells following infection.
Interestingly, the authors detected a very low expression of
classical and non-classical MHCI on Ifnar� /� T cells as
compared with their wild-type counterparts, suggesting a
straightforward explanation for eliciting NK-cell rejection15.

NK cells acquire the ability to discriminate normal from absent
MHCI levels through a process known as NK-cell education,
which is dictated by the engagement of inhibitory receptors by
MHCI ligands. Indeed, NK cells derived from MHCI-deficient
B2m knockout mice or from mice lacking the phosphatase SHP-1,
a key signalling molecule downstream of MHCI receptors, are
hyporesponsive19–22. A direct correlation exists between the level
of inhibitory receptor engagement by MHCI molecules and
NK-cell responsiveness, as shown using MHCI heterozygous and
transgenic mice23–25. Although it is unclear what minimal level of
MHCI is needed to establish NK-cell reactivity and to ensure
tolerance, the presence of a sizable population of MHCI-negative
cells prevents ‘missing-self’ reactivity24,26–28. Responsiveness of
NK cells is therefore thought to be tuned to endogenous levels of
MHCI and the presence of MHCI-negative cells dominantly
establishes tolerance.

Why NLRC5 evolved to control MHCI transcription in
lymphocytes and, most prominently, in T cells remained unclear.
The emerging evidence interconnecting NK- and T-cell responses
led us to hypothesize that NLRC5-dependent expression of
MHCI might be critical for regulating this crosstalk. We therefore
set off to evaluate the impact of Nlrc5 deficiency in T cells on the
interactions of these two cell subsets.

On the one hand, we show here that NLRC5 plays a key role in
protecting T cells from NK-cell-mediated elimination under
inflammatory conditions, as demonstrated by the rejection of
Nlrc5� /� T cells upon transfer into Poly(I:C)-pretreated or
infected mice. On the other hand, NK cells from Nlrc5-deficient
or CD4cre Nlrc5fl/fl mice (with selective Nlrc5 deficiency in
T cells) are surprisingly efficient in rejecting MHCI-negative cells,
indicating that these animals host-responsive NK cells together

with potential T-cell targets. Indeed, NK-cell-dependent loss of
Nlrc5-deficient T cells is observed in CD4cre Nlrc5fl/fl mice
following Poly(I:C) pretreatment or viral infection. This suggests
that tolerance to low MHCI levels can be overcome by an
inflammatory environment, and that NLRC5 plays a key role in
protecting T cells from NK-cell-mediated elimination under such
conditions.

Results
Nlrc5� /� T cells display low but not absent MHCI levels. We
and others have previously shown that NLRC5 regulates the
expression of H2-K and H2-D in most immune cells and parti-
cularly in lymphocytes1,4,5. Our understanding of NLRC5
contribution to MHCI expression in non-immune tissues is
however still incomplete3,6,29. We therefore analysed by
quantitative real-time PCR (qPCR) H2-K and H2-D alongside
with Nlrc5 messenger RNA (mRNA) abundance in different
tissues derived from control or Nlrc5-deficient mice. As shown in
Fig. 1a, both MHCI and Nlrc5 genes are expressed at lower levels
in non-lymphoid tissues and, at steady state, NLRC5 does not
contribute to MHCI transcription in organs such as skin and
kidney. Among immune cells, the contribution by NLRC5 to
MHCI expression varies in different cell subsets, with T cells
exhibiting the major defect (Fig. 1b)1,4,5. In fact, these
lymphocytes express on average 20% of the wild-type levels,
having thus low residual expression of classical MHCI, H2-K and
H2-D, as shown by comparison with B2m-deficiency (Fig. 1b). As
we were interested in the role of NLRC5 in T cells, we further
analysed the non-classical MHCI Qa2, recently shown by us to be
a prime target of NLRC5 (ref. 2), and H2-M3. In agreement with
previous reports, Qa2 was totally absent, whereas H2-M3 mRNA
was reduced to about half in Nlrc5-deficient T cells2,4 (Fig. 1c,d).
Moreover, the classical MHCI molecule H2-L in Nlrc5� /�

BALB/c mice was reduced similarly to H2-K and -D on T
lymphocytes (Supplementary Fig. 1a), indicating that also this
MHCI gene is a target of NLRC5. Thus, Nlrc5-deficient mice
present a complex mosaic in which MHCI is low but not absent
on lymphocytes and normal on other tissues.

To gain insights into the extent of variation of NLRC5 and
MHCI expression in humans, we tested the abundance of NLRC5,
HLA-B and HLA-C mRNA in healthy donor-derived T cells. As
shown in Supplementary Fig. 1b, expression of NLRC5 correlated
with HLA gene expression, substantiating the role of NLRC5 in
HLA transcriptional regulation3 and suggesting considerable
interindividual variation in the expression of these genes, a
phenomenon that can be mimicked by Nlrc5 deficiency.

Nlrc5 deletion mildly alters Ly49I expression. We next sought
to phenotypically characterize NK cells from Nlrc5-deficient mice.
Since we aimed at understanding how NLRC5 expression in T
cells regulates the NK–T-cell crosstalk, we extended our analysis
to NK cells from mice with specific Nlrc5 ablation in T cells
(CD4cre Nlrc5fl/fl, characterized in Supplementary Fig. 2a).
Analyses of bone marrow (BM) and spleen did not reveal
substantial alterations in NK-cell development and maturation in
Nlrc5-deficient and CD4cre Nlrc5fl/fl mice (Supplementary
Fig. 2b,c). We next assessed the expression of NK-cell receptors
specific for MHCI. Whereas NK cells derived from B2m knockout
mice are known to exhibit higher levels of these receptors30, NK
cells from Nlrc5� /� and CD4cre Nlrc5fl/fl mice expressed Ly49A
and CD94 at normal levels (Fig. 2a). Unexpectedly, the intensity
of Ly49I expression on Ly49I-positive cells was found to be
decreased on NK cells from Nlrc5-deficient but not CD4cre
Nlrc5fl/fl mice (Fig. 2a). A similar trend was observed using an
antibody recognizing Ly49C/I (Supplementary Fig. 2d,e)31. As the
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levels of Ly49C/I were affected by Nlrc5 deficiency, we tested
whether the educated Ly49C/Iþ subset might express higher
levels of NLRC5 (ref. 32). However, Nlrc5 transcript abundance
was equal in Ly49C/Iþ and Ly49C/I� subsets (Supplementary
Fig. 2f; H2-K and Ly49I mRNA are here shown as controls).
Likewise, human CD56bright and CD56dim NK cells expressed
similar levels of NLRC5 mRNA (Supplementary Fig. 2g),
indicating that NLRC5 is broadly expressed among NK-cell
subsets.

Compatibly with our observation that Ly49I was decreased in
Nlrc5� /� but not in CD4cre Nlrc5fl/fl mice, cis-interactions with
MHCI have recently been proposed to shape the repertoire of
inhibitory receptors26. We therefore analysed Ly49I expression in
mice specifically lacking Nlrc5 in NK cells (NKcre Nlrc5fl/fl,
characterized in Supplementary Fig. 2a)33. Remarkably, the defect
in Ly49I expression was stronger than in Nlrc5� /� mice
(Fig. 2b) and not reversed by an acidic treatment (Fig. 2c;
H2-K shown as control), indicating that MHCI-mediated
masking was not responsible for the reduction34. Mixed wild
type:NKcre Nlrc5fl/fl BM chimeras showed that the reduction in
Ly49I was NK-cell intrinsic (Fig. 2d; H2-K shown as control in
Fig. 2e). To better dissect the underlying mechanisms, we
adoptively transferred Nlrc5fl/fl and Nlrc5� /� NK cells into
Nlrc5fl/fl and Nlrc5� /� recipient mice and analysed their
expression of Ly49I 24 h after. As shown in Fig. 2f, we observed
higher expression levels on NK cells transferred into Nlrc5� /�

than Nlrc5fl/fl recipient mice and a greater defect on Nlrc5� /�

NK cells as compared with their Nlrc5fl/fl counterparts. Taken
together, these data show that MHCI levels in the environment
inversely correlate to NK-cell inhibitory receptor expression and,
unexpectedly, they also infer that Nlrc5-driven MHCI expression
on NK cells exerts a positive influence on Ly49I levels.

NK cells from Nlrc5� /� mice respond to MHCI-deficient cells.
The functionality of NK cells from Nlrc5� /� and CD4cre
Nlrc5fl/fl mice was then assessed by testing the ability to reject
B2m� /� splenocytes (Fig. 3a) or MHCI-negative RMA-S
tumour cells (Fig. 3b). Surprisingly, both Nlrc5� /� and CD4cre
Nlrc5fl/fl mice rejected the target cells, albeit Nlrc5� /� mice in
particular were less efficient as compared with control mice
(Fig. 3a,b). To define the specific contribution by Nlrc5 expression
in NK cells to this outcome, we analysed the ability of NKcre
Nlrc5fl/fl to kill B2m� /� splenocytes. However, no significant
difference was observed (Supplementary Fig. 3), indicating that
expression of NLRC5 in NK cells is per se not crucial to maintain
NK-cell responsiveness.

Rejection of B2m-deficient splenocytes was then assessed in
mice pretreated with Poly(I:C), which primes NK cells.
Importantly, the reduced MHCI expression observed in Nlrc5
knockout lymphocytes was maintained after Poly(I:C) pretreat-
ment, exhibiting B30% residual expression of classical MHCI in
Nlrc5� /� T cells (Fig. 3c). A complete rejection was remarkably
observed both in Nlrc5-deficient and CD4cre Nlrc5fl/fl mice, but
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Figure 1 | Nlrc5� /� lymphocytes exhibit low MHCI expression. (a) qRT–PCR analysis (normalized to Hprt) in the indicated tissues is shown for H2-K and

H2-D mRNA in Nlrc5fl/fl and Nlrc5� /� mice, and for Nlrc5 mRNA in Nlrc5fl/fl mice. Results represent mean±s.e.m. (n¼ 3 mice per group). (b) H2-K and

H2-D expression, depicted as mean fluorescence intensity (MFI), was analysed by flow cytometry on splenic CD4þ and CD8þ T cells (CD3þCD4þ and

CD3þ CD8þ , respectively), NK cells (NK1.1þCD3� ), B cells (CD19þ ) and DCs (CD11chigh) from Nlrc5fl/fl, Nlrc5� /� and B2m� /� mice. (c) Qa2

expression, depicted as MFI, was analysed on splenic CD4þ and CD8þ T cells. Results represent mean±s.e.m. (n¼ 3–5) and are representative of at least

three experiments (b,c). (d) H2-M3 mRNA expression was quantified relative to Hprt mRNA in T cells purified from in Nlrc5fl/fl and Nlrc5� /� mice. Results

depict mean±s.d. (n¼ 3 replicates) and are representative of at least two experiments. NS, non-significant; **Po0.01; ***Po0.001; Student’s t-test.
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not in B2m-deficient mice (Fig. 3d). Thus, despite strongly
reduced MHCI levels, NK cells from Nlrc5� /� and CD4cre
Nlrc5fl/fl mice are surprisingly reactive to MHCI-deficient cells,
indicating a nearly normal education state.

NLRC5 protects T cells from NK-cell-mediated elimination.
We proceeded to analyse whether NLRC5 deficiency in
T lymphocytes influenced their rejection by NK cells. First, we
assessed the susceptibility of Nlrc5-deficient splenocytes to
NK-cell-mediated rejection upon transfer into wild-type
recipients. Naive control mice failed to reject Nlrc5-deficient
splenocytes (Fig. 4a), indicating that the low MHCI levels
expressed by Nlrc5-deficient cells were sufficient to protect them
from NK-cell-mediated attack. Instead, rejection of Nlrc5-defi-
cient splenocytes (36%) was observed in mice pretreated with
Poly(I:C) (Fig. 4b). We then took a closer look at Nlrc5-deficient
T cells, which present the strongest defect in MHCI expression,
and observed that their rejection was indeed superior (44%) and
fully dependent on NK cells (Fig. 4c). These data demonstrate

that NLRC5 is required to prevent NK-cell-mediated elimination
of splenocytes, and T cells in particular, in Poly(I:C)-primed mice.
To extend these findings into a more physiological situation,
Nlrc5� /� and control transgenic P14 T cells, which bear a T-cell
receptor specific for the glycoprotein 33–41 (gp33) epitope of the
lymphocytic choriomeningitis virus (LCMV), were co-transferred
into recipient Nlrc5fl/fl mice. These were then challenged with
LCMV clone 13 and analysed 8 days post infection for the
expansion of transferred cells (Fig. 4d). Whereas control P14
T cells nicely expanded, Nlrc5� /� P14 T cells were nearly
undetectable. Strikingly, the latter were rescued by NK-cell
depletion (Fig. 4d). These results demonstrate that NLRC5
becomes essential to protect T cells against NK-cell-mediated
rejection in inflammatory milieus and upon viral infection.

NLRC5 maintains CD8þ T cells upon chronic LCMV infection.
Since NK cells from CD4cre Nlrc5fl/fl and Nlrc5-deficient mice
were surprisingly functional and Nlrc5-deficient T cells were
targeted by NK cells upon infection, we investigated whether
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elimination of endogenous Nlrc5� /� T cells was observed upon
infection with LCMV clone 13. We followed the abundance of
T cells in the blood over 60 days after infection. Interestingly,
CD8þ T-cell percentages declined in the blood at late phases of
the infection in CD4Cre Nlrc5fl/fl mice, as illustrated also by flow
cytometric plot (Fig. 5a). The reduced abundance of CD8þ

T cells was confirmed in the spleen of these mice (Fig. 5b).
Intriguingly, CD4þ T-cell percentages and numbers were only
moderately changed (Supplementary Fig. 4a,b). We next looked
at whether a similar phenomenon was observed in conventional

Nlrc5� /� mice. These mice have however reduced CD8þ T-cell
percentages already at steady state1, most likely due to diminished
MHCI on cells involved in CD8þ T-cell selection and/or
maintenance. We therefore indicated with a dotted line the
expected levels of CD8þ T cells in the spleen based on blood
percentages measured before the infection, showing that the loss
of CD8þ T cells is minimal (Supplementary Fig. 4c). We thus
evaluated the role of NK cells in the CD8þ T lymphocyte loss
observed in CD4Cre Nlrc5fl/fl mice by depleting NK cells from
day five after infection, a regimen that allowed establishment of a
chronic infection11. Remarkably, CD8þ T cells were rescued
(Fig. 5a,b), suggesting that Nlrc5-deficient CD8þ T cells were
reduced by NK-cell-mediated elimination.

Importantly, in CD4Cre Nlrc5fl/flmice, a similar decrease was
observed both in naive and CD44hi-activated CD8þ T cells, and
rescued by NK-cell depletion completely or partially, respectively
(Fig. 5c). Reflecting data on CD44hi effector CD8þ T cells, a
strong reduction and partial rescue of gp33-specific T cells was
observed (Fig. 5d). In agreement with the strongly decreased
CD8þ T cells, viral burdens were remarkably higher in CD4cre
Nlrc5fl/fl mice and although NK depletion partly rescued effector
CD8þ T cells, this was not sufficient for virus control
(Supplementary Fig. 4d). Altogether, these data demonstrate the
existence of two key functions for NLRC5 in antiviral T-cell
responses, one intrinsic to rare exhausted antigen-specific effector
cells and one, crucial for the entire CD8þ T-cell population,
clearly dependent on NK cells.

To detail the molecular pathways leading to the observed
NK-cell-mediated loss of CD8þ T cells, we thoroughly analysed
the expression of NK-cell receptors and ligands on NK and T
cells, respectively, in the chronic phase of the infection. NK cells
from CD4Cre Nlrc5fl/fl mice did not exhibit major differences for
a panel of activating and inhibitory receptors (Supplementary
Fig. 4e–g), suggesting that NK cells were minimally influenced by
alterations in T cells. We thus analysed the expression of
inhibitory and activating ligands on T cells from infected CD4Cre
Nlrc5fl/fl, focusing in particular on NK-depleted mice, in which
T lymphocytes otherwise targeted by NK cells are present.
Whereas stainings for CD23, CD70, VCAM-1, CD155,
E-Cadherin, Mult1 and Rae1d were undetectable on T cells, this
analysis revealed that among the NK-cell receptor ligands
expressed, profound differences were measured exclusively for
MHCI expression (Fig. 5e). Such differences were kept over the
course of the infection, as shown for H2-K on cytotoxic
T lymphocytes (Supplementary Fig. 4h). Interestingly, CD8þ

T cells expressed substantially higher levels of the activating
ligand CD54 than CD4þ T lymphocytes (Fig. 5e), in both control
and CD4Cre Nlrc5fl/fl, suggesting that this factor contributes
per se to their increased susceptibility to NK-cell-mediated
elimination, which is in the case of CD4Cre Nlrc5fl/fl mice
potentiated by the strikingly decreased levels of MHCI35.

CD4cre Nlrc5fl/fl mice reject ‘self’ Nlrc5� /� T cells. To further
dissect the mechanisms underlying the NK-cell-mediated
reduction of CD8þ T cells observed upon chronic LCMV
infection, we decided to test the rejection of ‘self’ Nlrc5-deficient
T cells by CD4Cre Nlrc5fl/fl mice in a classical rejection experi-
ment. In resting CD4cre Nlrc5fl/fl mice, negligible elimination was
measured (Supplementary Fig. 5a), in agreement with data pre-
sented in Fig. 4a. However, significant rejection was observed in
Poly(I:C)-primed CD4Cre Nlrc5fl/fl mice (Fig. 6a), albeit less as
compared with control mice. This was substantially mediated by
NK cells, as shown by NK-cell depletion, whose efficiency is
shown in Supplementary Fig. 5b. In contrast, negligible NK-cell-
mediated rejection of splenic Nlrc5� /� T cells was measured in
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Poly(I:C)-primed Nlrc5-deficient mice, although in some experi-
ments rejection in the range of 10% was observed (Supplementary
Fig. 5c). This indicates that self-tolerance was largely established
in Nlrc5-deficient mice, consistent with results in chronic LCMV
infection. Conversely, NK cells from CD4Cre Nlrc5fl/fl mice
became auto-aggressive under inflammatory conditions.

To corroborate that the activity of NK cells was directly
affecting also effector CD8þ T cells, we assessed the rejection of
in vitro activated Nlrc5� /� and control P14 T cells in Poly(I:C)-
primed CD4Cre Nlrc5fl/fl as well as Nlrc5� /� mice. Whereas
Nlrc5� /� P14 T cells were considerably rejected in control
recipients, efficient engraftment was observed in Nlrc5� /� mice,
supporting the idea that an almost complete tolerance
towards self was established in these mice (Fig. 6b). Corroborat-
ing our previous data, CD4Cre Nlrc5fl/fl mice robustly eliminated
Nlrc5� /� effector T cells, largely hindering their engraftment
(Fig. 6b). These results thus show that Nlrc5 deficiency on T cells,
reducing but not abolishing MHCI expression, allows NK cells
to maintain a high state of responsiveness and recognize
endogenous low levels of MHCI as ‘missing-self’ in an
inflammatory milieu.

Discussion
We show here the importance of NLRC5 in protecting T cells
from NK-cell cytotoxicity and—reciprocally—in shaping NK-cell
tolerance and phenotype. In fact, we could show that Ly49I
expression is modulated through sensing environmental and
NK-cell-intrinsic MHCI levels. This extends previous work
showing that high environmental MHCI levels negatively affect
NK-cell receptor expression30. Mechanistically, these results raise
the possibility that MHCI molecules stabilize Ly49I through
cis-interactions, thereby counteracting their downmodulation in
the presence of trans-interactions with MHCI26. However, the use
of NKcre Nlrc5fl/fl mice showed that NLRC5 expression in NK
cells is not essential to maintain responsiveness towards ‘missing-
self’ targets, suggesting that the observed phenotypical differences
are functionally not relevant.

Despite the extremely low MHCI levels exhibited by specific
cell subsets, NK cells from Nlrc5-deficient mice surprisingly
mediated largely effective missing-self responses. This underlines
that our model is distinct from previously described mosaic mice,
in which MHCI is totally absent on part of the cells28,36,37. Here

we found that 10–30% residual MHCI in selected cell subsets is
sufficient to maintain NK-cell responsiveness to a large extent,
inferring that MHCI levels in wild-type mice are in excess38.
Along this line, Nlrc5-deficient T cells are not eliminated when
transferred into resting wild-type hosts, indicating that NK cells
tolerate large fluctuations in MHCI levels.

In agreement with studies demonstrating that inflammation
increases the state of NK-cell responsiveness15,39–41, we show that
Nlrc5� /� splenocytes, T cells in particular, were rejected in
wild-type hosts upon inflammation or infection. Therefore, NK
cells are significantly less tolerant towards partial reductions in
MHCI levels under inflammatory conditions, explaining the
apparent excess in MHCI expression at steady state and
underlining the essential function of NLRC5 in T lymphocytes.

To address a physiologically more relevant question, we
wondered in how far elimination of Nlrc5� /� T cells occurred
in an endogenous system. Whereas T-cell-specific Nlrc5-deficient
mice were unable to establish complete self-tolerance, full
knockout animals induced it rather efficiently, in agreement with
the notion that the size of MHCI-negative population correlates
with tolerance induction26. Future research aimed at dissecting
the contribution of NLRC5 in additional cell subsets will help
detail quantitative and qualitative aspects of this process. Along
this line, previous findings demonstrated that lack of MHCI on T
cells was sufficient to establish complete NK-cell tolerance
towards MHCI-deficient cells26. Conversely, our data show that
Nlrc5� /� and CD4Cre Nlrc5fl/fl mice simultaneously host
educated NK cells and potential targets, a prerequisite for
breaking self-tolerance. To our surprise, NK cells raised in the
presence of Nlrc5� /� T cells, rejected endogenous Nlrc5� /�

T cells under inflammatory conditions, implying that a clear-cut
distinction should be made between low and absent MHCI levels
with regard to the establishment of NK-cell tolerance.

Our results also uncovered the existence of two NLRC5-
dependent pathways essential for CD8þ T-cell maintenance
during the chronic phase of LCMV infection in CD4Cre Nlrc5fl/fl

mice. First, NLRC5 sustains rare, exhausted antigen-specific
T cells, thereby controlling viral load, an extremely important
observation, which deserves future investigations. Second, Nlrc5
deficiency drives the NK-cell-dependent loss of the entire CD8þ

T-cell population. Indeed, NK-cell depletion rescued CD8þ

T cells globally, albeit effector cells to a smaller extent. Their
complete rescue was prevented by premature disappearance,
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which is the dominating effect caused by Nlrc5 ablation in effector
cells. Thus, differently from the commonly held view that NK
lymphocytes mainly attack effector T cells7–17, this phenomenon

likewise affects naive and activated subsets, as shown also in
classical rejection experiments. Notably, this leads to a
generalized CD8þ T-cell lymphopenia, which might favour
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superinfections both by depleting naive T cells and compromising
pregressed immunological memory against other pathogens.

Intriguingly, upon LCMV infection, CD4þ T-cell numbers
were only marginally altered, in spite of markedly reduced MHCI
levels1,2,6. Interestingly, expression of the NK-cell-activating
ligand CD54 was considerably higher on CD8þ T cells,
possibly explaining their increased susceptibility. Corroborating
the role of MHCI in this setting, the NK-cell-activating ligands
tested were only marginally altered by Nlrc5 deletion, in
agreement with our previous data showing in T cells the
specificity of NLRC5 for selected MHCI genes genome wide2.
We therefore speculate that the combined presence of an Nlrc5-
independent, increased susceptibility to NK-cell-mediated cell
death7–18 together with the Nlrc5-dependent reduced MHCI
levels leads to the preferential elimination of CD8þ T cells.

Rapid rejection of in vitro expanded cytotoxic T cells by
CD4Cre Nlrc5fl/fl mice corroborated the prospect that also
activated CD8þ T lymphocytes are targets of NK-cell-mediated
elimination and can be rescued by NK-cell depletion. Autologous
transfer of effector T cells is increasingly used in cancer
immunotherapy and often combined with administration of
interleukin-2 or other agents inducing inflammation42,43. Our
data suggest that incomplete NK-cell tolerance might affect
engraftment efficiency in such settings. Conversely, they also
indicate that NK cells can be better exploited in controlling
MHCI low tumours and graft-versus leukaemia settings if the
right inflammatory milieu is provided, in agreement with
previous findings on MHCI-negative tumours44. Our work
therefore encourages further research determining the impact
of these findings on antiviral responses or antitumoural
immunotherapies.

MHCI expression strongly varies among different tissues and
independent mechanisms regulating it are emerging45,46. In
humans, the range of functional NK-cell receptor–MHCI
interactions differs enormously due to the polymorphic nature
of these genes18,47 and the variable levels of MHCI and NLRC5
expression introduce an additional degree of complexity. This
intraindividual variability raises the question on how such
differing MHCI levels within an individual are considered
‘normal’ by NK cells. Elimination of endogenous cells by NK
cells has been attributed to the expression of activating receptors
on target cells. Yet, our data show that relatively low MHCI

expression on endogenous cells concurs to their rejection. Nlrc5
deficiency thus provides new insights into the fine-tuning of
NK-cell tolerance, which are likely to be relevant in modulating
immune responses in naturally arising or therapeutically induced
inflammatory conditions in humans.

Methods
Mice. Control mice (Nlrc5fl/fl) and Nlrc5� /� (ref. 1), CD45.1þ congenic, and
B2m� /� (purchased from Jackson Laboratories) on a C57BL/6 (H2b) background
were bred in the animal facility of the University of Lausanne. P14ab mice48 were
provided by D. Zehn and crossed onto Nlrc5� /� (C57BL/6 background). T- and
NK-cell-specific knockout mice for Nlrc5 were generated by crossing Nlrc5fl/fl to the
Cd4cre (purchased from Jackson Laboratories) or the Ncr1cre deleter strain33,
respectively. Nlrc5� /�on BALB/c (H2d, purchased from Harlan) background were
generated by backcrossing 10 times onto BALB/c in the animal facility of the
University of Lausanne. Sex- and age-matched 6–12-week-old mice were used.
Mice were treated in accordance with the Swiss Federal Veterinary Office
guidelines.

Cells and tissue preparation. Splenocytes from transgenic P14 mice were grown
in RPMI 1640 (Life Technologies) supplemented with 10% fetal calf serum
(FCS, from PAA), 100 U ml� 1 penicillin, 100 mg ml� 1 streptomycin, 1 mM
sodium pyruvate and 50 mM b-mercaptoethanol (all from Life Technologies), and
were incubated at 37 �C in 5% CO2 with 0.5 mM gp33 peptide (EMC). On day 4,
cells were split and human interleukin-2 supplemented at 10 ng ml� 1. RMA and
RMA-S cell lines were maintained in RPMI 1640 supplemented with 10% FCS,
100 U ml� 1 penicillin, 100 mg ml� 1 streptomycin and 50mM b-mercaptoethanol
at 37 �C with 5% CO2. For the preparation of tissues for qRT–PCR analysis, mice
were perfused with Heparin in PBS, organs isolated and put in RNAlater Solution
(Ambion), then processed in TriFast reagent (PEQLAB Biotechnologie GmbH)
using the TissueLyser according to the manufacturer’s instructions (Qiagen).

Human T- and NK-cell isolation. Peripheral blood mononuclear cells were
isolated by density centrifugation over a Ficoll-Hypaque gradient (LymphoPrep)
from peripheral blood of healthy human donors. T cells were enriched using a mix
of a-CD4 and a-CD8 magnetic beads (Miltenyi Biotech), NK cells were isolated
using the NK-cell-negative selection kit from StemCell Technologies (Grenoble,
France), according to the manufacturer’s recommendations. Untouched NK cells
were labelled with a cocktail of anti-CD3 (UCHT1, 1:100), CD14 (HCD14, 1:100),
CD19 (HIB19, 1:100), CD56 (HCD56, 1:100) and CD16 (3G8, 1:200) antibodies
(all from BioLegend). Live, CD3�CD14� CD19� , CD56dimCD16pos and
CD56brightCD16neg NK-cell subsets were isolated using fluorescence-activated cell
sorting (FACS Aria, BD Biosciences). Purity of isolated cells was always 495%, as
assessed by flow cytometry. Buffy coats were purchased from the Blood Trans-
fusion Center, Lausanne, Switzerland, and all subjects gave their written consent.

Flow cytometry. For flow cytometry analysis, cells were preincubated with
a-CD16/32 (2.4G2, 1:100) to block Fc receptors and then surface stained using
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antibodies against CD3e (145-2C11, 1:100), CD4 (L3T4, 1:300), CD8a (Ly-2,
1:600), CD11a (M17/4, 1:150), CD11b (M1/70, 1:250), CD11c (N418, 1:150),
CD16/32 (93, 1:400), CD18 (M18/2, 1:100), CD19 (1D3, 1:200), CD23
(B3B4, 1:100), CD27 (LG.7F9, 1:200), CD29 (eBioHMb1-1, 1:100), CD44
(IM7, 1:200), CD45.1 (A20, 1:100), CD45.2 (104, 1:100), CD49d (R1-2, 1:100),
CD62L (MEL-14, 1:300), CD48 (HM48-1, 1:150), CD54/ICAM-1 (YN1/1.7.4,
1:100), CD70 (FR70, 1:100), CD94 (18D3, 1:150), CD102/ICAM-2 (3CA, 1:100),
CD106/VCAM-1 (429, 1:100), CD122 (TM-b1, 1:100), CD155 (TX56, 1:150),
CD226/DNAM (10E5, 1:150), CD244/2B4 (eBio244F4, 1:150), CD305 (113, 1:150),
B220 (RA3-6B2, 1:200), DX5/CD49b (DX5, 1:100), E-Cadherin (DECMA-1,
1:150), H2-Db (28-14-8, 1:250), H2-Kb (AF6-88.5.5.3, 1:250), H2-Kd/Dd (34-1-2S,
1:150), Klrg1 (2F1, 1:200), Ly49A (A1, 1:100), Ly49D (4E5, 1:100), Ly49G2 (4D11,
1:300), Ly49I (YLI-90, 1:100), Mult1 (5D10, 1:75), NKG2D (CX5, 1:100),
NKG2A/C/E (20d5, 1:100), NK1.1 (PK-136, 1:100), NKp46 (29A1.4, 1:100),
Qa2 (69H1-9-9, 1:200), Rae1d (RD-41, 1:75) (all from eBioscience), H2-Ld

(28-14-8, 1:200), Ly49H (3D10, 1:100) and Ly49C/I (5E6, 1:100; from BioLegend).
The H-2Db–gp33 tetramer (1:100) was from TCMetrix. Streptavidin conjugated to
different fluorophores were from eBioscience. Stainings were performed with
appropriate combinations of fluorophores. Data were acquired with a Becton
Dickinson flow cytometer and analysed using FlowJo software (Tree Star).

Quantitative RT–PCR analysis. Total RNA was extracted using the TriFast
reagent according to the manufacturer’s instructions (PEQLAB Biotechnologie
GmbH). Annealing with random primers (Life technologies) was performed at
70 �C for 5 min, followed by retrotranscription to complementary (cDNA) with
M-MLV RT, RNase H(–) point mutant (Promega) and nucleotides (Roche
Diagnostics) by incubating at 40 �C for 10 min, 45 �C for 50 min and 70 �C for
15 min. cDNA was purified with the Wizard SV gel and PCR clean-up system
following the manufacturer’s instructions (Promega).

cDNA was quantified using the LightCycler 480 SYBR Green I Master (Roche
Diagnostics) on a LightCycler 480 machine (Roche Diagnostics). Standard cycling
was used (45 cycles of 95, 60 and 72 �C of 10 s each). Expression was determined
relative to the housekeeping genes as indicated. Data were analysed, and transcript
abundance (gene/housekeeping gene) and s.d. were calculated using the
LightCycler 480 software.

Primer sequences

Gene Forward Reverse

mNLRC5 50-TGGAGGAGGTCAGTTTGC-30 50-ATGCTCCTGATTGCTGTGTAG-30

H2-K 50-TTGAATGGGGAGGAGCTGAT-30 50-GCCATGTTGGAGACAGTGGA-30

H2-D 50-ACCCAGGACATGGAGCTTGT-30 50-GCTCCAAGGACACCCAGAAC-30

H2-M3 50-AGGAGATTCTTCAGCGAGCA-30 50-CTCTTCATCCTTCTGCCAGG-30

Ly49I 50-GACCAGAAAAACGCCAACTTTT-30 50-GTGACCTCCGGCTCATTCAT-30

hNLRC5 50-CAATTTGATGAGGAGGGCAC-30 50-GTGAGTAAGCAAGGCCAAGG-30

HLA-B 50-CTACCCTGCGGAGATCA-30 50-ACAGCCAGGCCAGCAACA-30

HLA-C 50-CAGTGCCCAGGGCTCTGATGA-30 50-CTGCATCTCAGTCCCACACA-30

Acidic treatment to assess masking of NK-cell receptors. Cells were washed
twice in PBS and resuspended for 1 min at room temperature in 1 ml citrate buffer
(0.133 M citric acid and 0.066 M Na2HPO4, pH 3.3). Treatment was stopped by
adding an excess of medium. After washing, cells were stained for flow cytometry
as detailed above.

In vivo NK-cell-mediated rejection. Recipient mice were pretreated or not 1 day
before cell transfer with 100 mg Poly(I:C) (InvivoGen) by intraperitoneal injection.
Then, 5–10� 106 splenocytes from B2m-deficient, Nlrc5-deficient and CD45.1þ

wild-type mice were injected intravenously into recipient mice. To distinguish
transferred target cell populations, labelling of cells with carboxyfluorescein suc-
cinimidyl ester (CFSE, Sigma) and CellTrace Violet (CTV, Life Technologies) was
performed in PBS 1% FCS at 37 �C at 2.5 mM for 8 min and 2 mM for 20 min,
respectively. Loss of target cells in the spleen was analysed 1 day (with Poly(I:C)
pretreatment) or 2 days (without pretreatment) after cell transfer, and is shown as
percentage of rejection normalized to the co-injected wild-type cells and to the
initial mix. In some mice, NK cells were depleted by intraperitoneal injection of
200mg of a-NK1.1 antibody (PK-136, purchased from BioXcell) 1–2 days before
cell transfer.

Tumour clearance in vivo. Mice were co-injected intraperitoneally with 106 RMA
(MHCIþ ) and 106 RMA-S (MHCI-) labelled with CFSE and CTV as described
above. In vivo tumour clearance was assessed at day 2 after transfer by flow
cytometry in peritoneal lavage. In some mice, NK cells were depleted as described
above.

Adoptive transfer of P14 CD8þ T cells and LCMV infection. Transgenic P14
CD8þ T cells were isolated with a-CD8a magnetic beads (Miltenyi Biotech).
Control (2� 103; Nlrc5wt/� ) and 2� 103 Nlrc5� /� P14 CD8þ T cells were

intravenously co-transferred into naive Nlrc5fl/fl mice. In some mice, NK cells were
depleted as described above. The LCMV clone 13 strain was propagated according
to an established protocol49. Frozen stocks were diluted in PBS and 2� 106 plaque-
forming units were injected intravenously into mice. For adoptive transfer
experiments with P14 cells, mice were infected 1 day after cell transfer. For
persistent infection of Nlrc5fl/fl and CD4Cre Nlrc5fl/fl mice, NK1.1 depletion by
intraperitoneal injection of 200mg of a-NK1.1 was started on day 5 after infection
and repeated every 7–9 days. Splenocyte suspensions from LCMV-infected mice
were ‘shock frozen’ to release the virus. Diluted samples were used for the infection
of Vero cells, and viral titres were determined by an LCMV plaque-forming
assay49.

Mixed bone marrow chimeras. Recipient mice were depleted of NK cells as
described above. BM from sex-matched donor mice was obtained by flushing
femurs and tibias and was mixed in a 1:1 ratio and a total of 8� 106 BM cells were
injected intravenously into recipient mice, which had been lethally irradiated with
900 rad. Mice were analysed not earlier than 6 weeks after reconstitution.

NK-cell transfer. Splenic NK cells were enriched using negative selection by
MACS (CD19�CD3� ; Miltenyi Biotech) or by the NK-cell isolation kit (Stemcell
Technologies), labelled with CFSE and CTV as described above, and B5� 105 cells
of each genotype injected intravenously into recipient mice. After 24 h, transferred
NK cells were analysed for the expression of the NK-cell receptor repertoire.

Statistical analysis. Statistical analyses were performed using Prism software
(GraphPad version 5.0). The Student’s t-test (unpaired, two tailed) was used to
compare the significance of differences between experimental groups. Correlations
were evaluated using Pearson correlation analysis. Differences were considered
significant when Po0.05 (*), very significant when Po0.01 (**) and highly
significant when Po0.001 (***).
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(a) The histogram overlay shows a representative mouse from Nlrc5!/!, Nlrc5-/-, CD4cre Nlrc5!/!, and NKcre Nlrc5!/! strains 
for H2-K expression. H2-K and H2-D expression were assessed on splenic NK cells, CD8+, and CD4+ T cells. Mean ± SEM of MFIs 
of n = 4-6 mice per group are illustrated. (b) Left panel: percentages of CD122+ cells are shown in the BM for Nlrc5!/!, Nlrc5-/-, 
and CD4cre Nlrc5!/! mice. Right panel: the development of NK cells is depicted as percentages of precursor (NKp, 
CD3−CD122+NK1.1−DX5−), immature (iNK, CD3-CD122+NK1.1+DX5−), and mature NK cells (mNK, CD3−CD122+NK1.1+DX5+) 
in the BM as analyzed in the afore-mentioned genotypes. (c) Left panel: percentages of NK cells (NK1.1+CD3−CD19-) are 
depicted in the spleen for Nlrc5!/!, Nlrc5-/-, and CD4cre Nlrc5!/! mice. Representative cytometric pro"les of splenic NK cells 
stained with CD27 and CD11b (upper panel) and percentages of double-negative (DN, CD27−CD11b−), CD27 single-positive 
(CD11b−CD27+), double-positive (DP, CD27+CD11b+), and CD11b single-positive (CD27−CD11b+) populations (lower panel) 
are shown. Results represent mean ± SEM (n = 6-8 mice per group) and represent the pool of two independent experiments 
(b, c). (d) Representative cytometric pro"les of splenic NK cells stained for Ly49I and Ly49C/I in Nlrc5!/! and Nlrc5-/- mice. 
(e) Graphs depict percentages of Ly49I+ and Ly49C/I+ NK cells and MFI of Ly49I and Ly49C/I on the positive population for 
Nlrc5!/! and Nlrc5-/- mice. Results represent mean ± SEM (n = 4 mice per group) and are representative of three independent 
experiments (e). (f ) Nlrc5, H2-K, and Ly49I mRNA expression was quanti"ed relative to Hprt mRNA in FACS-sorted, 
CD3-CD19-NK1.1+, Ly49C/I- or Ly49C/I+ NK cells. Results depict mean ± SD (n = 3 replicates). (g) Nlrc5 mRNA expression in 
FACS-sorted CD56dim and CD56bright NK cells from healthy human donors. Results represent mean ± SEM (n = 3 donors). 
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Supplementary Figure 3. B2m-/- splenocytes are rejected by NKcre Nlrc5!/! mice.  
Rejection of B2m-/- as compared to wild type splenocytes was analyzed in the spleen of NK cell-depleted or not 
NKcre Nlrc5wt/wt and NKcre Nlrc5!/! mice two days after transfer. Wild type splenocytes were co-injected as control. 
Data is shown as percentage of rejection and represent mean ± SEM of n = 4 mice per group and results are 
representative of at least two independent experiments.
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Supplementary Figure 4. Further characterization of T and NK cells of CD4cre Nlrc5!/! mice in infected conditions.  
(a) Percentages of CD4+ T cells (gated on lymphocytes) in the blood over the course of LCMV clone 13 infection are illustrated for NK cell
-depleted or not Nlrc5!/! and CD4cre Nlrc5!/! mice. (b) Percentages and absolute numbers of splenic CD4+ T cells are depicted at day 
60 p.i.. Results show a pool of two experiments representing mean ± SEM (n = 7-13 mice per group) and are representative of three 
independent experiments (a, b). Statistical di!erences are depicted between CD4cre Nlrc5!/! and Nlrc5!/! or NK-depleted CD4cre 
Nlrc5!/!, respectively, when signi"cant (a, b). (c) Percentages and absolute numbers of splenic CD8+ T cells in Nlrc5!/! and Nlrc5-/- mice, 
depleted or not of NK cells, are depicted for day 66 p.i.. Results show a pool of two experiments representing mean ± SEM (n = 9-11 mice 
per group) and are representative of four independent experiments. Dotted line indicates the expected percentage of CD8+ T cells in 
Nlrc5-/- mice. Statistical di!erences are depicted between Nlrc5-/- and Nlrc5!/! or NK-depleted Nlrc5-/-, respectively (c). (d) LCMV clone 
13 viral titers in the spleens at day 60 p.i. of NK cell-depleted or not Nlrc5!/! and CD4cre Nlrc5!/! mice. PFU, plaque-forming units; 
dotted line, limit of detection. Results show a pool of two experiments showing mean ± SEM (n = 6-13 mice per group). (e-g) Percentages 
of NK cells and expression analysis of the indicated activating (e), inhibitory (f ), and dual function receptors (g) on NK cells 
(NK1.1+CD3-CD19-, for NK1.1 expression on NKp46+CD3-CD19-) as percentage of positive population (for biphasic expression) or as MFI 
(average MFI of control mice was set at 100%) in the spleen of Nlrc5!/!, CD4cre Nlrc5!/!, and CD4cre Nlrc5wt/wt mice infected with 
LCMV for 48 days. Results represent mean ± SEM (n = 6-10), are the pool of two independent experiments, and only signi"cant di!erences 
are depicted (e-g). (h) H2-K expression as MFI was analyzed on CD8+ cells during the course of an LCMV infection in the blood of Nlrc5!/! 
and CD4cre Nlrc5!/!, depleted or not of NK cells. Results represent mean ± SEM (n = 3-6) and are representative of two independent 
experiments. -NK, depleted of NK cells.
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Supplementary Figure 5. Rejection of Nlrc5-de!cient T cells in CD4cre Nlrc5!/! and Nlrc5-/- mice. 
(a) Rejection of Nlrc5-/- splenocytes (left panel) and Nlrc5-/- CD3+ T cells (right panel) was analyzed in the spleen two days 
after transfer into Nlrc5!/!, CD4cre Nlrc5!/!, and NK cell-depleted Nlrc5!/! mice. (b) NK cell percentages were analyzed in the 
spleen of NK cell-depleted or not Nlrc5!/!, CD4cre Nlrc5!/!, and CD4cre Nlrc5wt/wt mice, in which rejection of Nlrc5-/- CD3+ T 
cells was analyzed (Fig. 6a). (c) In vivo killing of Nlrc5-/- CD3+ T cells was analyzed in the spleen one day after transfer into 
NK cell-depleted or not Nlrc5!/! and Nlrc5-/-, pretreated with Poly(I:C) one day before cell transfer. Wild type splenocytes 
were co-injected as control (a-c). Data is shown as percentage of rejection and represent mean ± SEM of n = 4 mice per 
group (a) and results are representative of at least two independent experiments (a) and n = 12-15 mice per group and is 
a pool of two experiments (c).
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