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Abstract Congenital hypogonadotropic hypogonadism (CHH) is a condition characterized by

absent puberty and infertility due to gonadotropin releasing hormone (GnRH) deficiency, which is

often associated with anosmia (Kallmann syndrome, KS). We identified loss-of-function

heterozygous mutations in anti-Müllerian hormone (AMH) and its receptor, AMHR2, in 3% of CHH

probands using whole-exome sequencing. We showed that during embryonic development, AMH is

expressed in migratory GnRH neurons in both mouse and human fetuses and unconvered a novel

function of AMH as a pro-motility factor for GnRH neurons. Pathohistological analysis of Amhr2-

deficient mice showed abnormal development of the peripheral olfactory system and defective

embryonic migration of the neuroendocrine GnRH cells to the basal forebrain, which results in

reduced fertility in adults. Our findings highlight a novel role for AMH in the development and

function of GnRH neurons and indicate that AMH signaling insufficiency contributes to the

pathogenesis of CHH in humans.

DOI: https://doi.org/10.7554/eLife.47198.001

Introduction
Gonadotropin releasing hormone (GnRH) is essential for puberty onset and reproduction. GnRH is

released into the pituitary portal blood vessels for delivery to the anterior pituitary. There, GnRH

controls the production and release of the gonadotropins LH (luteinizing hormone) and FSH (follicle

stimulating hormone), which in turn stimulate gametogenesis and sex steroid production in the

gonads (Christian and Moenter, 2010). GnRH–secreting neurons are unusual neuroendocrine cells,
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as they originate in the nasal placode outside the central nervous system during embryonic develop-

ment, and migrate to the hypothalamus along the vomeronasal and terminal nerves (VNN, TN)

(Wray et al., 1989; Schwanzel-Fukuda and Pfaff, 1989). This process is evolutionarily conserved

and follows a similar spatio-temporal pattern in all mammals (Wray et al., 1989; Schwanzel-

Fukuda and Pfaff, 1989), including humans (Schwanzel-Fukuda et al., 1996; Casoni et al., 2016).

Disruption of GnRH neuronal migration and/or defective GnRH synthesis and secretion leads to con-

genital hypogonadotropic hypogonadisms (CHH), a rare endocrine disorder (prevalence: 1 in 4000)

characterized by absent or incomplete puberty resulting in infertility (Boehm et al., 2015). CHH is

clinically and genetically heterogeneous with several causal genes identified to date (Boehm et al.,

2015), and follows various modes of transmission, including oligogenic inheritance (Sykiotis et al.,

2010). However, the mutations identified so far only account for half of clinically reported cases, sug-

gesting that other causal genes remain to be discovered. Unravelling new genetic pathways involved

in the regulation of the development of the GnRH system is relevant for understanding the basis of

pathogenesis leading to CHH in humans.

AMH is a TGF-b family member and it signals by binding to a specific type II receptor (AMHR2)

(di Clemente et al., 1994; Baarends et al., 1994), which heterodimerizes with one of several type I

TGF-b receptors (Acvr1 [Alk2], Bmpr1a [Alk3] and Bmpr1b [Alk6]), to recruit Smad proteins that sub-

sequently undergo nuclear translocation to regulate target gene expression (Josso and Clemente,

2003). Although AMH signaling has been traditionally reported to play a crucial role during sex dif-

ferentiation and gonadal functions (Josso et al., 1998; Behringer et al., 1994), accumulating evi-

dence has started to shed light on unexpected functions of AMH in the central nervous system as

well as in the pituitary (Lebeurrier et al., 2008; Wang et al., 2009; Tata et al., 2018; Cimino et al.,

2016; Garrel et al., 2016). We have previously shown that GnRH neurons express AMHR2 from

early fetal development to adulthood and that AMH stimulates GnRH neuronal activity and hormone

secretion in mature GnRH cells (Cimino et al., 2016). Here, we expand this information by demon-

strating that GnRH cells also express AMH during their migratory process, both in mice and human

fetuses and we describe a novel role of AMH as a potent stimulator of GnRH cell motility. Finally, we

show that pharmacological or genetic invalidation of Amhr2 signaling in vivo alters GnRH migration

and the projections of VNN/TN to the basal forebrain, which results in a reduced size of this neuro-

nal population in adult brains, altered ovulation and fertility. The involvement of the AMH signaling

pathway in GnRH ontogeny and secretion led to the identification of four heterozygous loss-of-func-

tion mutations in AMH and AMHR2 among 136 CHH patients. Collectively, this study identified a

novel embryonic role of AMH in the development and function of GnRH neurons and provides

genetic evidence that disturbance of AMH signaling can contribute to CHH phenotype in humans.

Results

Amh is expressed by GnRH migratory cells in mouse and human fetuses
We have recently shown that migratory GnRH neurons and developing vomeronasal/olfactory axons

express Amhr2 in mammals (Cimino et al., 2016). In this study, we investigated whether migratory

GnRH neurons expressed Amh in addition to Amhr2. In order to do so, we first isolated GnRH neu-

rons through fluorescence activated cell sorting (FACS) from Gnrh1 <GFP> embryos (Spergel et al.,

1999) at embryonic day 12.5 (E12.5), coincident with the beginning of the GnRH neuronal migratory

process (Wray et al., 1989; Schwanzel-Fukuda and Pfaff, 1989), at postnatal day 12 (PN12) and at

postnatal day 90 (PN90; Figure 1a,b). These experiments revealed expression of Amh already at

E12.5 both in GnRH neurons and in total head extracts (Figure 1a). Moreover, real-time PCR experi-

ments showed increasing expression of Amh in GnRH neurons from early embryonic development

(E12.5) to adult life (PN90; Figure 1a,b).

Ex vivo cultures of embryonic nasal explants have been used to study factors regulating GnRH

migration by both our group (Giacobini et al., 2004; Giacobini et al., 2007) and others

(Fueshko and Wray, 1994). At 4 days in vitro, olfactory axons, which express bIII�tubulin (TUJ1),

emerge from the nasal explant tissue mass and GnRH neurons begin migrating out from the explant,

tightly associated to those fibers (Figure 1c). We generated nasal explants from Gnrh1 <GFP>

embryos and we immunostained these primary cultures using an antibody directed against the bio-

logically active form of Amh (C-terminal region; Figure 1d–f). These experiments revealed the

Malone et al. eLife 2019;8:e47198. DOI: https://doi.org/10.7554/eLife.47198 2 of 36

Research article Developmental Biology Genetics and Genomics

https://doi.org/10.7554/eLife.47198


Figure 1. AMH is expressed in migratory GnRH neurons in mouse and human fetuses. (a) Schematic illustrates isolation of Gnrh1 <GFP> expressing

cells in the nasal region of embryonic day 12.5 animals (E12.5) through fluorescent activated cell sorting (FACS). Gel on the right-hand side is a

representative qualitative PCR depicting GnRH and Amh expression in migratory GnRH cells and in the head of E12.5 Gnrh1 <GFP> embryos. (b)

Quantitative analysis of Amh mRNA expression in FACS-isolated GnRH neurons at E12.5 (n = 5), postnatal day 12 (PN12, n = 6) and postnatal day 60

Figure 1 continued on next page
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presence of Amh-immunoreactivity in punctated structures resembling vesicles (arrowheads in

Figure 1e,f) in migratory neurons.

In order to determine whether this expression pattern was evolutionarily conserved, we next eval-

uated the expression of AMH in GnRH neurons and along their migratory route during human fetal

development at 11th gestational week (GW11) (see schematics in Figure 1g,l). Triple-immunofluo-

rescence staining of coronal sections of GW11 fetuses (n = 2 females) revealed that AMH is

expressed in GnRH neurons but not on the vomeronasal/terminal nerves (TAG-1-positive) that form

the migratory scaffold for GnRH neurons (Figure 1h–k). We further evaluated whether AMH expres-

sion was retained by all GnRH neurons that entered the brain (Figure 1m–o). Interestingly, at this

developmental stage the only neurons expressing AMH in the forebrain were the GnRH neuroendo-

crine cells (Figure 1m–o). These data show that GnRH neurons start expressing Amh during their

migratory process and maintain this expression until adulthood.

Pharmacological and genetic invalidation of Amhr2 disrupts GnRH
neuronal migration and the olfactory axonal scaffold
Given the expression pattern of Amh and Amhr2 along the GnRH migratory pathway (Cimino et al.,

2016), we next investigated whether Amh could play a role on the development of the GnRH and

olfactory/vomeronasal system. As the expression of Amhr2 is a prerequisite for tissues to be respon-

sive to the actions of Amh, we investigated whether acute pharmacological blockade of the receptor

with an Amhr2 neutralizing antibody (Amhr2-NA) affects the development of the olfactory, vomero-

nasal and terminal systems and the GnRH migration. This was achieved by in utero injection of

Amhr2-NA delivered into the olfactory pit of E12.5 embryos at the beginning of the migratory pro-

cess, and subsequent analysis of GnRH migration and its axonal scaffold 48 hr later (Figure 2a). Cor-

rect injection site in the olfactory pits was validated using the Fluorogold tracer (Figure 2b).

We analyzed the number and distribution of GnRH neurons in E14.5 embryos, when the GnRH

population is equally distributed in the nose and in the forebrain (Wray et al., 1989; Schwanzel-

Fukuda and Pfaff, 1989). At this stage, in control embryos GnRH neurons were located in the nose

at the levels of the nasal/forebrain junction (N/FB J) and in the ventral forebrain (vFB; Figure 2c,e).

Notably, while GnRH cells normally turn ventrally toward the basal forebrain in control embryos

(Figure 2c,e), in Amhr2-NA embryos fewer neurons reached the vFB region (Figure 2d,f) and several

GnRH cells were found scattered in ectopic cortical regions (Figure 2d, arrows). At E14.5, the total

number of GnRH neurons was comparable between control and Amhr2-NA-treated embryos

(Figure 2g), indicating that Amhr2 neutralization had no effect on GnRH neuron survival. However, a

significant accumulation of GnRH cells in the nasal compartment, concomitant to decreased cell

numbers within the vFB, is suggestive of a delayed GnRH cell migration in Amhr2-NA injected

embryos (Figure 2h).

Immunolabeling with peripherin, a neuron-specific intermediate filament protein expressed by

rodent sensory and autonomic axons (Parysek and Goldman, 1988), including the developing olfac-

tory nerve (ON) and VNN (Casoni et al., 2016; Fueshko and Wray, 1994), was used to assess the

Figure 1 continued

(PN60, n = 9). Data are represented as median values with the 25th-75th percentile range. Comparisons between groups were performed using a

Kruskal-Wallis test followed by Dunn’s post hoc analysis. *p = 0.0398, ***p = 0.0006. (c) Representative image of a nasal explant (out of n = 3)

generated from a Gnrh1 <GFP> embryo and cultured for 4 days (DIV: days in vitro) before immunostaining for tubulin bIII (TUJ1, red). (d–f) Higher

magnification picture of inset in d) showing migratory GFP-positive GnRH neurons (green) expressing Amh (white). (g) Schematic representation of a

GW11 human fetus head (coronal view) illustrating the nasal area (box) used for immunofluorescence. (h–k) GnRH (green), AMH (red) and TAG-1 (white)

expression in a coronal section of a GW11 fetus (out of n = 2 GW11 fetuses, females). AMH is expressed in GnRH neurons but not on vomeronasal/

terminal fibers. (l) Schematic representation of a GW11 human fetus head (coronal view) illustrating the forebrain area (box) used for

immunofluorescence. (m–o) AMH is expressed in GnRH neurons that are migrating in the forebrain. NMC: nasal midline cartilage; OPE: olfactory

placode epithelium; VNO: vomeronasal organ; OE: olfactory epithelium; OB: olfactory bulb; FB: forebrain; LV: lateral ventricle. Scale bars: (c) 500 mm;

(d–f) 10 mm; (h–k) 10 mm; (m–o) 20 mm.

DOI: https://doi.org/10.7554/eLife.47198.002

The following source data is available for figure 1:

Source data 1. This spreadsheet contains the normalized values used to generate the bar plots shown in Figure 1b.

DOI: https://doi.org/10.7554/eLife.47198.003
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Figure 2. In utero pharmacological invalidation of Amhr2 disrupts GnRH neuronal migration and the olfactory/terminal nerve targeting. (a) Schematic of

in utero injections targeting the olfactory pits. Injections were performed at E12.5 and embryos harvested 48 hr later. (b) Representative coronal section

of an embryo head at E14.5 showing that olfactory pit Fluorogold delivery at E12.5 was successful. GnRH immunoreactive neurons are shown in green.

(c–f) Representative photomicrographs of sagittal sections of mouse embryos injected at E12.5 with either saline or a neutralizing antibody for Amhr2

(Amhr2-NA) and immunostained for GnRH (green) and Peripherin (magenta) at E14.5. (e, f) Higher magnification confocal photomicrograph of boxed

areas in c and d. (g) Quantification of the total number of GnRH immunoreactive neurons in saline-injected (control) and Amhr2-NA injected embryos

(n = 4 for both groups, harvested from two independent dams). Data are represented as mean ± s.e.m (n = 4, unpaired two-tailed Student’s t test:

mean cell number, t6 = 0.3796, p = 0.7173). (h) Quantitative analysis of GnRH neuronal distribution throughout the migratory pathway in the two

experimental groups. Data are represented as mean ± s.e.m (n = 4, two-way ANOVA, F3,24 = 15.09, p<0.0001; followed by Holm-Šı́dák multiple

Figure 2 continued on next page

Malone et al. eLife 2019;8:e47198. DOI: https://doi.org/10.7554/eLife.47198 5 of 36

Research article Developmental Biology Genetics and Genomics

https://doi.org/10.7554/eLife.47198


development of the ON and VNN at E14.5 (Figure 2c–f). ON/VNN development progressed as pre-

viously reported (Yoshida et al., 1995) in saline injected groups (Control); however, abnormal ON/

VNN targeting occurred in embryos injected with Amhr2-NA. In these embryos, the axonal innerva-

tion of the olfactory bulb (OB) appeared incomplete as compared to controls (Figure 2c,d, arrow-

heads). This difference in axonal targeting was especially evident for the intracranial branch of the

VNN projecting to the ventral forebrain (vFB; boxes in Figure 2c,d). In control animals, normal tar-

geting of peripherin-positive fibers was seen as they turn ventrally to target the hypothalamus

(Figure 2e), whereas in Amhr2-NA injected embryos the fibers had a scattered appearance

(Figure 2f) and failed to penetrate properly into the vFB.

In light of these results, we sought to determine whether genetic invalidation of Amhr2 would

lead to similar defects. We performed a detailed analysis of E13.5 wild type and Amhr2-/- embryos

using whole mount immunostaining for GnRH and peripherin followed by iDISCO tissue-clearing

(Renier et al., 2014) and light sheet microscopy (LSM) (Figure 3a; Figure 3—video 1). In Amhr2+/+

embryos, peripherin-positive fibers were seen to innervate almost completely the OB (Figure 3b, f,

h and j, arrowheads), whereas in Amhr2-/- mice olfactory axons only partially innervated their target

tissues (Figure 3c, g, i and k, arrowheads). Moreover, whereas in Amhr2+/+ embryos GnRH neurons

entered the brain along the TN projections and migrated to the ventral forebrain (vFB; Figure 3d

and j, arrows), in Amhr2-/- embryos GnRH neurons appeared more clustered in the nasal compart-

ment, stuck in proximity to the VNO, and fewer GnRH cells reached the vFB at this embryonic stage

(Figure 3e and k, arrows).

Altogether, these experiments revealed that pharmacological or genetic invalidation of Amhr2

leads to abnormal development of the olfactory system, aberrant intracranial projections of the vom-

eronasal nerve (terminal nerve) and defective GnRH migration to the basal forebrain.

Adult Amhr2-deficient mice show decreased GnRH cell number, LH
secretion and fertility
To determine whether the delayed GnRH migratory process observed in Amhr2 deficient embryos

would result in a reduced number of GnRH neurons in adulthood, we immunostained for GnRH

brains harvested from adult Amhr2+/+ and Amhr2-/- animals. Knock-out mice had decreased GnRH

immunoreactivity at the level of the organum vasculosum laminae terminalis (OVLT; Figure 4a–d,

arrows), where the majority of GnRH cell bodies are located, as well as in the median eminence (ME)

of the hypothalamus (Figure 4e–h), which is the projection site of neuroendocrine GnRH cells. When

we counted the total number of GnRH-positive cells in Amhr2+/+, Amhr2+/- and Amhr2-/- female

brains, we found no difference between wild type and heterozygous mice, while we observed a sig-

nificant 40% reduction in GnRH cell number in Amhr2-/- mice as compared to the other genotypes

(Figure 4i). Male and female homozygous animals showed a similar GnRH cell loss as compared to

sex-matched wild-type littermates (Figure 4—figure supplement 1).

Since LH secretion is an indirect measurement of GnRH neuronal secretion, we measured LH in

adult female mice. Circulating LH was found to be significantly lower in Amhr2+/- and Amhr2-/- ani-

mals as compared to wild-type littermates (Figure 4j), supporting an impairment of GnRH secretion

in these animals. However, only Amhr2-/- mice exhibited reduced ovulation, as shown by the pres-

ence of fewer post-ovulation corpora lutea in the ovaries of Amhr2-/- mice as compared to Amhr2+/-

and wild-type animals (Figure 4k).

We then evaluated LH pulsatility by serial blood sampling in female diestrous mice (Figure 4l,m)

and found that both Amhr2+/- and Amhr2-/- animals had a significantly lower LH pulse frequency as

Figure 2 continued

comparison post hoc test, **p<0.005; n.s., not significant; N/FB J Amhr2+/+ vs. N/FB J Amhr2-/-p = 0.99, CX Amhr2+/+ vs. CX Amhr2-/-p = 0.88). Cx:

cortex; FB: forebrain; N/FBJ: nasal/forebrain junction; oe: olfactory epithelium; NMC: nasal mesenchyme. Scale bars: (b) 100 mm; (d) 2.5 mm; (f) 50 mm.

DOI: https://doi.org/10.7554/eLife.47198.004

The following source data is available for figure 2:

Source data 1. This spreadsheet contains the values used to generate the bar plots shown in Figure 2g and h.

DOI: https://doi.org/10.7554/eLife.47198.005
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compared to wild-type littermates. This is suggestive of an alteration in the hypothalamic network

activity in Amhr2 transgenic animals.

Finally, we tested the fertility of Amhr2 transgenic female and male mice by performing a con-

stant breeding protocol over three months. We paired either Amhr2+/+ sexually experienced males

with females belonging to the three different genotypes and, inversely, we paired Amhr2+/+ females

with Amhr2+/- or Amhr2-/- males (Figure 4n). We found a significant impairement of fertility in both

Amhr2-/- and Amhr2+/- females, as indicated by fewer litters per months, by fewer pups per litter

and by a significant delay in the first litter after pairing as compared to Amhr2+/+ females

(Figure 4n). Heterozygous females displayed an intermediate phenotype between Amhr2+/+ and

Figure 3. GnRH migration and olfactory innervation are perturbed in Amhr2-/- mice. (a) Schematic representation depicting whole-body iDISCO

experiments in E13.5 Amhr2+/+ and Amhr2-/- embryos. E13.5 embryos (n = 2 per genotype) were immunolabelled for Peripherin and GnRH, rendered

optically transparent using iDISCO and imaged with a light-sheet microscope (LSM). (b, c) Frontal projection of the embryo heads, arrowheads indicate

noticeable differences in Peripherin-positive fibers innervating the olfactory bulb (OB). Lateral projection views (d, e) showing defective GnRH migration

and terminal nerve projections to the ventral forebrain (vFB, arrows). (f, g) Higher magnification photomicrographs depicting olfactory axon innervations

of the right OB shown in b and c. Dotted circles define the anatomical border of the OB. (h, i) 3D rendering of figures in f and g. Arrowheads indicate

observed differences in olfactory axon innervation between Amhr2+/+ and Amhr2-/- embryos. (j, k) 3D rendering of peripherin and GnRH staining

observed from a lateral projection in a representative Amhr2+/+ and Amhr2-/- embryo. Cx: cortex; VNO: vomeronasal organ. Scale bars: (b) 400 mm; (d)

300 mm; (f) 130 mm.

DOI: https://doi.org/10.7554/eLife.47198.006

The following video is available for figure 3:

Figure 3—video 1. Light-sheet fluorescence microscopy video of solvent-cleared E13.5 Amhr2+/+ and Amhr2-/- embryos immunostained in toto for

GnRH (green) and peripherin (red).

DOI: https://doi.org/10.7554/eLife.47198.007
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Figure 4. Amhr2 mutant mice show reduced GnRH cell number and impaired LH secretion and fertility. (a–h) Immunolabelling of GnRH (red staining) in

adult wild type and Amhr2-/- adult female mice (P90–P120). The majority of GnRH cell bodies are located at the level of the organum vasculosum

laminae terminalis (OVLT) in both Amhr2 +/+ and Amhr2 -/- mice, (arrows (c, d). (e–h) GnRH fiber projections at the level of the median eminence. (i)

Total mean GnRH population in Amhr2+/+, Amhr2+/- and Amhr2-/- adult female mice brains (3–4 months old). Comparisons between groups were

Figure 4 continued on next page
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Amhr2-/- mice, since all fertility measurements revealed statistically significant differences between

Amhr2+/- and Amhr2+/+ mice and between Amhr2+/- and Amhr2-/- mice (Figure 4n).

In heterozygous males, only the number of litters/90 days was found to be significantly reduced

as compared to Amhr2+/+ males (Figure 4n). Amhr2-/- males are completely infertile (Figure 4n), in

agreement with previous reports showing that inactivation of Amhr2 or Amh in humans and mice

leads to persistent Müllerian duct syndrome (Imbeaud et al., 1995; Mishina et al., 1996).

Taken together, these data support the physiological relevance of Amh signaling both in the

development and homeostasis of the hypothalamic-pituitary-gonadal axis.

AMH increases GN11 cell migration via the Amhr2/Bmpr1b signaling
pathway
The manipulation of the GnRH migratory system and functional experimentation on these neurons

have been challenging because of their limited number (800 in rodents) and anatomical dispersal

along their migratory route. The generation of immortalized GnRH neurons (GN11 and GT1-7 cell

lines [Radovick et al., 1991; Mellon et al., 1990]) has permitted the study of immature migratory

(GN11 cells), and mature post-migratory (GT1-7 cells) GnRH neurons, respectively.

To assess whether immortilized GnRH cell lines retain expression of Amh and Amh receptors, RT-

PCR analysis was performed (Figure 5a). Our data show that both GN11 and GT1-7 cells express

Amh and Amhr2, even though the transcript levels were significantly higher in GT1-7 cells as com-

pared to GN11 cells (Figure 5a). These data are consistent with our current (Figure 1c) and previous

findings (Cimino et al., 2016) obtained from GnRH sorted cells. As for the Amh-type one receptors,

both cell lines express Acvr1 and Bmpr1a, with GT1-7 cells displaying higher levels of expression

compared to GN1 cells (Figure 5a). Interestingly, GN11 cells, but not GT1-7 cells, express Bmpr1b

(Figure 5a), indicating that Amhr2/Bmpr1b signaling maybe a putative hallmark of migratory GnRH

neurons. These results point to the GN11 cell line as an appropriate in vitro model to test the func-

tional role of Amh on cell motility.

Activation of the MAPK pathway (phosphorylation of ERK1/2) has been previously associated with

increased GN11 cell motility (Messina et al., 2011; Hanchate et al., 2012). Here, we found that

AMH, at concentrations previously reported to be functional in other cell lines (Garrel et al., 2016),

significantly increased the phosphorylation of ERK1/2 in GN11 cells in a dose- and time-dependent

Figure 4 continued

performed using one-way ANOVA followed by Tukey’s post hoc test (n = 7 for all groups, F2,18 <0.0001; Amhr2+/+ vs Amhr2+/- P = 0.4716; WT vs.

Amhr2-/-p<0.0001, Amhr2+/- vs Amhr2-/-p = 0.0007). (j) Plasma LH levels in adult mature (4–6 months old) diestrous females (Amhr2+/+, n = 4; Amhr2+/-,

n = 5; Amhr2-/- n = 3). Statistical analysis was performed by one-way ANOVA (F2,9 = 12.64, p = 0.0024) followed by Tukey’s multiple comparison post

hoc test (Amhr2+/+ vs. Amhr2+/- P = 0.005; Amhr2+/+ vs. Amhr2-/-p = 0.046, Amhr2+/- vs. Amhr2-/-p = 0.8164). (k) Quantitative analyses of the mean

number of corpora lutea (CL) in Amhr2+/+ (n = 5), Amhr2+/- (n = 4) and Amhr2-/- (n = 5) adult ovaries (4–6 months old). Statistical significance between

groups was assessed using one-way ANOVA (F2,11 = 22.11, p = 0.0001) followed by Tukey’s multiple comparison post hoc test (Amhr2+/+ vs. Amhr2+/- P

= 0.6259; Amhr2+/+ vs. Amhr2-/-p = 0.0002 and Amhr2+/- vs. Amhr2-/-p = 0.0012). (l) Representative graphs for LH pulsatility in female dioestrous adult

mice of the corresponding genotype. Asterisks indicate the number of LH pulses per 2 hr interval. (m) Number of LH pulses in adult (P60) diestrous

females (Amhr2+/+, n = 5; Amhr2+/-, n = 4; Amhr2-/- n = 3). Statistical analysis was performed by non-parametric Kruskal-Wallis test p = 0.0028 (Amhr2+/

+ vs. Amhr2+/- P = 0.041; Amhr2+/+ vs. Amhr2-/-p = 0.038 and Amhr2+/- vs. Amhr2-/-p>0.999). (n) Bar graphs illustrating the results of the constant

mating protocol performed over 90 days on the following groups: (♀Amhr2+/+ x ♂Amhr2+/+, n = 9; ♀Amhr2+/- x ♂Amhr2+/+, n = 12; ♀Amhr2-/- x

♂Amhr2+/+, n = 4; ♀Amhr2+/+ x ♂Amhr2+/-, n = 3; ♀Amhr2+/+ x ♂Amhr2+/-, n = 3. Female and male mice were 4–6 months-old). Comparisons between

groups were performed using one-way ANOVA (fertility index, F4,26 = 51.47, p<0.0001; first litter, F4,26 = 88.82, p<0.0001; pups per litter, F4,26 = 29.67

P<0.0001) followed by Tukey’s multiple comparison post hoc test, *p<0.05; **p<0.005; ***p<0.0005; ****p<0.0001. Each cluster of data points

represents a different mouse. Data were combined from three independent experiments. Throughout the figure, data are displayed as mean ± s.e.m.

*p<0.05; **p<0.005; ***p<0.0005; ****p<0.0001. Scale bars: (a, b, e, f) 100 mm; (c, d, g, h) 50 mm.

DOI: https://doi.org/10.7554/eLife.47198.008

The following source data and figure supplements are available for figure 4:

Source data 1. This spreadsheet contains the values used to generate the bar plots shown in Figure 4i j, k, m, n.

DOI: https://doi.org/10.7554/eLife.47198.011

Figure supplement 1. GnRH cell number in Amhr2 wild-type and knock-out animals as a function of sex.

DOI: https://doi.org/10.7554/eLife.47198.009

Figure supplement 1—source data 1. This spreadsheet contains the values used to generate the bar plots shown in Figure 4—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.47198.010
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Figure 5. AMH promotes GnRH cell motility via Amhr2 and Bmpr1b signaling. (a) Quantitative RT-PCR analysis for Amh, Amhr2, Acvr1 (Activin

Receptor1; ALK2), Bmpr1a (Bone Morphogenetic Protein Receptor1a; ALK3) and Bmpr1b (Bone Morphogenetic Protein Receptor1b; ALK6) mRNA in

GN11 (n = 4) and GT1-7 (n = 3) cells. Comparisons between treatment groups were performed using unpaired two-tailed Student’s t test (Amh t5 =

1.139, p = 0.0004; Amhr2 t5 = 1.6, p<0.0001; Acvr1 t5 = 5.044, p<0.0001); Bmpr1a t5 = 2.374, p<0.0044. (b) Representative western blot showing P-ERK1/

Figure 5 continued on next page
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manner (Figure 5b,c). The AMH-dependent activation of MAPK pathway was prevented by the phar-

macological blockage of Amhr2 (AMHR2 neutralizing antibody; AMHR2-NA; Figure 5b).

Using transwell assays, we showed that recombinant human AMH was able to significantly

increase the motility of GN11 cells at all tested doses (50 ng/ml; 100 ng/ml; 250 ng/ml) compared to

controls (serum-free medium, SFM; Figure 5d). In agreement with our biochemical results

(Figure 5b,c), the AMH-dependent induction of cell motility was prevented by the selective pharma-

cological antagonist of MAPK pathway (U0126 inhibits MEKK1, the upstream activator of ERK) and

by AMHR2-NA (Figure 5d,e).

We next investigated which receptor complex was required to mediate the AMH-dependent cell

migration in GN11 cells. This was achieved by targeted knockdown of Amh receptors through a

small interfering RNA (siRNA) strategy. GN11 cells were transfected with a pool of siRNAs specific

to mouse Amhr2, Acvr1, Bmpr1a, Bmpr1b, or with a pool of nontargeting siRNAs (siRNA-NT). Silenc-

ing efficiency was assessed analyzing gene expression levels in untransfected cells (Control) versus

GN11 cells transfected with the Amh receptors targeted siRNAs and siRNA-NT (Figure 5f).

Knockdown of individual Amh receptors led to distinct motility responses of GN11 cells to AMH

stimulation (Figure 5g). Transfection with the siRNA-Acvr1, siRNA-Bmpr1a or siRNA-NC RNA did

not affect the GN11 response to AMH treatment (Figure 5g). In contrast, knockdown of Amhr2 and

Bmpr1b resulted in significantly reduced GN11 cell motility in response to AMH as compared to the

control groups (mock and siRNA-NC transfected cells; Figure 5g).

These data show that AMH promotes GN11 cell motility through the Amhr2/Bmpr1b receptor

complex and activation of the MAPK intracellular pathway.

Figure 5 continued

2 and total ERK1/2 in cell lysates of GN11 cells stimulated with indicated doses of AMH (n = 4). Right boxed figure is a representative blot showing

P-ERK1/2 and total ERK1/2 in cell lysates of GN11 cells stimulated with anti-Amhr2 neutralizing antibody with or without 200 ng/ml of AMH (Amhr2-NA,

n = 3 per condition). Bar graph illustrates the mean ratio P-ERK1/2 over total ERK1/2 (n = 4 for all except AMHR2-NA and AMHR2-NA + AMH 200 ng/

ml, n = 3). Comparisons between treatment groups were performed using a two-way ANOVA (F6,19 = 29.11, p<0.0001; followed by Holm-Šı́dák’s

multiple comparison post hoc test. Adjusted p values: 0 vs. 50 = 0.0461, 0 vs 100 = 0.0003, 0 vs 200 =< 0.0001, 200 vs AMHR2-NA + 200 =< 0.0001, 0 vs

AMHR2-NA => 0.9999). (c) Representative western blot showing P-ERK1/2 and total ERK1/2 in cell lysates of GN11 cells stimulated with 50 ng/ml of

AMH for the indicated times (minutes: min). Bar graph illustrates the mean ratio P-ERK1/2 over total ERK1/2 (n = 3 for all). Comparisons between

treatment groups were performed using a one-way ANOVA (F 4,10 = 8.171, followed by Tukey’s multiple comparison post hoc test. Adjusted p values: 0

vs. 10 = 0.9945, 0 vs. 20 = 0.2333, 0 vs. 30 = 0.0292, 0 vs. 60 = 0.0170). (d) Schematic representation on top of the graph bar illustrates the transwell

assay used to assess cell motility in d, e, g, whereby AMH was placed on the top and lower chamber. Bar graph illustrates the mean number of

migrated GN11 cells stimulated with serum free medium (SFM, basal conditions, n = 9), with 10% fetal bovine serum (FBS, strong inducer of cell

motility, n = 5), or with the indicated doses of AMH with or without the MAPK Kinase inhibitor, U0126 (AMH 50 ng/ml n = 11, AMH 100 ng/ml n = 6,

AMH 250 ng/ml n = 6, AMH 50 ng/ml + U0126 n=5), or with Amhr2-NA with or without AMH 50 ng/ml (n = 5). One-way ANOVA, F 7,44 = 38.48,

followed by Tukey’s multiple comparison post hoc test. (a): not significantly different from a groups (p>0.05); b: significantly different from a) groups

(p<0.0001); c: SFM vs AMH 100 ng/ml, p<0.05; d: significantly different from b groups (p<0.001); e: AMH 50 ng/ml vs AMH 50 ng/ml + AMHR2 NA,

p<0.05; f: significantly different from every other group (p<0.0001). (e) Representative photomicrographs showing Hoechst nuclear staining of the

migrated GN11 cells after the different treatments, scale bar = 100 mm. (f) Real-time PCR analysis for Amhr2, Acvr1, Bmpr1a and Bmpr1b mRNA

expression in untrasfected GN11 cells (Control) or in GN11 cells transfected with siRNAs targeting Amh receptors or with a non-targeting siRNA

(siRNA-NT) (n = 3). Bar graph illustrates the mean ± s.e.m; one-way ANOVA followed by Tukey’s post hoc comparison test (Amhr2 F 2,6 = 7.861, Control

vs siRNA p = 0.0339, Control vs siRNA-NT p = 0.9958, siRNA vs siRNA-NT p = 0.0305; Acvr1 F 2,6 = 22.73, Control vs siRNA p = 0.0015, Control vs

siRNA-NT p = 0.2016, siRNA vs siRNA-NT p = 0.0088; Bmpr1a F 2,6 = 16.16, Control vs siRNA p = 0.0038, Control vs siRNA-NT p = 0.4206, siRNA vs

siRNA-NT p = 0.0149; Bmpr1b F 2,6 P = 7.777, Control vs siRNA p = 0.0478, Control vs siRNA-NT p = 0.8489, siRNA vs siRNA-NT p = 0.0247). (g)

Transwell assay was performed on GN11 cells transfected or not with indicated siRNAs and stimulated with or without AMH (50 ng/ml). Bar graph

illustrates the mean number of migrated GN11 cells (Control, SFM n = 13, Control +AMH 50 ng/ml n = 10, Amhr2 siRNA +AMH 50 ng/ml n = 7, Acvr1

siRNA +AMH 50 ng/ml n = 4, Bmpr1a siRNA +AMH 50 ng/ml n = 4, Bmpr1b siRNA +AMH 50 ng/ml n = 6, siRNA-NT +AMH 50 ng/ml n = 11).

Comparisons between treatment groups were performed using a one-way ANOVA followed by Tukey’s post hoc comparison test (F 6,48 = 20.99, a not

significantly different from other groups denoted a, p>0.05; b significantly different from groups denoted a, p<0.0001; c significantly different from

groups denoted a), p<0.05. Throughout the figure, data were combined from three independent experiments and displayed as mean ± s.e.m. *p<0.05;

**p<0.005; ***p<0.0005; ****p<0.0001.

DOI: https://doi.org/10.7554/eLife.47198.012

The following source data is available for figure 5:

Source data 1. This spreadsheet contains the values used to generate the bar plots shown in Figure 5a, b, c, d, f and g.

DOI: https://doi.org/10.7554/eLife.47198.013
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CHH patients harbor heterozygous AMH and AMHR2 mutations
In this study, we performed whole exome sequencing in 75 KS and 61 normosmic CHH (nCHH) pro-

bands who did not harbor pathogenic mutations in known CHH genes, and identified in three pro-

bands from European descent heterozygous missense mutations in AMH (Table 1, Figure 6a,b).

These mutations (p.Thr99Ser, p.Pro151Ser, and p.Asp238Glu) lie in the N-terminal pro-protein

domain (Figure 6a), and all affected amino acids were highly conserved across species (Figure 6c).

Additionally, one female with normosmic CHH (nCHH) harbors a heterozygous in-frame 27-nucleo-

tide deletion in AMHR2. This p.Gly445_Leu453del deletion lies within the catalytic intracellular ser-

ine/threonine domain of the receptor (Figure 6d–6f).

We observed variable degrees of spontaneous puberty (absent to partial) among the probands

carrying an AMH or AMHR2 mutations. Two probands had KS with no other major associated non-

reproductive phenotypes (Table 1 and human case summaries in Materials and methods). All three

probands with mutations in AMH (Families 1, 2, and 3) have a positive family history for partial phe-

notypes (e.g. delayed puberty, anosmia), consistent with variable expressivity (Figure 6b). The

female proband carrying the AMHR2 deletion (Family 4) has nCHH. Her mother, who did not carry

the deletion, exhibited cleft lip/palate with normal reproduction (Figure 6e).

AMH and AMHR2 mutations in CHH are loss-of-function
In order to test the functionality of the AMH and AMHR2 mutants identified in KS and nCHH pro-

bands, we first transiently transfected COS-7 cells with plasmids encoding the human AMH wild-

type (AMH WT) or the AMH variants and investigated whether the AMH secretory capacity of trans-

fected cells was affected. All three of mutations tested (p.Pro151Ser, p.Asp238Glu, and p.Thr99Ser

AMH mutants) showed significantly reduced AMH protein secretion in vitro (Figure 7a and Table 1),

as assessed by automated chemoluminescent immunoassay.

To test the impact of AMH mutants on immortalized GnRH neurons’ cell motility and to deter-

mine whether AMH promotes such response through an autocrine mechanism, we performed trans-

well migration assays on GN11 cells either treated with lipofectamine (mock), or transfected with the

AMH WT or the AMH variants identified in CHH patients (Figure 7b). AMH overexpression (AMH

WT) in GN11 cells significantly increased cell migration by 50% when compared with mock cells

(Figure 7b). The AMH-dependent induction of cell motility was prevented when the cells where

transfected with the mutants identified in KS patients (p.Pro151Ser and p.Asp238Glu) as well as with

the mutant found in a nCHH proband (p.Thr99Ser; Figure 7b and Table 1). Moreover, since the lat-

ter AMH mutation was found in a male nCHH proband (LH 2.7 U/l; Table 1), and because we previ-

ously showed that AMH stimulates GnRH and LH secretion in rodents (Cimino et al., 2016), we

wondered whether this mutant could also negatively impact on GnRH secretion. In order to assess

that we used GT1-7 cells that express Amh type-I and type-II receptors (Figure 5a) and that display

significant GnRH secretory activity (Mellon et al., 1990). GT1-7 cells were transfected with either

AMH WT or p.Thr99Ser AMH and conditioned medium was collected 48 hr later for GnRH ELISA

measurement. The p.Thr99Ser AMH variant significantly reduced GnRH secretion as compared to

GT1-7 cells expressing the AMH WT (Figure 7c).

To functionally test the impact of the AMHR2 deletion (p.Gly445_Leu453del) and determine

whether this variant leads to defective AMH-induced motility, we transfected GN11 cells with a plas-

mid encoding the hAMHR2 WT or the AMHR2 p.Gly445_Leu453del mutant and performed migra-

tion assays culturing the cells with SFM alone or supplemented with recombinant human AMH

protein (Figure 7d). Consistent with the data shown in Figure 5, AMH treatment significantly

increased cell migration of AMHR2 WT-transfected cells as compared with SFM (Figure 7d). This

effect was significantly impaired when GN11 cells were transfected with the AMHR2 mutant plasmid

(Figure 7d). Since the AMHR2 p.Gly445_Leu453del mutant was found in a female nCHH proband

(LH <2.0 U/l; Table 1; human case summaries in Materials and methods), we also assessed whether

AMH treatment increased GnRH release in GT1-7 cells expressing either AMHR2 WT or the p.

Gly445_Leu453del mutant (Figure 7e). These experiments revealed that AMH (50 ng/ml) stimulates

GnRH secretion into medium of GnRH cells expressing the AMHR2 WT, whereas introduction of the

AMHR2 mutant variant into GT1-7 cells significantly reduced the AMH-dependent GnRH secretion

as compared to control conditions (Figure 7e).
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Figure 6. AMH and AMHR2 heterozygous mutations in CHH probands. (a) Schematic illustration of AMH mutations in nCHH and KS probands. (b)

Pedigrees of patients harboring AMH mutations. Circles denote females, squares denote males. The phenotype interpretation is explained in the

square legend on the top of the figure. (c) The AMH mutations affect evolutionarily conserved amino acid residues. Alignment of partial protein

sequences of AMH orthologs showing in red text the amino acid residues evolutionarily conserved. Purple highlights correspond to variants identified

Figure 6 continued on next page
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Finally, to evaluate the structural impact of the AMHR2 deletion (p.Gly445_Leu453del), a three-

dimensional structural model of the corresponding mutated catalytic intracellular serine/threonine

domain of the receptor was generated (DEL), as previously described (Belville et al., 2009). The

model of the WT AMHR2 kinase domain presents a general fold of a two-domain kinase, with an

N-lobe mainly composed of a five-stranded b-sheet and a mostly a-helical C-lobe. The deleted resi-

dues are located at the top of the C-lobe and are part of the aG helix and its preceding loop

(Figure 7f). In both WT and DEL, the overall protein structure remains stable (Figure 7—figure sup-

plement 1). Analysis of the interactions established in this zone reveals differences between the

AMHR2-WT and the AMHR2 p.Gly445_Leu453del mutant models. In the WT model, the structure is

stabilized by hydrophobic interactions involving Leu444, Leu456 and Leu453, as well as by the hydro-

gen bonds Arg462-Glu443, Arg463-Tyr440 and Gln446-Glu441. For the AMHR2 p.Gly445_Leu453-

del mutant model, the structure is stabilized mainly by hydrogen bonds: Arg462-Glu443, Arg462-

Glu460 and Arg463-Tyr440 (Figure 7—figure supplement 2). The main structural fluctuations are

observed in the loop regions of the proteins (Figure 7g–i). Comparison of AMHR2 WT and AMHR2

p.Gly445_Leu453del mutant simulations (Figure 7g–i) suggests there may be some differences in

the dynamic behavior of some of these flexible regions, including the kinase activation loop. In sum-

mary, although AMHR2 mutant tertiary structure is expected to be folded in a similar manner to that

of the WT species, it is possible that the deletion results in some alterations in the intracellular

signaling.

Taken together, these in vitro results confirm that the identified AMH and AMHR2 mutants are

loss-of-function, supporting the role of AMH/AMHR2 signaling in GnRH neuronal migration and

GnRH secretion and thus pointing toward a potential contribution of these variants to the pathogen-

esis of CHH.

Discussion
Originally identified in the mesenchyme of Mu€llerian ducts and in gonads (Josso et al., 1998), Amh

and Amhr2 were subsequently documented in several other organs, including the brain

(Lebeurrier et al., 2008; Wang et al., 2009; Cimino et al., 2016; Wang et al., 2005) and the pitui-

tary (Garrel et al., 2016), suggesting that Amh biological effects could be much broader than ini-

tially thought.

We recently reported Amhr2 expression in migratory GnRH neurons and along olfactory axons,

both in mice and human fetuses (Cimino et al., 2016). In this study, we showed that GnRH neurons

express Amh during fetal development and that this expression is retained both in rodents and

humans. Our in vivo and in vitro analyses show that Amh signaling regulates migration of GnRH neu-

rons toward the brain through an autocrine mechanism. This is strongly supported by our in vivo and

in vitro data showing Amh expression in GnRH neurons and by the reduction in cell motility detected

in GN11 cells when transfected with the hAMH CHH variants. Moreover, in this study, we showed

that Amh acts as a promotility factor for GnRH neurons by signaling via Amhr2/Bmpr1b and activa-

tion of the MAPK pathway.

The animal experiments revealed that both acute neutralization of Amhr2 and genetic invalidation

of this receptor lead to a strong accumulation of GnRH cells in the nasal region with defects in both

the olfactory targeting to the OBs and alterations in the intracranial projections of the VNN/TN;

defects that strongly resemble the phenotype previously described in histological analyses of KS

Figure 6 continued

in nCHH probands and orange highlights correspond to variants identified in the KS cohort. (d) Schematic of the AMHR2 signal peptide (SP), activin

receptor, transmembrane and kinase functional domains along with the p.Gly445_Leu453del variant identified in the cohort. This deletion lies within the

catalytic intracellular serine/threonine kinase domain (PKinase) of the receptor. (e) Pedigree of the patient harboring the deletion in AMHR2. Circles

denote females, squares denote males, double diagonal lines indicate divorce, single diagonal line indicates death. The phenotype interpretation is

explained in the square legend on the top of the figure. (f) Alignment of partial protein sequences of mammalian AMHR2 orthologs flanking the

deletion site.

DOI: https://doi.org/10.7554/eLife.47198.014
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Figure 7. Functional validation of AMH variants. (a) AMH released in the medium of COS-7 cells transiently transfected either with lipofectamine alone

(mock), or with a WT AMH or a variant AMH identified in CHH and KS probands. Bar graph illustrates the mean amount of AMH secreted in the

conditioned medium of transfected COS-7 cells (n = 3 independent experiments per condition). Comparisons between treatment groups were

performed using a one-way ANOVA followed by Tukey’s post hoc comparison test (F4,10 = 1193, Mock vs AMH WT p<0.0001, AMH WT vs p.Pro151Ser

p<0.0001, AMH WT vs p.Asp238Glu p<0.0001, AMH WT vs p.Thr99Ser p<0.0001). No significant motility difference was detected between Mock, p.

Thr99Ser and p.Pro151Ser mutated forms of AMH treatment, p>0.9 for all. (b) Transwell assay was performed on GN11 cells transiently transfected

either with lipofectamine alone (mock), or with a WT AMH or a variant AMH identified in CHH and KS probands. Comparisons between treatment

groups were performed using a one-way ANOVA followed by Tukey’s post hoc comparison test (F4,50 = 13.94, Mock vs AMH WT p<0.0001, AMH WT vs

p.Pro151Ser p<0.0001, AMH WT vs p.Asp238Glu p<0.0014, AMH WT vs p.Thr99Ser p = 0.0218. No significant motility difference was detected between

Mock and mutated forms of AMH treatment, p>0.9 for all. (c) Quantification of GnRH secretion from GT1-7 cells transfected with lipofectamine alone

(mock), or with a WT AMH or the p.Pro151Ser AMH variant identified in a nCHH proband. GnRH mean concentration measured in the medium (n = 3,

one-way ANOVA: F 2,6 = 43.84, p = 0.0003; followed by Tukey’s multiple comparison post hoc test, mock vs. AMH WT p = 0.0003, mock vs p.Thr99Ser

p = 0.5220, AMH WT vs p.Thr99Ser p = 0.0007. (d) Transwell assay was performed on GN11 cells transiently transfected with the AMHR2 plasmid or

with the AMHR2 variant and stimulated with either serum-free medium (SFM) or with recombinant AMH (50 ng/ml). Bar graph illustrates the mean

number of migrated GN11 cells under different treatment conditions (SFM n = 10 for both WT and mutant AMHR2, AMH 50 ng/ml n = 12 for both WT

and mutant AMHR2). Comparisons between treatment groups were performed using two-way ANOVA (F1,43 = 16.5 P = 0.0002; followed by Sidak’s

multiple comparison post hoc test, AMHR2 WT SFM vs AMHR2 WT + AMH 50 ng/ml p<0.0001, p.Gly445_Leu453del SFM vs p.

Gly445_Leu453del + AMH 50 ng/ml P = 0.1036). (e) Quantification of GnRH secretion from GT1-7 cells transfected with the same plasmids as in d (n = 3

independent experiments per condition). Experiments were replicated three times with comparable results. Two-way ANOVA, F1,8 = 1.927, p<0.02025;

followed by Holm-Šı́dák multiple comparison post hoc test, AMHR2 WT SFM vs AMHR2 WT + AMH 50 ng/ml P = 0.0269, p.Gly445_Leu453del SFM vs

p.Gly445_Leu453del + AMH 50 ng/ml P = 0.4652. (f) Initial three-dimensional models of WT and p.Gly445_Leu453del catalytic intracellular serine/

threonine domains of AMHR2. The backbone of the WT and deleted proteins are shown in tan or white cartoon representations, respectively, with the

deleted 445–453 residues colored in red. The activation loop is depicted in blue. (g–i) Root-mean-square fluctuations (RMSF) of the Ca atoms along the

simulations for the AMHR2 WT and the p.Gly445_Leu453del models. (g) RMSF (in Å) for the WT (black line) and the p.Gly445_Leu453del models (red

Figure 7 continued on next page

Malone et al. eLife 2019;8:e47198. DOI: https://doi.org/10.7554/eLife.47198 16 of 36

Research article Developmental Biology Genetics and Genomics

https://doi.org/10.7554/eLife.47198


human fetuses (Schwanzel-Fukuda et al., 1996; Teixeira et al., 2010). Since Amh is only produced

by GnRH neurons in the fetal brain and because the axonal scaffold of GnRH neurons express

Amhr2, we hypothesize that Amh signaling contributes to the correct development of the ventral

branch of the vomeronasal/terminal nerves in the brain through a paracrine mechanism. Mono-allelic

inactivation of Amhr2 in mice is not sufficient to significantly alter GnRH neuronal migration, as indi-

cated by the normal number of GnRH neurons observed in adult Amhr2 heterozygous brains. On

the other hand, the presence of only one Amhr2-null allele is sufficient to trigger significant impair-

ments of LH secretion, LH pulsatlity and fertility in adult female mice. In heterozygous males, only

the number of litters/90 days was found to be significantly reduced as compared to Amhr2+/+ males,

suggesting that sexual behavior but not fecundity is likely altered in Amhr2+/- males.

Bi-allelic inactivation of Amhr2 in mice results instead into a significant reduction of the GnRH cell

population in the brains of adult Amhr2-null mice of both sexes as compared to wild-type animals.

Since male and female homozygous adult animals showed a comparable GnRH cell loss, it is likely

that the GnRH migratory defect observed in Amhr2-deficient embryos is independent of the genetic

sex of the animals.

We speculate that Amh/Amhr2 signaling can regulate, respectively, GnRH migration, during

embryonic development, and GnRH/LH secretion postnatally. The latter point is also supported by

our in vitro experiments showing AMH-induced GnRH secretion in GT1-7 cells.

Homozygous Amhr2 female mice have a more pronounced phenotype than heterozygous ani-

mals, as they combine developmental defects in GnRH migration with severely impaired ovulation

and fertility in adulthood. This strong phenotype could be the consequence of a lack of a broad

spectrum of actions of Amh at different prenatal and postnatal stages, impacting the GnRH neuronal

migration and the GnRH secretion, respectively, or gonadotrope function (Garrel et al., 2016;

Garrel et al., 2019). Moreover, since Amh is known to be expressed by granulosa cells in the ovaries

(Vigier et al., 1984) and to regulate folliculogenesis (Durlinger et al., 2001; Durlinger et al., 1999),

it is likely that part of the reproductive phenotype of Amhr2-/- mice is also due in part to the lack of

ovarian Amh. Dissecting the specific contribution of ovarian versus cerebral Amh in the control of

fertility would only be possible using a neuronal specific knockout of Amhr2, which is not available

yet. However, our previous (Cimino et al., 2016) and current findings, showing that Amh directly

increases GnRH and LH secretion, support a role for Amh in the neuroendocrine regulation of fertil-

ity in physiological and pathological conditions.

Our study identified heterozygous mutations in CHH probands that affect highly conserved amino

acids of AMH or its exclusive binding receptor, AMHR2. The AMH mutants display defects in AMH

release. Since the described proAMH cleavage sites (Mamsen et al., 2015; Pankhurst and

McLennan, 2013) are not located in close proximity of these mutations, it is unlikely that they

impinge on the cleavage of the proAMH. The decreased AMH secretion might rather result from

altered protein trafficking leading to accumulation of the mutants AMH in the endoplasmic reticulum

(ER) and defective release. The AMH mutants identified in KS probands also significantly reduced

GN11 migration compared to the wild-type AMH. Interestingly, the p.Thr99Ser AMH mutation found

Figure 7 continued

line, being the average over the three 100 ns simulations) are given for each residue of the protein. For a better comparison, residue numbers were

kept the same for both models. Molecular representation of the WT (h) and p.Gly445_Leu453del (i) models colored by RMSF: the blue-green-red scale

corresponds to low-medium-high RMSF values. The yellow spheres indicate the first residues after the p.Gly445_Leu453del deletion. The activation

loop region is highlighted inside a blue frame (arrows).

DOI: https://doi.org/10.7554/eLife.47198.016

The following source data and figure supplements are available for figure 7:

Source data 1. This spreadsheet contains the values used to generate the bar plots shown in Figure 7a–e.

DOI: https://doi.org/10.7554/eLife.47198.019

Figure supplement 1. Root-mean-square deviations (RMSD) of the AMHR2 protein backbone along the simulations.

DOI: https://doi.org/10.7554/eLife.47198.017

Figure supplement 2. Molecular representation of main interactions stabilizing the zone around the AMHR2 deletion.

DOI: https://doi.org/10.7554/eLife.47198.018
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in a nCHH proband compromises both GnRH cell motility in GN11 cells as well as GnRH secretion in

GT1-7 cells. It is plausible that AMH mutants cause dominant negative effects by forming hetero-

dimers with wild-type AMH, thus reducing AMHR2 activation and the downstream biological

response. Finally, the AMHR2 p.Gly445_Leu453del mutation identified in a female nCHH proband

was also loss-of-function in in vitro migration and GnRH secretion assays.

The heterozygous mutations in AMH and AMHR2 are found in 3% of CHH probands in our cohort

(4 out of 136). This is consistent with the genetic landscape of CHH as the majority of known CHH

genes have a low mutational prevalence (<5%) (Boehm et al., 2015). Variable expressivity was

observed in family members carrying the same mutation, consistent with the fact that CHH repre-

sents the more severe end of a large spectrum of manifestations. This is a common theme in the

genetics of CHH, and factors such as digenic/oligogenic inheritance (Boehm et al., 2015;

Sykiotis et al., 2010; Pitteloud et al., 2007), epigenetic regulation or non-genetic contributions

likely play important roles. As the current study is limited by the small number of probands harbor-

ing AMH and AMHR2 mutations, confirmation in larger CHH cohorts will be necessary to establish

the specific contributions of these two genes in the pathogenesis of CHH.

Notably, homozygous or compound heterozygous loss-of-function mutations in AMH (OMIM:

600957) or AMHR2 (OMIM: 600956) cause PMDS in both mice and humans (Imbeaud et al., 1995;

Mishina et al., 1996). PMDS is characterized by the retention of Mu€llerian duct derivatives (the

uterus, fallopian tubes, and upper part of the vagina) in males (Josso and Clemente, 2003;

Behringer et al., 1994; Mishina et al., 1996; Belville et al., 1999; Belville et al., 2004; Orvis et al.,

2008). Interestingly, we identified two mutations (AMH p.Pro151Ser and AMHR2 p.Gly445_Leu453-

del) (Picard et al., 2017) in our CHH cohort previously associated with autosomal recessive PMDS.

MRI or pelvic ultrasounds were performed in the two male CHH patients harboring AMH mutations,

including the patient carrying the p.Pro151Ser. No defects in the internal genitalia were identified,

consistent with the fact that monoallelic defects in AMH or AMHR2 do not cause PMDS

(Picard et al., 2017). Notably, parents of PMDS probands carrying heterozygote AMH or AMHR2

mutations are fertile (Picard et al., 2017; Josso et al., 2005); however, detailed reproductive and

olfactory phenotyping in these parents have not been reported. Furthermore, there are few studies

examining the hormonal profile of patients with PMDS although spontaneous puberty is reported

based on clinical observation (Josso et al., 2005). To assess pubertal and reproductive defects in

PMDS patients or family members, detailed reproductive phenotyping will be necessary.

Taken together, these data demonstrate the pleiotropic roles of AMH and AMHR2 in shaping

internal genitalia and GnRH neuron migration. Different mechanistic actions of the mutants (i.e.

recessive vs. dominant negative vs. haploinsufficiency) in combination with tissue-specific signaling

pathway might guide the final phenotype.

AMH and AMHR2 mutations affecting GN11 cell motility were found in both KS and nCHH indi-

viduals. We thus speculate that GnRH migratory defects could also occur in some cases of nCHH.

This hypothesis challenges the current dogma, whereby defects in GnRH cell migration lead to KS

and not nCHH (Boehm et al., 2015). Yet, increasing genetic evidence indicates that CHH genes do

not segregate into 2 (i.e. KS and nCHH) but rather three categories: 1) KS only, 2) nCHH only and 3)

both KS and nCHH. The latter includes genes involved in GnRH neuron migration such as FGFR1,

SEMA7A, AXL (Boehm et al., 2015). We recently showed that GnRH neurons in human fetuses

migrate into the brain in tight associations with vomeronasal and terminal nerves and not olfactory

nerves (Casoni et al., 2016). Another recent study demonstrated that correct development of the

OBs and axonal connection to the forebrain are not required for GnRH neuronal migration

(Taroc et al., 2017), thus implying a stronger contribution of the vomeronasal/terminal nerve as a

scaffold for the GnRH migration. Taken together, this evidence indicates that the vomeronasal and

the terminal nerve play important roles in the ontogenesis and migration of GnRH neurons in verte-

brates, and raises the intriguing possibility that some genetic forms of nCHH might be due to defec-

tive central projections of the vomeronasal/terminal nerves leading to subsequent alterations of the

GnRH migratory process.

In conclusion, this work highlights the role of AMH/AMHR2 signaling in GnRH neuronal migration,

hormone secretion and regulation of fertility, and identifies heterozygous mutations in AMH and

AMHR2 in CHH patients.

Malone et al. eLife 2019;8:e47198. DOI: https://doi.org/10.7554/eLife.47198 18 of 36

Research article Developmental Biology Genetics and Genomics

https://doi.org/10.7554/eLife.47198


Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(Mus musculus)

C57BL/6J Charles River

Strain, strain
background
(M. musculus)

Amhr2-Cre Knock-in Jamin et al., 2002 DOI: 10.1038/ng1003

Strain, strain
background
(M. musculus)

Gnrh1 < GFP> Spergel et al., 1999 DOI: 10.1523/JNEUROSCI.
19-06-02037.1999

Recombinant
DNA reagent

AMH-His GeneCust Seq ref: NM_000479.3

Recombinant
DNA reagent

AMHR2-His GeneCust Seq Ref: NM_000479.3

Recombinant
DNA reagent

AMH-p.Thr99Ser-His This Paper

Recombinant
DNA reagent

AMH-p.Pro151Ser-His This Paper

Recombinant
DNA reagent

AMH-p.Asp238Glu-His This Paper

Recombinant
DNA reagent

AMHR2-p.Gly445_Leu453del-His This Paper

Cell line GN11 Radovick et al., 1991 Lab Stock https://doi.org/10.1073/
pnas.88.8.3402
GN11 cells were isolated
from a male mouse

Cell line GT1-7 Mellon et al., 1990 Lab Stock;
RRID:CVCL_0281

https://doi.org/10.1016/
0896-6273(90)90028-E
GT1-7 cells were isolated
from a mouse, unknown sex

Cell line COS-7 Lab Stock;
RRID:CVCL_0224

COS-7 cells were isolated
from a monkey

Transfected
construct

Amhr2 SMARTpool siRNA Dharmacon #M-053605-00-0005

Transfected
construct

Acvr1 SMARTpool
siRNA

Dharmacon #M-042047-01-0005

Transfected
construct

Bmpr1a SMARTpool
siRNA

Dharmacon # M-040598-01-0005

Transfected
construct

Bmpr1b SMARTpool
siRNA

Dharmacon # M-051071-00-0005

Transfected
construct

Non-targeting
siRNA control pool

Dharmacon # D-001206-13-05

Antibody Phospho-ERK1/2 (Thr202/Tyr204)
(rabbit)

Cell Signaling #9101L;
RRID:AB_331646

1:1000

Antibody ERK1/2
(Thr202/Tyr204)
(rabbit)

Cell Signaling #9102L;
RRID:AB_330744

1:1000

Antibody AMH (mouse) Abcam #Ab24542 ;
RRID:AB_2801539

1:500

Antibody AMH (rabbit) Abcam #Ab103233;
RRID:AB_10711946

1:500

Antibody AMHR2 (rabbit) CASLO Custom made #56G 1:2000

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody GnRH (guinea pig) Dr. Erik Hrabovszky, Institute
of Experimental Medicine
of the Hungarian Academy
of Sciences, Budapest,
Hungary

Lab Stock 1:3000; https://doi.org/
10.3389/fendo.2011.00080

Antibody Peripherin
(Contactin1)
(rabbit)

Millipore #AB1530;
RRID:AB_90725

1:1000

Antibody b-III tubulin
(TUJ-1) (mouse)

Sigma Aldrich #T8660;
RRID:AB_477590

1:800

Antibody AMHR2
Neutralizing
Antibody

R&D systems #AF1618 ;
RRID: AB_2226485

1:200

Antibody TAG-1 (goat) R&D systems AF2215

Antibody Actin (mouse) Sigma Aldrich #A5316;
RRID:AB_476743

1:1000

Antibody Donkey anti-rabbit
IgG AlexaFluor
488 (H + L)

Molecular Probes #A-21026;
RRID:AB_141708

1:500

Antibody Donkey anti-rabbit
IgG AlexaFluor
555 (H + L)

Molecular Probes #A-31572;
RRID:AB_162543

1:500

Antibody Donkey anti-mouse
IgG AlexaFluor
488 (H + L)

Molecular Probes #A-21202;
RRID:AB_141607

1:500

Antibody Donkey anti-mouse
IgG AlexaFluor
555 (H + L)

Molecular Probes #A-31570;
RRID:AB_2536180

1:500

Antibody Donkey anti-goat
IgG AlexaFluor
488 (H + L)

Molecular Probes #A-11055;
RRID:AB_142672

1:500

Antibody Donkey anti-goat
IgG AlexaFluor
555 (H + L)

Molecular Probes #A-21432;
RRID:AB_141788

1:500

Antibody Donkey anti-goat
IgG AlexaFluor
647 (H + L)

Molecular Probes #A-21447;
RRID:AB_141844

1:500

Antibody Donkey anti-guinea
pig IgG AlexaFluor
488 (H + L)

Jackson
ImmunoResearch

#706-545-148;
RRID:AB_2340472

1:500

Antibody Horse anti-mouse
IgG
peroxidase labelled

Vector #PI-2000;
RRID:AB_2336177

1:5000

Sequence-
based reagent

Amh Taqman
gene expression
assay

Thermofisher
Scientific

Mm00431795_g1

Sequence-
based reagent

GnRH Taqman
gene expression
assay

Thermofisher
Scientific

Mm01315605

Sequence-
based reagent

Amhr2 Taqman
gene expression
assay

Thermofisher
Scientific

Mm00513847_m1

Sequence-
based reagent

Acvr1 Taqman
gene expression
assay

Thermofisher
Scientific

Mm01331069_m1

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Sequence-
based reagent

Bmpr1a Taqman
gene expression
assay

Thermofisher
Scientific

Mm00477650_m1

Sequence-
based reagent

Bmpr1b Taqman
gene expression
assay

Thermofisher
Scientific

Mm03023971_m1

Sequence-
based reagent

Rn18s Taqman
gene expression
assay

Thermofisher
Scientific

Hs99999901-s1

Sequence-
based reagent

Actb Taqman
gene expression
assay

Thermofisher
Scientific

Mm00607939

Peptide,
recombinant
protein

Recombinant
Human AMH-C
Fragment (goat)

R&D systems #1737 MS;
RRID:AB_2273957

Commercial
assay or kit

Papain
Dissociation
System

Worthington #LK003150

Commercial
assay or kit

Lipofectamine 2000 ThermoFisher
Scientific

#11668019

Commercial
assay or kit

AMH Access
Dxi chemiluminescent
immunoassay

Beckman Coulter #B13127

Commercial
assay or kit

GnRH EIA kit Phoenix
Pharmaceuticals Inc

#EK-040-02CE

Commercial
assay or kit

Annexin V
Apoptosis
Detection Kit

Thermofisher
Scientific

#88-8007-74

Commercial
assay or kit

SureSelect All
Exon capture V2

Agilent
Technologies

#5190–9493

Commercial
assay or kit

Gentra Puregene
Blood Kit

Qiagen #158389

Chemical
compound,
drug

Flurogold Tracer Sigma Aldrich #39286 1:1500

Chemical
compound,
drug

MAPK Kinase
inhibitor

Calbiochem #U0126 10 mM

Software,
algorithm

FACSDiva BD Biosciences 8.1 http://www.bdbiosciences.com/
sg/instruments/software/
downloads/

Software,
algorithm

SDS Applied Biosystems 2.4.1 https://www.thermofisher.com/
fr/fr/home/technical-resources/
software-downloads/applied-
biosystems-7900ht-fast-real-
timespcr-system.html

Software,
algorithm

Data Assist Applied Biosystems 3.0.1 https://www.thermofisher.
com/fr/fr/home/technical-
resources/software-downloads/
dataassist-software.html

Software,
algorithm

ImageJ NIH 3.0.1 https://imagej.net/Welcome

Software,
algorithm

IMARIS Bitplane 9.1 https://imaris.oxinst.com/

Software,
algorithm

Photoshop Adobe 4.0 https://www.adobe.com/la/
products/photoshop.html

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

Illustrator Adobe 4.0 https://www.adobe.com/
products/illustrator.html

Software,
algorithm

Prism 6 Graphpad Software 6.0 https://www.graphpad.com/
scientific-software/prism/

Software,
algorithm

Inspector Pro La Vision Biotec 4.0

Software,
algorithm

Burrows-Wheeler
Alignment
Algorithm

http://bio-bwa.
sourceforge.net/

Software,
algorithm

SnpEff Switch Laboratoty 4.0 http://snpeff.sourceforge.net/

Software,
algorithm

dbNSFP Liu et al., 2011 2.9 http://varianttools.
sourceforge.net/
Annotation/dbNSFP

Software,
algorithm

Modeller Webb and Sali,
2016

9.2 https://salilab.org/modeller/

Animals and cell lines
C57BL/6J mice (Charles River, USA) were housed under specific pathogen-free conditions in a tem-

perature-controlled room (21–22˚C) with a 12 hr light/dark cycle and ad libitum access to food and

water. Amhr2-Cre knock-in mice have been previously characterized (Jamin et al., 2002).

Gnrh1<GFP> (Spergel et al., 1999) mice were a generous gift of Dr. Daniel J. Spergel (Section of

Endocrinology, Department of Medicine, University of Chicago, IL). Mice were genotyped by PCR

using primers listed in Supplementary file 1.

Animal studies were approved by the Institutional Ethics Committees of Care and Use of Experi-

mental Animals of the Universities of Lille 2 (France). All experiments were performed in accordance

with the guidelines for animal use specified by the European Union Council Directive of September

22, 2010 (2010/63/EU) and the approved protocol (APAFIS#13387–2017122712209790 v9) by the

Ethical Committee of the French Ministry of Education and Research.

All efforts were made to minimize animal suffering and animal care was supervised by veterinar-

ians and animal technicians skilled in rodent healthcare and housing. Mice of the appropriate geno-

type were randomly allocated to experimental groups.

COS-7 cells (originally from the lab stock of Luca Tamagnone lab), GN11 and GT1-7 cells

(Radovick et al., 1991; Mellon et al., 1990) (originally from the lab stock of Pamela Mellon lab and

from the lab stock of Sally Radovick lab) were grown in DMEM with 10% fetal bovine serum (Invitro-

gen). They were authenticated based on morphology, and DNA staining revealed no mycoplasma

contamination.

Immunofluorescence
Embryos were harvested at embryonic day E14.5 from black C57BL/6 mice. Heads from the embryos

were washed thoroughly in cold 0.01M PBS, fixed in fixative solution [4% paraformaldehyde (PFA),

0.01M PBS, pH 7.4] for 6–8 hr at 4˚C and cryoprotected in 30% sucrose overnight at 4˚C. The follow-

ing day, heads were embedded in OCT embedding medium (Tissue-Tek, Torrence, CA), frozen on

dry ice, and stored at �80˚C until sectioning. The embryo heads were coronally cryosectioned (Leica

Microsystems, Wetzlar Germany) at 16 mm intervals directly onto slides and stored at �80˚C until

use. Adult mice were anesthetized with 80 mg/kg of ketamine-HCl and 8 mg/kg xylazine-HCl and

transcardially perfused with 40 ml of saline, followed by 100 ml of 4% PFA, pH 7.4. Brains were col-

lected, postfixed in the same fixative for 2 hr at 4˚C and cryoprotected in 30% sucrose overnight.

Embedded in OCT embedding medium, frozen on dry ice and stored at �80˚C until cryosectioning.

Adult brains were sectioned at 35 mm using the cryostat and stored in anti-freeze medium at �20˚C

until use. Immunolabelling for mouse and human samples was completed as follows: sections were

thawed at RT before 3 � 5 min washes in 0.01M PBS. Sections were then incubated with primary
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antibodies (Key Resources Table) in a solution containing 10% normal donkey serum and 0.3% Triton

X100 for 3 days at 4˚C. 3 � 5 min washes in 0.01M PBS were followed by incubation in appropriately

conjugated secondary antibodies (Key Resources Table) for 1 hr before incubation with Hoechst

1:1000. After 3 � 5 min washes in 0.01M PBS sections were coverslipped using Mowiol as an anti-

fade mounting medium.

Nasal explants
Embryos were obtained from timed-pregnant animals. Vaginal plug dates were designed as E0.5.

Nasal pits of E11.5 WT C57BL/6J mice were isolated under aseptic conditions in Grey’s Balanced

Salt Solution (Invitrogen) enriched with glucose (Sigma-Aldrich) and maintained at 4˚C until plating.

Explants were placed onto glass coverslips coated with 10 ml of chicken plasma (Cocalico Biologicals,

Inc). Thrombin (10 ml; Sigma-Aldrich) was then added to adhere (thrombin/plasma clot) the explant

to the coverslip. Explants were maintained in defined serum-free medium (SFM) (Fueshko and

Wray, 1994) containing 2.5 mg/ml Fungizone (Sigma-Aldrich) at 37˚C with 5% CO (Wray et al.,

1989) for up to 30 days in vitro (div). From culture days 3 to 6, fresh medium containing fluorodeox-

yuridine (8 � 10�5 M; Sigma-Aldrich) was provided to inhibit the proliferation of dividing olfactory

neurons and non-neuronal explant tissue. The medium was replaced with fresh SFM twice a week.

In utero injections
Vaginal plug dates were designed as E0.5. Timed-pregnant mice (n = 2) carrying E12.5 embryos

were anesthetized with isoflurane, and the uterine horns were gently placed outside the abdominal

cavity and constantly hydrated with 35˚C sterile saline. Using a Nanofil syringe and a 35 GA needle

attachment (World Precision Instruments), 2 ml containing 0.4 mg of Amhr2 Neutralizing Antibody

(Amhr2-NA, 1:200, R and D system, AF1618) and Fluorogold tracer 1:1500 (Sigma Aldrich, #39286)

diluted in saline was injected intra-utero in the olfactory placode of each embryo of one uterine

horn. In order to consistently obtain control and Amhr2-NA treated embryos from the same preg-

nant animals and limit biases associated with the staging of the embryonic development, the

embryos of the contralateral horn were injected with saline and Fluorogold of both dams. The con-

centration of AMHR2-NA was determined based on the manufacturer’s recommendations. The uteri

were gently returned and the mothers sutured and monitored for few days. Embryos were collected

at embryonic day 14.5 (E14.5), fixed, cryoprotected, frozen and cut as described above (Immunofluo-

rescence). Fluorogold was used in order to verify the specificity of the injection sites and only

embryos confirmed as optimal hits (fluorogold fluorescence within the olfactory epithelium) were

used for the GnRH quantitative analysis (n = 4 per treatment group, from two independent dams).

GnRH cell counting
Serial sagittal sections (16 mm) from E14.5 WT embryos, (n = 4 per group) were prepared as

described above. Quantitative analysis of GnRH neuronal number, as a function of location, was per-

formed over four regions (the nasal compartment, the nasal/forebrain junction, ventral forebrain and

cortex). Serial coronal sections (35 mm) of Amhr2+/+, Amhr2+/- and Amhr2-/- mouse brains were used

to count the total number of GnRH cells throughout the entire brain and combined to give group

means ± SEM. Vaginal plug dates were designed as E0.5.

Fluorescence activated cell sorting (FACS)
Embryos were harvested at E12.5 from timed-pregnant Gnrh1 <GFP> mice, previously anesthetized

with an intraperitoneal injection of 80 mg/kg of ketamine-HCl and 8 mg/kg xylazine-HCl and sacri-

ficed by cervical dislocation. Juvenile (P12) and adult female mice (3 months old) were anesthetized

with 80 mg/kg of ketamine-HCl and 8 mg/kg xylazine-HCl before being sacrificed by cervical disloca-

tion. Microdissections from embryonic nasal region and post-natal/adult hypothalamic preoptic

region were enzymatically dissociated using Papain Dissociation System (Worthington, Lakewood,

NJ) to obtain single-cell suspensions as previously described (Messina et al., 2016). After dissocia-

tion, the cells were physically purified using a FACSAria III (Beckman Coulter) flow cytometer

equipped with FACSDiva software (BD Biosciences). The sort decision was based on measurements

of GFP fluorescence (excitation: 488 nm, 50 mW; detection: GFP bandpass 530/30 nm, autofluores-

cence bandpass 695/40 nm) by comparing cell suspensions from GnRH-GFP and wild-type animals.
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For each animal, 500 GFP-positive cells were sorted directly into 8 ml extraction buffer: 0.1% Triton

X-100 (Sigma-Aldrich) and 0.4 U/ml RNaseOUT (Life Technologies). Captured cells were used to syn-

thesize first-strand cDNA using the protocol detailed below.

Immortalized cell cultures
GN11, GT1-7 and COS-7 cells were grown in monolayers at 37˚C under 5% CO2, in DMEM (Thermo-

Fisher, Invitrogen) containing 1 mM pyruvate, 2 mM L-glutamine (ThermoFisher, Invitrogen), 100 mg/

ml streptomycin, 100 U/ml penicillin and 9 mg/ml glucose (MP Biomedicals, Santa Ana, CA), supple-

mented with 10% fetal bovine serum (complete medium). Cells were maintained below full conflu-

ence by trypsination and seeding onto 10 cm2 dishes. Cells used for experiments were between

their third and eighth passage. Cells were treated with recombinant human AMH (1737-MS; R&D

systems) at the concentrations ranging from 10 ng/ml to 250 ng/ml.

Quantitative RT-PCR
For gene expression analyses, cDNA obtained from RT-PCR were reverse transcribed using Super-

Script III Reverse Transcriptase (ThermoFisher, Invitrogen). Real-time PCR was carried out on Applied

Biosystems 7900HT Fast Real-Time PCR System using exon-span-specific TaqMan Gene Expression

Assays (Applied Biosystems, Carlsbad CA). The list of primers used for these experiments is the fol-

lowing: Amh (Mm00431795_g1), Gnrh1 (Mm01315605), Amhr2 (Mm00513847_m1); Acvr1

(Mm01331069_m1); Bmpr1a (Mm00477650_m1); Bmpr1b (Mm03023971_m1). Control housekeeping

genes: Rn18s (Hs99999901-s1) and Actb (Mm00607939). Amperase activation was achieved by heat-

ing to 50˚C for 2 min, before denaturing at 95˚C for 20 s, followed by 40 cycles of 1 s 95˚C with a 20

s extension time at 60˚C. Gene expression data were analyzed using SDS 2.4.1 and Data Assist 3.0.1

software (Applied Biosystems, Carlsbad, CA), with ActB and Rn18s as control house-keeping mRNA

following a standardized procedure (Schmittgen and Livak, 2008). Values are normalized relative to

control values and expressed, as appropriate, to 1.

Western blot
Culture plates were frozen as described above quickly thawed and protein immediately extracted

with 150 ml of freshly prepared lysis buffer [25 mM Tris pH 7.4, 50 mM b-glycerophosphate, 1% Tri-

ton x100, 1.5 mM EGTA, 0.5 mM EDTA, 1 mM sodium orthovanadate, 10 mg/ml Leupeptin and Pep-

statin A, 10 mg/ml aprotinin, 100 mg/ml PMSF (reagents sourced from Sigma Aldrich, St. Louis, MO)].

Protein extracts were then homogenized using a 26 gauge needle before centrifuging at 12.000 g

for 15 mins at 4˚C. The supernatant was recovered and protein quantified using the Bradford

method (BioRad, Hercules, CA). 1x sample and 4x loading buffer (ThermoFisher, Invitrogen) were

added to the samples, which were then boiled for 10 min before electrophoresis at 120V for 100

mins in 4–12% tris-acetate precast SDS-polyacrylamide gels according to the protocol supplied with

the NuPAGE system (ThermoFisher, Invitrogen). After size fractionation, the proteins were trans-

ferred onto a PVDF membrane (0.2 mm pore size, LC2002; Invitrogen, Carlsbad, CA) in the blot mod-

ule of the NuPAGE system (ThermoFisher, Invitrogen) maintained at 1A for 75 min at room

temperature (RT). Blots were blocked for 1 hr in tris-buffered saline with 0.05% Tween 20 (TBST) and

5% non-fat milk at RT, incubated overnight at 4˚C with their respective primary antibody in TBST 5%

bovine serum albumin (Sigma Aldrich, Cat A7906), and washed four times with TBST before being

exposed to horseradish peroxidase-conjugated secondary antibodies diluted in 5% non-fat milk

TBST for 1 hr at RT. The immunoreactions were detected with enhanced chemiluminescence

(NEL101; PerkinElmer, Boston, MA).

Cell transfections for functional validations
Expression vectors encoding for human AMH and AMHR2 were obtained from Genescript. Briefly, a

cDNA containing the entire coding region of the human AMH transcript (NM_000479.3) and AMHR2

(NM_020547.3) were inserted into a modified pcDNA3.1+expression vector containing a his-tag at

the 5’end (GeneCust). The plasmids encoding the variants (AMH: p.Thr99Ser, p.Pro151Ser, p.

Asp238Glu, and AMHR2: p.Gly455_Leu453del) were generated by site directed mutagenesis using

the QuickChange XLII Kit (Stratagene) and confirmed by Sanger sequencing. Primers flanking the

mutations (see primers list in supplementary file 1) were used for subsequent PCR amplifications.
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COS-7, GN11 or GT1-7 cells were grown to 70% confluence in 10 cm2 dish without the presence

of antibiotics in preparation for transfection. For each plasmid, oligomer-Lipofectamine 2000 com-

plexes were prepared as follows: vectors were diluted in 500 ml OptiMEM Reduced Serum Medium

without serum and gently mixed, for a final concentration of 400 nM). Lipofectamine 2000 (Thermo-

Fisher, Invitrogen) was mixed gently before use, then diluted 10 ml in 500 ml OptiMEM (Thermo-

Fisher, Invitrogen). Tubes were gently mixed and incubated for 5 min at room temperature. After

the 5-min incubation, the diluted vector was combined with the diluted Lipofectamine 2000 and

incubated for 20 min at room temperature. During the incubation, cells were trypsinized and dissoci-

ated, then re-suspended in the lipofectamine containing vector mixture. Cells were then incubated

at 37˚C in a 5% CO2 incubator for 48 hr, changing the medium to OptiMEM supplemented with 5%

fetal bovine serum after 6 hr. Conditioned media was collected for AMH or GnRH quantitation and

transfected cells used for either western blotting or transwell migration assays.

AMH quantification
AMH levels in conditioned media were measured by an automatic chemoluminescent immunoassay

on a Dxi system (Beckman Coulter, France) after a 1/10 dilution in the Sample Diluent A. This assay

detects proAMH and the cleaved AMHN,C complex. The limit of quantification of the assay is 0.57

pmol/L with an intra- and inter-assay imprecision less than 5%.

Determination of GnRH secretion
GT1-7 cells were transiently transfected in OptiMem with either AMH WT or p.Thr99Ser hAMH var-

iants. 48 hr later, the medium was collected and frozen until EIA measurement. In another set of

experiments, GT1-7 cells were transiently transfected with either AMHR2 WT or with the AMHR2

CHH variants. 48 hr later, the cells were treated for 4 hr with either PBS or recombinant AMH (1737-

MS; R&D systems, 50 ng/ml). Finally, the medium was frozen until EIA measurement. The collected

media from these experiments were analyzed for GnRH content following a GnRH EIA protocol (EK-

040-02CE, Phoenix Pharmaceuticals Inc, CA).

Transwell migration assay
Transwell chambers were used according to manufacturer’s instructions (Falcon). In brief, GN11 cells

grown in complete medium until sub-confluence were harvested and re-suspended at a density of 1

� 105 cells/ml in SFM. Cells were seeded on the upper side of 8 mm pore membranes and incubated

for 12 hr with SFM, human recombinant AMH (1737-MS; R&D systems, 50–250 ng/ml) or with

DMEM supplemented with 10% fetal bovine serum. Each factor (serum, AMH, inhibitors and anti-

bodies) was placed on the upper and lower chamber of the transwell. GN11 cells were incubated in

the presence of recombinant AMH (50 ng/ml) together with MAPK inhibitor (UO126; Calbiochem) at

a concentration of 10 mM, as previously described (Balland et al., 2014). In another set of experi-

ments, GN11 cells were treated for 12 hr with Amhr2-NA (R and D system, AF1618), at the same

concentration (1:200) used for the in utero injections experiments (Figure 2), in the presence or

absence of recombinant AMH (50 ng/ml). Cells on the upper side of the filters were mechanically

removed and cells on the lower side fixed in 4% PFA for 30 min before nuclei labelling with DAPI.

Four non-overlapping regions were imaged per membrane using a Zeiss 20x objective (N.A. 0.8)

mounted on a Axio Imager Z2 light microscope (Zeiss), with nuclei counted using an ImageJ plugin

(National Institute of Health, Bethseda) and averaged to produce an average per well. n for each

experiment is detailed in the figure legends.

siRNA transfections
GN11 cells were grown to 70% confluence in 10 cm2 dish without the presence of antibiotics in

preparation for transfection. For siRNA experiments, GN11 cells were transiently transfected with 75

nM SMARTpool siRNA targeting mouse Amhr2, Acvr1, Bmpr1a, Bmpr1b, or 75 nM nontargeting

SMARTpool siRNA (siRNA NT) as negative control (Dharmacon, Horizon Discovery LTD, Cambridge,

UK). Gene knockdown was assessed by quantitative PCR.
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Ovarian histology
Ovaries were collected from 6-month-old mice, immersion-fixed in 4% PFA solution and stored at 4˚

C. Paraffin-embedded ovaries were sectioned at a thickness of 5 mm (histology facility, University of

Lille 2, France) and stained with hematoxylin-eosin (Sigma Aldrich, Cat # GHS132, HT1103128). Sec-

tions were examined throughout the ovary. Corpora lutea (CL) were classified and quantified as pre-

viously reported (Caldwell et al., 2017). To avoid repetitive counting, CL were counted every 100

mm by comparing the section with the preceding and following sections. CL were characterized by a

still present central cavity, filled with blood and follicular fluid remnants or by prominent polyhedral

to round luteal cells.

Pulsatile LH measurement
Mice were habituated with daily handling for 3–4 weeks. Blood samples (5 ml) were taken from the

tail in 10 min intervals for 2 hr (between 12h00 hours and 15h00 hours), diluted in PBS-Tween and

immediately frozen. LH levels were determined by sandwich ELISA (Steyn et al., 2013). A 96-well

high-affinity binding microplate (9018; Corning) was coated with 50 ml of capture antibody (monoclo-

nal antibody, anti-bovine LH beta subunit, 518B7; University of California) at a final dilution of

1:1000 (in 1 x PBS, 1.09 g of Na2HPO4 (anhydrous), 0.32 g of NaH2PO4 (anhydrous) and 9 g of

NaCl in 1000 ml of distilled water) and incubated overnight at 4˚ C. Wells were incubated with 200

ml of blocking buffer (5% (w/v) skim milk powder in 1 x PBS-T (1 x PBS with 0.05% Tween 20) for 2

hr at room temperature. A standard curve was generated using a twofold serial dilution of mLH (ref-

erence preparation, AFP-5306A; National Institute of Diabetes and Digestive and Kidney Diseases -

National Hormone and Pituitary Program (NIDDK-NHPP)) in 0.2% (w/v) bovine serum albumin 1 x

PBS-T. The LH standards and blood samples were incubated with 50 ml of detection antibody (poly-

clonal antibody, rabbit LH antiserum, AFP240580Rb; NIDDK-NHPP) at a final dilution of 1:10,000 for

1.5 hr (at RT). Each well containing bound substrate was incubated with 50 ml of horseradish peroxi-

dase-conjugated antibody (polyclonal goat anti-rabbit; Vector) at a final dilution of 1:10,000. After a

1.5 hr incubation, 100 ml of o-phenylenediamine (002003; Invitrogen), substrate containing 0.1%

H2O2 was added to each well and left at RT for 30 min. The reaction was stopped by the addition of

50 ml of 3M HCl to each well, and absorbance of each well was read at a wavelength of 490 nm.

Pulses were confirmed using DynPeak (Vidal et al., 2012).

Fertility test
The reproductive competency of these animals was determined by pairing the following mice:

Amhr2+/+ males mated with Amhr2+/+ females, Amhr2+/- females, or with Amhr2-/- females, or

inversely, for a period of 3 months. One male and one female were housed in each cage during the

constant breeding protocol. Each litter was sacrificed at birth to allow the dams to re-enter estrous

cyclicity within a few days. Number of pups/litter, fertility index (number of litters per female per

month, averaged during the 3 months), and time to first litter (number of days to first litter after pair-

ing) were quantified per pairing.

iDISCO
Experiments were performed as previously described (Renier et al., 2014) and detailed below.

Sample pre-treatment with methanol
Samples were washed in PBS (twice for 1 hr), followed by 50% methanol in PBS (once for 1 hr), 80%

methanol (once for 1 hr) and 100% methanol (twice for 1 hr). Next, samples were bleached in 5%

H2O2 in 20% DMSO/methanol (2 ml 30% H2O2/2 ml DMSO/8 ml methanol, ice cold) at 4˚C over-

night. Next, samples were washed in methanol (twice for 1 hr), in 20% DMSO/methanol (twice for 1

hr), 80% methanol (once for 1 hr), 50% methanol (once for 1 hr), PBS (twice for 1 hr), and finally,

PBS/0.2% TritonX-100 (twice for 1 hr) before proceeding to the staining procedures.

Whole-mount immunostaining
Samples were incubated at 37˚C on an adjustable rotator in 10 ml of a blocking solution (PBSGNaT)

of 1X PBS containing 0.2% gelatin (Sigma), 0.5% Triton X-100 (Sigma-Aldrich) and 0.01% NaAzide

for three nights. Samples were transferred to 10 ml of PBSGNaT containing primary antibodies (Key
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resources table) and placed at 37˚C in rotation for 7 days This was followed by six washes of 30 min

in PBSGT at RT and a final wash in PBSGT overnight at 4˚C. Next, samples were incubated in second-

ary antibodies (1:400, Alexa 568, Alexa 647) diluted in 10 ml PBSGNaT for 2 days at 37˚C in a rotat-

ing tube. After six 30 min washes in PBS at room temperature, the samples were stored in PBS at 4˚

C in the dark until clearing.

Tissue clearing
All incubation steps were performed at RT in a fume hood, on a tube rotator at 14 rpm covered with

aluminium foil to avoid contact with light. Samples were dehydrated in a graded series (50%, 80%,

and 100%) of tetrahydrofurane (THF; anhydrous, containing 250 ppm butylated hydroxytoluene

inhibitor, Sigma-Aldrich) diluted in H2O as follow: 1) 50% THF overnight at RT; 2) 80% THF 1 hr at

RT; 3) 100% THF 1h30 at RT; 4) 100% THF 1h30 at RT. This was followed by a delipidation step of

30–40 min in 100% dichloromethane (DCM; Sigma-Aldrich). Samples were cleared in dibenzylether

(DBE; Sigma-Aldrich) for 2 hr at RT on constant agitation and in the dark. Finally, samples were

moved into fresh DBE and stored in glass tube in the dark and at RT until imaging. We could image

samples, as described below, without any significant fluorescence loss for up to 6 months.

Imaging
3D imaging was performed as previously described (Belle et al., 2014). An ultramicroscope (LaVision

BioTec) using ImspectorPro software (LaVision BioTec) was used to perform imaging. The light sheet

was generated by a laser (wavelength 488 or 561 nm, Coherent Sapphire Laser, LaVision BioTec)

and two cylindrical lenses. A binocular stereomicroscope (MXV10, Olympus) with a 2 � objective

(MVPLAPO, Olympus) was used at different magnifications (1.6�, 4�, 5�, and 6.3�). Samples were

placed in an imaging reservoir made of 100% quartz (LaVision BioTec) filled with DBE and illumi-

nated from the side by the laser light. A PCO Edge SCMOS CCD camera (2560 � 2160 pixel size,

LaVision BioTec) was used to acquire images. The step size between each image was fixed at 2 mm.

Image analysis
For confocal observations and analyses, an inverted laser scanning Axio observer microscope (LSM

710, Zeiss, Oberkochen, Germany) with EC Plan NeoFluor 10�/0.3 NA, 20�/0.5 NA and 40�/1.3

NA (Zeiss, Oberkochen, Germany) objectives were used (Imaging Core Facility of IFR114 of the Uni-

versity of Lille, France).

Images, 3D volume, and movies were generated using Imaris x64 software (version 7.6.1, Bit-

plane). Stack images were first converted to imaris file (.ims) using ImarisFileConverter and 3D recon-

truction was performed using ‘volume rendering’. Optical slices of samples were obtained using the

‘orthoslicer’ tools. The surface of the samples was created using the ‘surface’ tool by creating a

mask around each volume. 3D pictures were generated using the ‘snapshot’ tool. ImageJ (National

Institute of Health, Bethesda) and Photoshop CS6 (Adobe Systems, San Jose, CA) were used to pro-

cess, adjust and merge the photomontages. Figures were prepared using Adobe Photoshop and

Abode Illustrator CS6.

Human CHH subjects
The CHH cohort included 180 probands (105 KS and 75 nCHH). The majority of the patients were

male (n = 127). The diagnosis of CHH was made on the basis of: i) absent or incomplete puberty by

17 years of age; ii) low/normal gonadotropin levels in the setting of low serum testosterone/estradiol

levels; and iii) otherwise normal anterior pituitary function and normal imaging of the hypothalamic-

pituitary area (Pitteloud et al., 2002). Olfaction was assessed by self-report and/or formal testing

(Lewkowitz-Shpuntoff et al., 2012). When available, family members were included for genetic

studies. This study was approved by the ethics committee of the University of Lausanne, and all par-

ticipants provided written informed consent prior to study participation.
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Human case summaries
Family # 1, Patient II-1
AMH p.Thr99Ser (heterozygous)
The caucasian male proband consulted our clinic at age 32 for symptomatic hypogonadism accom-

panied by mild anemia and oligospermia. He was previously diagnosed with delayed puberty at age

17 but was never offered testosterone replacement nor was he followed up to ensure pubertal com-

pletion. Physical examination revealed partial but incomplete puberty (testicular volume 12 ml bilat-

erally, pubic hair Tanner IV) as well as eunuchoid proportions (arm span 184 cm for height of 176

cm). Targeted clinical exam detected slight hyperlaxity, high-arched palate and pectum excavatum.

Blood tests confirmed a hypogonadotropic hypogonadism (testosterone 7.5 nmol/l, LH 2.7 U/l, FSH

3.6 U/l) without dysfunction of other pituitary axes. Formal olfactory testing confirmed normal sense

of smell. Pituitary MRI and GnRH-stimulation test were normal. Bone density scan typically detected

osteopenia at the lumbar spine. Family history included delayed puberty and growth in his father

while mother’s puberty was normal (menarche at 11 years old). The proband harbors a heterozygous

mutation in AMH inherited by his father who as stated above has a partial phenotype (delayed

puberty). He also harbors a GNRHR variant, which was not considered as pathogenic or likely patho-

genic by our filtering process, due to its presence only at heterozygous state for a gene with autoso-

mal recessive transmission mode. Given his request for fertility, HCG treatment was introduced,

allowing for increase of testosterone and stimulation of spermatogenesis.

Family # 2, Patient II-1
AMH p.Pro151Ser (heterozygous)
This anosmic male proband was diagnosed at 2 years old for unilateral cryptorchidism, treated by

left orchidopexy. Subsequent follow up showed no signs of puberty at 17.5 years with prepubertal

testes (volume 2 ml bilaterally). Serum testosterone was low while gonadotropines were undetect-

able (LH/FSH < 1.0 U/L). Formal smell testing confirmed anosmia (UPSIT: 11/40, <5th %ile) and he

was diagnosed with Kallmann syndrome. Intramuscular injections of testosterone were initiated with

good effect on virilization. A cranial MRI showed normal pituitary size and absent olfactory bulbs.

Family history was negative for pubertal delay. Parents refused to participate in the genetic study

and undergo smell testing. The patient harbors a rare mutation in AMH with no changes in known

CHH genes. A pelvic MRI was performed in July 2017 and showed no argument in favor of PMDS.

Family # 3, Patient II-2
AMG p.Asp238Gln (heterozygous)
The female proband originated from Kazakhstan consulted us at age of 27.9 years for infertility. She

presented with primary amenorrhea at age 17. She described onset of breast development at 13

years, which rapidly stalled (Tanner II-III). She was placed on estrogen-progesterone replacement

(estradiol/dihydrogesterone) at age 18. She remained amenorrheic during multiple treatment

pauses. When assessed in our clinic and several months after withdrawal of estrogen pills, hypogona-

dotropic hypogonadism was confirmed (estradiol 0.05 nmol/l, LH 0.5 U/l, FSH 1.4 U/l) with otherwise

normal pituitary function and adequate response to GnRH stimulation (LH baseline 0.4 U/l, peak 6.3

U/l; FSH baseline 1.2 U/l, peak 6.4 U/l). A 10 hr frequent sampling did not detect any LH pulses.

Olfactory assessment by 12-item Sniffin’ Sticks revealed hyposmia (12/16). Her physical status was

notable for eunuchoid proportions and moderate scoliosis without dysmorphic features. Cranial MRI

showed a small pituitary gland, while bone density scan indicated osteoporosis. Polycystic ovaries

syndrome was excluded as well as a non-classic congenital adrenal hyperplasia. We concluded to KS

diagnosis with partial GnRH deficiency and resumed estrogen/dihydrogesterone treatment. Family

history included delayed puberty in the father (first shaving at age 18, continued growing until age

24). The latter was also anosmic, while the mother exhibited normal puberty (menarche at 13 years

old) and olfactive function. The patient harbors an AMH mutation, inherited by the partially affected

father. No changes in known CHH genes were seen.
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Family # 4, Patient II-1
AMHR2 p.Gly445_Leu453del (heterozygous)
The female Caucasian patient presented with primary amenorrhea and absent pubertal development

at age 17. She remained amenorrheic until age 22, and then was offered oral contraceptives (estra-

diol, norgestrel). Endocrinology assessment in her native country (Serbia) led to diagnosis of hypogo-

nadotropic hypogonadism at age 33 (estradiol <0.04 nmol/l, LH <2.0 U/l, FSH 0.1 U/l) with

otherwise normal pituitary function, assessed by an insulin tolerance test. Similarly, LHRH stimulation

test showed adequate pituitary response (LH baseline 2.0 U/l, peak 6.5 U/l; FSH baseline 1.8 U/l,

peak 6.3 U/l). Pituitary MRI was normal as well as formal smell test (Sniffin’ Sticks 14/16, > 25th %ile).

The patient consulted us to discuss ovulation induction by pulsatile GnRH treatment. After with-

drawal of estrogen pills, hypogonadotropic hypogonadism was confirmed (estradiol <0.04 nmol/l,

LH 0.4 U/l, FSH 1.4 U/l). Physical exam did not show any associated phenotypes. Family history was

unremarkable for pubertal timing but her mother exhibited history of cleft lip/palate, corrected sur-

gically at infancy. Detailed history of the father was impossible as he was deceased. A half paternal

brother had normal puberty and fathered a child without difficulty. The patient harbored a heterozy-

gous deletion in AMHR2. Sequencing of AMHR2 in the patient’s mother and half paternal brother

showed no mutation.

Genetic studies
Genomic DNA was extracted from peripheral-blood samples using the Puregene Blood Kit (Qiagen),

following the manufacturer’s protocol. Exome capture was performed using the SureSelect All Exon

capture v2 and v5 (Agilent Technologies, Santa Clara, CA) and sequenced on the HiSeq2500 (Illu-

mina, San Diego, CA) at BGI (BGI, Shenzen, PRC). Raw sequences (fastq files) were analyzed using

an in-house pipeline that utilizes the Burrows-Wheeler Alignment algorithm (BWA) (Li and Durbin,

2009) for mapping the reads to the human reference sequence (GRCh37), and the Genome Analysis

Toolkit (GATK) (DePristo et al., 2011) for the detection of single nucleotide variants (SNVs) and

insertion/deletions (Indels). The resulting variants were annotated using SnpEff version 4.0

(Cingolani et al., 2012) and dbNSFP version 2.9 (Liu et al., 2013) to calculate minor allele frequency

(MAF).

We evaluated coding exons and intronic splice regions (�6 bp from the exons) of the known CHH

genes for pathogenic and likely pathogenic variants according to ACMG guidelines (Richards et al.,

2015). The included CHH genes are: ANOS1 (NM_000216.2), SEMA3A (NM_006080), FGF8

(NM_033163.3), FGF17 (NM_003867.2), SOX10 (NM_006941), IL17RD (NM_017563.3), AXL

(NM_021913), FGFR1 (NM_023110.2), HS6ST1 (NM_004807.2), PCSK1 (NM_000439), LEP

(NM_000230), LEPR (NM_002303), FEZF1 (NM_001024613), NSMF (NM_001130969.1), PROKR2

(NM_144773.2), WDR11 (NM_018117), PROK2 (NM_001126128.13), GNRH1 (NM_000825.3),

GNRHR (NM_000406.2), KISS1 (NM_002256.3), KISS1R (NM_032551.4), TAC3 (NM_013251.3), and

TACR3 (NM_001059.2).

Forty-four probands harbored pathogenic or likely pathogenic variants in the known CHH genes,

and were excluded for subsequent analysis. The remaining 136 probands were then evaluated for

mutations in AMH and AMHR2. Only variants with MAF <0.1% were used for subsequent analysis.

AMH and AMHR2 variants were confirmed by Sanger sequencing on both strands with duplicate

PCR reactions and are described according to HGVS nomenclature (den Dunnen and Antonarakis,

2000).

Computational modelling of the p.Gly445_Leu453del AMHR2
intracellular domain
For the WT AMHR2 kinase domain, a previous model (referred as WT) based on the crystallographic

structure of the human activin type II B receptor (PDB code 2qlu), which shares ~35% sequence iden-

tity with AMHR2, was used (for more details see Belville et al., 2009). The 3D-model bearing the p.

Gly445_Leu453del deletion (referred as DEL) was generated on the basis of the WT model, using

the Modeler V9.2 package (Sali and Blundell, 1993) and evaluated by Errat (Colovos and Yeates,

1993). The three-dimensional models generated were submitted to a 100 ns molecular dynamics

simulation. Both systems were set up following the same protocol and using the xleap program. The

system was embedded in a cubic box with edges at 15 Å from the protein and sodium ions were
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added to neutralize the simulation cell (4 and 6 for WT and DEL models, respectively). The protein

was described by the ff14sb forcefield (Maier et al., 2015) water molecules with the TIP3P

(Jorgensen et al., 1983) one and the ions94.lib library was used for the sodium cations. Non-

bonded interactions were calculated with a cutoff of 10 Å, whereas long range electrostatic interac-

tions were calculated with the Ewald Particle Mesh method (Essmann et al., 1995). A time step of 1

fs was used to integrate the equation of motion with a Langevin integrator (Schneider and Stoll,

1978; Brünger et al., 1984). Constant temperature and pressure were achieved by coupling the sys-

tems to a Monte Carlo barostat at 1.01325 bar. Bonds involving hydrogen atoms were constrained

using the SHAKE algorithm (Ryckaert et al., 1977). The simulations were performed with OpenMM

7.0 (Eastman and Pande, 2015) following a standard protocol included into OMMProtocol applica-

tion (https://github.com/insilichem/ommprotocol): model systems were initially energy minimized

(3000 steps); then, thermalization of water molecules and side chains was achieved by increasing the

temperature from 100 K up to 300 K; finally, 100 ns of production simulations were performed. For

the model containing the deletion, simulations were performed in triplicate. Molecular graphics

were produced with the UCSF Chimera package (Pettersen et al., 2004), except for the RMSF one

that was done with VMD (Humphrey et al., 1996).

Collection and processing of human fetuses
Tissues were made available in accordance with French bylaws (Good practice concerning the con-

servation, transformation and transportation of human tissue to be used therapeutically, published

on December 29, 1998). The studies on human fetal tissue were approved by the French agency for

biomedical research (Agence de la Biomédecine, Saint-Denis la Plaine, France, protocol n˚: PFS16–

002). Non-pathological human fetuses (11 weeks post-amenorrhea, n = 2, females) were obtained

from voluntarily terminated pregnancies after obtaining written informed consent from the parents

(Gynaecology Department, Jeanne de Flandre Hospital, Lille, France). Fetuses were fixed by immer-

sion in 4% paraformaldehyde (PFA) at 4˚C for 7 days. The tissues were then cryoprotected in 30%

sucrose/PBS at 4˚C overnight, embedded in Tissue-Tek OCT compound (Sakura Finetek, USA), fro-

zen in dry ice and stored at �80˚C until sectioning. Frozen samples were cut serially at 20 mm using a

Leica CM 3050S cryostat (Leica Biosystems Nussloch GmbH, Germany) and immunolabeled as

described above and as previously described (Casoni et al., 2016).

Sex determination of human fetuses
Sex determination of two human fetuses (Gestational weeks 11: GW11) was obtained by isolating

DNA from extracted tissues using the NucleoSpin Tissue Kit (Macherey-Nagel), according to manu-

facturer instructions, and the extracted DNA was stored at �20˚C until use. The DNA concentration

(absorbance at 260 nm) and purity (A260/A280 ratio) were assessed using the NanoDrop 1000 Spec-

trophotometer (ThermoScientific). A PCR was performed in a PTC-200 thermocycler (MJ Research)

using the following steps: 94˚C for 3 min and 35 cycles of 94˚C for 1 min; 56˚C for 30 s; 72˚C for 30 s

and 72˚C for 5 min. For genotyping the following primers were used: SRY sense 5’-AGCGATGATTA-

CAGTCCAGC-3’ and antisense 5’-CCTACAGCTTTGTCCAGTGG-3’; FGF16 sense 5’-CGGGAGGGA

TACAGGACTAAAC-3’ and antisense 5’-CTGTAGGTAGCATCTGTGGC-3’. The presence of DNA

extracted from the two sexual chromosome X (FGF16: 495 bp) and Y (SRY: 538 bp) was assessed by

electrophoresis on a 2% agarose gel.

The DNA was visualized thank to SybrGreen staining under an UV transilluminator (Biorad Gel

Doc XR + with Image Lab Solfware) and compared against a known molecular weight marker (DNA

Step Ladder 50 bp, Promega).

Statistical analysis
Sample sizes for physiological and neuroanatomical studies and gene expression analyses were esti-

mated based on prior experience and those represented in the extant literature. Typically, mice

taken from at least two different litters for each group were used. No stringent randomization

method was used to assign subjects in the experimental groups or to process data.

Quantitative RT-PCR gene expression data were analyzed using SDS 2.4.1 and Data Assist 3.0.1

software (Applied Biosystems, Carlsbad, CA). All other analyses were performed using Prism 5

(GraphPad Software). Data sets were assessed for normality (Shapiro-Wilk test) and variance. Where
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appropriate a one-way or two-way ANOVA followed by post hoc testing (specified in the figure

legends) was performed and for non-Gaussian distributions, a Kruskal-Wallis test followed by Dunn’s

multiple comparison test was used – indicated in figure legends. Exact P/adjusted p values are given

in figure legends where possible. a was set at 0.05 for all experiments excluding WES data.

Ethics
Animal experimentation: the study was performed in strict accordance with the Guidelines specified

by the European Union Council Directive of September 22, 2010 (2010/63/EU). The protocols were

approved by the Ethical Committee of the French Ministry of Education and Research (APA-

FIS#13387–2017122712209790 v9).

Human fetal material: the study was approved by the French agency for biomedical research

(Agence de la Biomédecine, Saint-Denis la Plaine, France, protocol n˚: PFS16–002). Non-pathological

human fetuses were obtained from voluntarily terminated pregnancies after obtaining written

informed consent from the parents (Gynaecology Department, Jeanne de Flandre Hospital, Lille,
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and all participants provided written informed consent prior to study participation.
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Garrel G, Racine C, L’Hôte D, Denoyelle C, Guigon CJ, di Clemente N, Cohen-Tannoudji J. 2016. Anti-Müllerian
hormone: a new actor of sexual dimorphism in pituitary gonadotrope activity before puberty. Scientific Reports
6:23790. DOI: https://doi.org/10.1038/srep23790, PMID: 27030385
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