Cross-amplification of polymorphic microsatellites reveals extra-pair paternity and brood parasitism in *Sturnus vulgaris*

A. LOYAU,* B. MOUREAU,† M. RICHARD,* P. CHRISTE,† P. HEEB†‡ and G. SORCI*

*Laboratoire de Parasitologie Evolutive, Université Pierre et Marie Curie, Paris, France, †Département d'Ecologie et d'Evolution, Université de Lausanne, Suisse

Abstract

We tested the cross-amplification of 37 microsatellites in a population of starlings (*Sturnus vulgaris*). Twenty-three of them amplified and five exhibited a large number of alleles per locus and high heterozygosity (on average: 14.6 alleles/locus and $H_E = 0.704$). We assessed the occurrence of extra-pair paternity (EPP) and intraspecific brood parasitism (IBP) in this population. The EPP rate was 16% to 18% offspring from 43% to 45% of nests. IBP was very variable between two successive years (14% to 27% chicks from 25% to 64% of clutches). These five polymorphic markers will be of potential use in studies of genetic diversity, population structure and reproductive strategy of this species.

Keywords: brood parasitism, EPP, microsatellites, Sturnus vulgaris

Received 28 September 2004; revision accepted 4 November 2004

The European starling (*Sturnus vulgaris*) is a semicolonially breeding passerine living in large permanent social groups. Taken together facultative polygyny and breeding synchrony can favour the spread of alternative breeding strategies in this species, such as extrapair paternity (EPP) and / or intraspecific brood parasitism (IBP). To investigate the frequency and intensity of both strategies in starlings, highresolution genetic markers are needed.

Blood samples (20 μ L) were obtained by venipuncture of breeding adults and their nestlings and diluted in 180 μ L of Queen's lysis buffer (Seutin *et al.* 1991). DNA was extracted following a salt/chloroform procedure (Ehinger *et al.* 2002).

We used 37 microsatellites isolated from passerines to test their cross-amplification in six starlings of the same population (Table 1, Appendices 1, 2).

Polymerase chain reactions (PCRs) were performed in a 10 μ L volume/sample containing: 1X PCR reaction Buffer (10 mm TrisHCl, pH = 9, 50 mm KCl, 1.5 mm MgCl₂, 0.1% TritonX100, 0.2 mg/mL BSA, Incubation Buffer, Q-Biogene), 75 μ m of each dNTP, 200 μ m of each primer, 0.25 U of *Taq* DNA Polymerase (Q-Biogene) and 15–50 ng of DNA.

E-mail: aloyau@snv.jussieu.fr

‡Present address: Laboratoire Evolution et Diversité Biologique, Toulouse, France Samples were amplified in a DNA thermal cycler Gene-Amp PCR System 9700 (Applied Biosystem) according to: 12 min initial denaturation at 94 °C; 10 cycles of 94 °C for 15 s, corresponding primer pair annealing temperature (T_a) for 15 s, and 72 °C for 30 s; 20 cycles of 89 °C for 15 s, T_a for 15 s, and 72 °C for 30 s; and a final extension of 72 °C for 10 mn to end.

PCR products were controlled under UV light after electrophoresis on a 2% agarose gel stained with ethidium bromide. We successfully amplified 23/37 markers and 15 out of them were tested for their polymorphism on 15 adults.

We ran PCR with one primer of each pair labelled with fluorescent dyes at the 5' end. The amplification products were separated on 5% polyacrilamide gels by using ABI PRISM 310 monocapillar sequencer and were analysed using GENESCAN 3.1 (Applied Biosystem). Five out of 15 were highly polymorphic with at least six alleles (Table 1, Appendix 1).

One population of 290 individuals (94 adults and their 196 offspring) was studied near the Lausanne University campus (46°31′00″ N, 6°34′50″ E, Switzerland) during two successive breeding seasons. Blood samples were obtained from 28 complete families in 2001 and 20 families in 2002. The PCR were performed with Ase-18, FhU-3, Mjg-1, Patmp2–43 and Pca-7 primers under the conditions described above.

Correspondence: A. Loyau, Fax: +33144273516;

	, , ,		1		•				>			
	Initial species	GenBank Accession no.	Primer sequence (5'–3')	Primer-dye	T _a (°C)	No. of indiv.	Size range (bp)	No. of alleles	$H_{\rm O}$	$H_{\rm E}$	HW P-value	HW SE
Ase-18	Acrocephalus sechellensis	AJ276375	F-ATC CAG TCT TCG CAA AAG CC	NED – F	50	94	161-206	13	0.863	0.767	0.664	0.006
FhU-3	Ficedula hypoleuca	X84362	K-TGU UUU AGA GGG AAG AAG F-ATA TTU UUU ATA AGA TAA TGG	NED-F	49	91	137-181	14	0.620	0.656	0.015	0.001
Mjg-1	Aphelocoma ultramarina	U82673	R-ATA GTG TTG TCT TAA GGT CTC T F-CCC GGG AAA GGC TTC GTC TTC	FAM – F	60	94	152-190	17	0.853	0.917	0.066	0.003
Patmp2–43	Poecile atricapillus	Otter et al. (1998)	R-GGA GAT TTT ATA TCG GTG GC F-ACA GGT AGT CAG AAA TGG AAA G	FAM – F	63	94	119–129	9	0.653	0.537	0.993	0.001
Pca-7	Parus caeruleus	AJ279809	R-GIA TUC AGA GIU I'I'I' GUI GAI G F-IGA GUA TUG IAG CUC AGC AG	HEX-F	56	94	104 - 160	20	0.789	0.723	0.984	0.002
			R-GGT TCA GGA CAC CTG CAC AAT G									

We examined the variability of each locus among adult starlings (GENEPOP 1.2: Raymond & Rousset 1995). All the five microsatellites were polymorphic with an average allele number of 14/locus (range six to 20 alleles/locus). The average proportion of heterozygotes was 0.720. We then ran a Hardy–Weinberg and a genotypic equilibrium tests. One locus (FhU3) showed a slight heterozygote deficit that may just be a sampling effect with an under-representation of rare alleles (six alleles with f < 0.01). There was no other heterozygote deficit. The population showed no departure from Hardy-Weinberg equilibrium (multilocus test: P = 0.207, S.E. = 0.027). All tests for pair wise linkage disequilibrium between loci were not significant and the loci were therefore considered to be at linkage equilibrium. Furthermore, we assessed the total exclusionary power (CERVUS 2.0: Marshall et al. 1998). It was of 0.93 (with none parent known) and 0.99 (with one parent known) reflecting the high resolution of the system.

We investigated the frequency of EPP and IBP strategies in the population. The putative father was not the genetic father in 16% of offspring (18/112) for 43% of nests (12/28) in 2001, and in 18% of offspring (15/84) for 45% of nests (9/ 20) in 2002. Overall we found that 17% of chicks (33/196) resulted from EPC and that 44% of broods (21/48) contained extra-pair young. Data from 2001 revealed that 27% of chicks (30/112) from 64% of clutches (18/28) were brood parasites whereas in 2002 only 14% of chicks (12/84) from 25% of clutches (5/20) were parasites.

Our results are consistent with previous finding reporting similar rates (10% to 20%) of EPC in the spotless starling (*Sturnus unicolor*) (Cordero *et al.* 2003). Using multiloci DNA fingerprinting, Pinxten *et al.* (1993) in a Belgian population of European starlings and Smith & Von Schantz (1993) in a Sweden one observed lower rates of EPP and IBP (EPP: 9% to 10% offspring from 29% to 32% of nests; IBP: 0 to 2% of chicks from 0 to 8% of clutches). Consequently, the frequency of EPP and IBP seem to vary considerably between different populations of European starlings. Moreover, in a given population, brood parasitism appears to be very variable from year to year and may constitute a female opportunistic strategy to changing environmental conditions (Pinxten *et al.* 1993).

To summarize, the five microsatellite loci selected exhibit a large number of allele per locus and high heterozygosity. They consequently will be of potential use in future studies of genetic diversity, population structure and reproductive strategy of this species in the wild.

Acknowledgements

Financial support by the CNRS (ACI Jeunes Chercheurs to GS), the Fondation de Famille Sandoz (professoral fellowship) and the Swiss National Science Foundation (grant n°31–57695.99) both to PH.

References

- Cordero PJ, Veiga JP, Moreno J, Parkin DT (2003) Extra-pair paternity in the facultatively polygynous spotless starling, *Sturnus unicolor. Behavioral Ecology and Sociobiology*, **54**, 1–6.
- Ehinger M, Fontanillas P, Petit E, Perrin N (2002) Mitochondrial DNA variation along an altitudinal gradient in the greater whitetoothed shrew, *Crocidura russula*. *Molecular Ecology*, **11**, 939–946.
- Fridolfsson A, Gyllensten UB, Jakobsson S (1997) Microsatellite markers for paternity testing in the willow warbler *Phylloscopus trochilus*, high frequency of extra-pair young in an island population. *Hereditas*, **126**, 127–132.
- Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. *Molecular Ecology*, **4**, 639–655.

- Otter K, Ratcliffe L, Michaud D, Boag PT (1998) Do female black-capped chickadees prefer high-ranking males as extrapair partners? *Behavioral Ecology and Sociobiology*, **43**, 25–36.
- Pinxten R, Hanotte O, Eens M, Verheyen RF, Dhondt AA, Burke T (1993) Extra-pair paternity and intraspecific brood parasitism in the European starling, *Sturnus vulgaris*: evidence from DNA fingerprinting. *Animal Behaviour*, **45**, 795–809.
- Raymond M, Rousset F (1995) GENEPOP (version 1.2.): a population genetics software for exact tests and ecumenicism. *Journal of Heredity*, 86, 248–249.
- Seutin G, White BN, Boag P (1991) Preservation of avian blood and tissue for DNA analyses. *Canadian Journal of Zoology*, 69, 82–90.
- Smith HG, Von Schantz T (1993) Extra-pair paternity in the European starling: the effect of polygyny. *Condor*, 95, 1006– 1015.

Appendix 1

Initial species, GenBank Accession nos, primer sequences, primer-dye, annealing temperatures (T_a), number of individuals, size range, number of alleles, for 18 other successfully cross-amplified microsatellite loci tested in *Sturnus vulgaris*

	Initial species	Accession no.	Primer sequence (5′– 3′)	Т _а (°С)	No. of indiv.	Amplification	Size range (bp)	No. of alleles
Ase-19	Acrocephalus	AJ276376	F-TAG GGT CCC AGG GAG GAA G	57	15	yes	269–296	6
	sechellensis	1105//10	K-TCT GCC CAT TAG GGA AAA GTC	-	,			
Ase-40	Acrocephalus	AJ276642	F-CAC TGC TCC AGG CAC TCT G	58	6	yes	_	_
	sechellensis		R-TCC AAG GCA CAC AAA GGT G	(0	45		4 = 0 4 = 4	
Ase-50	Acrocephalus	AJ276779	F-CTG TGG AAT GCT GTC TGG C	63	15	yes	159–171	3
. =:	sechellensis		R-ATG GAC TCC CGT CTA ACT TGC	(0)	45		250	
Ase-56	Acrocephalus	AJ276785	F-TTC ACT GAG AAG TGA GAA TGT G	60	15	yes	279	1
~	sechellensis		R-GTC CTT GAT TGA TTA CAG GCT					
Cuµ-10	Catharus ustulatus	AF122893	F-AAA ATG AGG AGA ATA CTA GGC A	60	6	yes	_	_
			R-ACT TAT TTC AGT CCT AAA TTC ACC					
Cuµ-28	Catharus ustulatus	AF122894	F-GAG GCA CAG AAA TGT GAA TT	60	15	yes	123–132	4
			R-TAA GTA GAA GGA CTT GAT GGC T					_
HrU-2	Hirundo rustica	X84087	F-CAT CAA GAG AGG GAT GGA AAG AGG	50	4	yes	132–134	2
			R-gaa aag att att ttt ctt tct ccc					
HrU-3	Hirundo rustica	X84088	F-cac tgg ctc tag gctgtc atc	50	4	yes	178–258	3
			R-CTG TCC CAT GTC AGG CCA GTC					
HrU-6	Hirundo rustica	X84091	F-gct gtg tca ttt cta cat gag	50	4	yes	_	_
			R-aca ggg cag tgt tac tct gc					
Мсуµ-4	Malurus cyaneus	U82388	F-ata aga tga cta agg tct ctg gtg	58	6	yes	—	_
			R-tag caa ttg tct atc atg gtt tg					
Pca-2	Parus caeruleus	AJ279804	F-GTT GGC CTT CTT GGC CCC	51	6	yes	—	—
			R-TGT TGG AGG TTA GGC CTC T					
Pca-4	Parus caeruleus	AJ279806	F-aat gtc tta cag gca aag tcc cca	52	6	yes	—	—
			R-aac ttg aag ctt ctg gcc tga atg					
Pca-8	Parus caeruleus	AJ279810	F-act tct gaa aca aag atg aaa tca	50	15	yes	96	1
			R-TGC CAT CAG TGT CAA ACC TG					
Pdoµ-4	Passer domesticus	X93505	F-CGA TAA GCT TGG ATC AGG ACT AC	50	6	yes	_	_
			R-CTT GGG AAG AGA ATG AGT CAG GA					
Pdoµ-5	Passer domesticus	Y15126	F-gat gtt gca gtg acc tct ctt g	51	15	yes	202	1
			R-gct gtg tta atg cta tga aaa tgg					
Pdoµ-6	Passer domesticus	Y15125	F-CTG ATC ATG TGT AGA TGT AAG ACT GC	51	6	yes	—	_
			R-cag atc ctt aag cag gaa gtt agg					
Pocc-6	Phylloscopus	U59117	F-TCA CCC TCA AAA ACA CAC ACA	50	4	yes	178–258	3
	occipitalis		R-act tct ctc tga aaa ggg gag c					
PK-12	Parus caeruleus	AF041466	F-cgc ttg gag ata aag aca tt	49	15	yes	208	1
			$R\mbox{-}{\mbox{tag}}$ cct ggc act aag aac g					

-, not tested for polymorphism.

Appendix 2

Initial species, GenBank Accession nos or references, primer sequences, primer-dye, annealing temperatures (T_a) tested for 14 unsuccessful cross-amplified microsatellite loci tested in *Sturnus vulgaris*

	Initial species	Accession no.	Primer sequence (5′– 3′)	T_{a} (°C)	No. of indiv.
BMC-3	Manorina melanophrys	AF005376	F-CCT GGC TGC CTG CAC AGA C	48, 49, 50	6
			R-tga att gca gct tct ggg tgc		
Cuµ-05	Catharus ustulatus	AF122892	F-acc tct aaa tac ctg tga gtg c	60	6
			$R\text{-}\mathrm{ACT}$ gTg gTa TTC TTT ACC TAG CA		
Escµ-6	Emberiza schoeniclus	X77082	F-CAT AGT GAT GCC CTG CTA GG	50	4
			R-gca agt gct cct taa tat ttg g		
FhU-1	Ficedula hypoleuca	X84360	F-tga tcg aaa gac ctg taa gat	48, 49, 50, 51, 52, 53	6
			$R\text{-}\mathrm{ATC}$ age gtt aga cca ata cte tta		
FhU-2	Ficedula hypoleuca	X8461	F-gtg ttc tta aaa cat gcc tgg agg	48, 50, 52, 54, 56, 58	6
			$R\mathchar`-$ Cag gta aat att tgc tgg gcc		
FhU-4	Ficedula hypoleuca	X84363	F-gga ttc cta gta att taa act c	46, 48, 50, 52	6
			R-CCT TCC AAA CTG AAG AGT AAG		
FhU-5	Ficedula hypoleuca	X84364	F-tgg gaa gtg cag cag tcc ag	55, 56, 57	6
			R-cag ccc tct cac ctg tgt gca		
FhU-6	Ficedula hypoleuca	X84365	F-ATC TGC TCC TCT GGG CCC TG	66	6
			R-GAT CCC TGT TCC TGG GTT AC		
HrU-4	Hirundo rustica	X84089	F-gat ctt gtg aga ggt ttg aac	50	4
			R-CTT TCT GGA GGC AAA CCT TCA		
HrU-5	Hirundo rustica	X84090	F-TCA ACA AGT GTC ATT AGG TTC	50	4
			R-aac tta gat aag gaa ggt ata t		
HrU-10	Hirundo rustica	X97562	F-ata tta ata taa atg tta aat tc	50	4
			R-atc tga aat cag agt cac tca		
Pca-5	Parus caeruleus	AJ279807	F-TTG GCT GGG AGC AGA GCT G	53, 54, 55	6
			R-CCA GCC TGT CCT CAG CAG C		
Pdoµ-3	Passer domesticus	X93506	F-CTG TTC ATT AAG TCA CAG GT	48, 49, 50	6
			R-agt gaa act tta atc agt tg		
Phtr-2	Phylloscopus trochilus	Fridolfsson et al. (1997)	F-cgc agg ctc aga aat act tga	48, 49	6
	·		R-GCC CAC AGC TCA ATA GTC TT		