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 In situ hybridization (ISH) techniques have been applied increasingly to localize gene 

expression at the cytological level (1,2). Since the first (ISH) experiments (3,4), mainly 

radioactive nucleotides have been used to synthesize probes (5). The adventage of 

radiolabelled probes is the possibility of detecting very low levels of transcripts, whereas 

their major limitations are very long exposure times or a relatively poor resolution, depending 

on the radioisotope used. Moreover, the photographic emulsion revealing the hybridization 

signals is not at the same focus as the tissue section, which hampers resolution and 

microscopic observation. The more recent use of non-radioactively labelled nucleotides has 

considerably improved ISH with both a shortening of the development time and an excellent 

histological resolution (6,7,8). Of all the non-radioactive labelling methods developed, 

digoxigenin based detection has proved the most appropriate for rare transcripts. Since 

digoxigenin is synthesized only in plants of the genus Digitalis, background problems in cells 

of other organisms are avoided (7). However, ISH protocols allowing the non-radioactive 

detection of rare transcripts were not available up to now. Our aim was thus to develop a 

refined non-radioactive ISH protocol applicable to the detection of rare transcripts, reliable 

for both cryosections and paraffin sections, and suitable for all kinds of tissues. Therefore, we 

critically assessed the experimental ISH protocols described to date. The usefulness of each 

step was evaluated and each solution or buffer was simplified when possible. The remaining 

steps were then improved one by one for the detection of a relatively abundant transcript, 

albumin mRNA, on cryosections of adult rat liver. As a result, a simplified and efficient ISH 

protocol was obtained, which was then tested on the expression of the peroxisome 

proliferator-activated receptor alpha (PPARα) gene, which encodes a transcription factor 

belonging to the nuclear receptor superfamily (9,10). This protocol is sensitive enough to 

allow the detection of  approximately 25 copies of PPARα mRNA per hepatocyte in rat liver. 

Finally, we have choosen one of the most difficult tissues to prepare, white adipose tissue, to 

show that this ISH method is also applicable for the detection of rare transcripts on paraffin 

sections. 

 

Material and Methods. 
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Cloning of albumin and PPARα cDNAs. 

 Two different rat serum albumin cDNAs were cloned in order to synthesize one short 

(101 nt) and one long (1169 nt) ISH riboprobes. The first cDNA was obtained from rat liver 

total RNA by reverse transcription coupled to PCR by the use of the primers albumin-up-1 

(5'-GAAGGGGATCCTCCTGCCTGCTACGGCAC-3') and albumin−down-1 (5'-

CTCTCCAAGCTTCTCGTAAAGCTCACAG-3'). The resulting fragment, 101 nt long and 

corresponding to nt 1165-1265 of the rat serum albumin cDNA (11) was digested with 

BamHI and HindIII and cloned into the pBluescript-SK+ and -KS+ vectors (Stratagene) to 

obtain the pSK+/ALBUMIN (1165-1265) and pKS+/ALBUMIN (1165-1265) plasmids. The 

second cDNA fragment was obtained by RT-PCR with the use of the primers albumin-up-2 

(5'-GCCACCCTTCTAGAGGCCGGAGGCTGAGGCC-3') and albumin−down-2 (5'-

CAGCTTTGAATTCTTTGGGGACATATGTCTC-3'). The resulting fragment, 1169 nt long 

(nt 413 to 1581, ref. 11), was digested with XbaI and EcoRI and cloned into the pBluescript-

SK+ and -KS+ vectors to obtain the pSK+/ALBUMIN (413-1581) and pKS+/ALBUMIN 

(413-1581) plasmids. This albumin cDNA was further restricted to nt 1261 to 1581 by 

digestion with HindIII and EcoRI and cloned into the pBluescript-KS+ vector to obtain the 

pKS+/ALBUMIN (1261-1581) plasmid, which was used to synthesize riboprobes for RNase 

protection assay. A rat PPARα cDNA fragment of 390 nt was obtained as described (12,13) 

and cloned into the pBluescript-KS+ and -SK+ vectors to obtain the pKS+/PPARα (1377-

1766) and pSK+/PPARα (1377-1766) plasmids. 

 

ISH riboprobe synthesis. 

 The cDNA containing plasmids were linearized as follows: pSK+/PPARα (1377-1766) 

and pSK+/ALBUMIN (413-1581) with XbaI, pKS+/PPARα (1377-1766) and 

pSK+/ALBUMIN (413-1581) with EcoRI, pKS+/ALBUMIN (1165-1265) with HindIII, and 

pSK+/ALBUMIN (1165-1265) with BamHI. The linearized plasmids were then gel isolated 

and used as templates for antisense and sense Digoxigenin (DIG)- and [α-32P]UTP-labelled 

riboprobe synthesis (Boehringer Mannheim, Germany, and Amersham Corp., Little Chalfont, 
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UK, respectively). The transcription mixture (50µl) included 1µg of linearized template 

cDNA, ATP, GTP and CTP each at 1mM each, UTP 0.7mM, DIG-UTP 0.3mM, [α-32P]UTP 

30nM, DTT 10mM, RNasin (1 unit/µl of transcription mix, Promega, Madison, WI) and T3 

or T7 RNA Polymerase (1 unit/µl of transcription mix, Promega). Transcription was 

performed for at least 2 hours at 37¡C. The template cDNAs were then digested by RQI-

DNase (2µl at 1 unit/µl, 30 min at 37¡C, Promega), and all reactions were stopped by 

adjusting the reaction volume to 100 µl with Tris/EDTA (10/1mM, pH 8.0). The riboprobes 

were then purified through two precipitation steps by addition of 100µl NH4-Acetate 4M and 

500µl EtOH 100%, and centrifugation for 30 min at 4¡C in a microfuge. The pellet was 

resuspended in 200µl DEPC-treated water. The low levels of [α-32P]UTP incorporation was 

used to determine the amounts of riboprobes synthesized and to control the length and 

integrity of the probes by gel electrophoresis. 5 to 10 µg of synthesized riboprobe was 

obtained routinely from 1 µg of cDNA matrix.The DIG-incorporation into the probes was 

controlled by dot spots, according to ref. 14. DIG was visualized with an anti-DIG antibody 

coupled to alkaline phosphatase. 

 

Preparation of tissue sections. 

 Liver pieces of adult male Sprague-Dawley rats (300 g, BRL, Basel) were rapidly 

rinsed in diethylpyrocarbonate (DEPC)-treated PBS, and either immediately embedded in 

Tissue Freezing Medium (Jung, Nussloch, Germany) and then frozen in isopentane and dry 

ice or fixed overnight (O/N) in 4% paraformaldehyde-PBS (NaCl 0.9 % w/v, NaH2PO4 12.5 

mM, NaOH 10 mM, pH 7.5) at room temperature. The O/N fixed liver pieces were then 

cryoprotected by an incubation of 6 hours in 12% sucrose-PBS and O/N in 18% sucrose-PBS 

at room temperature and frozen as the unfixed pieces (see above). All tissues were kept at -

80¡C until used. 12 μm thick tissue sections were prepared (-35°C, Reichert and Jung 

frigocut, Nussloch, Germany), mounted on poly-L-lysinated slides, postfixed in 4% 

paraformaldehyde-PBS (10 min at room temperature) and processed immediately for the ISH 

experiment. 
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 White adipose tissue was fixed O/N in 4% paraformaldehyde-PBS, dehydrated 

through successive baths of EtOH (70%, 95% and 100%) and xylol (2x30 min each) and 

embedded in three successive baths of paraplast (58°C, Sherwood medical, Athy, Ireland). 

After paraffin solidification at room temperature, the tissue was kept at 4°C until used. 

Paraffin sections were cut (12 µm thick, room temperature), mounted on poly-L-lysinated 

slides, air-dried O/N, and stored at 4°C in a dry athmosphere until used for the ISH 

experiment. The sections were rehydrated through successive baths of xylol, 2xEtOH (100% 

and 95%, respectively), DEPC-treated water and DEPC-treated PBS (2x 5 min each). They 

were then postfixed 10 min in 4% paraformaldehyde-PBS and processed for ISH. 

 

In Situ Hybridization (ISH). 

 After postfixation in 4% paraformaldehyde-PBS, sections were incubated 2x15 min in 

PBS containing 0.1% active DEPC (Fluka, Buchs, Switzerland), and equilibrated 15 min in 

5xSSC (NaCl 0.75M, Na-Citrate 0.075M). The sections were then prehybridized for 2 hours 

at 58°C in the hybridization mix (50% formamide, 5xSSC, salmon sperm DNA 40μg/ml; 

500µl on each section). The probes were denatured 5 min at 80°C and added to the 

hybridization mix (400ng/ml). The hybridization reaction was carried out at 58°C for 4 hours 

for abundant transcripts (i.e. albumin) and 40 hours for rare transcripts (i.e. PPARα) with 

200µl of hybridization mix on each section, covered by a parafilm rectangle (American 

National Can, Greenwich, CT). Prehybridization and hybridization were performed in a box 

saturated with a 5xSSC - 50% formamide solution to avoid evaporation. After incubation, the 

sections were washed for 30 min in 2xSSC (room temperature), 1 hour in 2xSSC (65°C), 1 

hour in 0.1xSSC (65°C) and equilibrated 5 min in Buffer 1 (Tris-HCl 100 mM and NaCl 150 

mM, pH 7.5). The sections were then incubated for 2 hours at room temperature with alkaline 

phosphatase-coupled anti-digoxigenin antibody (Boehringer-Mannheim) diluted 1:5'000 in 

Buffer 1 containing 0.5% blocking reagent (Boehringer-Mannheim). Excess antibody was 

removed by two 15 min washes in Buffer 1, and the sections were equilibrated 5 min in 

Buffer 2 (Tris-HCl 100mM, NaCl 100mM and MgCl2 50mM, pH 9.5). Colour development 

was performed at room temperature (30 min to 3 days, depending on the amount of 
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transcripts to be detected) in Buffer 2 containing NBT and BCIP (Boehringer-Mannheim). 

Staining was stopped by a 10 min wash in  Tris/EDTA (10/1mM, pH 8.0), and non-specific 

staining was removed O/N in EtOH 95% with gentle agitation. Sections were rehydrated 15 

min in deionised water to remove the precipitated Tris and then dehydrated through 

successive baths of EtOH (70, 95 and 100%) and xylol (2x15 min each) and mounted in 

Eukitt resin (O. Kindler GmbH & Co., Freiburg, Germany). 

 

 In addition, the following variations of the main steps were analysed in the course of 

ISH protocol optimization. After cutting and before postfixation, the sections were 

permeabilized with Triton X100 (see Figure 2 for details). After section postfixation, the 

active DEPC treatment was replaced by either a rinse in PBS or acetylation (see Figure 2 for 

details). Prior to equilibration in 5xSSC and prehybridization, the sections were digested with 

proteinase K (see Figure 2 for details). Probe concentration, hybridization temperature and 

stringency of washes were also tested (see Results). As for each pair of corresponding 

antisense and sense probes the number of uridines was identical, probe concentrations did not 

need to be adjusted within a specific pair. Finally, blocking reagent treatment during 

hybridization (Denhardt's reagent versus salmon sperm DNA) and the development process 

(fetal calf serum versus Boehringer-Mannheim blocking reagent) were optimized as well (see 

Discussion). 

 

Histological analysis. 

 In situ hybridization slides were observed and photographed on an Axiophot 

microscope (Carl Zeiss SA, Zürich), equiped with Nomarski optics. 

 

RNase protection assay. 

 The plasmid pKS+/albumin (1261-1581) was linearized with ClaI and gel-purified. 

The plasmid pKS+/PPARα (1377-1766) was digested with TaqI, and the 717-base pair 

fragment containing the T7 promoter and the last 287 nt of the PPARα insert (1480 to 1766) 

was isolated on agarose gel. From the isolated fragments described above, antisense [α-
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32P]UTP-labeled riboprobes (Amersham Corp.) were synthesized using T7 RNA polymerase 

(Promega). Probes were 392 nt long for albumin and 334 nt long for PPARα. Protected 

fragments were 321 nt long with the albumin probe and 287 nt long with the PPARα probe. 

Different ratios of [α-32P]UTP to cold UTP were used: 1:500 for albumin and 1:1 for PPARα. 

Specific activities were 1.5 x 106 cpm/µg (1.7 x 105 cpm/nmol) for albumin and 3 x 108 

cpm/µg (3.4 x 107 cpm/nmol) for PPARα, which allowed signal comparison with the same 

exposure time. Total RNA from adult male rat liver was prepared by the guanidinium 

isothiocyanate acid phenol procedure (15). The RNase protection assay was carried out as 

described (16). 10 µg of total RNA were hybridized with 10 ng of albumin riboprobe and 1 

ng of PPARα riboprobe. The amounts of the different probes were tested to be in large 

excess. Hybridization was performed O/N at 42°C and digestion with RNase A (Sigma) and 

RNase T1 (Life Technologies, Inc.) was carried out 1 hour at 30°C. Protected fragments were 

separated on a 6% polyacrylamide gel and revealed by exposure to x-ray film (AIF-RX, Fuji). 

Quantitative analyses were made with a Phosphor Imager (Bio-Rad). 
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Results 

Tissue fixation, hybridization and washing conditions 

 Detection of albumin transcripts in adult male liver by ISH on cryosections is 

presented in Figure 1. After dissection, the tissue was either fixed (panels A, B, E, F) or 

frozen at once without fixation (panels C, D, G, H). We show that the short (101 nt) and the 

long (1169 nt) DIG-labelled antisense riboprobes hybridize specifically to albumin mRNA 

(panels A-D), as validated by the absence of background with the sense control probes 

(panels E-H). The longer of the two probes appears to penetrate the tissue as well as the 

shorter one and thus, it allows a higher sensitivity of detection which correlates with probe 

length (compare panels A with B and D with C). However, probes penetrate less easily 

between the covalently linked structures of tissues fixed O/N after dissection (compare panels 

A-B with C-D). With fixed tissues, the time of staining had to be lengthened (O/N) to reach 

the same levels of signal as with unfixed tissues, for which two hours of staining were 

sufficient. 

 The following parameters have then been tested first : probe concentration, 

hybridization temperature, type of blocking agent, and washing stringency. The results (not 

shown) are summarized below. Increasing concentrations of probes were tested (100, 200, 

400, 800 ng/ml and 2 µg/ml) with both the albumin (101nt) and PPARα (390nt) probes. The 

best specific versus unspecific signal ratio was obtained with these two probes at 400 ng/ml. 

Hybridization temperature was tested with the albumin-101nt and the PPAR-α-390nt probes 

(antisense and sense) between 42°C and 65°C. For albumin, the antisense signal became 

specific at 55°C and disappeared at 65°C, whereas specificity was reached at 58°C for 

PPARα and the signal disappeared also at 65°C . During the prehybridization and 

hybridization steps, we have tested the effect of Denhardt's solution and salmon sperm DNA 

or a combination of both as blocking agents. Salmon sperm DNA at 40 µg/ml in the 

prehybridization and hybridization mixtures was sufficient to avoid background problems (a 

100 fold excess compared to probe concentration). After hybridization, optimal washing 



 
  9 

conditions that insured signal specificity consisted of rinses of 30 min in 2xSSC at room 

temperature, 1 hour in 2xSSC at 65°C and 1 hour in 0.1xSSC at 65°C. 

 

Acetylation, proteinase K digestion and detergent permeabilization of the tissue 

 The results of ISH experiments, testing the above mentioned parameters, with 

cryosections of unfixed adult male liver are shown in Figure 2. Sections were either 

acetylated, rinsed in PBS, or DEPC-treated (panels A, B and C, respectively). DEPC-treated 

sections were also either digested with proteinase K or permeabilized with Triton X100 

(panels C to F). All sections presented in Figure 2 were hybridized with the short (101 nt) 

DIG-labelled antisense albumin riboprobe. We show that acetylation of the tissue sections 

strongly increased the specific ISH signals compared to non-acetylated sections (compare 

panel A with panel B). We demonstrate also that carbethoxylation with diethylpyrocarbonate 

(DEPC) is as efficient as the acetylation process (panel C). As proposed by numerous 

protocols, we have tried a mild digestion with proteinase K or a permeabilization with Triton 

X100, to allow a better penetration of the probes into the sections. Both procedures reduced 

tissue preservation and signal intensity (compare panels D, E and F to panel C), and thus 

were not included further in our standard ISH protocol. 

 

Detection of abundant (albumin) and rare (PPARα) transcripts 

 We next compared the efficacy of the ISH protocol for the detection of abundant 

(albumin) and rare (PPARα) transcripts in the hepatic tissue. Then, PPARα detection was also 

tested in the white adipose tissue, which was choosen to demonstrate that our method can be 

used to study rare transcripts not only on cryosections but also on paraffin sections. Indeed 

adipose tissue is very difficult to process by cryosection and requires an hydrophobic 

embedding. 

 First we performed an RNase protection assay to compare the levels of albumin and 

PPARα mRNAs in the adult male rat liver (Figure 3A, lane 1). For comparison, antisense 

undigested probes for PPARα and albumin are present in lanes 2 and 3, respectively. On four 

independent samples of total RNA used in this assay, the signal of the albumin protected 
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probe was 8.5 ± 2.5 fold stronger than the signal of the PPARα protected probe. The specific 

activity of the albumin unprotected probe was 185 times lower than that of the PPARα 

unprotected probe (see Material and Methods). In order to calculate the actual ratio of 

albumin:PPAR mRNAs, a correction factor was included to take into account the relative 

number of labelled uridines in protected versus unprotected probes for both albumin and 

PPARα. With this correction factor, the specific activity of the albumin protected probe was 

175 times lower than the PPARα protected probe. Thus, based on both the signals obtained 

and the correction factor, albumin transcripts are 1,500 ± 440 times more abundant than 

PPARα transcripts in adult male rat hepatocytes. Albumin mRNA molecules are estimated at 

40,000 per adult rat hepatocyte (17), and thus there are approximately 25 PPARα mRNA 

molecules in this cell type. 

 To demonstrate the usage flexibility of the ISH protocol, we present results obtained 

in two very different situations in Figure 3B : cryosections of unfixed adult male liver (panels 

1 and 3) and paraffin sections of fixed adult male white adipose tissue (panels 2 and 4). The 

sections were hybridized with the 390 nt long antisense (panels 1 and 2) and sense (panels 3 

and 4) PPARα riboprobes. Panels 1 (liver) and 2 (white adipose tissue) demonstrate that our 

ISH protocol allows an excellent signal resolution. In particular, it reveals high 

concentrations of PPARα transcripts in perinuclear regions of hepatocytes and adipocytes 

(arrows). In contrast, there was no signal with the sense PPARα control probe (panels 3 and 

4).  

 

 

 

 

 

 

 

 

 



 
  11 

 

 

 

 

Discussion 

 From the results of our experiments, we established an optimized in situ hybridization 

protocol applicable to the detection of abundant and rare transcripts, both on cryosections and 

paraffin sections. To achieve this, we have tested, compared, combined and optimized 

various experimental parameters of a classical ISH protocol. We have simplified and 

improved many of its steps. 

ISH probe synthesis and labelling 

 Different kinds of probes can be used for the detection of mRNA in ISH experiments. 

However, in vitro transcribed riboprobes are the best choice on tissue sections (18). These 

probes are single-stranded, may span hundreds of nucleotides and consequently comprise 

numerous labelled nucleotides, which results in specific antisense probes with a high 

sensitivity of detection. Moreover, in vitro transcription allows the synthesis of ideal test 

antisense and control sense probes, both having the same length and G+C content, defining 

similar properties of hybridization. After synthesis of the probes, we did not hydrolyze them 

into smaller pieces, as this treatment leads to elevated background signals. Moreover, we 

provide evidence that intact probes up to 1,200 nucleotide long penetrate well into the tissue, 

even if it has been fixed for a long period of time (Figure 1). ISH riboprobes usually comprise 

short flanking sequences, corresponding to the poly-cloning site of the plasmid vector used, 

that do not participate in the hybridization process. These "floating" sequences could 

potentially contribute to unspecific signals, especially with short probes as the one used 

herein in albumin mRNA detection. Under our conditions however, these flanking sequences 

did not affect the specificity of hybridization, as illustrated in Figure 1.  

Sample preparation and cutting 

 Paraformaldehyde in PBS has been shown to be one of the best fixatives to preserve 

tissue quality, to keep RNA within the tissue and to allow a good recognition of the RNA by 
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the probes (1,6,19). With cryosections on relatively homogeneous tissues (adult liver for 

example), one may omit fixation after dissection without loss of the histological quality in the 

sections. In that case, the tissue has to be frozen immediately and stored at -80°C until used, 

as only a short postfixation is necessary immediately after sectioning and mounting on slides. 

In the case of heterogeneous samples (whole embryo for instance), fixation is often necessary 

immediately after dissection and before freezing to ensure good preservation of tissues during 

sectioning. Tissues like white adipose tissue require an embedding in an hydrophobic 

medium like paraffin to avoid alteration of their morphology. In that case, fixation has to take 

place immediately after dissection to avoid transcript extraction during the dehydration and 

rehydration processes. With tissues fixed after dissection, probes penetrate less easily 

between the covalently linked structures of the tissue, and the hybridization and staining 

times may have to be lengthened (Figure 1). Moreover, depending on the tissue, overfixation 

can lead to the generation of background (2,20). Thus, the fixation time needs to be optimized 

in each case when postfixation after sectioning is not sufficient. Fixation inactivates RNases 

and therefore paraffin sections may be stored at 4°C until used for ISH. In contrast, to keep 

rare transcripts intact in cryosections to further allow their detection, we find it very 

important to proceed to the ISH protocol immediately after cutting. This procedure is 

convenient for a single person to process up to 200 ISH slides per week. 

ISH protocol 

 Acetylation is recommended in ISH protocols to decrease background (21). Although 

we did not observe this effect with the albumin probe, acetylation strongly increased specific 

ISH signals compared to non-acetylated sections (Figure 2). Acetylation most likely 

inactivates RNases in the sections, which is consistent with the observation that it can be 

replaced by the carbethoxylation resulting from diethylpyrocarbonate (DEPC) treatment 

(Figure 2 C and ref. 22). However, carbethoxylation is easier to perform than acetylation and 

therefore, we recommend the former. Numerous protocols propose permeabilization of the 

sections with Triton X100 or a mild digestion with proteinase K to allow a better penetration 

of the probes. Both procedures reduced tissue preservation and signal intensity, and thus were 

not included further in our standard protocol for cryosections (Figure 2). It should be noticed 
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that contrary to unfixed cryosections, strongly fixed paraffin embedded sections can be 

mildly digested with proteinase K and/or permeabilized with triton X100 to ensure a good 

penetration of the probe in the section. 

 Infinite variations in prehybridization or hybridization solutions are suggested in 

different ISH protocols, all aiming to achieve the right stringency to favor specific, while 

avoiding unspecific signals. In addition to different saline solutions, the blocking reagents 

used vary also considerably and include yeast RNA, salmon sperm DNA, Denhart's reagent 

or various combinations of these. By trying to simplify prehybridization and hybridization 

solutions, we found that a 5xSSC solution with 50% formamide used between a temperature 

of 55°C to 60°C confers the desired stringency for RNA-RNA hybrids 100 to 1,200 

nucleotide long. The use of blockers was also simplified, as a 100 fold excess of salmon 

sperm DNA was found to be satisfactory. The abundance of albumin transcripts allows a 

short hybridization time (4 hours, Figures 1 and 2). On the contrary, we have observed that 

the detection of the rare PPARα transcripts requires a much longer hybridization time (40 

hours, Figure 3). After hybridization, our washing procedure ensures signal specificity. Many 

ISH protocols include RNase digestion during the washing steps to eliminate uncompletely or 

unspecifically hybridized probes (23). In our hands however, this procedure was not 

necessary, as no background was obtained in the sense controls. As illustrated in Figure 1, 

both short and long albumin antisense probes did penetrate very well into the tissue section, 

and gave specific signals. In both cases, the probe concentration in the hybridization buffer 

was in large excess. Moreover, the long probe generates a much higher signal than the short 

one, as it is composed of a higher number of uridine. 

Signal staining and slide mounting 

 In the signal visualization step, we have choosen casein (Boehringer-Mannheim 

blocking reagent) as a blocker during the anti-DIG antibody incubation, without including a 

pre-blocking step, which we found not to be necessary. When using alkaline-phosphatase 

signal development, fetal calf serum should be avoided as a blocker, as it contains 

endogenous alkaline phosphatase activities (data not shown, and ref. 24). Under our 

hybridization conditions (58¡C, 50% formamide), endogenous alkaline phosphatase activities 
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were inactivated and therefore, alkaline phosphatase inhibitors such as levamizole in the 

signal visualization mixture were not necessary. After the removal of the unspecific labelling 

in ethanol, a fast rehydration step in water was found necessary to eliminate the Tris 

precipitate from the tissue, which otherwise hampers histological observation. 

Conclusion 

 We have developed a simplified and efficient protocol for non-radioactive in situ 

hybridization experiments on tissue sections, the sensitivity of which allows one to study the 

expression of genes with transcript levels ranging from very low (20-30) to high (several 

thousands) copy number per cell. Figure 4 summarizes the main steps of this ISH protocol. 

The immediate processing of cryosections into the ISH protocol after sectioning, coupled to 

the active DEPC treatment of slides before hybridization are shown to improve considerably 

the mRNA detection. Moreover, we also improved the detection of rare transcripts such as 

PPARα mRNA by increasing the hybridization time up to 40 hours. The resolution obtained 

is such that distribution gradients of mRNAs present at less than 30 copies within the cells are 

detected, both on cryosections and paraffin sections. In a previous report on PPARα, -β and -γ 

expression, we have also demonstrated that our ISH protocol is specific enough to distinguish 

between the expression of related genes (12). With this protocol, long non-hydrolized DIG-

labelled riboprobes can be used and the only remaining parameters to be determined from 

case to case are the tissue fixation time and the hybridization temperature. 
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Figure legends: 

 

Figure 1: Expression of the albumin gene: effect of fixation and probe length on mRNA 

detection sensitivity. Adult rat liver was either fixed O/N in paraformaldehyde-PBS or 

frozen immediately after dissection as indicated. 12 µm thick cryosections were then 

prepared, immediately postfixed 10 min in paraformaldehyde-PBS, then treated 2x15 min in 

0.1% active DEPC-PBS, and equilibrated in 5xSSC. The ISH protocol was then applied as 

described in Materials and Methods. Sections were hybridized with 400 ng/ml of albumin 

antisense and sense short (101 nt, panels A, C, E, G) or long (1169 nt, panels B, D, F, H) 

riboprobes. For fixed sections staining was O/N (panels A, B, E, F), whereas for non-fixed 

sections it was for only 2 hours (panels C, D, G, H). Bar : 20 µm; nt : nucleotides. 

 

Figure 2: Expression of the albumin gene: effect of acetylation, carbethoxylation 

(DEPC), proteinase K digestion and permeabilization with Triton X100 on mRNA 

detection sensitivity. Adult rat liver pieces were frozen immediately after dissection, and 12 

µm thick cryosections were prepared. Following postfixation in paraformaldehyde-PBS for 

10 min, sections were either acetylated 10 min in 0.25% acetic anhydrid in triethanolamine 

10mM (A) rinsed 10 min in PBS (B), or treated 2x15 min in 0.1% active DEPC-PBS (C-F). 

In panels D and F, sections were  digested in 5 µg/ml proteinase K in Tris/EDTA 100/50 mM 

(pH 7.5) for 10 min at 37°C after the DEPC-treatment. In panels E and F, sections were 

permeabilized in 0.5% Triton X100-PBS for 5 min after the postfixation step. Sections were 

then equilibrated in 5xSSC, and the ISH protocol was applied as described in Materials and 

Methods. Sections were hybridized with 400 ng/ml of the albumin antisense short riboprobe 

(101 nt). Bar : 20 µm. 
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Figure 3: Sensitivity and resolution of the ISH simplified protocol.  

A : Measure of steady state levels of albumin and PPARα transcripts in adult rat liver 

by RNase protection assay. Lane 1: 10 µg of liver total RNA were hybridized with 10 ng of 

albumin and 1 ng of PPARα antisense probes. Lanes 2 and 3: undigested antisense probes for 

PPARα and albumin respectively. The albumin signal is 8.5 ± 2.5 times (4 experiments) 

higher than the PPARα signal, whereas the PPARα probe has a specific activity 200 times 

higher than the albumin probe (see Material and Methods, and Results). B: PPAR-α 

expression in the adult liver and white adipose tissue. Liver was frozen immediately after 

dissection and prepared for cryosection, whereas white adipose tissue was fixed O/N in 

paraformaldehyde-PBS after dissection, dehydrated, and prepared for paraffin section. 12 µm 

thick sections were prepared. Paraffin sections were rehydrated, then all sections were 

postfixed 10 min in paraformaldehyde-PBS, treated 2x15 min in 0.1% active DEPC-PBS, and 

equilibrated in 5xSSC. The ISH protocol was then applied as described in Materials and 

Methods. Sections were hybridized with 400 ng/ml of PPARα antisense and sense riboprobes 

(390 nt). The arrows point to the perinuclear distribution of the PPARα transcripts. Bar : 20 

µm. 
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Table 1: ISH simplified protocol. Important improvements are shown in bold characters. 

Tissues are stored at -80°C until used for the ISH experiment. We routinely perform ISH on 

100 tissue sections per day of sectioning. 
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