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Abstract

With the spread of the “omics” sciences, the approaches of
systems biology can be considered as new paradigms of
pharmacological research for discovery of novel targets and/or
treatments for complex multifactorial diseases. Data from
omics sciences can be used for the design of biologic net-
works, that in turn can be quantitatively analyzed to identify
new pharmacological targets. In this review, we will introduce
the concept of network pharmacology, particularly the appli-
cation of this innovative approach in the field of ocular phar-
macology, with a focus on retinal diseases such as diabetic
retinopathy (DR), age-related macular degeneration (AMD)
and glaucoma.
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Network pharmacology
Canonical research and development (R&D) studies
in pharmacology are longitudinal and are thus charac-
terized by a first step of pharmacological target identi-

fication and its validation followed by several steps of
screening mi(bi)llions of ligands for hit and lead iden-
tification, and finally efficacy and toxicity studies in vitro,
ex vivo and in vivo. At the end of the non-clinical process,
just one or a very small bunch of molecules would reach
the clinical trial phases, even though a stop could
happen any time during clinical drug development.
Most R&D processes, focused on a selective mechanism
of action, are mainly aimed at the design of drugs with
high selectivity toward one pharmacological target, to
minimize off-target effects and adverse events, and then

maximize intrinsic and clinical efficacy of the drug.
These consolidated R&D processes are strictly linked to
the Paul Ehrlich’s “Magic Bullet” concept, which states
that the perfect drug is one that goes straight to a spe-
cific target. Pharmacological studies based on this
concept have developed highly effective drugs, with
undeniable clinical advantages such as precision thera-
pies, and tumor-agnostic treatments [1].

On the contrary, looking at clinical experience in the
field of neuropsychopharmacology, and specifically

focusing on schizophrenia treatments, drugs with a
polypharmacological profile have shown clinical advan-
tages; e.g., drugs with high affinity towards two or more
receptors, such as second-generation antipsychotics,
have shown greater efficacy and safety compared to first
generation antipsychotics. The discovery of drugs with
polypharmacological profiles and specifically the dis-
covery of best pharmacological targets to design effec-
tive drugs would take advantage of systems
pharmacology approaches. Systems pharmacology,
network pharmacology, and quantitative systems phar-

macology can be considered as synonymous and are
tightly linked to systems biology: a holistic approach
(i.e., all-inclusive) which analyzes all elements of
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biological problems. Systems biology contrasts with
reductionist biology, that analyzes a biological problem
taking its elements apart and not altogether.

Specifically, systems biology analyzes a biological prob-
lem as a network of interactions at different scales, e.g.,
protein-protein in a cell type, cell-cell in a tissue, tissue-
tissue, organ-organ, system-system. Systems biology

directly exploits experimental data from omics sciences
such as genomics, transcriptomics, proteomics, metab-
olomics, and lipidomics. Big data from omics sciences
must be analyzed and screened at first through advanced
statistical and computational approaches, for example
through network computational approaches.

In this perspective, analysis of networks as models of
biological systems evidenced that the Ehrlich principle
of the “Magic Bullet” (e.g., perfect drug), targeting only
a specific pharmacological target in a biological network,

would be a limit, particularly for diseases with multi-
factorial and complex etiology, such as neuropsychiatric
and neurodegenerative diseases. In fact, large-scale
functional genomic studies on model organisms
evidenced that silencing of one gene led to defective or
pathogenic phenotypes only in 19% of cases. Addition-
ally, studies on eukaryotic organisms (yeast) have shown
that, over about 5900 tested genes, haploinsufficiency
(i.e., pathologic mutation in heterozygosis) was
evidenced only in the 3% of mutated genes in a single
copy of chromosomes [2]. Besides, these data are

coming from simple biological models, it has been
evidenced by functional genomic studies that organisms
are resistant to mutations or deletions due to redun-
dancy of coding gene’s functions, or due to compensa-
tory mechanisms that are conserved. At the
computational level, the biological robustness to single
gene mutations has been proven through analysis of
networks, representing biological systems. In fact, bio-
logical networks are scale-free networks, whose struc-
ture is maintained if a node (e.g., a gene, a protein, or a
pathway) is randomly deleted; but network stability is
compromised if a central element (e.g., a hub node or a

cluster of nodes) is deleted [1].

Thereby biological networks, that represent complex
multifactorial diseases, are resistant to single-node de-
letions. Thus, a complex disease would not be easily
treated with a drug that selectively binds one receptor.
Indeed, design of a highly selective drug toward one
pharmacological target for complex diseases can be
affected by attrition in the R&D processes that in turn
would lead to failure in the clinical trial phases. In this
perspective, the rational drug design could take advan-

tage of a polypharmacological approach, specifically of
the process of identification of more than one pharma-
cological target through analysis of the network, repre-
senting a given biological problem.
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Biological networks can be built starting from experi-
mental data (e.g., high throughput genomic, tran-
scriptomic data) or through thirty-party re-analysis of
data generated by others and deposited in free-access
databases, such as Gene Expression Omnibus database
(GEO) [3]. Third-party re-analysis is also defined as
reverse engineering approach, since after advanced sta-
tistical analysis (e.g., through GEO2R analysis) of

datasets (e.g., transcription analysis in pathological tis-
sues in comparison to controls) and identification of top
differential expressed genes (DEGs); these DEGs can
be input of an enrichment of analysis (e.g., through
GENEMANIA or STRING software). The enrichment
analysis is necessary to rebuild or retrieve new in-
teractions in the biological network that represent a
model of the disease. Analysis of node’s parameters,
such as network centrality, can be carried out with open-
access software, such as Cytoscape.

Network pharmacology and diabetic
retinopathy
Diabetic retinopathy (DR), a severe complication of
diabetes mellitus, is one of the major causes of irre-
versible vision loss [4]. Currently, there is an unmet
medical need in terms of pharmacological tools to
handle non-proliferative DR. In fact, pharmacological
treatments are approved for proliferative DR and spe-
cifically for diabetic macular edema (DME), a compli-
cation of diabetes caused by fluid accumulation in the
macula. Moreover, some patients are unresponsive to

the therapies such as anti-vascular endothelial growth
factor (VEGF), and steroids. Several factors are involved
in the etiopathogenesis of DR, so studies are still
needed for the identification of all genes and pathways
dysregulated in this disease. Network pharmacology,
combining systems biology with computational ap-
proaches, is able to identify gene-pathways networks
involved in DR and to observe the influence of drugs on
those pathways, revealing the molecular mechanism of
drug effect and providing new hints for drug develop-
ment. Different data have been presented regarding the
mechanism of action of an investigational drug, the tert-

butylhydroquinone (TBHQ), which has been found as a
good candidate for the treatment of DR, acting as an
antioxidant drug, since oxidative stress is a cause of
microvascular endothelial injury. In this study network
analysis was used to identify some targets, such as
MAPK8, RELA, ESR1, APP, NOS3, Rap1 signaling
pathway, arachidonic acid metabolism, VEGF signaling
pathway, and renin-angiotensin system, which are
strongly related to TBHQ treatment of DR [5]. In
another study, bioinformatics is used to investigate the
effect of Eriocauli Flos a Chinese herbal medicine, with

already known anti-inflammatory and anti-bacterial ef-
fects. GO enrichment and KEGG enrichment demon-
strated the anti-inflammatory effect of this extract by
reducing TNF-a, VEGF-A protein, and regulating AGE-
www.sciencedirect.com

www.sciencedirect.com/science/journal/14714892


Network and ocular pharmacology Lazzara et al. 3
RAGE and PI3K-Akt signaling pathways during diabetic
complications [6]. Another compound has been identi-
fied as good candidate for DR, Huperzine A (Hup A)
which is an alkaloid extracted from the Huperzia serrata.
The proteineprotein interaction (PPI) network for
common targets of DR was analyzed to predict potential
targets of Huperzine A. In this study, it has been
demonstrated that HSPB1 (HSP27) and apoptosis-

related proteins (Bax, Bcl-2, Caspase3) are influenced
by HupA, representing potential targets for DR treat-
ment [7]. Another study has identified a compound
active against oxidative stress in DR, the andrographo-
lide, a diterpenoid, and a component of traditional
Chinese medicine. Through transcriptomics and
network pharmacology based on an oxidative stress
model on retinal endothelial cells, the authors identified
18 candidates and they confirmed that andrographolide,
after in vitro validation, is able to regulate oxidative
stress, inflammation, cell-adhesion, and other mecha-

nisms unbalanced during DR [8]. The computational
systems biology approach has been also applied in
another study [3] where four different microarray
datasets have been analyzed, and transcriptomic analysis
was carried out comparing retinas of different animal
models of DR. This study has also analyzed two datasets
coming from clinical studies. The main pathways
involved in the etiopathogenesis of DR have been
identified from network approaches and were mainly
linked to inflammation and fibrosis. Moreover, G pro-
tein-coupled receptors (GPCRs), such as adrenergic

receptors, have been identified as intriguing pharma-
cological targets for treatment of DR. One of the con-
clusions of this study is related to identification of
ADR1D and ADR2C receptors as potential innovative
pharmacological targets for treatment of DR, but pre-
clinical studies need to be carried out to confirm in silico
data [3].
Network pharmacology and AMD
Age-related macular degeneration (AMD) is an ocular
degenerative disease which affects the macula, the
central area of the retina, leading to irreversible visual
loss [9,10]. Currently, the neovascular form of AMD
(wet-AMD) can be managed with drugs targeting
VEGF. Whereas only two molecules inhibiting the
complement C3 and C5 have been approved recently
for the severe dry-AMD, pegcetacoplan, and avacin-

captad pegol, respectively [11]. Due to the complex
and multifactorial etiology of AMD, network pharma-
cology can be a powerful approach to discover new
multitarget drugs, addressing interconnected signaling
pathways potentially involved in AMD. Reverse engi-
neering and network approaches helped also in the
identification of miRNAs dysregulated in the retina of a
rat model of AMD and in serum of AMD patients [12].
Moreover, network pharmacology could help to inves-
tigate the relationship between a drug and the
www.sciencedirect.com
associated mechanism of action, as reported in the
study by Lazzara et al. [13], which has explained most
of the pathways targeted by vitamin D3 and meso-
zeaxanthin in three different in vitro models of AMD.
Furthermore, Sha Liu et al. designed a novel retinoic
acid drug, EYE-503, for the treatment of retinal
neurodegeneration, which is involved in AMD [14]. In
particular, the intravitreal injection of EYE-503 was

protective in a mouse model of retinal degeneration,
counteracting retinal ganglion cells (RGCs), and axonal
degeneration, as well as reducing retinal reactive gliosis.
Additionally, based on the chemical structure of EYE-
503, the authors employed network pharmacology to
identify the potential signaling pathways connecting
EYE-503 and retinal neurodegeneration. Particularly,
MAPK signaling pathway was predicted as EYE-503
target, which was confirmed by western blot analysis.
Indeed, EYE-503 treatment significantly reduced JNK/
p38 phosphorylation in RGCs, suggesting that EYE-503

neuroprotective effects are associated with JNK/p38
signaling [14]. An integrative approach to identify
oxidative stress-related targets for AMD was proposed
by Nishimura Y. et al. [15]. In particular, VEGF-A,
matrix metallopeptidase 9 (MMP9), peroxisome
proliferator-activated receptor a (PPARA), as well as
several components of the renin-angiotensin system
including angiotensin (ANG), angiotensin 1 converting
enzyme (ACE1), ACE2 and angiotensin II receptor
type 1 and type 2 (AGTR1 and AGTR2), were identi-
fied within the AMD network as potential therapeutic

targets for AMD-related oxidative stress [15]. The
combination of omics databases and biological knowl-
edge is pivotal to generate disease-related networks and
to identify potential therapeutic targets inside the
network [15]. Indeed, based on network pharmacology
approach and transcriptomic analysis, Chen Y
et al. identified different GPCRs, associated with
retinal degenerative disorders, which protect against
cellular death and stress caused by connected signaling
pathways [16]. Moreover, these authors evaluated the
retinal protective effect of combined treatments that
address different mechanisms. Specifically, drugs

targeting Gq-coupled and Gi-coupled receptors were
administered simultaneously in an in vivo model of
retinal degeneration holding genetic modifications of
retinoid cycle components, which are associated with an
increased risk of AMD development [17]. In particular,
the combination of guanabenz and doxazosin, which
activate alpha-2A adrenergic receptor (ADRA2) and
antagonize alpha-1A adrenergic receptor (ADRA1)
respectively, protected more against retinal degenera-
tion in comparison to drugs administered alone at the
same dose [16,18].
Network pharmacology and glaucoma
Glaucoma is one of the most common causes of irre-
versible blindness in industrialized countries [19].
Current Opinion in Pharmacology 2024, 74:102425
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Cupping of the optic disc, along with apoptosis of
retinal ganglion cells (RGCs), represents the hallmark
of the disease. Current drug treatments are aimed at
reducing the intraocular pressure (IOP), one of the
most well-known glaucoma’s risk factors, but cannot
prevent optic nerve degeneration and consequently the
loss of vision. To find out a neuroprotective therapy
able to counteract the progression of the disease,

identification of new drug targets is needed [20e23].
Specifically, a reverse engineering approach was used to
confirm the mechanism of action of vitamin D3, which
preserved RGCs from neurodegeneration in a mouse
model of glaucoma (i.e., DBA/2J mice) [24]. Network
pharmacology approach has been proved as a powerful
tool to improve the knowledge on pathological mech-
anisms in glaucoma, also bursting the drug discovery
process. For instance, Yin et al., through this method,
identified new regulatory axis putatively involved in
glaucoma pathogenesis. Starting from the mining of

microarray data on GEO database, 9 candidate genes
have been identified as diagnostic marker for glaucoma.
Finally, after the building of a glaucoma-specific tran-
scriptional regulatory network, including the differen-
tial expressed transcription factors of the candidate
genes, a correlation analysis showed that only ZFP42
and its target gene MARK2 were correlated with
glaucoma. Indeed, transfection with a plasmid able to
increase the expression of ZFP42 led to up-regulation
of MARK2 and increased cell viability in transfected
RGCs, exposed to H2O2 [20]. Moreover, besides the

identification of new dysregulated genes, the network
pharmacology approach could also burst the drug
Figure 1

Network pharmacology approac
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discovery of novel candidate drugs, as presented in the
study of Zavarzadeh et al. [25]. After data mining from
GEO dataset and the identification of the most sig-
nificant DEGs, DAVID database was employed to carry
out a functional enrichment and pathway analysis of
the identified DEGs. This analysis showed that the
most significant dysregulated pathways were related to
extracellular matrix (ECM) organization, immune

system, neutrophil degranulation, the platelet-derived
growth factor (PDGF) signaling p53, and the toll-like
receptor. Therefore, this enrichment information
approach was effective in providing several biological
pathways worthy of further investigation and valida-
tion. In addition, STRING database and ClusterVis
were used to build the -PPI networks among the above-
mentioned DEGs and to find protein hub modules,
respectively. Then, Drug Gene Interaction Database
(DGIdb) was employed to find drugs targeting the
genes central in the network. This approach has

revealed that metformin hydrochloride, bortezomib,
ixazomib citrate, carfilzomib, carboplatin, and cisplatin
could be used to treat glaucoma, but only after proper
in vitro and in vivo validation studies [25]. Furthermore,
network pharmacology approach could also be applied
to examine the mechanism of action of investigational
drugs or drug extracts, known to exert positive phar-
macological effects. For instance, Yu et al. confirmed
the pleiotropic mechanism of action of Ginkgo biloba
extract, that promoted RGCs survival [26e28]. The
network intersection between the known glaucoma

therapeutic targets and validated targets of the G. biloba
extract evidenced several overlapping nodes: p53, BAX,
hes in ocular pharmacology.
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Table 1

Active compounds and pharmacological targets obtained from network pharmacology analyses.

Disease Drug Target

DR TBHQ MAPK8, RELA, ESR1, APP, NOS3, Rap1, arachidonic acid metabolism,
VEGF, renin-angiotensin system

DR Eriocauli Flos TNF-a, VEGF-A, AGE-RAGE, PI3K-Akt
DR Hup A HSPB1 (HSP27), Bax, Bcl-2, caspase3
DR – ADR1D, ADR2C
AMD – miR-9, miR-23a, miR-27a, miR-34a, miR-146a, miR-155, TGFb, mTOR,

HIF-1a
AMD Vitamin D3 and meso-zeaxanthin APP, TLR4, IL6, TNF-a, PSEN1, CAT, IL-1b, VEGF-A
AMD EYE-503 JNK/p38 signaling
AMD – VEGF-A, MMP9, PPARA, ANG, ACE1, ACE2, AGTR1, AGTR2.
AMD Guanabenz and doxazosin GPCRs
Glaucoma – ZFP42, MARK2
Glaucoma Vitamin D3 VDR, BDNF, VEGF-A, PlGF (PGF), IL-6, IL-1b, CCL-3, IFN-g, and p-65 NF-

kB
Glaucoma – ECM organization, immune system, neutrophil degranulation, PDGF, p53,

TLR
Glaucoma Metformin hydrochloride, bortezomib, ixazomib

citrate, carfilzomib, carboplatin, cisplatin
–

Glaucoma Ginkgo biloba extract p53, Bax, Bcl-2, caspase3, caspase9

Network and ocular pharmacology Lazzara et al. 5
BCL2, CASP3, and CASP9. In this study, the in vitro
experiments confirmed the anti-apoptotic and antiox-
idant effects of G. biloba, targeting the p53, Bax, Bcl-2,
Caspase-3, and Caspase-9 signaling pathways [26].
Summary
We hereby analyzed the studies regarding application of
systems pharmacology for advances in R&D process in
the field of ocular pharmacology (Figure 1). Network
pharmacology approaches, hereby presented, were
aimed at identification of innovative pharmacological
targets of retinal diseases, characterization of novel
pathogenic mechanisms, and profiling of multiple

mechanisms of action of an investigational compound
(Table 1). However, quantitative systems pharmacology
approaches can also have other applications focused on
decision-making approaches in clinics (Bayesian
network models, network meta-analysis), although such
applications have not been retrieved in the field of
ocular pharmacology yet.
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