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Abstract 

Inflammatory musculoskeletal diseases represent a group of chronic and disabling conditions that evolve from a com‑
plex interplay between genetic and environmental factors that cause perturbations in innate and adaptive immune 
responses. Understanding the pathogenesis of inflammatory musculoskeletal diseases is, to a large extent, derived 
from preclinical and basic research experiments. In vivo molecular imaging enables us to study molecular targets and 
to measure biochemical processes non-invasively and longitudinally, providing information on disease processes and 
potential therapeutic strategies, e.g. efficacy of novel therapeutic interventions, which is of complementary value next 
to ex vivo (post mortem) histopathological analysis and molecular assays. Remarkably, the large body of preclinical 
imaging studies in inflammatory musculoskeletal disease is in contrast with the limited reports on molecular imaging 
in clinical practice and clinical guidelines. Therefore, in this EANM-endorsed position paper, we performed a system‑
atic review of the preclinical studies in inflammatory musculoskeletal diseases that involve radionuclide imaging, 
with a detailed description of the animal models used. From these reflections, we provide recommendations on what 
future studies in this field should encompass to facilitate a greater impact of radionuclide imaging techniques on the 
translation to clinical settings.
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Introduction
Inflammatory musculoskeletal diseases represent a 
group of chronic and disabling conditions with a major 
impact on patients’ quality of life and with a high socio-
economic impact [1–3]. These conditions evolve from a 
complex interplay between genetic and environmental 
factors that cause perturbations in innate and adaptive 
immune responses. The altered activity in stromal and 

supportive tissue components ultimately progresses to 
clinically overt disease [1, 2, 4].

Understanding of the pathogenesis of inflammatory 
musculoskeletal diseases is not only based on clinical 
findings but, to a large extent, derived from preclinical 
and basic research experiments. For example, in transla-
tional rheumatoid arthritis research, animal models have 
proved to be essential in testing hypotheses, novel thera-
peutics and involved components of the immune system 
[5]. The previous literature has set out the specifications 
of available animal models in rheumatoid arthritis [6–8], 
systemic lupus erythematosus [9–11], scleroderma [12] 
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and osteoarthritis [13]. These reviews provide a rationale 
for choosing a preclinical model to investigate therapeu-
tic interventions; this could be based on stage of disease 
development, genetic and immunological background of 
these models and method of induction of autoimmun-
ity. In addition, the disease phenotype, e.g. mono- versus 
polyarthritis, first occurrence of symptoms, and initial 
induction versus re-challenge models, together deter-
mines which research questions can appropriately be 
addressed in a particular disease model. To date, a com-
prehensive experimental evaluation of available models 
based on uniform and in-depth analysis, which would 
provide a framework for researchers to decide which ani-
mal model matches their research questions best, is lack-
ing [14–16]. Moreover, no preclinical disease model can 
fully reflect the complexity of the human disease [17].

In addition to ex  vivo histopathological analysis and 
molecular assays based on blood and joint fluids, as 
illustrated in detail below, in  vivo molecular imaging 
enables to study molecular targets non-invasively and 
longitudinally, providing complementary data on patho-
logical processes and potential therapeutic strategies. For 
inflammatory musculoskeletal disease, tracers have been 
developed that target specific immunological pathways 
[e.g. tumour necrosis factor α (TNF α α)], immune cell 
populations that were hypothesized to play a role in the 
pathogenesis of inflammatory musculoskeletal diseases 
(e.g. macrophages) or stromal components involved in 
tissue destruction or repair (e.g. bone turnover, fibro-
blasts). Other tracers allow researchers to visualize 
the presence and dynamics of a therapeutic target [e.g. 
99mTc-3PRGD2 targeting angiogenesis during treatment 
with anti-vascular endothelial growth factor (VEGF) 
monoclonal antibody] or are designed to monitor disease 
activity (e.g. 18F-FDG to measure glucose metabolism). 
However, similar considerations as in interventional 
studies arise when interpreting imaging data in small ani-
mal models on inflammatory musculoskeletal diseases. 
For example, in arthritis disease models, K/BxN mice and 
SKG mice spontaneously develop B- and T-lymphocyte-
dependent arthritis, indicating a role for major histo-
compatibility complex (MHC) class II presentation [18]. 
However, human TNF α transgenic mouse models also 
spontaneously develop arthritis, but it was developed in 
H-2K and H-2B haplotypes, which, in fact, puts the role 
of MHC class II presentation into question. Furthermore, 
crossing these transgenic mice with Ras-related C3 botu-
linum toxin substrate 1 (RAG-1) knockout mice results 
in erosive arthritis, but, again, without involvement of 
B- or T-lymphocytes [19]. It is therefore still question-
able which preclinical models accurately depict the devel-
opment of arthritis in humans, those with or without 
B- or T-lymphocyte involvement? Equally, the RAG-1 

knockout model displays high titres of rheumatoid factor 
and auto-antibodies specific for type II collagen and 70 
kilodalton heat shock protein (hsp-70), with no antibod-
ies for double-stranded DNA, resembling lupus. On the 
contrary, interleukin 1 beta (IL-1β receptor antagonist-
deficient mice generated on a BALB/c background) also 
develops antibodies against type II collagen, but, unlike 
the TNF α transgenic mouse, not IgM rheumatoid factor; 
they develop antibodies against double-stranded DNA 
instead [20]. These examples demonstrate that differ-
ent disease phenotypes were generated when pleiotropic 
cytokines such as TNF α and IL-1β were modulated. Such 
challenges illustrate that developing molecular imaging 
tracers which specifically target immune cell populations 
or inflammatory mediators requires understanding of the 
characteristics of small animal models for interpretation, 
validation and translation of the imaging findings.

The large body of preclinical studies in inflamma-
tory musculoskeletal diseases is in remarkable contrast 
with the limited role of molecular imaging in informing 
and influencing clinical practice and guidelines in these 
diseases. Our aims are therefore to (1) systematically 
review the literature on molecular radionuclide imag-
ing studies in preclinical models of inflammatory mus-
culoskeletal diseases and (2) stimulate discussion on the 
most appropriate use of molecular imaging tools in the 
field of inflammatory musculoskeletal diseases. In this 
EANM-endorsed position paper, we thus performed a 
systematic review of the studies in inflammatory mus-
culoskeletal diseases that involve radionuclide imaging, 
with a detailed description of the animal models used. 
From these reflections, we provide recommendations 
on what future studies in this field should encompass to 
facilitate a greater impact of radionuclide imaging tech-
nique on translating insights in disease and novel treat-
ments to clinical settings.

Methods
Search strategy
To identify all relevant publications, a systematic 
search was performed using the databases PubMed 
and Cochrane Library for the period 5 March 2009 to 4 
February 2020. The following search terms were used: 
(“animal” OR “preclinical” OR “pre-clinical” OR “experi-
mental” OR “rat” OR “rats” OR “mouse” OR “mice” OR 
“rabbit” OR “rabbits”) AND (“imaging” OR “PET” OR 
“SPECT” OR “SPET” OR “tomography”) AND (“arthritis” 
OR “osteoarthritis” OR “scleroderma” OR “systemic scle-
rosis” OR “gout” OR “SLE” OR “lupus” OR “rheumat*”).

Selection process
Three reviewers (ST, EN, EA) independently screened all 
potentially relevant abstracts for eligibility obtained from 
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the database search. Both studies with and without inter-
vention were included; additional inclusion criteria were:

(a)	 Original data, i.e. no reviews, editorials, letters, and 
comments.

(b)	 The study investigated the performance of preclini-
cal PET, PET/CT, SPECT or SPECT/CT systems.

(c)	 The study involved mouse, rat or rabbit species.

 Full-text articles of these selected records were obtained 
and reviewed; in this step, records were excluded when 
no English version of the manuscript was available or 
when preclinical imaging studies followed radioactive 
drug or induction agent biodistribution rather than dis-
ease processes. Differences in judgment were resolved by 
consensus.

Results
Search results
The literature search generated a total of 1290 records, 
of which 1203 were excluded based on the initial screen-
ing of the abstract. Main reasons for exclusion were 
(a) no original study (n = 144), (b) no SPECT or PET 
imaging involved (n = 787), (c) no relevant preclinical 
model (n = 12) or (d) a combination of previous factors 
(n = 170). The full text of the remaining 87 records was 
screened for eligibility. An additional 6 abstracts were 
excluded because of (a) no full text available in English 
(n  = 1) or (b) no preclinical radionuclide imaging of dis-
ease, instead imaging of drug, induction agent or another 
process (n =  5) (Additional file  1: Figure S1). A total of 
81 studies were included in this review. The Cochrane 
Library search yielded no relevant additional results. No 
additional records were identified from references in the 
selected articles.

Other imaging modalities used in preclinical models 
(excluding radionuclide PET/SPECT) were microCT and 
X-ray (n = 405), optical imaging techniques (n = 251), 
MRI (n = 144), ultrasound (n = 36), photoacoustic imag-
ing (n = 13), electron microscopy (n = 9), spectral CT 
(n = 6), atomic force microscopy (n = 3) and fluorometric 
imaging (n = 1). Several studies had more than one alter-
native imaging modality.

The animal models used in the 81 studies included in 
this review were, respectively, a mouse model (n = 44), 
rat model (n = 31) and rabbit model (n = 6). In Additional 
file  2: Tables S1, Additional file 3: Tables S2, Additional 
file 4: Tables S3, a data summary of the selected reports 
is provided, including type of disease, induction method, 
strain, age and gender of animals, imaging study size and 
design, imaging target and modality, radionuclide, tracer, 
presence or absence of baseline and follow up imaging, 

correlative outcome measure, whether imaging was of 
whole body or joints only and main findings.

Notably, no radionuclide imaging studies meeting the 
inclusion criteria were reported for preclinical models of 
scleroderma, gout and lupus.

Strains and triggers of inflammatory musculoskeletal 
disease
In mouse studies, wildtype DBA/J, C57/Bl6 and BALB/c 
mice were the most commonly used strains, or vari-
ants with specific mutations in relation to the patho-
logical process that is under investigation in these 
studies (Fig. 1). The variation in rat models is much less 
and dominated by Wistar, Sprague–Dawley and Lewis 
strains, but no studies using genetically engineered vari-
ants were included (Fig.  2), although transgenic human 
leukocyte antigen B27 (HLA-B27) rat models are avail-
able [21]. All included studies on rabbit models used New 
Zealand White rabbits (Fig. 3).

Across the three most commonly used strains, colla-
gen-induced arthritis (CIA) and glucose-6-phosphate 
isomerase (G6PI)-induced arthritis were most prevalent, 
with the combination of DBA/J mice with CIA ranking 
first (n = 17 studies). In general, the variety in triggers, 
whether or not being in combination with a specific 
mouse strain, resulted often in unique experimental 
set-up in 10 out of 17 analysed studies in mice (Fig.  1), 
which precludes comparative analyses. Rheumatoid 
arthritis was the most prevalent disease under investiga-
tion, while osteoarthritis was studied in only one report 
[22]. This interventional study in C57Bl/6 mice in which 
osteoarthritis was induced through destabilization of the 
medial meniscus used [68 Ga]Ga-c(RGDfK) PET imaging 
to assess response to treatment with an anti-CD47 anti-
body or αvβ3 integrin antagonist or focal adhesion kinase 
(FAK) inhibitor.

In contrast with studies in mice, more osteoarthri-
tis research was carried out in rat models. Out of these 
31 studies, 11 studies included osteoarthritis mod-
els and 21 studies used a rheumatoid arthritis model, 
while one study included both arthritis models [23]. As 
in the mouse models, CIA proved a popular method to 
induce rheumatoid arthritis in Lewis or Sprague Dawley 
rats (Fig. 2). Rheumatoid arthritis in rats was also often 
caused by injection of methylated bovine serum albumin 
(mBSA) in Wistar rats. For the induction of osteoarthri-
tis, several options without clear superiority were avail-
able, including mechanical induction (damaging bone), 
use of mono-iodoacetate (MIA) and locally injected 
papain with exercise of rats to put pressure on affected 
joints and increase arthritic symptoms and scores (Fig. 2). 
Only the studies describing papain-with-exercise models 
of arthritis were consistently reported in Wistar rats. The 
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Fig. 1  Sankey diagram illustrating the landscape of imaging studies performed in mouse models of inflammatory musculoskeletal diseases by 
summarizing the interconnections between used mouse models, inflammatory triggers, study designs, imaging targets and tracers. Each line 
corresponds to one experimental study arm. Apart from dominant models DBA/J-wt and C57/Bl6-wt and collagen-induced arthritis (CIA) as trigger 
in observational studies, there is a large heterogeneity in terms of triggers, interventions, imaging targets and tracers, resulting in a manifold of 
single studies with unique combinations. Interactive version of this figure is available at ??? (to be hosted on journal website)

Fig. 2  Overview of rat models used (a), the type of interventions reported (b) and the imaging tracers and targets described in these studies (c, d)
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latter can be explained since these four studies were car-
ried out by the same research group [24–27].

The rabbit models consisted mostly of lipopolysac-
charide (LPS)-induced arthritis (3 studies from the same 
group), Staphylococcus aureus (1 study), PHA (1 study)-
induced arthritis or autologous blood induced arthropa-
thy (1 study).

Mouse models mostly consisted of young mice mainly 
between 8 and 12 weeks of age, but with a broad range 
from 4  weeks up to 20  weeks of age. Notably, 7 studies 
did not report the age of the mice used (Fig. 4). Rats were 
mostly used between 8  weeks (or 200  g) to 16  weeks. 
For rabbit models, age was reported in only two studies, 
ranging from 5 to 10 weeks, or in body weight (four stud-
ies), ranging from 1.5 to 3.8 kg.

Across different species, male subjects were mostly 
used, and mixed sexes were only reported in mouse 

Fig. 3  Overview of the type of interventions reported in New Zealand White rabbits (a) and the imaging tracers and targets described in these 
studies (b, c)

Fig. 4  Age distribution of animals used in imaging inflammatory 
musculoskeletal studies. Seven studies did not report the ages of 
animals used

Fig. 5  Sex distribution of animals used in imaging inflammatory musculoskeletal disease research
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models (Fig. 5). Notably, the information on sex was not 
available in 6 mouse, 1 rat and 1 rabbit model.

Study intervention
Of the 44 publications using mouse models, 50% were 
purely observational (Fig. 1). As part of the remaining 22 
studies, a total of 27 interventional studies were carried 
out with imaging used to assess response to therapies 
including corticosteroids (e.g. dexamethasone, predniso-
lone or prednisolone encapsulated in liposomes, n = 6), 
anti-tumour necrosis factor α TNFα; n = 4), non-steroi-
dal anti-inflammatory drugs (NSAIDs; n = 3) or ceftriax-
one (n = 2).

61% of the studies in rat models were observational 
(Fig.  2); in the interventional studies, there was a large 
variety in therapeutic interventions: 10 different inter-
ventions in 13 study arms, with methotrexate (n = 3) 
and TNFα-directed (n = 2) treatments mostly used. Two 
studies on rabbit models were observational, and the 
remaining 4 investigated the effects of bioceramics, plant 
extracts or glucose injections (Fig. 3).

Imaging targets and tracers
Imaging targets and tracers in mouse models were 
highly variable, with glucose metabolism being tar-
geted in 20 of 55 reported study arms (Fig.  1). Imaging 
extracellular matrix components (e.g. targeting hydroxy 
apatite, fibrous tissue or proteoglycans) (n = 10) and mac-
rophages (e.g. targeting mannose receptor or cell surface 
markers) (n = 8) were also common targets. Radionu-
clide imaging tracers also varied although [18F]FDG was 
most prevalent (n = 20), followed by sodium[18F]fluoride 
(n = 4) and anti-fibroblast activation protein antibody 
28H1 (n = 3). Five study arms targeted αvβ3 integrin, 
each using a different RGD peptide or small molecule 
(avebetrin). Tracers that acted as controls, e.g. radiola-
belled isotype control antibodies, were not included. In 
rat models, an opposite trend was observed (Fig. 2); the 
dominant target was macrophages (n = 20/38), either tar-
geted by tracers specific for the folate receptor (n = 9/38 
study arms, exploiting 4 different tracers), mitochondrial 
metabolism (n = 10/38, 4 different tracers) or the scaven-
ger receptor CD163 (n = 1 study). In rabbit models, most 
studies used [18F]FDG to target inflammation-related 
glucose metabolism (n = 5/7 study arms) (Fig. 3).

Complementary methods to assess disease outcome
In preclinical models, clinical scores, such as paw or joint 
size by calliper or visual scoring of paw inflammation, 
taking into account both joint size and colour/soreness, 
and immunohistochemistry (IHC) were by far the most 
commonly reported read-outs for complement imaging 

findings, followed by flow cytometry, enzyme-linked 
immuno-sorbent assay (ELISA) and polymerase chain 
reaction (PCR). Few studies assessed arthritis scores 
through another imaging modality, e.g. microCT, MRI 
or ultrasound imaging (Fig. 6). Figure 7 shows that in the 
majority of studies included up to 3 methods comple-
mentary to radionuclide imaging was used to assess dis-
ease outcome.

Inclusion of whole body images in publications
Unfortunately, only 64% of the forty-two mouse model 
studies and only 33% of the thirty rat model studies 
which included images in the manuscript were whole-
body images. This is considered a caveat when it comes 
to assessing background signal and in vivo distribution of 
the tracer.

Discussion
This systematic review describes current molecular 
imaging tools in place for preclinical research on inflam-
matory musculoskeletal diseases. Although it is impera-
tive to understand the characteristics of existing models, 
as reviewed previously [28, 29], it is beyond the scope of 
this review to provide an in-depth discussion on what 
model should be employed for which research question. 
Instead, we reflect on current practice and provide rec-
ommendations that should facilitate and divulge the use 
of molecular imaging tools to further progress the field 
of inflammatory musculoskeletal diseases [30, 31], as also 
previously attempted in a recently published consensus 
[32].

In general, the number of analysed studies using rab-
bit models was very limited and the observations and 
recommendations below are therefore based mainly on 
the analyses of mouse and rat studies. Also, despite the 
potential of large animal models to bridge preclinical 
research in rodent models to human studies [33, 34] and 
to enable advanced quantification methods/tools (e.g. 
repeated blood sampling possible to aid pharmacokinet-
ics), their current use appears to be limited. This might 
be due to the complexity in terms of housing, longer life 
spans of larger animals; it could, however, provide an 
opportunity: joint size and cartilage thickness are more 
similar to humans. Bone remodelling in sheep, pigs, dogs 
closely resembles humans in terms of tissue macro- and 
microstructure and composition, biochemical proper-
ties and mineral density. Moreover, these large animals 
(and rabbits) need scanning on clinical PET and SPECT 
systems, whereas small animal PET and SPECT systems 
have fairly different technical specifications that hamper 
direct translation of preclinical imaging findings to clini-
cal systems. Equally, the acute nature of inflammation 
induced in most young animals and the fact that no one 
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mechanism and model can fully represent chronic arthri-
tis found in humans also throw into question the trans-
latability of findings to the clinic.

Another general comment is no studies provided a 
statistical substantiation of the number of animals used. 

The ideal number of animals should be limited for ethi-
cal reasons, but high enough to ensure an accurate dis-
criminative power. Particularly the latter is in general not 
stated or discussed, although it would have been consid-
ered when filing work protocols at local preclinical eth-
ics committees. A potential source of bias in the selection 
of studies for analyses is the general omission that stud-
ies with negative findings tend to be less often reported 
[35]. Although a few publications report their negative 
findings in the field of rheumatoid diseases, e.g. [36], it 
is most likely that negative imaging studies in also this 
field are underreported. Lastly, a systematic assessment 
of the quality of studies, similar to the Quality Assess-
ment on Diagnostic Accuracy studies (QUADAS-2) tool 
for evaluating clinical studies [37], was not possible as 
many reports lacked sufficient details to assess all items 
and compare studies.

We found large heterogeneity with respect to the 
genetic background, age and sexes of the strains used, 
often resulting in unique combinations of strains, model 
of inflammation and tracer used by a research group to 
target a pathological pathway. Apart from genetic dif-
ferences as mentioned above, these differences might 
also concern pathophysiological mechanisms under 
evaluation, such as fibrosis [38] and angiogenesis 
[39], and therefore deserve specific attention in tracer 

Fig. 6  Modalities employed as read-out for imaging findings. EMSA stands for electrophoretic mobility shift assay

Fig. 7  Number of read-outs used per study in preclinical 
inflammatory musculoskeletal research
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development. In our analysis, only a minority of studies 
used 2 strains to substantiate their findings, 5/44 mouse 
studies [40–44] and 1/31 rat studies [45].

We recommend validating the diagnostic accuracy of 
a tracer in different strains and considering include both 
sexes. Acknowledging the amount of work associated 
with setting-up models (regulatory issues, licenses, ani-
mal welfare office), building a standard of reference and 
gaining expertise/experience in a particular model, it can 
be challenging to house multiple models per research 
group. Hence, we would like to suggest that research 
groups, as an alternative, collaborate with partners, who 
are acquainted with a complementary model. Such col-
laborative multi-centre studies would not only avoid het-
erogeneity in terms of housing, diet, stress and methods 
of anaesthesia [46–48], but could also enhance the appli-
cability of the imaging tracers when tested in multiple 
disease models. As each institute has its unique facilities 
and each research groups has its expertise, we encourage 
collaborations via existing platforms (e.g. European infra-
structure for translational medicine EATRIS, https://​eat-
ris.​eu) or via scientific communities such as the EANM 
to combine these complementary capacities and jointly 
increase the impact of our research.

Although 14/81 studies compared different imaging 
tracers [42, 49–61], quantitative details on the sensitivity, 
diagnostic accuracy and resolving power of a molecular 
imaging tracer to interrogate a particular pathophysio-
logical feature are insufficient to conclude on the further 
use of these tracers. Instead, multiple proprietary tracers 
are developed for the same target. For example, five stud-
ies exploited a tracer targeting αvβ3 integrin, two inter-
ventional studies [52, 56] and three observational studies 
[62–64]. Together, these studies were on the background 
of DBA/1 mice or C57Bl/6 mice [39], and each used a 
different trigger to induce inflammation. Thus, although 
five individual studies were reported, the question how 
to non-invasively target αvβ3 integrin expression best 
remains unanswered. It appears that, as a scientific com-
munity, we rather design and study a new tracer that 
targets the same process, than put effort in proceeding 
towards clinical translation or addressing pressing ques-
tions in the field of drug development.

Moreover, validation of the diagnostic accuracy of a 
tracer is in most studies limited to immunohistochem-
istry and clinical score. Immunohistochemistry is a 
powerful tool, as it preserves the spatial information 
of tissue components, but rarely, or never, did groups 
report the use of (micro-)autoradiography to directly 
link radioactive signal intensities to specific tissue 
markers that are subsequently detected by co-regis-
tered IHC stainings. Other high-throughput molecular 
data modalities are hardly employed to cross-validate 

imaging findings, e.g. CyTOF metabolomics or prot-
eomics. Also, none of the studies used radioactive flow 
cytometry to validate targeting of specific immune cell 
populations, which would be highly informative given 
the mobile and dynamic nature of immune cells. Flu-
orescence-activated cell sorting (FACS) and ELISA are 
the workhorse methods in the domains of immunologi-
cal in vitro and preclinical studies. These immunologi-
cal assays allow a quantitative in-depth analysis of the 
current functional status of particular cell populations, 
receptors or metabolic pathways at great sensitivity. 
These functional assays of isolated cell populations 
are complementary to the data on whole-body locali-
zation and disease staging derived from in  vivo imag-
ing. Cross-validating imaging findings with functional 
immunological assays would not only aid in the inter-
pretation of imaging but potentially also in a better 
understanding its limitations. For example, several 
molecular imaging tracers have been designed to target 
the presence of macrophages at various stages of dis-
ease [65]. However, macrophages are highly plastic and 
long-lived cells with a plethora of functions in inflam-
matory responses ranging from inflammatory and 
antigen-presentation to immune suppressive or wound 
healing phenotypes [66, 67]. Thus, merely demonstrat-
ing macrophages in  vivo using imaging does provide 
information on the presence, localization and dynam-
ics of these cells, but not on the functionality per se. 
The fact that only 16% and 3 of mouse and rat studies, 
respectively, used FACS and 16% and 6% of mouse and 
rat studies, respectively, used ELISA as a validation tool 
showcases the lack of methodological sharing between 
imaging scientists and immunologists. We would there-
fore encourage imaging scientists to consider incorpo-
rating immunological assays in their future studies.

Given the large and growing variety in potential models 
[68], we recommend defining a relevant outcome meas-
ure in inflammatory musculoskeletal diseases in con-
sensus, involving multiple stakeholders, e.g. clinicians, 
pharmaceutical companies and regulatory bodies, on the 
relevant pathophysiological endpoints.

In relation to the abovementioned comment, only few 
studies report on the continuation to clinical applications 
based on their preclinical work. In contrast, many reports 
conclude remarking that a particular tracer indeed visu-
alizes the disease process, but refrain from commenting 
on the respective sensitivity, specificity, good manufac-
turing practices (GMP) compatibility or other tracer fea-
tures relevant for further translation.

Many parallels can be drawn from imaging applications 
in the domain of oncological and immune oncological 
research, as there is also a pressing need to interrogate 
the dynamics and in  vivo distribution of the immune 

https://eatris.eu
https://eatris.eu
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system when therapeutically targeted. Aspects of the pre-
viously proposed roadmap in immune oncology could be 
implemented to push molecular imaging as an indispen-
sable biomarker tool for inflammatory musculoskeletal 
disease research [69].

In the reported studies, raw acquisition data or ana-
lytical data on, for example, volume-of-interest delinea-
tion and image quantification were largely lacking. None 
of the reported studies have reported having stored 
their data in an open access repository. In addition, 
most studies report mean ± standard deviation of their 
experimental data, instead of individual data points even 
though small numbers of animals per study condition are 
investigated.

We strongly recommend gearing up, together with 
other ‘big data’ disciplines such as genetics, biologists and 
immunologists, and endorse the findability, accessibility, 
interoperability and reuse (FAIR) principles [70], working 
towards a widely shared open access policy. This not only 
calls out to individual research groups, but also accosts 
our scientific communities, our editors, our funding 
agencies and regulatory bodies. Such accessible reposi-
tories could facilitate the re-use of imaging data for ret-
rospective comparisons or smarter design of trials with 
re-used data for control arms, which addresses the com-
ments above on the lack of comparative studies. Moreo-
ver, as the FAIR principles should apply not only to ‘data’ 
in the conventional sense, but also to the algorithms for 
co-registration and quantification, we envision that such 
efforts also serve faster and easier exchange of expertise 
regarding immunological assays and technologies that 
can be used to validate imaging findings (Box 1).
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