The impact of vertical resolution on gravity wave drag in subseasonal hindcasts during sudden stratospheric warmings Wolfgang Wicker¹, Inna Polichtchouk², Daniela Domeisen^{1,3} ¹ University of Lausanne, Lausanne, Switzerland ² European Centre for Medium-Range Weather Forecasts, Reading, UK

ETH Zurich, Zurich, Switzerland

• Aggravated cold bias during weak vortex conditions means underestimated SSW $[\mathbf{X}]$ amplitude in the stratosphere (Lawrence et al., 2022).

Fig. 1: Composite mean temperature

3. Critical layer during weak vortex conditions

Positive feedback between stratospheric gravity wave drag and zonal-mean zonal wind

• Usually, gravity waves have their

bias (50hPa, 60°N-90°N) for climatology and weak and strong vortex conditions in IFS hindcasts from S2S database (Vitart et al., 2017); composites are selected based on the state of the vortex during initialization (Tripathi et al., 2015); lower panel contains Monte Carlo distribution for randomly selected composite means.

1. Experiments with two different IFS model configurations

- Sub-seasonal hindcast experiments
- ECMWF Integrated Forecasting System (IFS CY47R3)
- Horizontal resolution TCo639 equivalent to 18km grid spacing
- Vertical resolution either L91 or L198
- 51 ensemble members initialized on 08 Feb 2018, run for 46 days.

 $[\mathbf{X}]$

bias

[X]

L91

Fig. 2: Approximate vertical grid spacing for three IFS grid configurations.

- biggest impacts in the mesosphere.
- During weak vortex conditions, gravity wave vertical wavelength shrinks to zero.
- Beneficial for predictability on long time scales.

Fig. 4: L198 ensemble-mean gravity drag (45°N-70°N) and contours of zonal-mean zonal wind (60°N).

4. Gravity wave drag sensitivity

Ability to make use of the positive feedback for subseasonal prediction depends on vertical model resolution.

- Resolved gravity waves need high vertical resolution to reach upper stratosphere.
- Both resolved and nonorographic parameterized wave drag contribute to enhanced deceleration of the mean flow.

2. Reduced forecast error with increased vertical resolution

Reversal of westerlies at 10hPa on 12 Feb 2018

- High amplitude warming \bullet $(\sim 20K)$ in the first two weeks \leftrightarrow positive anomalies \sim 5K sustained for 6 weeks.
- With low resolution, sustained ۲ anomalies are underestimated by 2-4K even though all ensemble members predict a major SSW.
- Increased vertical resolution reduces cold bias and prolongs the warming.

Limited predictability of planetary wave flux on sub-seasonal time scales. Hence, no significant sensitivity to vertical resolution.

Fig. 3: Polar cap temperature anomalies in ERA5 (Hersbach et al., 2020), the L91 ensemble-mean bias, and the ensemble mean difference with 95% significance hatching; the lowest panel shows meridional eddy-heat flux by zonal wavenumber 1-3 at 100hPa.

Fig. 5: Ensemble mean wave drag difference (L198-L91) for resolved and parameterized gravity waves.

5. Small vertical scale waves

Wavelet analysis of normalized a) potential temperature

- Spectral power is proportional to gravity wave potential energy per unit volume, which is proportional to gravity wave momentum flux. b)
- Enhanced gravity wave momentum flux is associated with small vertical scales (wavelength \sim 2-6km).

Conclusion: L137 largely sufficient for TCo319 (not shown), with TCo639 at least L198 are needed.

Ensemble-mean Fig. non-

Wicker, W., Polichtchouk, I., and Domeisen, D. I. V.: Increased vertical resolution in the stratosphere reveals role of gravity waves after sudden stratospheric warmings, Weather Clim. Dynam. Discuss. [preprint], https://doi.org/10.5194/wcd-2022-41, in review, 2022.

References

- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor.nyi, A., Mu.oz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., et al.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049, 2020.
- Lawrence, Z. D., Abalos, M., Ayarzagüena, B., Barriopedro, D., Butler, A. H., Calvo, N., de la C.mara, A., Charlton-Perez, 2. A., Domeisen, D. I., Dunn-Sigouin, E., et al.: Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems, Weather and Climate Dynamics Discussions, pp. 1–37, 2022.
- Tripathi, O. P., Charlton-Perez, A., Sigmond, M., and Vitart, F.: Enhanced long-range forecast skill in boreal winter 3. following stratospheric strong vortex conditions, Environmental Research Letters, 10, 104 007, 2015.
- Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., D.qu., M., Ferranti, L., Fucile, E., Fuentes, M., 4. et al.: The subseasonal to seasonal (S2S) prediction project database, Bulletin of the American Meteorological Society, 98, 163–173, 2017.

dimensional potential energy wavelet spectrum for the period 2018-02-22 to 2018-03-22; stippling the the lowest panel indicate whare ensemble-mean energies are not significantly different estimated by a parametric bootstrap.

Any questions? Please ask! (wolfgang.wicker@unil.ch)

C)

UNIL | Université de Lausanne