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Abstract

In this paper we extend some results about the probability that the sum of n dependent subex-

ponential random variables exceeds a given threshold u. In particular, the case of non-identically

distributed and not necessarily positive random variables is investigated. Furthermore we estab-

lish criteria how far the tail of the marginal distribution of an individual summand may deviate

from the others so that it still influences the asymptotic behavior of the sum. Finally we explic-

itly construct a dependence structure for which, even for regularly varying marginal distributions,

no asymptotic limit of the tail sum exists. Some explicit calculations for diagonal copulas and

t-copulas are given.

1 Introduction

Consider n dependent subexponential random variables X1, . . . , Xn with distribution functions F1, . . . ,
Fn and their sum Sn =

∑n
i=1 Xi. A classical problem in this context is to investigate the asymptotic

behaviour of the exceedance probabilities P(Sn > u) for large u, and many results have been derived
under varying degree of generality in the literature; most of them for independent X1, . . . , Xn (see
for instance [10, 12, 26]). Over the last years, this field also has received renewed interest in risk
management in insurance and finance, where the random variables Xi may stand for individual risks
in a portfolio and the quantity P(Sn > u) is the probability that the aggregate loss in this portfolio
with dependent risks exceeds u (see for instance [9], [13], [21] or [23]). Moreover, other measures of
risk are closely related to the tail of the sum (see e.g. [3] for connections to expected shortfall and
[22] for (generalized) stop-loss premiums).
A recent account on tail asymptotic results for the sum of two dependent risks can be found in
Albrecher et al. [1]. For the sum of n risks, in Alink et al. [2] asymptotic expressions for P(Sn > u)
are given when the marginal distributions are positive and in the maximum domain of attraction of
an extreme value distribution and the dependence is modelled by an Archimedian copula. In Alink
et al. [4] these results are generalized to a subclass of symmetric copulas (which are mainly the sym-
metric copulas in the maximum domain of attraction of an extreme value copula). Barbe et al. [6]
recently gave an asymptotic expression for the tail sum of positive multivariate regularly varying Xi

in terms of a measure associated with the corresponding extreme value copula. In [5], Asmussen and
Rojas-Nandayapa investigated the asymptotic behaviour of the sum of lognormal random variables
with multivariate Gaussian copula.

In the present paper we extend some of the above results, in particular those of [6] and [2] to the case
of non-identically distributed random variables that are possibly negative. A special case is to have
different weights on the individual identically distributed summands, a situation which frequently
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occurs in risk management practice. We give conditions under which the asymptotic behaviour of
the sum only depends on the maximum domain of attraction of the marginal distributions and the
copula. Moreover, it is investigated by how much the heaviness of the tails of the Xi can differ such
that each Xi still contributes to the first order asymptotics of the tail of Sn. For that purpose,
utilizing multivariate regular variation and multivariate extreme value theory, we derive a different
representation of the asymptotic constant

lim
u→∞

P(X1 + · · · + Xn > u)

P(X1 > u)
:= qn (1)

than the one given in [6]. In addition, we address the question under which conditions the limit qn

exists at all. For regularly varying marginals with index α, we construct a copula such that this
limit does not exist for any α 6= 1. On the other hand, a copula is derived which is not in the
maximum domain of attraction of an extreme value copula but nevertheless the above limit qn exists
for all positive regularly varying marginal distributions. This complements a result of Hult and Lind-
skog [17]. For diagonal copulas we completely characterize the conditions under which this limit exists.

In Section 2 we collect some definitions and classical results that are needed for our analysis. In
Section 3 we derive the asymptotic behaviour of P(X1 + · · · + Xn > u) for subexponential not
necessarily identically distributed (X1, . . . , Xn) in the maximum domain of attraction of the Frechét
and Gumbel distribution, respectively, for copulas in the maximum domain of attraction of an extreme
value copula. Section 4 investigates the situation where one random variable is significantly lighter
than the others (in a sense defined later), and the case that the copula is not in the maximum domain
of attraction of an extreme value copula.
Some more explicit calculations for specific copulas are given in Section 5.

2 Preliminaries

In the following we collect some concepts and definitions that are used throughout the paper.

A copula is an n-dimensional distribution function with uniform [0, 1] marginal distributions. From
Sklar’s Theorem [25] we get that every n-dimensional distribution function F (x1, . . . , xn) with marginal
distributions F1(x), . . . , Fn(x) can be written in the form

F (x1, . . . , xn) = C (F1(x1), . . . , Fn(xn)) , (2)

for some copula C (which is unique in case the marginals are continuous). Vice versa, every set
of univariate distribution functions F1, . . . , Fn and copula C defines an n-dimensional distribution
function through (2). The diagonal section of a copula C is defined by δ(x) = C(x, x) and gives rise
to a construction of another copula

Cδ(x1, x2) = min

(

x1, x2,
1

2
(δ(x1) + δ(x2))

)

(3)

with identical diagonal section, which is called the diagonal copula. Every diagonal section satisfies

i) δ(1) = 1.

ii) 0 ≤ δ(x2) − δ(x1) ≤ 2(x2 − x1) for all 0 ≤ x1 ≤ x2 ≤ 1.

iii) δ(x) ≤ x for all 0 ≤ x ≤ 1.

For additional reading about copulas see the monographs Joe [19] and Nelsen [25].
In the bivariate case, the (upper) tail dependence coefficient is defined through

λ := lim
u→1

P(F2(X2) > u|F1(X1) > u). (4)
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This coefficient is frequently used and can be interpreted as a property of the underlying copula (see
for instance [1]).

For the marginal distributions, in this paper we will focus on subexponential distributions which are
in the maximum domain of attraction of an extreme value distribution:

Definition 2.1 A positive distribution F is called subexponential if

lim
u→∞

F
∗2

(u)

F (u)
= 2.

where F (x) = 1 − F (x) and F ∗n(u) denotes the n-fold convolution of F . A distribution G on R

is called subexponential if there exists a positive subexponential distributon function F such that
limu→∞ G(u)/F (u) = 1.

Important examples of subexponential distributions are:

• The class of regularly varying distributions (F ∈ RVα) with index α characterized by F (x) =
L(x)/(1 + x)α where L(x) is slowly varying, i.e. limu→∞ L(tu)/L(u) = 1, for all t > 0.

• The Weibull distribution with F (x) = e−γxβ

, where γ > 0 and 0 < β < 1.

• The lognormal distribution with density

f(x) =
1

x
√

2πσ2
exp

(

− (log(x) − µ)2

2σ2

)

, x > 0, (σ > 0, µ ∈ R).

Definition 2.2 A distribution F is in the maximum domain of attraction of a distribution G (F ∈ MDA (G)),
if for independent and identically distributed X1, X2, . . . with distribution function F , Mm = max1≤i≤m Xi

and constants cm, dm,

lim
m→∞

P(c−1
m (Mm − dm) ≤ x) = lim

m→∞
F (cmx + dm)m = G(x). (5)

The Fisher-Tippett Theorem (see e.g. [12]) states that G has to be an extreme value distribution,
i.e. of one of the following three types:

Fréchet Φα(x) = e−x−α

, x > 0,

Weibull Ψα(x) = e−(−x)α

, x < 0,

Gumbel Λ(x) = exp
(

−e−x
)

, x ∈ R.

For subexponential distributions, only the Fréchet and the Gumbel distribution are possible limit
distributions. F ∈ MDA(Φα) if and only if F ∈ RVα. On the other hand, F ∈ MDA(Λ) if and only
if there exists an auxiliary function e(x) such that for all a > 0

lim
u→∞

F (u + ae(u))

F (u)
= e−a.

Note that e(u) can be chosen as the mean excess function e(u) = E[X − u|X > u] (see for instance
[12]).
If we consider n-dimensional independent and identically distributed random vectors X1,X2, . . .
with common distribution function F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), then the component-wise
maxima Mm = maxi=1,...,m Xi have a limit distribution. Concretely if all marginal distributions are
extreme value distributions and the limit

lim
n→∞

Cn(x
1/n
1 , . . . , x1/n

n ) := C0(x1, . . . , xn),
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exists and is itself a copula, then there exist vectors cm,dm such that

lim
m→∞

P(cm
−1(Mm − dm) ≤ x) = G(x),

where all operations are meant component-wise. C0 is then the copula of G and is called extreme value
copula; moreover Ct

0(x1, . . . , xn) = C0(x
t
1, . . . , x

t
n) holds for all t > 0 (see e.g. [15]). The Pickands

Representation Theorem (see [15]) states that every extreme value copula can be written as

C0(x1, . . . , xn) = exp

(

−
∫

Sn

max
1≤j≤n

(−pj log(xj)) dU(p)

)

. (6)

where Sn =
{

p = (p1, . . . , pn) ∈ R
n
0,+ :

∑n
i=1 pi = 1

}

is the n-dimensional unit simplex and U is a
positive finite measure on Sn (called the spectral measure). For a set B ⊆ {1, . . . , n} the marginal
copulas are defined by

C0(xj , j ∈ B) = exp

{

−
∫

Sn

max
j∈B

(−pj log(xj)) dU(p)

}

.

For additional reading about multivariate extremes see the monographs Beirlant et al. [10], Galambos
[15] and Resnick [26].
A key ingredient of the following analysis will be the notion of vague convergence. Let µn (n ≥ 1)
be a sequence of measures on some locally compact second countable Hausdorff space E . Denote by
C+

c (E) the class of all continuous functions f : E → R
+ with compact support. Then µn converges

vaguely to some measure µ (we write µn
v−→ µ) if

lim
n→∞

∫

E

f(x) dµn(x) =

∫

E

f(x) dµ(x),

for all f ∈ C+
c (E). In this paper we are going to use two different spaces E . In the case of regularly

varying marginals, we use E = ((−∞, 0]n)c with a metric for which bounded sets are those that are
bounded away from 0. If F ∈ MDA(Λ), we use E = R

n
with a metric for which bounded sets are

those sets where the maximum is bounded away from −∞ (see also Kallenberg [20]).
It is known (see Beirlant et al. [10]) that if we denote by xL the left endpoint of the extreme
value distribution G(x) of the random vector (X1, . . . , Xn) and if we define the random variables
X(m) := max{c−1

m
(X − bm),xL}, then the measures µm(·) = m P(X(m) ∈ ·) converge vaguely to a

measure µ that is defined by

µ ([xL,∞)\[xL,x)) = − log(G(x)). (7)

Note that for every Borel set B ⊂ [xL,∞)\[xL,x) for x ∈ [xL,∞)\{xL} with µ(∂E) = 0 (where ∂E
denotes the boundary of B) we have that limm→∞ µm(B) = µ(B).
With the notion of vague convergence, multivariate regularly varying vectors can be defined in the
following way:

Definition 2.3 A random vector X = (X1, . . . , Xn) is called multivariate regularly varying with index
α if there exists a θ ∈ S

n−1, where S
n−1 is the unit sphere with respect to a norm ‖·‖, such that

P(‖X‖ > tu,X/ ‖X‖ ∈ ·)
P(‖X‖ > u)

v−→ t−α
PSn−1(θ ∈ ·),

where
v−→ denotes vague convergence on S

n−1.

Two equivalent characterizations of multivariate regular variation are given by (cf. Basrak [7]):
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1. The random vector X is multivariate regularly varying if there exist a Radon measure ν on
R

n\{0} (where compact sets are sets bounded away from 0) and a set E with ν(∂E) = 0, such
that

νu(·) :=
P(X ∈ u · )
P(X ∈ u·E)

v−→ ν(·), (8)

as u → ∞.

2. The random vector X is multivariate regularly varying if there exist a Radon measure ν on
R

n\{0} (where compact sets are sets bounded away from 0) and a set E with ν(∂E) = 0 such
that for ǫ > 0

νu(·) :=
P(X ∈ u · )
P(X ∈ u·E)

w−→ ν(·), (9)

as u → ∞, where
w−→ denotes weak convergence on R\{x : ‖x‖ < ǫ}.

Note that from (9) we get

lim
u→∞

P (
∑n

i=1 Xi > u)

P(X1 > u)
=

ν (
∑n

i=1 Xi > 1)

ν(X1 > 1)
=: qn,α .

Barbe et al. [6] showed that

qn,α =

∫

Sn

(

p
1/α
1 + · · · + p1/α

n

)α

dU(p),

where Sn denotes the n-dimensional unit simplex and U is the measure defined in (6).

3 Asymptotic behaviour for non-identical marginals

In this section we assume that X1, . . . , Xn have marginal distributions Fi (i = 1, . . . , n) and are
dependent with copula C ∈ MDA (C0). Using multivariate extreme value theory, we are now going
to extend results of Barbe et al. [6] and Alink et al. [4] who considered the case of positive and
identically distributed X1, . . . , Xn. This will also provide an alternative way of proof. In particular,
we are looking for sufficient conditions such that the constant qn in (1) only depends on the MDA of
the multivariate random variables and some weight coefficients related to the marginal distributions.

3.1 The Fréchet case

Throughout this section we will assume the following:

Assumption 3.1 Let X1, . . . , Xn be dependent according to a copula C ∈ MDA (C0), with F1 ∈ RVα

and for every i = 2, . . . , n there exists a constant ci > 0 with

lim
u→∞

F i(u)

F 1(u)
= c−α

i .

Clearly, in this case Fi ∈ RVα for every i = 1, . . . , n.

Remark 3.1 The above assumption contains the situation when one wants to evaluate P(
∑n

i=1 ciXi >
u) for identically distributed Xi ∈ RVα, ci > 0 and c1 = 1, since with definition Yi = ciXi one has

lim
u→∞

P(Yi > u)

P(Y1 > u)
= lim

u→∞

F (u/ci)

F (u)
= c−α

i .
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Lemma 3.1 Under Assumption 3.1 and one of the following conditions

(i) limu→∞
Fi(−u)

F 1(u)
= 0 for all 1 ≤ i ≤ n,

(ii) P(Xi > a, Xj > b) ≥ P(Xi > a)P(Xj > b) for all (a, b) ∈ R
2 and 1 ≤ i, j ≤ n,

(iii) the measure U of C0 as defined in (6) satisfies U(pi = 0) = 0 for i = 1, . . . , n,

we get that

P ((X1, . . . , Xn) ∈ u · )
P(X1 > u)

v−→ µ( · ), (10)

where
v−→ denotes vague convergence on ((−∞, 0]n)c and µ is defined by

µ(Xi > xi, i = 1, . . . , n) =

|A|
∑

i=1

(−1)i+1
∑

|B|=i,B⊆A

− log
(

C0

(

e−(cjxj)
−α

, j ∈ B
))

, (11)

where A = {i : xi ≥ 0}.

Remark 3.2 Note that Condition (iii) is equivalent to µ(X1 > x1, . . . , Xn > xn) as a function of
xj being continuous in xj = 0 for all j = 1, . . . , n. Loosely speaking this means that the sum of the
random variables is large if all components are large.

Remark 3.3 (10) resembles the definition of multivariate regular variation as given in (8); note
however that a different space is used. Hence under Condition (ii) or (iii) the left tail of the random
variables can be chosen arbitrarily.

Proof. In our case vague convergence is equivalent to convergence of the measures of {X1 >
x1, . . . , Xn > xn} (cf. (9)). Denote A := {i : xi ≥ 0} and its subset D := {i : xi = 0}. Let us
consider the case |D| = 0 first.

P (X1 > ux1, . . . , Xn > uxn)

P(X1 > u)
=

P (Xi > uxi, i ∈ A)

P(X1 > u)

+

|Ac|
∑

i=1

(−1)i
∑

|B|=i,B⊆Ac

P (Xi > uxi; i ∈ A, Xj ≤ uxj ; j ∈ B)

P(X1 > u)
,

where the second summand is interpreted as 0 if |Ac| = 0. For the first summand we have

P (Xi > uxi, i ∈ A)

P(X1 > u)
=

|A|
∑

i=1

(−1)i+1
∑

|B|=i,B⊆A

1 − P(Xj ≤ uxj , j ∈ B)

P(X1 > u)
.

With

lim
u→∞

1 − P(Xj ≤ uxj j ∈ {1, . . . , n})
P(X1 > u)

= − log
(

C0

(

e−(c1x1)
−α

, . . . , e−(cnxn)−α
))

(12)

(see [24]), we have to show that the limit of the second summand is zero.
For the second summand and Condition (i) choose a j0 ∈ B to get

lim sup
u→∞

P (Xi > uxi; i ∈ A, Xj ≤ uxj ; j ∈ B)

P(X1 > u)
≤ lim

u→∞

P(Xj0 ≤ xju)

P(X1 > u)

= lim
u→∞

F 1(−xj0u)

F 1(u)

Fj0(xj0u)

F 1(−xj0u)
= 0.
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If Condition (ii) is fulfilled choose i0 ∈ A and j0 ∈ B to get

lim sup
u→∞

P (Xi > uxi; i ∈ A, Xj ≤ uxj ; j ∈ B)

P(X1 > u)
≤ lim sup

u→∞

P(Xi0 > xi0u, Xj0 ≤ xj0u)

P(X1 > u)

≤ lim
u→∞

P(Xi0 > xi0u)P(Xj0 ≤ xj0u)

P(X1 > u)
= 0.

If Condition (iii) holds, choose i0 ∈ A and j0 ∈ B to get for ǫ > 0

lim sup
u→∞

P (Xi > uxi; i ∈ A, Xj ≤ uxj ; j ∈ B)

P(X1 > u)
≤ lim sup

u→∞

P(Xi0 > xi0u, Xj0 ≤ xj0u)

P(X1 > u)

= lim sup
u→∞

P(Xi0 > xi0u) − P(Xi0 > xi0u, Xj0 > xj0u)

P(X1 > u)

≤ lim
u→∞

P(Xi0 > xi0u) − P(Xi0 > xi0u, Xj0 > ǫu)

P(X1 > u)

=

∫

Sn

(

max
(

pi0(ci0xi0 )
−α, pj0(cj0ǫ)

−α
)

− pj0(cj0ǫ)
−α
)

dU(p).

Let ǫ → 0 to get

lim
ǫ→0

∫

Sn

(

max
(

pi0(ci0xi0)
−α, pj0(cj0ǫ)

−α
)

− pj0(cj0ǫ)
−α
)

dU(p) =

∫

Sn

I{pj0=0}pi0(ci0xi0)
−α dU(p) = 0.

For |D| > 0 and ǫ > 0 we have:

P (Xi > xiu; i ∈ Dc, Xj > −ǫu; j ∈ D)

P(X1 > u)
≥ P (Xi > xiu; i ∈ Dc, Xj > 0; j ∈ D)

P(X1 > u)

≥ P (Xi > xiu; i ∈ Dc, Xj > ǫu; j ∈ D)

P(X1 > u)
,

and if µ(X1 > x1, . . . , Xn > xn) is continuous in a point x1, . . . , xn then

lim
u→∞

P (X1 > ux1, . . . , Xn > uxn)

P(X1 > u)
= µ(X1 > x1, . . . , Xn > xn).

�

Theorem 3.2 Under Assumption 3.1 and any of the Conditions (i), (ii) or (iii) from Lemma 3.1,
we get that

lim
u→∞

P (
∑n

i=1 Xi > u)

P(X1 > u)
= µ

(

n
∑

i=1

Xi > 1

)

=: qn,α,

where µ is defined by (11).

Proof. Define

µu(A) :=
P ((X1, . . . , Xn) ∈ u·A)

P(X1 > u)
.

Obviously,
∑n

i=1 Xi > u implies max1≤i≤n(Xi) > u/n. From Lemma 3.1 we get

lim
u→∞

P (
∑n

i=1 Xi > u)

P(X1 > u)
= lim

u→∞
µu

(

n
∑

i=1

Xi > 1

)

= µ

(

n
∑

i=1

Xi > 1

)

,
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since µ (
∑n

i=1 Xi = 1) = 0. To see this (cf. [17]), note that for E with µ(∂E) = 0 we have µ(aE) =
a−αµ(E). Choose Ea = {∑n

i=1 Xi = a}, then {1 <
∑n

i=1 Xi ≤ 2} =
⊎

a∈(1,2] Ea. Since µ({1 <
∑n

i=1 Xi ≤ 2}) < ∞ there exists an a such that µ(Ea) = 0 and hence µ(E1) = µ(a−1Ea) =
aαµ(Ea) = 0. �

For an example of a copula that does not fulfill the conditions of Theorem 3.2, see Section 5.1.

3.2 The Gumbel case

Throughout this section we will assume the following:

Assumption 3.2 Let X1, . . . , Xn be dependent random variables according to a copula C ∈ MDA (C0),

with F1 ∈ MDA(Λ) and for every i = 2, . . . , n there exist constants c
(1)
i > 0 and c

(2)
i > 0 such that

lim
u→∞

F i(u)

F 1

(

c
(2)
i u

) = c
(1)
i .

Clearly,

lim
u→∞

F i

(

u +
ae

“

c
(2)
i u

”

c
(2)
i

)

F i(u)

= lim
u→∞

F i

(

u +
ae

“

c
(2)
i u

”

c
(2)
i

)

F 1

(

c
(2)
i

(

u +
ae

“

c
(2)
i u

”

c
(2)
i

))

F 1

(

c
(2)
i

(

u +
ae

“

c
(2)
i u

”

c
(2)
i

))

F 1

(

c
(2)
i u

)

F 1

(

c
(2)
i u

)

F i(u)
= e−a,

and hence Fi ∈ MDA(Λ) with auxiliary function êi(u) = e
(

c
(2)
i u

)

/c
(2)
i .

Remark 3.4 The above assumption contains the situation when one wants to evaluate P(
∑n

i=1 ciXi >
u) for identically distributed Xi ∈ MDA(Λ) with ci > 0 and c1 = 1, since with definition Yi = ciXi

one has

lim
u→∞

P(Yi > u)

P(Y1 > c−1
i u)

= lim
u→∞

F (u/ci)

F (u/ci)
= 1.

The following results are an extension of those from [2] and [4] where only symmetric copulas and
positive identical marginal distributions were considered. Although the proof techniques are very
close to those in [2] and [4], we use the notion of vague convergence here to make the connection to
the regularly varying case more transparent.

Theorem 3.3 Under Assumption 3.2 we have that

lim
u→∞

P (
∑n

i=1 Xi > k u)

P(X1 > u)
= µ̂

(

n
∑

i=1

Xi > 0

)

=: qn,

where k =
∑n

i=1
1

c
(2)
i

, and

µ̂ (X1 > x1, . . . , Xn > xn) =
n
∑

i=1

(−1)i+1
∑

|B|=i

− log
(

C0

(

exp
(

−c
(1)
j e−c

(2)
j xj

)

, j ∈ B
))

. (13)

Remark 3.5 If C ∈ MDA (Π), where Π denotes the independence copula, then qn = 0.
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Proof. Define

µu(A) :=
P
(

(X1, . . . , Xn) ∈ e(u)·A + c(2)u
)

P(X1 > u)
for any A ⊂ R

n,

where c(2) =

(

1

c
(2)
1

, . . . , 1

c
(2)
n

)

. Then by (7) we get that µu
v−→ µ where

µ ([−∞,∞)\[−∞,x)) = − log
(

C0

(

exp
(

−c
(1)
i e−c

(2)
i xi

)

, 1 ≤ i ≤ n
))

and

µu

({

n
∑

i=1

Xi > 0

})

=
P (
∑n

i=1 Xi > ku)

P(X1 > u)
,

furthermore the measure µ̂ can be retrieved from µ by removing the mass of the set {mini=1,...,n Xi =
−∞}. Note that for every set with µ(∂E) = 0 and every b ∈ R, µ(E + c(2)b) = e−bµ(E). Hence we
can proceed as in the proof of Theorem 3.2 to get that µ (

∑n
i=1 Xi = 0) = 0. So it remains to prove

that as a tends to ∞, µ ({∑n
i=1 Xi > 0, mini=1,...,n Xi ≤ −a}) tends to 0. This follows by

lim
a→∞

µ

({

n
∑

i=1

Xi > 0, min
i=1,...,n

Xi ≤ −a

})

≤ lim
a→∞

µ

({

max
i=1,...,n

Xi >
a

n

})

= 0.

�

4 Some further cases

4.1 One significantly lighter tail

In Section 3 we have derived asymptotic expressions for P(
∑n

i=1 Xi > u) when F i(ciu)/F 1(u) → 1 for
all i = 1, . . . , n. A natural question in this context is what happens if for some i0, F i0(cu)/F 1(u) → 0
for all c > 0. In the following we will give a partial answer to this question. For ease of notation the
analysis will be restricted to the bivariate case. Since for positive regularly varying X1, X2 one can
easily show that limu→∞ P(X1 + X2 > u)/P(X1 > u) = 1 (compare Remark 4.2 with e(u) = u and
0 < a < 1), we concentrate on the maximum domain of attraction of the Gumbel distribution.

Assumption 4.1 Assume that X1 and X2 are dependent random variables with copula C ∈ MDA (C0)
and marginal distributions F1 ∈ MDA(Λ) ∩S and F2, respectively, where limu→∞ F 2(cu)/F 1(u) = 0
for all c > 0. Furthermore, assume that there exists a function g(x) such that

lim
u→∞

F 2(g(u) + ae(u))

F 1(u)
=

{

0 a > 0,

∞ a < 0,
(14)

where e(u) is the auxiliary function of F1.

Remark 4.1 If F2 ∈ MDA(Λ) with auxiliary function e2(x), we can choose g(u) = F
−1

2 (F 1(u)). If
g(x) is differentiable and limu→∞ g′(u) = 0 then

lim
u→∞

F 2(g(u) + ae(u))

F 1(u)
= lim

u→∞

F 2

(

g(u) + a e(u)
e2(g(u))e2(g(u))

)

F 2(g(u))

and

lim
u→∞

e(u)

e2(g(u))
= lim

u→∞

∫∞

u F 1(x) dx
∫∞

g(u) F 2(x) dx

F 2(g(u))

F 1(u)
= lim

u→∞

F 1(u)

F 2(g(u))g′(u)
= ∞,

where we used [16, Cor.1.29]. Hence (14) holds. Note that limu→∞ g(u)/u = 0.
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Remark 4.2 If X1 and X2 are positive and limu→∞ F 2(a e(u))/F 1(u) = 0 for all a > 0 then P(X1 +
X2 > u)/P(X1 > u) = 1, since

P(X1 > u − a e(u)) + P(X2 > a e(u)) ≥ P(X1 + X2 > u) ≥ P(X1 > u).

At first we consider U(p2 = 0) = 0 (where U is the spectral measure defined in (6)).

Lemma 4.1 Under Assumption 4.1 and U(p2 = 0) = 0 we get

lim
u→∞

P(X1 > u + ae(u), X2 > g(u) + be(u))

P(X1 > u)
=

{

0, b > 0,

e−a, b < 0.

Proof. For b > 0 we have

lim
u→∞

P(X1 > u + ae(u), X2 > g(u) + be(u))

P(X1 > u)

= lim
u→∞

P(X1 > u + ae(u)) + P(X2 > g(u) + be(u)) − (1 − C (F1(u + ae(u)), F2(g(u) + be(u))))

P(X1 > u)

= e−a + lim
u→∞

log (C (F1(u + ae(u)), F2(g(u) + be(u))))

P(X1 > u)

= e−a + lim
u→∞

log



C

(

(

F1(u + ae(u))
1

F1(u)

)F 1(u)

,
(

F2(g(u) + be(u))
1

F1(u)

)F 1(u)
)

1
F1(u)





= e−a − e−a = 0,

where the equality to the last line follows from

lim
u→∞

F1(u+ae(u))
1

F1(u) = e−e−a

, lim
u→∞

F2(g(u)+be(u))
1

F1(u) = 1, lim
t→∞

C(x
1/t
1 , x

1/t
2 )t = C0(x1, x2),

and the fact that copulas are Lipschitz continuous (see [25]).
If b < 0 then

lim
u→∞

P(X1 > u + ae(u), X2 > g(u) + be(u))

P(X1 > u)
≤ lim

u→∞

P(X1 > u + ae(u))

P(X1 > u)
= e−a.

Since F 2(g(u) + be(u))/F 1(u) → ∞ we get that for every ǫ > 0 there exists a u0 such that for every
u ≥ u0 we have F 2(g(u) + be(u)) ≥ F 1(u − ǫe(u)). If we denote by Ĉ the survival copula of C then

lim sup
u→∞

P(X1 > u + ae(u), X2 > g(u) + be(u))

P(X1 > u)
= lim sup

u→∞

Ĉ(F 1(u + ae(u)), F 2(g(u) + be(u)))

F 1(u)

≥ lim
u→∞

Ĉ(F 1(u + ae(u)), F 1(u − ǫe(u)))

F 1(u)

=e−a +

∫

S2

p2e
ǫ − max(p1e

−a, p2e
ǫ) dU(p),

where the last term tends to 0 when ǫ → ∞ since U({p2 = 0}) = 0. �

Theorem 4.2 Under Assumption 4.1 and U(p2 = 0) = 0 we get

lim
u→∞

P(X1 + X2 > u + g(u))

P(X1 > u)
= 1,

where g(u) is defined in (14).
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Proof. From Lemma 4.1 we get that

µ̂u(·) =
P((X1, X2) ∈ e(u) · +(u, g(u))))

P(X1 > u)

v−→ µ̂(·)

where µ̂ is defined by

µ̂(X1 > a, X2 > b) =

{

0, b > 0,

e−a, b < 0.

Let Sa := {X1 + X2 > 0, Xi > −a, i = 1, 2}. Note that for all a > 0, µ(Sa) = 1. So we have to show
that

lim
u→∞

µ̂u(X1 + X2 > 0, min(X1, X2) ≤ −a)

tends to 0 when a → ∞. But the latter follows from

lim sup
u→∞

µ̂u(X1 + X2 > 0, min(X1, X2) ≤ −a) ≤ lim sup
u→∞

µ̂u(X1 + X2 > 0, max(X1, X2) > a)

≤ lim
u→∞

P(X1 > u + ae(u)) + P(X2 > g(u) + ae(u))

P(X1 > u)
= e−a.

�

Example 4.1 Let F 1(x) = e−xβ
1 and F 2(x) = e−xβ

2 where 0 < β1 < β2 < 1. Furthermore let C(a, b)
fulfill the conditions of Theorem 4.2. This is for instance the case for the Gumbel copula

C(x1, x2) = exp



−
(

2
∑

i=1

(− log(xi))
θ

)1/θ


 ,

with dependence parameter θ ≥ 1 and for the Galambos copula

C(x1, x2) = x1x2 exp
[

(

(− log(x1))
−δ + (− log(x2))

−δ
)−1/δ

]

,

with dependence parameter δ > 0. Then we can choose g(x) = xβ1/β2 and Theorem 4.2 implies

lim
u→∞

P
(

X1 + X2 > u + uβ1/β2
)

P(X1 > u)
= 1.

Obviously,

lim
u→∞

P(X1 + X2 > u)

P(X1 > u)
=











∞ β1

β2
> 1 − β1,

eβ2 β1

β2
= 1 − β1,

1 β1

β2
< 1 − β1.

A systematic study of the case U(p2 = 0) > 0 seems out of reach, but we explicitly work out a specific
example for this case:

Example 4.2 Under Assumption 4.1 consider the bivariate t-copula

C(a, b) =

∫ t−1
ν (a)

−∞

∫ t−1
ν (b)

−∞

Γ
(

ν+2
2

)

Γ
(

ν
2

)√

(πν)2(1 − ρ2)

(

1 +
x2 − 2ρxy + y2

ν(1 − ρ2)

)− ν+2
2

dy dx.

With the proof of Lemma 4.1, we only have to evaluate

lim
u→∞

P(X1 > u + ae(u), X2 > g(u) − be(u))

P(X1 > u)
= e−a − lim

u→∞

P(X1 > u + a e(u), X2 ≤ g(u) − b e(u))

P(X1 > u)

11



where b > 0. Let us denote by â(u) = t−1
ν (F1(u + a e(u))) and with b̂(u) = t−1

ν (F2(g(u) + b e(u))).

P(X1 > u + ae(u), X2 ≤ g(u) − be(u))

P(X1 > u)

=
1

F 1(u)

∫ ∞

â(u)

∫ b̂(u)

−∞

Γ
(

ν+2
2

)

Γ
(

ν
2

)√

(πν)2(1 − ρ2)

(

1 +
x2 − 2ρxy + y2

ν(1 − ρ2)

)− ν+2
2

dy dx

=

∫ ∞

1

∫ b̂(u)/â(u)

−∞

â(u)2

F 1(u)

Γ
(

ν+2
2

)

Γ
(

ν
2

)√

(πν)2(1 − ρ2)

(

1 +
â(u)2(x2 − 2ρxy + y2)

ν(1 − ρ2)

)− ν+2
2

dy dx

=
â(u)−ν

F 1(u)

∫ ∞

1

∫ b̂(u)/â(u)

−∞

Γ
(

ν+2
2

)

Γ
(

ν
2

)√

(πν)2(1 − ρ2)

(

1

â(u)2
+

x2 − 2ρxy + y2

ν(1 − ρ2)

)− ν+2
2

dy dx

→ e−a

(

Γ
(

ν+1
2

)

Γ
(

ν
2

)√
π

ν
ν−2
2

)−1
∫ ∞

1

∫ c

−∞

Γ
(

ν+2
2

)

Γ
(

ν
2

)√

(πν)2(1 − ρ2)

(

x2 − 2ρxy + y2

ν(1 − ρ2)

)− ν+2
2

dy dx

= e−a

∫ ∞

1

∫ c

−∞

Γ
(

ν+2
2

)

Γ
(

ν+1
2

)√

πνν(1 − ρ2)

(

x2 − 2ρxy + y2

ν(1 − ρ2)

)− ν+2
2

dy dx,

where c = limu→∞ b̂(u)/â(u). Note that for c = ∞ the integral is 1.

• If lim infu→∞ F2(g(u) − be(u)) > 0, then c = 0.

• If limu→∞ F2(g(u) − b e(u)) = 0 and limu→∞
F2(g(u)−b e(u))

F 1(u+a e(u))
= ∞, then c = 0.

• If limu→∞ F2(g(u) − b e(u)) = 0 and limu→∞
F2(g(u)−be(u))

F 1(u+a e(u))
= 0, then c = −∞.

Define

d :=

∫ ∞

1

∫ 0

−∞

Γ
(

ν+2
2

)

Γ
(

ν+1
2

)√

πνν(1 − ρ2)

(

x2 − 2ρxy + y2

ν(1 − ρ2)

)− ν+2
2

dy dx

=
Γ
(

ν+2
2

)

2Γ
(

ν+1
2

)√
π

(

B

(

1

2
,
ν + 3

2

)

− sgn(ρ) B ρ2

(1−ρ2)2+ρ2

(

1

2
,
ν + 3

2

))

,

where Bz(a, b) =
∫ z

0
ta−1(1− t)b−1 dt is the incomplete beta function and B(a, b) = B1(a, b) is the beta

function. If g(u) = e(u) and F2(0) = 0, then

µ̂(a, b) =











0, b ≥ 0

(1 − d)e−a, −1 ≤ b < 0

e−a, b < −1

and consequently µ̂(X1 + X2 > 0) = (1 − d) + d e−1.

In Figure 1 the constant

lim
u→∞

P(X1 + X2 > u)

P(X1 > u)
= q2

under Assumption 3.2 with c
(1)
1 = c

(2)
1 = c

(1)
2 = 1 is depicted as a function of the constant c

(2)
2 for

the Galambos, the Gumbel and the t-copula (with ν = 2) and marginal distributions that are in the
MDA(Λ). The dependence parameters for each of the copulas are chosen such that tail dependence
coefficient is λ = 0.4. The necessary calculations for the determination of µ̂ were done numerically.
As expected by Lemma 4.1 we see that for the Gumbel and the Galambos copula the constant q2

tends to one, when 1/c
(2)
2 → 0, which is not the case for the t-copula (for which the conditions of

Lemma 4.1 are not satisfied).
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Figure 1: The constant q2 for the Gumbel, Galambos and t-copula with ν = 2 and λ = 0.4.

4.2 The case C 6∈ MDA(C0)

We have seen in Section 3.1 that under Assumption 3.1 (in particular a copula in the MDA of an
extreme value copula) and positive regularly varying marginals the limit

lim
u→∞

P (
∑n

i=1 Xi > u)

P(X1 > c u)
= qn (15)

exists with 0 < qn < ∞ for (at least) some c > 0. On the other hand if for a copula C the limit
(15) exists for all marginal distributions that are regularly varying, then C ∈ MDA(C0). This follows
from the fact that a positive vector (X1, . . . , Xn) has the same copula as (c1X1, . . . , cnXn) for all
(c1, . . . , cn) ∈ (0,∞)n and Theorem 1.1 of Basrak et al. [8].
In this section we are going to show that there exist copulas C 6∈ MDA(C0) such that even for identi-
cally distributed regularly varying marginal distributions the limit (15) does not exist. On the other
hand, we also give an example of a copula C 6∈ MDA(C0) for which the above limit exists at least
for all positive identically distributed regularly varying marginals (showing that the membership in
MDA(C0) is not the decisive criterion for the existence of (15)). Inside the class of diagonal copulas,
we give a sufficient condition for the existence of (15).

Let δ1(u), δ2(u) be two arbitrary strictly increasing diagonal sections such that δ1(u) > δ2(u) > 2u−1
for all u ∈ (0, 1). Denote by h(x) the smallest positive solution in t of δ2(x) + 2t = δ1(x + t). Let
x1 = 1/2 and for i ≥ 1

x2i = δ−1
2 (δ1(x2i−1)),

x2i+1 = x2i + h(x2i).

Then define the function δ : [0, 1] → [0, 1] as

δ(x) =



















1, x = 1

δ1(x), x ≤ 1/2

δ1(x2i−1), x2i−1 ≤ x < x2i

δ2(x2i) + 2(x − x2i), x2i ≤ x < x2i+1.

(16)

The idea of this construction is to take δ1(x) for x ≤ 1/2, then to move horizontally to δ2(x), then go
back to δ1(x) along a line with slope 2 and so on. Figure 2 depicts an example with δ1(x) = x and
δ2(x) = x2 (i.e the comonotone and the independent diagonal section).
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Figure 2: A diagonal section δ(x) whose copula does not have a tail dependence coefficient

Lemma 4.3 δ(x) as defined in (16) is a diagonal section.

Proof. Note that 0 < x < 1. At first we show that h(x) < 1 − x. For g(t) = δ2(x) + 2t − δ1(x + t)
we have that g(0) = δ2(x) − δ1(x) < 0 and

g(1 − x) = δ2(x) + 2(1 − x) − δ1(1) > 2x − 1 + 2(1 − x) − 1 = 0.

Since g(t) is continuous there exists a t0 ∈ (0, 1−x) with g(t) = 0. Hence x < 1 implies x < x+h(x) <
1. On the other hand if 0 < x < 1 then 0 < δ−1

2 (δ1(x)) < 1 and hence for all i, 0 < xi < 1. We have
to show that the sequence (xi)i≥1 is increasing. Clearly,

δ1(x2i−1) > δ2(x2i−1)

δ−1
2 (δ(x2i−1)) > x2i−1

x2i > x2i−1

and x2i+1 > x2i because of the definition of x2i+1. Finally, limi→∞ xi = 1 and δ(1) = 1.
It remains to show that 0 ≤ δ(x) − δ(y) ≤ 2(x − y) for x > y. For xi ≤ x < y ≤ xi+1 we obviously
have 0 ≤ δ(x) − δ(y) ≤ 2(x − y). Since δ1(x2i−1) = δ2(x2i) and δ2(x2i) + 2(x2i+1 − x2i) = δ1(x2i+1)
we get for y < 1 that

0 ≤ δ(y) − δ(x) = δ(y) − δ(xiy ) +





iy−1
∑

i=ix

δ(xi+1) − δ(xi)



+ δ(xix) − δ(x)

≤ 2



y − xiy +





iy−1
∑

i=ix

xi+1 − xi



+ xix − x



 = 2(y − x),

where ix is the smallest i with x ≥ xi and iy is the largest i with xi ≤ y. For y = 1 we get that
1 − δ(x) < 2(1 − x) because δ(x) ≥ δ2(x) and finally δ(x) ≤ δ1(x) ≤ x. �

Obviously, the tail dependence coefficient λ as defined in (4) does not exist for the diagonal copula (3)

with diagonal section (16). Figures 3 and 4 show P(X1>u,X2>u)
P(X1>u) as a function of u for δ1(x) = x, δ2(x) =

x2 and δ(x) with uniform and Gumbel marginals (with distribution function F (x) = exp(−e−x)),
respectively.
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Figure 3: P(X1>u,X2>u)
P(X1>u) as a function of u for δ1(x) = x, δ2(x) = x2 and δ(x) with uniform marginals.
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Figure 4: P(X1>u,X2>u)
P(X1>u) as a function of u for δ1(x) = x, δ2(x) = x2 and δ(x) with Gumbel marginals.
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Lemma 4.4 Let X1, X2 be dependent positive random variables with common continuous regularly
varying marginal distribution function F with an arbitrarily fixed index α 6= 1 and diagonal copula
(3), where δ(x) is defined by (16) with δ1(x) = x and δ2(x) = x2. Then the limit

lim
u→∞

P(X1 + X2 > u)

P(X1 > u)
(17)

does not exist.

Proof. For α < 1 we have

lim sup
u→∞

P(X1 + X2 > u)

P(X1 > u)
≥ lim sup

u→∞

P(max(X1, X2) > u)

P(X1 > u)
≥ lim

n→∞

1 − Cδ(x2n, x2n)

P(X1 > F−1(x2n))
= 2.

and

lim inf
u→∞

P(X1 + X2 > u)

P(X1 > u)
≤ lim inf

u→∞

P(max(X1, X2) > u/2)

P(X1 > u)
≤ lim

n→∞

1 − Cδ(x2n+1, x2n+1)

P(X1 > 2F−1(x2n+1))
= 2α.

Assume α > 1. From [1] we get that for 0 < ǫ < 1/2

lim inf
u→∞

P(X1 + X2 > u)

P(X1 > u)

≤ lim inf
u→∞

2 P(X1 > (1 − ǫ)u) + P(X1 > ǫu, X2 > ǫu) − 2 P(X1 > (1 − ǫ)u, X2 > (1 − ǫ)u)

P(X1 > u)

≤ 2(1 − ǫ)−α + ǫ−α lim inf
u→∞

P(X1 > ǫu, X2 > ǫu)

P(X1 > ǫu)
.

If we choose ui such that x2i = F (ǫui) then

lim inf
u→∞

P(X1 + X2 > u)

P(X1 > u)
≤ 2(1 − ǫ)−α

and with ǫ → 0

lim inf
u→∞

P(X1 + X2 > u)

P(X1 > u)
≤ 2.

On the other hand

lim sup
u→∞

P(X1 + X2 > u)

P(X1 > u)
≥ lim sup

u→∞
2α P(X1 > u/2, X2 > u/2)

P(X1 > u/2)

≥ lim
n→∞

2α P(X1 > F−1(x2n+1), X2 > F−1(x2n+1))

P(X1 > F−1(x2n+1))
= 2α.

�

If for any given dependence structure and identically distributed marginals F ∈ RVα the tail depen-
dence coefficient λ does not exist, then one can always find an α > 0 such that the limit (17) does
not exist. This assertion is a special case of the following multivariate result:

Lemma 4.5 Let X1, . . . , Xn be positive random variables, which have common distribution function
F ∈ RVα and assume that their copula C(x1, . . . , xn) is such that there exist two sequences (um)m≥1

and (um)m≥1 with limm→∞ um = limm→∞ um = 1 and

lim
m→∞

1 − C(um, . . . , um)

1 − um
= m > m = lim

m→∞

1 − C(um, . . . , um)

1 − um

.

Then for some α > 0

lim
u→∞

P(X1 + · · · + Xn > u)

P(X1 > u)

does not exist.
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Proof. Analoguous to the proof of Lemma 4.4 we get

lim sup
u→∞

P(
∑n

i=1 Xi > u)

P(X1 > u)
≥ lim sup

u→∞

P(max(X1, . . . , Xn) > u)

P(X1 > u)
≥ lim

m→∞

1 − C(um, . . . , um)

P(X1 > F−1(um))
= m

and

lim inf
u→∞

P(
∑n

i=1 Xi > u)

P(X1 > u)
≤ lim inf

u→∞

P(max(X1, . . . , Xn) > u/n)

P(X1 > u)
≤ nα lim

m→∞

1 − C(um, . . . , um)

P(X1 > F−1(um))
= nαm.

Thus the lemma follows for any

α <
log (m/m)

log n
.

�

If we want to ensure that

lim
u→∞

P(X1 + X2 > u)

P(X1 > u)
(18)

exists at least for all regularly varying marginal distributions, a necessary condition is that λ exists,
which is equivalent to the existence of the limit

lim
u→∞

P(max(X1, X2) > u)/P(X1 > u).

For the specific case of diagonal copulas, for arbitrary marginal distributions the existence of λ is also
a sufficient criterion:

Lemma 4.6 For diagonal copulas, either Cδ ∈ MDA (C0) (and hence the limit (18) exists) or λ does
not exist. Furthermore, if Cδ ∈ MDA (C0) then C0 fulfills the Condition (iii) of Lemma 3.1.

Proof. Assume first that λ exists. For any diagonal copula we have

Cn
δ

(

a1/n, b1/n
)

= min

{

a, b,
1

2n

(

δ
(

a1/n
)

+ δ
(

b1/n
))n

}

.

Observe that

lim
n→∞

1

2n

(

δ
(

a1/n
)

+ δ
(

b1/n
))n

= lim
n→∞

exp

[

n log

(

δ
(

a1/n
)

+ δ
(

b1/n
)

2

)]

= lim
n→∞

exp

[

−n

(

1 − δ
(

a1/n
)

+ δ
(

b1/n
)

2

)]

= lim
n→∞

exp

[

−1

2

(

n
(

1 − a1/n
) 1 − δ

(

a1/n
)

1 − a1/n

+n
(

1 − b1/n
) 1 − δ

(

b1/n
)

1 − b1/n

)]

= exp

[

−2 − λ

2
(− log a − log b)

]

= (a b)
2−λ

2

and we get the extreme value copula

C0(a, b) = min{a, b, (a b)
2−λ
2 }, (19)
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which obviously fulfills Condition (iii) of Lemma 3.1.
On the other hand, whenever C ∈ MDA(C0), then λ exists (this holds for arbitrary copulas C), and
can be explicitly calculated by

λ = lim
u→1

1 − 2u + C(u, u)

1 − u
= 2 − lim

t→∞

1 − C(at, at)

1 − at
= 2 + lim

t→∞

log (C(at, at))

1 − at

= 2 + lim
t→∞

log (C(at, at)t)

t (1 − at)
= 2 − log (C0(a, a))

log(a)
,

for arbitrary 0 < a < 1. �

Lemma 4.6 does not hold for arbitrary C(x1, x2). For instance, in [18] examples of random variables
are given where limu→∞ P(X1 + X2 > u)/P(X1 > u) exists, but (X1, X2) is not in the maximum
domain of attraction of an extreme value copula (note that for these examples it is not a priori clear

whether the limit limu→∞ P(Xβ
1 + Xβ

2 > u)/P(Xβ
1 > u) then exists for all β > 0). However, along

the ideas of [18] it is possible to obtain another criterion for which the limit exists for all β > 0:

Lemma 4.7 There exists a copula C 6∈ MDA(C0) such that for all positive random vectors (X1, X2)
with regularly varying marginals with arbitrary index α and copula C,

lim
u→∞

P(X1 + X2 > u)

P(X1 > u)

exists.

Proof. Choose a positive function f(ϕ) with

∫ π/2

0

f(ϕ) dϕ = 1 and

∫ π/2

0

cos(ϕ)f(ϕ) dϕ =

∫ π/2

0

sin(ϕ)f(ϕ) dϕ

and such that there exists a set B ⊂ [0, π/2] with
∫

B

f(ϕ) dϕ 6=
∫

B

f(π/2 − ϕ) dϕ.

As in [18], construct two random vectors (X
(1)
1 , X

(1)
2 ) = (R cos(Φ1), R sin(Φ1)) and (X

(2)
1 , X

(2)
2 ) =

(R cos(Φ2), R sin(Φ2)) where Φ1 is a random variable with density f(ϕ), Φ2 is a random variable with
density f(π/2 − ϕ) and R is a random variable with density x−2 (x ≥ 1). We can use the same
method as described in [18] to get a random vector (X1, X2) which has regularly varying marginal
distributions F1(x) and F2(x) with limx→∞ F1(x)/F2(x) = 1, but it is not multivariate regularly
varying and hence the copula C defined by (X1, X2) is not in the maximum domain of attraction of
an extreme value copula (see [26]). From the construction of (X1, X2) it follows that for every set B
with r cosϕ ∈ B ⇔ r sin ϕ ∈ B

P((X1, X2) ∈ B) = P((X
(1)
1 , X

(1)
2 ) ∈ B) = P((X

(2)
1 , X

(2)
2 ) ∈ B).

If we consider random variables Y1, Y2 with copula C and positive regularly varying distribution
function F , then

(Y1, Y2)
d
= (F−1(F1(X1)), F

−1(F2(X2))),

where F−1(x) = inf{y : F (y) ≥ x}. Hence we get

lim
u→∞

P(Y1 + Y2 > u)

P(Y1 > u)
= lim

u→∞

P(F−1
1 (F (F−1(F1(X1)) + F−1(F2(X2)))) > u)

P(X1 > u)

and this limit exists because for large u the set {F−1
1 (F (F−1(F1(X1))+F−1(F2(X2)))) > u} is nearly

symmetric with respect to X1, X2. �

18



5 Two specific examples

5.1 The multivariate t-copula

Since the t-copula given by

C(x1, . . . , xn) =

∫ t−1
ν (x1)

−∞

· · ·
∫ t−1

ν (xn)

−∞

Γ
(

ν+n
2

)

Γ
(

ν
2

)√

(πν)n det (P )

(

1 +
t′P−1t

ν

)− ν+n
2

dt,

where t−1
ν denotes the quantile function of a standard univariate tν distribution, P is an invertible

correlation matrix and t = (t1, . . . , tn), does not fulfill the conditions of Theorem 3.2, but is frequently
used in risk management (see e.g. [11]), we look at it in more detail. First, we calculate the t-extreme-
value copula (for the bivariate case a different representation can be found in [11]).

Lemma 5.1 We have

lim
m→∞

m

∫ ∞

t−1
ν (x

1/m
1 )

· · ·
∫ ∞

t−1
ν (x

1/m
n )

Γ
(

ν+n
2

)

Γ
(

ν
2

)√

(πν)n det (P )

(

1 +
x′P−1x

ν

)− ν+n
2

dx

=

∫ ∞

b(x1)

· · ·
∫ ∞

b(xn)

Γ
(

ν+n
2

)

Γ
(

ν
2

)√

(πν)n det (P )

(

t′P−1t

ν

)− ν+n
2

dt,

where

b(x) = lim
m→∞

t−1
ν (x1/m)m−1/ν =

(

Γ
(

ν+1
2

)

Γ
(

ν
2

)√
π

ν
ν−2
2

)1/ν

(− log(x))−1/ν .

Proof. At first note that

lim
m→∞

t−1
ν (x1/m)m1/ν =

(

Γ
(

ν+1
2

)

Γ
(

ν
2

)√
π

ν
ν−2
2

)1/ν

(− log(x))
−1/ν

.

Denote by a(x) = t−1
ν (x1/m). Then

lim
m→∞

m

∫ ∞

a(x1)

· · ·
∫ ∞

a(xn)

Γ
(

ν+n
2

)

Γ
(

ν
2

)√

(πν)n det (P )

(

1 +
t′P−1t

ν

)− ν+n
2

dt

= lim
m→∞

m

∫ ∞

1

· · ·
∫ ∞

1

n
∏

i=1

a(xi)
Γ
(

ν+n
2

)

Γ
(

ν
2

)√

(πν)n det (P )

(

1 +
a(x)y

′
P−1a(x)y)

ν

)− ν+n
2

dy (20)

= lim
m→∞

∫ ∞

1

· · ·
∫ ∞

1

n
∏

i=1

(

a(xi)m
−1/ν

) Γ
(

ν+n
2

)

Γ
(

ν
2

)√

(πν)n det (P )

(

m−2/ν +
m−2/νa(x)y

′
P−1a(x)y)

ν

)− ν+n
2

dy

=

∫ ∞

1

· · ·
∫ ∞

1

n
∏

i=1

b(xi)
Γ
(

ν+n
2

)

Γ
(

ν
2

)√

(πν)n det (P )

(

b(x)y
′
P−1b(x)y)

ν

)− ν+n
2

dy (21)

=

∫ ∞

b(x1)

· · ·
∫ ∞

b(xn)

Γ
(

ν+n
2

)

Γ
(

ν
2

)√

(πν)n det (P )

(

t′P−1t

ν

)− ν+n
2

dt, (22)

where we substituted a(xi)y = t to get (20), used dominated convergence to get (21) and substituted
t = b(xi)y to obtain (22). �
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Lemma 5.2 The t-copula lies in the maximum domain of attraction of an extreme value copula C0

with

C0(x1, . . . , xn) = exp







−
n
∑

i=1

(−1)i+1
∑

|B|=i

∫ ∞

b(xj),j∈B

Γ
(

ν+i
2

)

Γ
(

ν
2

)√

(πν)i det (PB)

(

t′P−1
B t

ν

)− ν+i
2

dt







,

where PB is the submatrix of P given by the elements pij, i, j ∈ B and b(x) is defined as in Lemma
5.1.

Proof. The marginal copulas of a t-copula with respect to the set B are t-copulas with matrix PB

(see [17]).

− log (C0(x1, . . . , xn)) = lim
m→∞

−m log
(

C
(

x
1/m
1 , . . . , x1/m

n

))

= lim
m→∞

−m log
(

1 −
(

1 − C
(

x
1/m
1 , . . . , x1/m

n

)))

= lim
m→∞

m
(

1 − C
(

x
1/m
1 , . . . , x1/m

n

))

= lim
m→∞

m

(

1 −
∫ tν(x

1/m
1 )−1

−∞

· · ·
∫ tν(x1/m

n )−1

−∞

Γ
(

ν+n
2

)

Γ
(

ν
2

)√

(πν)n det (P )

(

1 +
t′P−1t

ν

)− ν+n
2

dt

)

= lim
m→∞

n
∑

i=1

(−1)i+1
∑

|B|=i

m

∫ ∞

tν(x
1/m
j )−1,j∈B

Γ
(

ν+i
2

)

Γ
(

ν
2

)√

(πν)i det (PB)

(

1 +
t′P−1

B t

ν

)− ν+i
2

dt,

and the result follows with Lemma 5.1. �

For positive regularly varying marginals this leads to

µ(Xi > xi, i ∈ A) =

∫ ∞

b(e−(cj xj)−α
),j∈A

Γ
(

ν+|A|
2

)

Γ
(

ν
2

)
√

(πν)|A| det (PA)

(

t′P−1
A t

ν

)− ν+|A|
2

dt,

whereas for Gumbel marginals

µ̂(X1 > x1, . . . , Xn > xn) =

∫ ∞

b

„

exp

„

−c
(1)
l

e
−c

(2)
j

xj

««

,1≤j≤n

Γ
(

ν+n
2

)

Γ
(

ν
2

)√

(πν)n det (P )

(

t′P−1t

ν

)− ν+n
2

dt.

(23)
We now turn to the case of lognormal marginals with common distribution function F (x|µ, σ) (see [5]
for an asymptotic sum of lognormal random variables with Gaussian copula). It is easy to see that

F (x|µ2, σ) = F (eµ1−µ2x|µ1, σ).

If we define c
(1)
i = 1, c

(2)
i = eµ1−µi and k =

∑n
i=1

1

c
(2)
i

we get (cf. Theorem 3.2)

lim
u→∞

P (
∑n

i=1 Xi > k u)

P(X1 > u)
= µ̂

(

n
∑

i=1

Xi > 0

)

where µ̂ is given in (23).

For the more general case of lognormal marginal distributions with different µi, σi (i = 1, . . . , n), one
can adapt an idea of [5] to obtain the following result:
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Proposition 5.3 Let X1, . . . , Xn be variables with lognormal marginal distributions F (x|µi, σi) (i =

1, . . . , n) and arbitrary dependence structure. For Sd :=
∑d

i=1 Xi assume that P(Sd > u) ∼ cdF 1(u/kd)
for some constants cd, kd > 0 and further σd+1 < σ1, then for all d ≥ 1

lim
u→∞

P(Sd+1 > u)

P(Sd > u)
= 1.

Proof. The proof is analogous to the proof of Theorem 2.1 of [5]: Choose σd+1/σ1 < β < 1 then
limu→∞ F d+1(u

β)/F 1(u/kd) = 0. It follows that

1 ≤ lim
u→∞

P(Sd+1 > u)

P(Sd > u)
≤ lim

u→∞

(

P(Sd > u − uβ)

P(Sd > u)
+

P(Xd+1 > uβ)

P(Sd > u)

)

= 1 + lim
u→∞

F d+1(u
β)

cdF 1(u/kd)
= 1.

�

5.2 The t-copula with negative regularly varying marginals

In Section 3 we have seen that under the conditions of Theorem 3.2 the limit constant qn,α depends
only on the index of regular variation and the extreme value copula. An example of a copula that
does not fulfill the conditions of Theorem 3.2 is the t-copula, from which we can see that the behavior
of P(X1, . . . , Xn) does not only depend on the maximum domain of attraction of the multivariate
distribution, but also on the negative tail of the distribution. In the following illustration we focus on
the two dimensional case for ease of notation and use random variables X1, X2 with common marginal

distribution function F ∈ RVα such that limu→∞
F (−x)
F (x) = ∞ (hence the condition of Lemma 3.1 is

not fulfilled). For a > 0 we get

lim
u→∞

P(X1 > au, X2 > bu)

P(X1 > u)

= lim
u→∞

1

F (u)

∫ ∞

t−1
ν (F (au))

∫ ∞

t−1
ν (F (bu))

Γ
(

ν+2
2

)

Γ
(

ν
2

)√

(πν)2(1 − ρ2)

(

1 +
x2 − 2ρxy + y2

ν(1 − ρ2)

)− ν+2
2

dy dx

= lim
u→∞

t−1
ν (F (au))−ν

F (u)

∫ ∞

1

∫ ∞

t
−1
ν (F (bu))

t
−1
ν (F (au))

Γ
(

ν+2
2

)

Γ
(

ν
2

)√

(πν)2(1 − ρ2)

(

1

t−1
ν (F (au))2

+
x2 − 2ρxy + y2

ν(1 − ρ2)

)− ν+2
2

dy dx

=















∫∞

1

∫∞

( b
a )

αν
Γ( ν+2

2 )ν−ν/2

Γ( ν+1
2 )

√
π2(1−ρ2)

(

x2−2ρxy+y2

ν(1−ρ2)

)− ν+2
2

dy dx b > 0,

∫∞

1

∫∞

0

Γ( ν+2
2 )ν−ν/2

Γ( ν+1
2 )

√
π2(1−ρ2)

(

x2−2ρxy+y2

ν(1−ρ2)

)− ν+2
2

dy dx b < 0.

Since a similar statement holds for a < 0 we get that the limit measure is the measure of the case of
positive marginals when the mass at the axes is removed.

5.3 The diagonal copula

The extreme value distribution of a diagonal copula (if it exists) is given in (19). Hence we get under
Assumption 3.1 that

µ(X1 > x1, X2 > x2) =(c1x1)
−α + (c2x2)

−α

− max

(

(c1x1)
−α, (c2x2)

−α,
2 − λ

2
((c1x1)

−α + (c2x2)
−α)

)
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Note that µ is concentrated on the lines

x1 =

(

2 − λ

λ

)−1/α
c2

c1
x2

x1 =

(

2 − λ

λ

)1/α
c2

c1
x2

Consequently we get the explicit result

q2,α =µ(X1 + X2 > 1)

= µ



X1 >

(

2−λ
λ

)1/α c2

c1

1 +
(

2−λ
λ

)1/α c2

c1

, X2 >
1

1 +
(

2−λ
λ

)1/α c2

c1





+ µ



X1 >

(

2−λ
λ

)−1/α c2

c1

1 +
(

2−λ
λ

)−1/α c2

c1

, X2 >
1

1 +
(

2−λ
λ

)−1/α c2

c1





− µ



X1 >

(

2−λ
λ

)1/α c2

c1

1 +
(

2−λ
λ

)1/α c2

c1

, X2 >
1

1 +
(

2−λ
λ

)−1/α c2

c1





=





(

2−λ
λ

)1/α
c2

1 +
(

2−λ
λ

)1/α c2

c1





−α

+





c2

1 +
(

2−λ
λ

)−1/α c2

c1





−α

−









(

2−λ
λ

)1/α
c2

1 +
(

2−λ
λ

)1/α c2

c1





−α

+





c2

1 +
(

2−λ
λ

)−1/α c2

c1





−α



+
2 − λ

2









(

2−λ
λ

)1/α
c2

1 +
(

2−λ
λ

)1/α c2

c1





−α

+





c2

1 +
(

2−λ
λ

)−1/α c2

c1





−α



=
2 − λ

2









(

2−λ
λ

)1/α
c2

1 +
(

2−λ
λ

)1/α c2

c1





−α

+





c2

1 +
(

2−λ
λ

)−1/α c2

c1





−α

 .

Finally, let us turn to the Gumbel case. Under Assumption 3.2 we get

µ̂(X1 > x1, X2 > x2) = c
(1)
1 e−c

(2)
1 x1 + c

(1)
2 e−c

(2)
2 x2

− max

(

c
(1)
1 e−c

(2)
1 x1 , c

(1)
2 e−c

(2)
2 x2 ,

2 − λ

2

(

c
(1)
1 e−c

(2)
1 x1 + c

(1)
2 e−c

(2)
2 x2

)

)

and a similar calculation as above yields

q2 =
2 − λ

2









c
(1)
1

(

λ

2 − λ

c
(1)
2

c
(1)
1

)

c
(2)
1

c
(2)
1 +c

(2)
2

+ c
(1)
2

(

2 − λ

λ

c
(1)
2

c
(1)
1

)−
c
(2)
2

c
(2)
1 +c

(2)
2









.
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