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Abstract

Measurement of river bathymetry has been revolutionized by high-resolution remote

sensing that combines UAV platforms with SfM-MVS photogrammetry. Mapping

inundated and exposed areas simultaneously are possible using either two-media

refraction correction or some form of the Beer–Lambert Law to estimate water

depths. If, as in turbid glacially-fed braided streams, the bed is not visible then tradi-

tional survey techniques (e.g. differential GPS systems) are required. As an alterna-

tive, here we test whether the spatial distribution of water depths in a shallow

braided stream can be modelled from basic planimetric data and used to estimate

inundated zone bathymetry. We develop heuristic rules using; (1) distance from the

nearest river bank; (2) total inundated width along a line tangential to the local flow

direction; (3) local curvature magnitude and direction; and distance from the nearest

flow (4) divergence and (5) convergence regions. We parameterize them using a sam-

ple of measured water depths in stepwise multiple linear regressions and validate

them using independent data. Resulting water depth distribution maps explain

between 50% and 60% of the measured water depth spatial variability when com-

pared to independent data. After incorporating modelled water depths into digital

elevation models (DEMs) of exposed areas, we show that the developed method is

suitable for volumetric change calculations in both dry and inundated areas.
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1 | INTRODUCTION

River bathymetry is an important parameter in fluvial geomorphology

for both geomorphological and ecosystem processes (Lane

et al., 2010; Ward et al., 2002; Woodget et al., 2015). Its accurate

measurement allows for quantitative detection of river channel

changes through time (Lane et al., 2003; Westaway et al., 2003); bet-

ter understanding of fluvial systems though hydraulic modelling (Lane

et al., 2020); physical habitat assessment and river restoration

(Maddock, 1999) and sediment budgeting studies (Hicks, 2012;

Marcus et al., 2012).

The 1990s saw the first attempts (Lane et al., 1994) to represent

river bathymetry as a continuous surface (i.e. Digital Elevation Models

or DEMs) rather than a series of cross-sections. They relied upon

interpolation of point data acquired using differential GPS

(e.g. Brasington et al., 2000) or total stations, sometimes aided by ter-

restrial analytical photogrammetry for exposed areas (e.g. Chandler

et al., 2002; Lane et al., 1994). Such field surveys are extremely time-

consuming and lead to a trade-off between spatial resolution, spatial

extent and the frequency of resurvey that directly impacts the quality

of the results that are acquired (Lane, 1998). They also require physi-

cal contact with the riverbed (e.g. walking in the river) potentially
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modifying it; and are limited to wadeable areas at high flows (Bangen

et al., 2014; Kasvi et al., 2019; Marcus & Fonstad, 2008). The ease

with which bathymetric mapping can be undertaken is thus much

more limited compared to the measurement of dry areas (Brasington

et al., 2000; Westaway et al., 2003).

Developments in remote sensing, initially based upon the depth

signature in airborne optical imagery (Gilvear et al., 1995, 1998), and

eventually using multispectral (e.g. Legleiter et al., 2004; Legleiter &

Roberts, 2005; Winterbottom & Gilvear, 1997) and hyperspectral

(e.g. Marcus et al., 2003) imagery, addressed this limitation. The devel-

opment of digital photogrammetric analysis for airborne imagery

increased the feasibility of photogrammetric-based approaches all-

owing for much larger spatial extents. Westaway et al. (2000, 2001)

provided a fully photogrammetric solution based upon two media

refraction corrections for inundated zones where riverbed texture

could be identified on the stream bed. Using airborne imagery,

Westaway et al. (2003) showed that it was possible to combine water

depths derived from optical imagery for inundated zones with photo-

grammetric data from exposed areas to provide very high resolution

(< 0.5 m), good precision (ca. ±0.2 to ±0.3 m) data over a large extent

of braided river (3 km � 1.5 km). This required field calibration of the

relationship between depth and spectral signature but Lane et al.

(2010) showed that this method could be adapted for archival data

where no calibration data were available.

Up until the 2010s, these approaches were limited by the cost of

airborne imagery. This was revolutionized by the growing availability

of low-cost Uncrewed Airborne Vehicles (UAVs) coupled with

Structure-from-Motion Multi-View-Stereo (SfM-MVS) photogramme-

try (Eltner et al., 2015; Hugenholtz et al., 2013; James et al., 2020;

Niethammer et al., 2010; Ouedraogo et al., 2014). High vertical preci-

sion (ca. ±0.05 - ± 0.2 m) and high resolution (ca. 0.01 to 0.1 m) data

can now be acquired for rivers at a frequency dictated by the rate of

morphological change rather than limited by the costs of data acquisi-

tion producing accurate DEMs of dry areas. The extension of two

media refraction corrections to UAV-derived data allows the recon-

struction of water depths and so production of models for both inun-

dated and dry zones (Dietrich, 2017). The possibility of combining these

two techniques represents a significant development in fluvial geomor-

phology, although subsequent research has identified limitations. Nota-

bly, the low-grade cameras in many UAVs make camera calibration

challenging for reliable change detection (Carbonneau & Dietrich, 2017;

James et al., 2020; James, Robson, d’Oleire-Oltmanns, &

Niethammer, 2017; James, Robson, & Smith, 2017).

One major challenge remains: where rivers have high turbidity,

water depths may exceed the maximum depths that can be seen in

aerial imagery (i.e. the extinction depth). This may make the riverbed

insufficiently visible for the application of texture-based two-media

photogrammetry approaches for water depth modelling

(e.g. Dietrich, 2017; Flener, 2013; Flener et al., 2013; Kasvi

et al., 2019; Tamminga et al., 2015). Light extinction depth measured

using Secchi depths may be of the order of only a few centimetres in

certain fluvial settings (Carrivick & Heckmann, 2017) eliminating the

depth signature for image-based approaches. Green-band lidar typi-

cally only penetrates to 1.5 to 3 times the Secchi depth (Pratomo

et al., 2019; Szafarczyk & Tos, 2023), limiting the suitability of air-

borne lidar for bathymetric measurement in high-turbidity rivers.

Other active remote sensing techniques exist, including

echo-sounding and acoustic Doppler current profiling. These perform

better in high turbidity environments, but they cannot be used in

water depths lower than 0.3 m to 0.5 m, limiting their application to

large rivers (Kasvi et al., 2019).

Large-scale measurements suggest basic relationships between

planform morphological proprieties (notably channel width) and water

depth (Almeida et al., 2017; Mersel et al., 2013; Schaperow

et al., 2019). Such relations are implicit in the long-established notion

of hydraulic geometry (Leopold & Maddock, 1953) that allows stream

widths, mean depths and mean velocities to be predicted from dis-

charge. Such relationships were developed primarily for morphologi-

cally stable, single-channel streams. Bures et al. (2019) used linear

multiple regression to predict cross-section bathymetry using mor-

phometric data (i.e. overall curvature, planar curvature, profile curva-

ture, overall slope and slope in the x- and y-direction). Interpolation

between cross-sections was then applied to obtain a complete

bathymetry of a meandering river.

In this paper, we estimate water depth distribution in a high tur-

bid, braided, glacier outwash stream from basic planimetric informa-

tion and assess its potential for creating DEMs for volume change

estimation. The approach is based on a heuristic argument, which is

a set of qualitative statements of how we expect water depth to

vary in a braided river. We then transform these into quantitative,

statistical models for generating spatially continuous water depths in

inundated zones. We then (1) integrate these depths into high-

resolution SfM-MVS derived topographic data from dry areas to cre-

ate DEMs; and (2) assess whether they can be used for geomorphic

change detection and volume estimation at the proglacial floodplain

scale.

2 | METHODOLOGY

2.1 | Study area

The investigation is based on the proglacial margin of the Glacier

d’Otemma, located at an altitude of 2,450 m a.s.l. in the Val de

Bagnes, south-western Swiss Alps (Figure 1). This includes a glacial

outwash plain that has formed between the early 1980s and the pre-

sent following rapid glacier retreat (Mancini & Lane, 2020). The out-

wash plain varies between ca. 150 and 200 m wide and is just over

ca. 1 km in length. There is no vegetation cover except on lateral ter-

races that are outside of the active braiding zone. The river has a

median grain-size (D50) of ca. 0.06 m and with surface particle sizes

ranging from the sand through gravel to cobble size fractions. The

mean valley slope is 1.2%. The river is typical of braided rivers found

in outwash plains in front of both glaciers and ice sheet outlets. Field-

measured maximum water depths varied from ca. 0.20 m in secondary

channels to more than 0.60 m in main channels.

Applying empirical estimations for the attenuation coefficient

based on water column turbidity, the lowest measured turbidity of

ca. 250 NTU produce maximum extinction depths of around 0.30 to

0.50 m (Rose et al., 2014). At these depths, there is very little texture

available on the bed and the form of the exponential absorption of

light with depth means very poor precision in depth estimates. This is

why both two-media photogrammetric correction and image-based

approaches are not suitable for this kind of stream.

2 MANCINI ET AL.
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In this study, we used field-data collected on the 18th of August

2020 and on the 8th and 10th of September 2020. These have differ-

ent measured water depth ranges because of the different melt rates

and discharge rates (Qw) experienced by the glacier during the melt

season (Figure 1): mean Qw during the data acquisition was 5.29 m3/s

on the 18th of August, 2.98 m3/s on the 8th and 3.11 m3/s on the

10th of September. We describe data collection below.

2.2 | Methodology

Figure 2 gives an overview of the methodology developed to estimate

spatially-continuous water depths using morphometric parameters

using: (1) orthomosaics of the alluvial plain; and (2) the related Digital

Elevation Models (DEMs). These parameters are combined with geo-

referenced point measurements of water depth from within the inun-

dated zones obtained using a differential GPS (dGPS) survey to

develop statistical models for channel bathymetry. In this study, we

focus on analyses conducted around daily low discharge conditions

(Figure 1) with the ultimate aim of producing daily DEMs for morpho-

logical change detection.

The bathymetric model is written in MATLAB (version 2019a)

and freely availabe in Mancini et al. (2024).1 The SfM-MVS-derived

orthomosaic is used to classify the study area into wet and dry

regions. Following Westaway et al. (2003), the resulting classification

is used with the associated DEM to extract elevations along the wet-

dry interface. These are interpolated to create a flat water surface

map which can be combined with texture-estimated water depths to

obtain topographic data in inundated zones (Westaway et al., 2003).

The field-collected water depth measurements are used to develop

both single date-specific and pooled statistical models. These models

are constructed from a series of heuristic statements that define

which morphometric parameters we derive to model measured water

F I GU R E 1 Location of the study
area, streamflow hydrograph and spatial
configuration of the glacier d’Otemma
proglacial forefield (45�.56003.544”N,
7�24042.19700E) from a both aerial and
ground-level perspective. Red dots on the
flow hydrograph (a) show the three days
of the survey (Table S1.1. in
Supplementary Information S1). Coloured
dots in the forefield maps (b) refer to
measured cross-section water depths
used for the calibration (orange) and for
the validation (blue) process. Water stage
data for the 2020 melt season are
available in Müller & Miesen (2022).

1The code will be made available if the paper is accepted for publication.
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depths. We justify the choice of these statements and explain their

quantification below (Section 2.3.4).

For each field-collected dataset, a subset of depths is used in a

stepwise linear regression to identify which of these parameters make

a statistically significant contribution to water depth variation in

space, and so to define the form of the final multiple regression

model. The models are then applied to data points not used in calibra-

tion to validate them. The final models are applied to the full

braidplain to provide spatially-continuous water depth maps at the

proglacial-margin scale. The number of depths that can be measured

is limited by the constraint that the stage should not change signifi-

cantly during data collection leading to relatively small sample sizes.

Thus, we also tested the effect of merging the three 2020 datasets to

increase sample size. Resulting water depth distributions for inun-

dated zones are combined with SfM-MVS photogrammetric data for

dry zones to create DEMs of the entire floodplain. Following Lane

et al. (2003) we produce spatially-varying estimates of uncertainty

and levels of detection, and then volumetric changes estimates in

both dry and inundated regions. We would expect the quality of ele-

vations in inundated zones to be degraded as compared with the dry

zones and this last step allows us to assess whether or not this

method is fit for the purpose of morphological change detection and

volume estimation in an actively braiding glacier-fed stream.

2.3 | Methods

2.3.1 | UAV data acquisition and SfM-MVS
photogrammetric processing

Drone imagery was acquired using a DJI Phantom 4 Pro UAV in the

early morning on each of the three survey dates when the floodplain

experienced low flow and relatively stable conditions

(Supplementary material S1; Roncoroni et al., 2022). The drone was

F I GU R E 2 Schematic overview of the used methodology.

4 MANCINI ET AL.
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mounted with a FC6310 camera containing a 1-in. CMOS sensor has

a focal length of 8.8 mm and a pixel pitch of 0.24 mm, so producing

50472 � 30648 pixel images. Flight plans were designed in

Pix4DCapture (version 4.8), with an overlap of 80%. The survey strat-

egy followed James et al. (2020) in order to optimize the photogram-

metric process and to reduce the magnitude of systematic error in

derived DEMs. The study area was divided into four zones, each one

surveyed with two orthogonal grid missions having a camera angle at

nadir (90� at 80 m height) and with two additional circular missions

at 60 m height where the camera was self-oriented towards the cen-

tre of the scene (Roncoroni et al., 2022). The theoretical ground sam-

pling distance per flight varied between 0.6 and 0.8 cm/pixel

depending on camera height and obliquity. Each survey started at

8 am and took ca. 3.5 hours to cover the entire proglacial outwash

plain extent shown in Figure 1. This was undertaken daily throughout

the melt season.

We installed 77 ground control points and collected 170 indepen-

dent checkpoints to evaluate model quality. These were measured

using rapid static GNSS-RTK surveys set at 2 minutes per point using

a dGPS Trimble R10, with a known base station (corrected using the

fixed monitoring Swiss Federal Office for Topography provided sys-

tem via SwiPos©; Mancini & Lane, 2020). Data points were corrected

to the Swiss CH1903+/LV95 coordinate system. Point precisions

were comprised between ±0.02 m and ±0.04 m in the horizontal and

vertical, respectively.

For each day of the survey, the post-processing of the imagery

was performed using the SfM-MVS photogrammetric software

Agisoft Metashape (version 1.5.5), following steps detailed in James,

Robson, d’Oleire-Oltmanns, and Niethammer (2017), James et al.

(2020), and James, Robson, and Smith (2017). First, images that were

blurred and/or too contrasted, that had few (�500) and/or an uneven

distribution of tie points and/or that presented large tie point resid-

uals (> 1 pixel), were discarded (James et al., 2020). Second, images

were aligned and tie points were automatically extracted from

matching images. At this stage, tie points that were observed in only a

few images (< 3) were discarded (James et al., 2020). Third, we used

a statistical method (James et al., 2020; James, Robson, d’Oleire-

Oltmanns, & Niethammer, 2017), implemented in Agisoft Metashape

as an external plugin to improve the SfM-MVS bundle adjustment. It

uses Monte Carlo simulation: (a) to identify the camera model that

minimizes systematic error; and (b) to investigate the impact of indi-

vidual GCPs on overall model quality. This process is fully described in

Roncoroni et al. (2022) for the datasets used here. The procedure

resulted in a camera model composed of 5 parameters and 52 GCPs

(Supplementary Information S1). Table 1 summarizes the results.

Fourth, aided by the semi-automatic marker identification avail-

able in Metashape, GCPs (Supplementary material S1) were intro-

duced to help constrain the bundle adjustment. The RMS errors for

both GCPs and 170 independent checkpoints are shown in Table 1.

Finally, point clouds were densified and used to produce orthomosaics

and DEMs for each survey at a resolution of 0.05 m and 0.20 m,

respectively (Table 1). For the morphometric analysis described below,

the orthoimages were resampled to 0.20 m for computational rea-

sons. More details on the methodology are given in Roncoroni et al.

(2022). Orthomosaics produced by and used in this study are freely

available in Roncoroni, Mancini, and Miesen (2023) and the final DEM

products are available in Mancini et al. (2024).

2.3.2 | Sampled point data for model calibration
and validation

The Trimble R10 dGPS was also used in rapid-static GNSS-RTK mode

to obtain discrete geo-referenced points of the riverbed at the same

time as UAV image acquisition. Due to the difficulties in maintaining

the rover in a stable position for long periods because of water cur-

rents, the sampling time per point was set to 30 seconds. As with the

GCPs, data were precise to ±0.02 m in the horizontal and ±0.04 m in

the vertical component.

For the bathymetric modelling, topographic measurements were

collected in the form of cross-sections extending away from selected

locations on channel banks. The use of cross-sections was deemed

preferable as it made sure that we obtained a good depth range

extending from the shallowest (near bank) to the deepest water.

Cross-sections were chosen such that we captured a range of differ-

ent morphological features (e.g. ones with both fewer secondary

channels and more secondary channels; some with convergence zones

and some with divergence zones; and a range of channel widths).

Within cross-sections, we maintained an average point spacing of

ca. 0.4 m. Due to safety considerations, data collection in the deepest

regions was challenging meaning fewer data could be acquired. The

collected cross-sections were then randomly split into two halves for

calibration and validation purposes.

2.3.3 | Image processing to obtain a water
surface DEM

The SfM-MVS-derived orthomosaics were classified into wet and dry

zones. First, we converted the orthomosaic from RGB to grayscale to

reduce unwanted noise related to changing light intensity (Gao

et al., 2008; Liu et al., 2018). Random pixels falling within inundated

regions were manually sampled to define the spectral range of turbid

water. These were used to train a simple signature-based classification

model in MATLAB to generate a binary raster of wet and dry regions:

pixels having a value falling within the spectral range of turbid water

T AB L E 1 Evaluation of bundle adjustment performance in terms of GCP error, point cloud quality and DEM vertical difference by
comparison with 170 independent checkpoints.

GCP RMS error [m] Total number of points in dense cloud
Checkpoints Z mean and standard deviation
of error (SDE, in brackets) [m]

18th August 2020 ±0.049 1010154’741 0.009 (±0.029)

8th September 2020 ±0.014 920300’262 0.009 (±0.031)

10th September 2020 ±0.013 930812’486 0.011 (±0.028)

MANCINI ET AL. 5
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were classified as 1, otherwise as 0. Second, the resulting inundation

map was manually corrected by comparing it visually with the respec-

tive orthomosaic (Figure 3; Roncoroni, Mancini, Miesen, Müller,

et al., 2023). Points in the dry-wet boundaries were identified and

used to extract coordinate triplets from the DEMs obtained using the

SfM-MVS photogrammetry. These were then interpolated using

Delaunay triangulation in order to produce a flat water surface within

each DEM for representing sub-critical flow conditions (Westaway

et al., 2003).

2.3.4 | Morphometric parameters

Given that the focus is a braided river, we developed five heuristic

statements that were then quantified to drive the statistical model for

estimating water depth: (1) the depth of a river increases with dis-

tance from the nearest bank (this follows from within cross-section

application of the principle of maximum entropy; Farina et al., 2015);

(2) where the total inundated width of all channels in a braidplain

cross-section is higher, flow velocities and hence erosion depths

should be lower, assuming steady discharge (Mosley, 1983); (3) chan-

nel curvature redistributes momentum laterally and so causes the

deepest zone to migrate towards the outer bank of the channel

(Ashmore, 1982; Begin, 1981); (4) flow divergence leads to deposition

and hence lower flow depths, while (5) flow convergence leads to

scour and hence higher flow depths (Ashworth, 1996; Lisle

et al., 1991). Their computation is described below and their spatial

distribution is shown in Supplementary Information S2.

Distance from the nearest bank

In rivers, channel width, depth and velocity respond to water dis-

charge via modification of topographic (e.g. via scour or via bank ero-

sion) or hydraulic (roughness, bed slope) parameters (Leopold &

Maddock, 1953; Mackin, 1948; Mosley, 1983). If discharge increases,

within a cross-section, the river may become wider, deeper or faster

(Leopold & Maddock, 1953). The increase in depth may result from

either rising water level or (vertical) riverbed erosion; the increase in

width is achieved through (lateral) bank erosion. Vertical and lateral

erosion are not independent as where vertical erosion occurs close to

a river bank there is a greater probability that the river bank will be

over-steepened and, especially where the river bank is not cohesive, it

will fail. It might then be stated that water depths are likely to be

greater farther from a river bank. Thus we estimated the distance

from the nearest bank by applying an Euclidean distance operator to

the wet-dry image; this measures the shortest distance for each wet

pixel to the river bank.

Total inundated width

The relation between discharge and morphologic modification is com-

plex in a braided river as in addition to the river becoming wider and

deeper as discharge rises there is also an increase in the number of

channels. This reduces hydraulic efficiency and hence vertical erosion

as compared to a single-thread channel. Thus, we would expect river

channel bathymetry also to reflect the total inundated width, with

lower total widths likely to be faster and deeper.

Estimating total inundated width is not evident in a river with

continuously converging and diverging channels across a number of

different scales. The solution adopted here involves a two-step

approach (Figure 4). First, we estimate the width of the local channel,

here expressed as twice the Euclidean distance between the nearest

dry point on the river bank (b) and the channel centerline (c) at each

cell (i) in the inundated zone (2dbc
i). The channel centerline is mapped

using a skeletonization algorithm. This does not give the true “hydrau-
lic” centre-line as the analysis is done on a surface map of inundated

area rather than distributions of flow velocity and water depth, but

comparisons with a manually digitized centre-line suggested an excel-

lent level of agreement. Second, we add other non-local channel wid-

ths (2dbc
k) falling on an imaginary orthogonal line to the considered

cell i to get the total inundated width.

To obtain the total inundated width for each local channel i, we

use a morphological structuring element (STREL) to identify which

non-local channel widths k apply to each i (Figure 4). The STREL is a

square matrix oriented so the diagonal is perpendicular to the local

channel cell i with an angle given be the direction of local curvature

(see below). The diagonal is set to be twice as long as the braidplain

width, in our case 1,400 cells. Any other intersection of the STREL

diagonal with a centre-line (excluding the local centerline) indicates a

non-local channel (k) of width 2dbc
k contributing to the total inunda-

tion width for i. The total inundation width (Tiw) is then computed as:

Tiw¼
Xn
k¼1

2djbcþ2dkbc ðEq1Þ

Where:

Tw = total inundation width;

2djbc = width of the local channel

F I GUR E 3 Turbid water detection for
the 18th of August dataset using (a) the
automated spectral signature method and
(b) final result after manual correction.
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2dkbc = non-local channel widths;

n = number of diagonal intersections.

Local curvature magnitude and direction

The local curvature magnitude and direction are based on determining

streamlines (or centerlines in terms of the digitized inundated area).

As shown in studies of river meandering (e.g. Brice, 1975) and braiding

(e.g. Ashworth, 1996; Richardson & Thorne, 1988), curvature is a key

driver of fluvial morphodynamics because it leads to secondary

circulation; it has been measured in proglacial rivers (Ashmore, 1982;

Ashmore et al., 1992). Rivers flowing on flat and poorly-vegetated

floodplains are likely to be shaped by this secondary flow, which has

the effect of shifting erosion towards the outer bank and deposition

towards the inner bank (Figure 4). This results in a transverse displace-

ment of regions having higher and lower water depths within the

channel cross-section (Ashmore, 1982; Powell, 1998). Thus, local cur-

vature magnitude and direction can be used as a proxy to determine

the spatial distribution of secondary flow (e.g. Frascati &

F I GU R E 4 Illustration of the
approach to total inundation width
estimation using morphological
structuring elements (STREL, red square).
In this example, the local channel width
(2dbc

i, orange arrow) is combined with
two non-local channels widths (2dbc

k, blue
arrows) to give the total width for that
specific cell. Transects illustrate the
topographic effects of secondary
circulations in curved channels (A) and in
flow divergence (B) and convergence
regions (C). Plus and minus refer to
deposition and erosion, respectively.

F I GU R E 5 Methodological approach used to quantify the local curvature magnitude and direction variable. Step 1: centerline cleaning from

noisy segments; step 2: segmentation of the cleaned centerline in multiple transects to apply a smoothing function needed to avoid abrupt
direction changes having a potential effect on real curvature values; step 3: determination of normal vector coordinates and magnitudes; step 4:
determination of normal vector angle in reference to the first quadrant; step 5: classification of pixels of regions of negative (blue gradient) and
positive (red gradient) curvature regarding the local magnitude and normal vector direction.

MANCINI ET AL. 7
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Lanzoni, 2009, 2013; Parker et al., 2011) and its effects on water

depths.

The local curvature magnitude and direction calculation (Figure 5)

start with the centerlines used in the estimation of total inundation

width. First, a manual reworking of the centre-line is needed to

remove unwanted segments coming from abrupt and sudden changes

in the shape of the digitized polygon. Second, segmentation is used to

create individual centre-line segments in individual reaches limited in

their upstream and downstream direction by flow divergence and

convergence units, respectively). These segments are subsequently

smoothed using a loess filter to reduce noise in the data (Tate

et al., 2005). Third, the curvature is calculated following Mjaavatten

(2020). This latter returns, for each cell composing a centerline seg-

ment the local curvature values and the coordinates (kxi, kyi) describing

the direction of orthogonal vectors for each point composing the seg-

ment. These outputs were used in the fourth step to differentiate the

stream into regions of positive curvature, which would displace

momentum and hence depth away from the centre-line and regions of

negative curvature with the opposite tendency (Figure 4). This is done

for every point composing each segment by assigning them a diagonal

matrix of specific length and angle. The length simply corresponds to

the local channel width, while the angle is given by the difference

between the direction of orthogonal vector in a local streamline cell

(kxi, kyi) and the x-axis of an imaginary Cartesian plan calculated in a

counter-clockwise direction; cells located on the half having the same

orientation of the normal and hence in the direction of positive curva-

ture were assigned a value of +1; those in the opposite orientation

have �1. Finally, the magnitude of the curvature is calculated by

attributing at the outermost diagonal cells the curvature magnitude

found by applying Pythagoras’ theorem to the previously determined

normal vector components:

Kji

�� ��¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xiþk2yi

q
ðEq2Þ

Where:

jKjij = magnitude, or length, of the normal vector j at point i of

the centreline;

kxi = coordinate X of the normal vector having origin in i;

kyi = coordinate Y of the normal vector having origin in i.

As the total number of cells composing the normal vectors is

known, we then fill cells in the rest of the diagonal by calculating a

decreasing interval from the maximum magnitude value (+K) or an

increasing interval from the minimum magnitude value (-K). This pro-

cedure is defined by:

nji ¼ Kij j�
Xn�1

n¼1

2 Kij j= n�1ð Þ ðEq3Þ

Where:

Nji = curvature magnitude value at the cell i of the normal vector

j;

jKij = magnitude/length of the normal vector at point i of the

centreline;

n = total number of cells composing the vector j.

An interpolation (Delaunay triangulation) is then applied to fill

points not falling in one of the diagonals in order to have a continuous

matrix of curvature values.

Planform streamline convergence and divergence

Streamline convergence and divergence locations related to bars in

braided rivers can also influence erosion and deposition and hence

water depth distributions. This is reflected in studies of deposition at

bifurcations and on bar-heads (Best & Reid, 1984; Best, 1988;

Ashworth, 1996; Figure 4), and erosion at confluences (Bristow &

Best, 1993; Ashworth, 1996; Figure 4).

Flow convergence and divergence regions were visually identified

based on the inundation map. The distance from each inundated cell

to the nearest flow convergence and divergence region is then auto-

matically computed in a procedure involving three steps. First, for

each convergence and divergence region, a null matrix having the

same dimensions of the entire study area is generated, and the value

1 is attributed to their exact spatial location. Second, radial distances

are computed. Third, for each cell composing the inundated area, the

closest divergence and convergence regions were found by using

the distance matrices as a lookup table.

Measured water depth

The surveyed water depth is the response variable of the model. The

dGPS points give elevations which need to be combined with

the water surface to give water depths. This is done by calculating the

Euclidean distance between the 2D coordinates of each sampled

dGPS topographic point and all the cells composing the triangulated

water surface. The minimum calculated distance is kept, as the

orthogonal and shorter distance between the riverbed and the water

surface.

2.3.5 | Water depth prediction: model calibration,
application and validation

Before modelling water depths, we checked the basic assumptions

required in multivariate regression analysis, notably regarding multi-

collinearity between independent variables (Olsen et al., 2020). The

degree of collinearity between variable pairs was computed using

the variance inflection factor (VIF) (e.g. Neter et al., 1983; Thompson

et al., 2017). A VIF value > 10 indicates that two variables were highly

correlated with each other and could lead to multicollinearity if they

were both included within a model.

Model calibration was based upon a step-by-step multiple linear

regression (Breaux, 1967; James et al., 2013; Maxwell, 1975; Olsen

et al., 2020) aimed at explaining the measured water depth from the

set of morphometric variables):

y¼ b0þb1x1þ…þbixiþe ðEq4Þ

Where:

y = response variable (i.e. measured water depth);

xi = observations associated to the independent variable i;

b0 = y-intercept;

bi = partial regression coefficients (weights) associated to xi;

8 MANCINI ET AL.
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e = residuals (i.e. variance not explained by the model).

Variables were added iteratively starting with the most important,

in terms of percentage of explained variance, until no further variables

resulted in a statistically significant (p < 0.05) increase in explanation

(Draper & Smith, 1998).

Stepwise regression was applied to the three datasets individually

(Figure 1 and Table 2). The resultant models were then applied to the

entire study area to determine predicted water depths in all flooded

cells for each calibration date. To account for the difference in dis-

charge rates over the 3.5 hours of UAV survey (2.55 m3/s to

8.04 m3/s [+315.33%] on the 18th of August, 1.81 m3/s to 4.16 m3/s

[+231.33%] on the 8th and 2.24 m3/s to 3.99 m3/s [+177.89%] on

the 9th of September; Figure 1), the results were corrected for the

effects of changing water stage conditions. The associated methodol-

ogy is fully presented in Supplementary Information S3.

The model was evaluated quantitatively in two ways. First, the

residual errors of the fitted model and their spatial distribution were

considered. Second, local predicted water depths were compared to

independent measurements (validation dataset, Table 2) and differ-

ences between measured and predicted depths were quantified (R2

and standard deviation of error).

2.3.6 | Pooling of calibration data

As the number of datapoints available for each dataset was limited, a

model calibrated with all available water depth measurements was

developed (Figure 1 and Table 2). The aim was to obtain more statisti-

cally significant results that could be applied to dates where no cali-

bration data were available. The resulting relation was then applied

individually to the three field-collected datasets to produce water

depth prediction maps, and validated using the three sets of indepen-

dent measurements (validation datasets, Figure 1 and Table 2).

2.3.7 | Elevation estimation, elevation uncertainties,
limits of detections and volumetric change estimates

Water depths were converted into wet-bed elevations following

Westaway et al. (2003) by subtracting the predicted water depths

from the interpolated water surface in the DEM. Elevation uncer-

tainties were determined as the sum in quadrature of the

uncertainties related to both water depth prediction and water sur-

face in each single DEM (Lane et al., 2003):

EUij ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σdij

2þσeij2
q

ðEq5Þ

Where:

EUij = elevation uncertainty in cell (i,j);

σdij = standard deviation of water prediction error in cell (i,j)

derived from prediction uncertainty bounds from the water depth

modelling;

σeij = standard deviation of water surface error in cell (i,j), taken

as the dry DEM uncertainty.

For dry cells, Equation 5 is modified as EUij = σeij. The standard

deviation of error for dry regions (the dry DEM uncertainty in Equa-

tion 5) was determined by comparing the 170 field-measured and

photogrammetrically reconstructed elevations of stable areas. Equa-

tion 5 gives a spatially explicit estimation of DEM uncertainty for both

dry and wet cells.

DEMs of difference (DoD) were determined by subtracting the

oldest DEM from the most recent one (i.e. DEMt2-DEMt1) and filtered

according to the spatial distribution of the limits of detection (LoD)

set at 68% (Brasington et al., 2003; Lane et al., 2003) using:

LoDij ¼�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EU1

ij

� �2
þ EU2

ij

� �2r
ðEq6Þ

Where:

LoDij = limit of detection in cell (i,j) [m];

t = Student’s confidence interval threshold (1 at 68%).

EUt
ij= Elevation uncertainties in cell (i,j) at times t.

DEMs of difference were filtered according to LoD maps to high-

light only statistically significant geomorphic changes. These were

then classified into regions as inundated, dry and transient

(i.e. inundated to dry or dry to inundated) between surveys. Finally,

volumetric change maps were produced from spatially filtered DoD

maps and total volumetric change estimates were computed following

Lane et al. (2003) as:

V¼ d2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
X

DoD
q

ðEq7Þ

where:

V = Volume [m3];

d = cell size (i.e. 0.20) [m];

n = number of raster cells in DoD;

DoD = DEMt2-DEMt1 spatially filtered by LoDs (Equation 6).

T AB L E 2 Characteristics of the dGPS surveys in terms of total number of points and stream cross-sections for both calibration and validation
sub-samples associated with each dataset (Figure 1). In square brackets the percentage of the number of points compared to the total number of
points composing the dataset.

Total Calibration Validation

Date Number of points Cross-sections Number of points Cross-sections Number of points Cross-sections

18th August 2020 206 23 112

[54.4%]

12 94

[46.4%]

11

8th September 2020 259 37 136

[52.5%]

21 123

[47.5%]

20

10th September 2020 157 25 82

[52.2%]

18 75

[47.8%]

17
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The associated uncertainties in volume estimates (σvijÞ were

derived as (Lane et al., 2003):

σvij ¼�
XI

i¼1

XJ
j¼1

d2ij EU2
1ijþEU2

2ij

� �0:5� �2 !0:5

ðEq8Þ

3 | RESULTS

3.1 | Individual predictive models

No pairs of variables were associated with significant collinearity and

so none needed to be excluded from the stepwise regression model

(Supplementary Information S4). Table 3 shows for each dataset the

most significant variables retained, their partial regression coefficient

values (or weights) from the multiple linear regressions and the statis-

tics comparing the observed and the predicted water depth values.

Differences in the retained variables and their coefficients were

found between dates although all of them include distance from the

nearest stream bank. The model describing water depth distribution

for the 18th of August 2020 has only two predictors (i.e. distance

from the nearest bank and distance from the nearest divergence

region), while the 8th of August and the 10th September 2020

datasets identified three. Levels of explained variance (R2) for the final

models are relatively high but differ between dates, and the standard

deviations of error are between ±0.07 and ±0.12 m. These are

degraded as compared with the precision of the dGPS instrument

when used in this setting (between ±0.02 m and ±0.04 m).

The results of the application of the prediction model for each

date (Table 3) are shown in Figure 6 after correction for changing the

stage between the start and the end time of UAV surveys

(Supplementary Information S3).

Water depth predictions (Figure 6) are higher in regions charac-

terized by a straight fluvial configuration, notably in the most

upstream and downstream parts of the study area. In contrast, predic-

tions are more variable and shallower in the braided sectors, although

T AB L E 3 Stepwise regression outputs. Variable considered into multiple linear regression and predictor relative weights obtained at each
step. P-values show that the selected variables composing the multiple linear regressions are statistically significant, while both R-squared and
standard deviation of error (SDE) behaviour highlight the effect of a new variable on the overall model prediction capacity.

Date Step Variable

Coefficient b Statistics

b0 b1 b2 b3 R2 SDE p-value

18th August 1 Dist. nearest bank 0.190 0.093 0.375 0.138 2.2 � 10�9

2 Divergence 0.144 0.069 0.004 0.545 0.118 4.7 � 10�9

8th September 1 Total Width 0.371 �0.012 0.367 0.081 7.3 � 10�7

2 Dist. nearest bank 0.305 �0.010 0.033 0.450 0.075 7.2 � 10�4

3 Convergence 0.261 �0.008 0.026 8.8 � 10�4 0.489 0.072 0.002

10th September 1 Dist. nearest bank 0.148 0.076 0.434 0.088 1.3 � 10�11

2 Divergence 0.134 0.064 0.001 0.537 0.079 2.3 � 10�6

3 Convergence 0.138 0.069 0.003 �0.003 0.610 0.073 2.6 � 10�4

F I G U R E 6 Predicted water depth
corrected by the changing water stage
occurred along the UAV surveys. Mean
discharge rates during both UAV-survey
and water depth acquisitions are:
5.29 m3/s on the 18th of August,
2.98 m3/s on the 8th of September and
3.11 m3/s on the 10th of September
(Figure 1).

10 MANCINI ET AL.

 10969837, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5944 by B

cu L
ausanne, W

iley O
nline L

ibrary on [05/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



increasing depths are recorded in regions coinciding with flow conflu-

ence regions.

Using the validation datasets, we evaluated the predictive capac-

ity of the multiple linear regression models (Figure 1, Table 2 and

Figure 7). The comparison against independent measurements shows

that, as implicit in differing statistical success in the calibration results

(Table 3), models have different predictive performances.

The 18th of August and the 10th of September validation

datasets had the highest R2 values of respectively 0.561 and 0.472

(Figure 7a and 7c). However, they both tend to over-estimate the

measured water depths in shallower regions (up to ca. 0.27 m and

ca. 0.05 m, respectively) and to under-estimate deeper ones, espe-

cially for the 10th of September. The residual errors for the latter have

a wider range (Figure 8a). The model for the 8th September is the one

with the lowest R2 (0.154, Figure 7b) and has an opposite relation

compared to that described for the other two datasets with under-

estimation for shallower regions (up to ca. 0.27 m) and over-

estimation for deeper ones.

Figure 8 shows the residual errors associated with validation

points (Figure 1 and Table 2). On the 8th of September, errors were

between ca. -0.25 m and +0.1 m, with some outliers falling outside

these limits mostly located in secondary channels in the braided sec-

tor. On September 10th, the error range is similar but more symmetri-

cal around zero (ca. -0.18 to +0.18 m) with larger errors mainly

located in the main channel. The 18th August dataset has the widest

distribution of error compared to the other two datasets with points

having differences as low as �0.35 m and as big as +0.13 m: higher

errors are generally in the main channel, while in the braided sector,

they are generally limited to �0.05 to �0.1 m. These results show

that the individual models vary in both their precision and their bias.

3.2 | Pooled model

Given mixed validation results when applying the modelling approach

to individual datasets, we developed a single model and applied it indi-

vidually to the three dates for which validation data are available. The

correlation matrix and the VIF values for the merged calibration

dataset were not collinear (Supplementary Information S5). Table 4

shows the application of the stepwise regression approach to define

the generalized multiple linear regression model.

The most significant explanatory variables retained differ from those

found when applied individually (Table 3); distance from the nearest river

bank; total inundated width; and distance from the nearest convergence

region. The resultant R2 of 0.648 suggests a statistically significant rela-

tion between the retained predictors and the response variable. The stan-

dard deviation of error was ±0.113 m (Table 4).

The qualitative assessment of water depth distribution is in line

with that described above for the individually calibrated models

(Figure 9): deeper water in the upstream and downstream parts of the

study area where the river is more confined; shallower in the braided

sector with more variability in regions affected by flow convergence.

Predicted depths are generally higher for the August dataset, con-

firming that the generalized model is able to discriminate between

higher and lower flow conditions (Figures 1 and 9a). However, the

comparison between water depth maps issued using individual cali-

brated and pooled models reveals that for the pooled model, predic-

tions are slightly shallower for the 18th of August dataset, deeper for

the 8th of September, while consistent for the 10th of September

(Figures 6 and 9).

The validation analyses show that the pooled model produces

better results than individual models with the obtained R2 values

between 0.5 and 0.6 for all datasets (Figure 7). Despite this, relations

all have a common tendency to slightly under-estimate shallower

depths and to over-estimate deeper ones, especially for the 18th of

August (Figures 7a and 10a). The better performance of the pooled

model is also confirmed by the residual errors, which are smaller com-

pared to the individual models with median errors more generally

centred on zero and the error range and the outliers more contained

(Figures 8a and 10a). The pooled calibration approach reduces the

errors in the downstream end of the floodplain where the channel is

straight, but also in secondary channels composing the most braided

sector (Supplementary Information S6). Especially for the 18th of

August dataset, occasional and significant under-estimations are still

found in confined flow regions.

3.3 | Model inter-comparison

Table 5 compares the prediction capacity for both specific and pooled

models. The latter appears to improve the relationships between the

measured and the predicted water depths increasing all R2 values,

while the residual errors improve for two of the three datasets.

Differences in water depths between the individual and the

pooled models primarily impact single-channel zones (Figure 11). In

these regions, differences for the 18th of August are between

ca. +0.05 m and +0.30 m and for the September dates they are

between �0.20 m to �0.05 m. In secondary channels within the more

F I GU R E 7 Validation plots comparing the predicted and the measured water depths observed in the location shown in Figure 1 for individual
(red) and pooled (blue) models.

MANCINI ET AL. 11
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braided section, the differences are smaller, between ca. -0.1 m and

+0.1 m in all datasets. Thus, although the pooled model produces

more reliable results than the individual model (Table 5), model

performances are more similar for braided zones. In deeper areas, the

pooled model performs much better (see Supplementary Information

S6 for comparisons).

F I GU R E 8 Boxplots (a) and spatial distribution of residual errors (b to d) for individual calibrated models. Errors in the interval defined by ±
the standard deviation of the error (SDE, Figure 7) are shown as white. Positive values highlight that the model under-estimate the measured
water depth (predictions are shallower than measured data), while negative values refer to over-estimation (predictions are deeper than measured
data)

12 MANCINI ET AL.
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3.4 | Uncertainty and spatial patterns of levels of
detection

The spatial distribution of elevation uncertainty for both dry and wet

surfaces was generated for both individual and pooled models follow-

ing Equation 5 (Figure 12).

Elevation uncertainties are higher for the individual models than

for the pooled model. Individual models had elevation uncertainties

between ±0.05 m and ±0.12 m for the 18th August, between

±0.035 m and ±0.08 m for the 8th of September and between

±0.04 m and ±0.09 m for the 10th of September dataset (Figure 13a).

The pooled model had lower uncertainties of ±0.035 m to ±0.06 m in

all datasets. These were not uniform in space, with the braided sector

and narrower channels having higher uncertainties compared to

single-thread and wider channels (Figure 12).

The spatial distribution of LoDs (Equation 6) is highly variable in

space, and higher than when the individual calibrated models were

used (Figure 13b). Given that wet areas are more uncertain

(Figure 13a), elevation changes in zones permanently inundated were

substantially higher. For the individual models, these are ±0.045 m to

±0.14 m for changes between the 18th of August and the 8th of

September and between ±0.045 m to ±0.11 m for the period between

the 8th September and the 10th September. These are substantially

higher than the uncertainties for dry-to-dry elevation changes (±0.042

and ±0.043 m). However, the limits of detection associated with the

pooled model are lower, ranging between ±0.045 m and ±0.09 m, and

only marginally higher than the mean D50 of 0.06 m. Thus,

implementation of the pooled model reduces elevation uncertainty

and improves the detection of morphological change.

3.5 | Volumetric change estimates

Table 6 shows the volume change estimates for regions staying

inundated and/or dry within surveys, but also for transient areas

(i.e. inundated to dry or dry to inundated). During the investigated

period, the proglacial forefield went through net erosion in areas

that were both dry (but became inundated at higher discharges) and

both inundated on the survey dates presented here. Irrespective of

the model used to predict water depth distributions, the vast major-

ity of the erosion took place in inundated regions, or in areas inun-

dated on one of the two dates concerned with contributions to the

total volumetric change of up to 69.8%. Transient regions going from

wet to dry are associated with deposition (Table 6). Volumetric

changes for transient regions (wet-dry or dry-wet) account for more

than half of the total volumetric changes at the forefield scale. Dry-

only regions, as might be expected, witness relatively less change

(up to 15.8% of the total volumetric change). It seems that at the

seasonal scale, in this case, significant morphodynamic re-

organization was spatially-restricted to specific areas of the

proglacial margin. The volume of change estimates from elevation

difference maps is slightly higher when the pooled model is consid-

ered for determining water depth distribution, confirming observa-

tions related to Figure 11.

T AB L E 4 Stepwise regression approach applied to the merged 2020 datasets.

Step Variable

Coefficient b Statistics

b0 b1 b2 b3 b4 b5 R2 SDE p-value

1 Dist. nearest bank 0.147 0.083 0.355 0.118 2 � 10�26

2 + Total width 0.132 0.073 0.001 0.560 0.115 3 � 10�10

3 + Convergence 0.128 0.076 0.052 0.001 0.648 0.113 8 � 10�8

F I GU R E 9 Spatial distribution of
water depths issued from the application
of the pooled model. Obtained water
depths were corrected by the changing
water stage that occurred along the UAV
surveys. Mean discharge rates during both
UAV-survey and water depth acquisitions
are: 5.02 m3/s on the 18th of August,
3.82 m3/s on the 8th of September and
4.21 m3/s on the 10th of September
(Figure 1)
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F I GU R E 1 0 Boxplots (a) and spatial distribution of residual errors (b to d) for the pooled model. Errors in the interval defined by ± the
standard deviation of error (SDE, Figure 7) are shown as white. Positive values highlight that the model under-estimate the measured water depth
(predictions are shallower than measured data), while negative values refer to over-estimation (predictions are deeper than measured data)
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4 | DISCUSSION

4.1 | Evaluation of specific and pooled models for
water depth prediction

The predictive models we develop for water depths in shallow, turbid,

glacier-fed braided streams, especially that for the pooled dataset, are

encouraging (Table 5). Single calibration models did differ between

themselves in terms of predictors and performances (Table 3). The dis-

tance from the nearest bank variable was common to all models but

three of the remaining four variables (total width, distance from con-

vergence, distance from divergence) did not appear systematically in

the models, while curvature did not appear in any of them. These dif-

ferences between models likely reflect either between-date differ-

ences in where and how much data were collected and/or different

discharge magnitude at the moment of data acquisition (Figure 1,

Table 2). The extension or the contraction of the proglacial outwash

plain due to discharge variation, may have enhanced (or decreased)

the importance of certain variables in explaining the measured water

depth distributions.

Analysis of R2 values (Figure 7) and both magnitude and spatial

distribution of standard deviations of error (Figure 8) through the

validation process also reveals that models have different predictive

capacities. We emphasise that our methodology does not involve

the removal of outliers during the calibration process. Braided rivers

are complex and non-linear geomorphic systems, with a wide range

of water depths (Ashmore, 1988; Phillips, 2003), making it difficult

to identify outliers. The resulting predictive capacities for the indi-

vidual models (Table 3) are more encouraging than their validation

results (Figure 7). For instance, the validation relation for the 8th

September had a low R2 (0.154, Figure 7b) likely because the model

struggles to reconstruct the proper bathymetry of braided reaches

T AB L E 5 Comparison between validation R-squared valued and residual error obtained with the application of individually calibrated models
and the generalized one.

Date Statistics Individual model Pooled model % difference

18th August 2020 R2 0.561 0.581

Median [m] �0.092 �0.022 �70.21

SDE [m] 0.114 0.122 +12.54

8th September 2020 R2 0.154 0.540

Median [m] �0.097 �0.030 �68.64

SDE [m] 0.086 0.064 �25.90

10th September 2020 R2 0.472 0.547

Median [m] 0.006 0.012 �60.32

SDE [m] 0.083 0.073 �10.84

F I GU R E 1 1 Depth of difference maps computed by subtracting predictions issued from the individual models from those given by the
pooled one

MANCINI ET AL. 15
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having shallower depths (Figures 7b and 8c). In the same way, the

model for the 10th of September has a better validation R2 of 0.472

(Figure 7c); albeit with some error remaining, including significant

predicted under-estimation, much of it located in the main channel

rather than in secondary channels composing the most braided sec-

tor (Figure 8d).

The main problem with the individual models is that they have

different retained variables and regression coefficients making their

application to dates when no calibration data were available a chal-

lenge. The pooled calibration approach produced a single model with

three predictors (distance from nearest river bank, total inundated

width and distance from nearest flow divergence region), a final R2

value of 0.648 and a SDE of ±0.113 m (Table 4). Its application using

the 2020 datasets produced encouraging results as the validation R2

values were substantially higher than for individual models (Figure 7)

and the residuals had a lower range of magnitude; the R2 was close to

0.6 for each of the three validation dates, with residual errors of

ca. ±0.1 m (Figure 10 and Table 5). Predictions and residual errors

were better for the September datasets than for the August one likely

because of the lower flow conditions (Figures 1 and 10a). The distri-

butions of residual error were generally within ±0.1 m for secondary

channels, increasing to ca. -0.4 m to +0.3 m in regions characterized

by single straight channels (Figure 8). Thus, despite the occurrence of

a certain degree of error in the predicted water depths, a multiple lin-

ear regression constructed using a greater number of samples col-

lected during different discharge and morphological conditions has a

better performance compared to daily models (Table 5;

Supplementary Information S6).

F I GU R E 1 2 Spatial distribution of elevation uncertainty for water depth maps predicted using both individual and pooled models. Dry
regions (in dark blue) have lower uncertainties compared to inundated regions.
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The final water depth distributions resulting from the pooled

model make qualitative sense. The study area is composed of three

sectors each having different fluvial patterns: a highly braided sector

in the middle of the proglacial floodplain bounded by a straight chan-

nel configuration upstream towards the glacier terminus and down-

stream at the forefield end (Figure 1). The pooled model produces

water depth distribution maps (Figure 9) that reflect this configura-

tion; water depths are higher for straight stream transects where flow

is confined into a single channel, while much lower in the most

braided regions (Figure 9). Secondary flow, as represented by channel

curvature, does not seem to be important in explaining water depth

distributions as no models included it (Tables 3 and 5). A possible

explanation could be related to the high ratio of channel width to

water depth, which may not be sufficient to allow the development of

significant secondary circulation in this system (Nezu et al., 1985).

Water depths are also very heterogeneous in the braided stream sec-

tor because of the recurrence of flow divergence and convergence

regions (Figures 6 and 9). Previous studies of the morphodynamics of

braided streams show that flow divergence regions are mainly

characterized by upstream bar deposition because of flow velocity reduc-

tion; in junctions, scouring may occur due to increasing stream power

related to an enhancement in flow velocity, also eventually reinforced by

secondary circulation if channel geometry permits (e.g. Ashworth, 1996;

Lisle et al., 1991; Powell, 1998; Schuurman & Kleinhans, 2015).

On this basis, both the quantitative and the qualitative elements

sustain the hypothesis that the heuristic-approach presented here can

be used to estimate spatially-distributed water depth patterns in a tur-

bid braided stream (Figures 7–10 and Table 5).

4.2 | Use of water depth maps for DEM
construction and estimation of change volumes

Incorporation of the bathymetric maps into the dry area DEMs

allowed us to create complete DEMs for the three dates and to also

produce spatially-explicit maps of elevation uncertainty. For the

F I GU R E 1 3 Histograms of the
frequency (i.e. number of cells) for both
(a) elevation uncertainty and (b) limits of
detection for permanently inundated and
transient regions. Light blue refers to
results issued using the individual
calibrated models, while light orange one
to those obtained using the pooled
model.

MANCINI ET AL. 17

 10969837, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/esp.5944 by B

cu L
ausanne, W

iley O
nline L

ibrary on [05/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



pooled model, elevation uncertainties were ±0.035 m to ±0.06 m in

all datasets, comparable to the D50 of the study area. The resulting

levels of detection in permanently inundated areas were between

±0.045 m and ±0.09 m. Thus, whilst reworking and deposition pat-

terns could be detected for dry-dry changes that were smaller than

the mean D50 (i.e. 0.06 m), this rose to 1.5D50 for wet-wet changes.

F I GU R E 1 4 Spatial distribution of limits of detection (upper maps) for water depth prediction maps obtained using both individual and
pooled models, and associated significant elevation changes (lower maps).
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Dry-wet and wet-dry changes lie between these two extremes. This is

an encouraging result for using these DEMs for change detection and

estimation of volumetric change.

Volumetric change estimates suggest that regions permanently dry

in both surveys (but that could be inundated between surveys) contrib-

uted less to the total volume change over both temporal scales (1.5% to

15.8%, Table 6). Regions permanently wet were those affected by

higher reworking over long timescales (37% to 40%, Table 6). Transient

regions passing from dry to wet recorded more changes over short

timescales (66% to 70%, Table 6). During the investigated period the

proglacial forefield experienced a net phase of incision reflected in both

long-term (i.e. 18th August to 8th September) and short-term (i.e. 8th

September to 10th September) volumetric quantifications.

Cumulative volumetric change estimates highlight different pat-

terns according to the timescale of analysis: over short timescales the

cumulative contribution of transient regions is much higher (>80%)

compared to permanently wet and permanently dry regions; the latter

become dominant (>50%) over longer timescales of analysis. These

match previous observations of the importance of transient fluvial

regions in braided rivers, such as bars, in acting as both sediment sinks

and sources (e.g. Ashmore, 1982; Ashmore, 2013; Ferguson, 1987;

Jagers, 2003). In proglacial margins geomorphic changes that occur

underwater are not easily taken into account in volumetric change

quantifications because high turbidity impedes measurement of

underwater topography using current remote sensing approaches

(e.g. Beawert & Morche, 2014; Brasington et al., 2012; Milan

et al., 2007). As a consequence, this results in significant underestima-

tion of total volumetric estimates.

4.3 | Perspectives for development and application

The errors in depth estimation reported in Table 5 are better than the

±0.15 to ±0.30 m errors reported when applying the Beer–Lambert law

to lower resolution imagery (i.e. Fonstad & Marcus, 2005; Lane

et al., 2003; Westaway et al., 2003), and in line with those of

ca. ±0.05 m and ±0.10 m issued from the application of two-media pho-

togrammetry approaches (i.e. Dietrich, 2017; Westaway et al., 2001;

Woodget et al., 2015). They are much bigger than the ±10 mm

obtained with laser scanning (LiDAR) and multi-beam techniques

(i.e. Smith & Vericat, 2014). However, the precisions of our results are

better than those of Bures et al. (2019), where authors reported errors

up to ±0.30 m, involving a comparable method based on morphometric

variables to predict cross-sectional water depths in meandering steams.

Model sensitivities and errors for representing riverbed topogra-

phy are likely dependent on other factors in addition to sampling

strategy, including survey instrument precision, survey point quality,

surface complexity and roughness, grid resolution and interpolation

method (Bangen et al., 2016; Lane, 1998; Lane et al., 1994). These

affect water depth maps to different degrees irrespective of the used

model. However, increasing the total amount of measured water

depths during the calibration process and paying attention to their

spatial distribution (i.e. main and secondary channels; depth ranges)

seems to be of major importance (Lane, 1998). Further analyses have

to be done in this regard, but testing of the model according to the

above-proposed conditions can be limited by the feasibility of collect-

ing water depth measurements in deeper areas and during periods of

relatively constant discharge.

The proposed methodology does not take into account the

effects of bedforms smaller than bars on the riverbed, such as sand

and gravel ripples or dunes and riffle-pool sequences, on water depth

distribution (Dhont & Ancey, 2018; Gomez et al., 1989; Venditti

et al., 2017). Such features are typical of alluvial rivers flowing on

mobile beds (Cartigny et al., 2013). They may be between a few and

10s of centimetres in height in this kind of stream, even if normally

always smaller than channel-scale bar forms (Dey, 2014; Venditti

et al., 2017). Such bedforms have a riverbed bathymetric expression

largely independent of the surficial planimetric configuration of the

T AB L E 6 Volumetric change estimates [m3] in dry, inundated and transient (i.e. dry to wet and wet to dry) regions issued from DoD maps
involving DEMs of both dry and wet areas (Figure 14).

Model Period Total volumetric change [m3]

Sectorial volumetric change [m3]

Before

Wet Dry

individual 18th August - 9th September 3.322 � 103 �1,374

(37.4%)

�710.3

(21.4%)

Wet After

1,011

(26.4%)

�434.2

(15.8%)

Dry

9th September - 10th September 555.2 �66.07

(11.9%)

�366.2

(66.0%)

Wet

114.6

(20.6%)

�8.438

(�1.5%)

Dry

Pooled 18th August - 9th September 3.436 � 103 �1,374

(40.0%)

�724.1

(21.1%)

Wet

903.8

(26.3%)

�434.2

(12.6%)

Dry

9th September - 10th September 557.3 �49.23

(8.8%)

�389.2

(69.8%)

Wet

110.32

(19.8%)

�8.605

(1.5%)

Dry
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channel and so are not modelled in our study (Carling, 1999; Carling

et al., 2005). These structures are likely to explain a certain degree of

error between predicted and measured water depths, especially in

secondary channels because of their higher sensitivity to the transi-

tion from subcritical to critical flow conditions (Figures 8 and 10).

That said, despite these sources of uncertainties, both individual

and pooled prediction models scale predicted water depths by dis-

charge conditions (i.e. higher predicted water depths for datasets col-

lected at higher flow conditions; Figures 6 and 9).

Even if the results are encouraging, the model still suffers from

methodological issues resulting in local large errors

(Supplementary Material S7). To improve the overall reliability of the

predictions, three improvements merit attention. First, as mentioned

above, particular attention should be given to the field sampling strat-

egy for collecting water depth measurements as it needs to take into

account both shallow (i.e. secondary channels) and deep (i.e. the main

channel) reaches of the investigated area for calibration. This may

increase the number of variables retained in the multiple linear regres-

sions, and/or improve the predictive capacity of the model. Second,

adding more generic topographic and hydraulic variables (i.e. valley

bottom slope distribution, local flow velocity, …) to the initial pool of

variables could be beneficial to expand the number of factors that can

potentially explain water depth distribution in the stepwise approach.

Combining the proposed model with another one specifically designed

for water depth prediction in straight channels might merit consider-

ation. Third, the detection of random errors in water depth prediction

maps could be investigated by computing the continuous slope

between inundated cells. If the slope within two boundary cells

exceeds a given threshold, the local water depth could be considered

erroneous. Finally, further improvements may be made to fully auto-

mate the algorithm, although the degree of manual correction needed

is relatively restricted (i) to the classification of turbid water to pro-

duce inundated maps and (ii) to locate flow divergence and conver-

gence regions.

The future application of outputs obtained from the application

of our approach is not only limited to the quantification of topo-

graphic change estimation. The geometrical analyses here go further

than the analysis of stream nodes and links of Hiatt et al. (2019), nota-

bly in terms of curvature and convergence/divergence estimation, but

also wider parameters related to braided rivers and their ecosystems.

For instance, data from these analyses have been used to show how

braided river morphodynamics condition the access to water for

embryonic vegetation succession, notably linked to biofilm develop-

ment (Roncoroni, Mancini, Miesen, Müller, et al., 2023). Spatial pat-

terns of water depth and bed elevation are also central to hydraulic

modelling whether for understanding spatially-distributed patterns of

sediment transport using morphological (e.g. Antoniazza et al., 2019)

or hydraulic (e.g. Reid et al., 2019; Williams et al., 2016) modelling and

habitat analysis (e.g. Gabbud et al., 2019).

5 | CONCLUSIONS

This study addressed the question of whether the spatial distribution of

water depths of shallow braided mountain streams can be estimated

based on five basic planimetric variables derived from heuristic state-

ments of what might influence that distribution. We tested this for

three individual datasets for summer 2020, as well as for a pooled

model for all datasets. We used a split calibration-validation approach.

Results showed that the proposed methodology is promising for

obtaining reliable predictions, especially in proglacial streams where the

application of remote sensing techniques (e.g. two-media photogram-

metry, optical methods) is not suitable due to the high turbidity con-

tents. Using models calibrated using different total water depth

measurements and spatial distributions within main and secondary

channels produced different results, we observed that the robustness

of, and the variables included in, the models appear to be dependent

upon survey design. That said, the pooled model involving all datapoints

collected in the three datasets gave better results than individual

models. However, regardless of the approach used to calibrate the pre-

dictive model, the obtained bathymetric maps respect discharge condi-

tions and the basics hydraulic theories, in particular those related to

hydraulic geometry and erosion and deposition patterns associated

with, respectively, flow divergence and convergence regions.

In the same way, volumetric change estimates computed by inte-

grating water depth maps into DEMs of dry regions suggest that a

large proportion of geomorphic changes in these environments occur

both underwater and in transient (i.e. zones passing from wet to dry,

or vice-versa) zones. However, cumulative effects on the total volu-

metric change depend on the timescale under investigation: over long

temporal scales stable regions contribute the most, while over short

timescales are the transient ones which become dominant. These

observations highlight the need for (1) a methodological approach to

quantify volumetric changes in flooded areas situated in proglacial

margins to obtain more reliable quantifications, but also (2) careful

consideration of the validity of the proposed statistical approach for

bathymetric mapping in turbid braided streams.
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