
Oxidative stress is a common driving mechanism in the 
pathogenesis of major retinal disorders, including age-related 
macular degeneration [1,2], diabetic retinopathy [3], degener-
ative myopia [4], inherited retinal dystrophies [5], and retinal 
detachment [6,7]. As the retina is very rich in membranes 
containing polyunsaturated fatty acids, lipid peroxidation 
induced by reactive oxygen species (ROS) has major conse-
quences for retinal functions and may cause retinal cell death 
[8]. Malondialdehyde (MDA), a reactive aldehyde produced 
from polyunsaturated lipids degradation by ROS, is a highly 
toxic compound that forms lipoxidation end-products. MDA 

has been identified in ocular media and tissues in experi-
mental models for retinal diseases [9] and used as a biomarker 
of oxidative stress in human ocular media [9,10]. For identi-
fying biomarkers of organ-specific and systemic conditions, 
there is wide interest in body fluids that can be collected 
noninvasively, such as saliva, sweat, and tears [11-13]. Tears, 
despite technical hurdles due to the small volume of samples, 
offer the advantage of easy access and possible longitudinal 
sampling. As the tear film is in contact with the atmosphere 
at the ocular surface, the tear film may reflect individual 
environmental exposure, as well as endogenous metabolism 
[14,15]. Tears have been mostly investigated in patients with 
ocular surface diseases [15], but there is growing evidence 
that tears could also reflect systemic diseases [14,16,17].

Better characterization of lipid peroxidation markers in 
tears could provide additional investigative and diagnosis 
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Purpose: Central serous chorioretinopathy (CSCR) has been associated with oxidative stress–related risk factors. The 
objective of this study was to optimize an analytical method for evaluating the oxidative stress biomarker malondialde-
hyde (MDA) in human tears and determine its level in the tears of patients with CSCR.
Methods: In this pilot study, tear samples were obtained from 34 healthy donors and 31 treatment-naïve CSCR male 
patients (eight with acute CSCR and 23 with chronic CSCR). Two analytical methods based on high-performance liquid 
chromatography followed by fluorescence detection were evaluated, with either 2-thiobarbituric derivative (TBA) or 
2-aminoacridone (2-AA). Activity of CSCR was defined by the serous retinal detachment (SRD) height, which was 
measured by two independent observers on spectral-domain optical coherence tomography.
Results: The 2-AA method showed higher sensitivity and precision compared to the TBA method. When the 2-AA 
method was applied to tears from healthy donors, the levels of MDA were statistically significantly higher in men com-
pared to women (mean ± standard deviation, SD: 9,914 nM ± 6,126 versus 4,635 nM ± 1,173, p = 0.006). No difference 
was found in tear MDA levels between male patients with CSCR and age-matched control men (p = 0.17). However, 
MDA levels were statistically significantly higher in acute compared to chronic CSCR cases (mean ± SD: 12,295 nM ± 
8,495 versus 6,790 ± 3,969 nM, p = 0.03). Additionally, there was a correlation between MDA levels and RPE leakage, 
quantified by the height of the serous retinal detachment (p = 0.02, r = 0.40).
Conclusions: Levels of MDA in tears, measured with an optimized analytical method, correlate with RPE leakage in 
CSCR.
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tools in ocular disorders. To our knowledge, only one previous 
study has reported a method for assessing MDA levels 
specifically in tears and related the levels of MDA with age 
[18]. However, tear MDA levels as a possible oxidative stress 
biomarker in retinal diseases have not been investigated.

Central serous chorioretinopathy (CSCR) is a chorio-
retinal disorder characterized by serous retinal detachments, 
secondary to RPE barrier defect, frequently involving the 
macula. CSCR is associated with choroidal vein dilation, 
increased choroidal thickness, choroidal vascular hyperper-
meability, and pigment epithelial detachments [19]. CSCR is 
classified as acute or chronic depending on the duration of 
subretinal fluid or the presence of extensive RPE alterations, 
or both. This disorder is associated with systemic risk factors, 
such as hypertension, coronary heart disease, cortisol metab-
olism deregulation, psychological stress, circadian rhythm 
disruption and shift work, as well as with genetic predispo-
sition, such as complement factor H polymorphisms [19]. 
Overactivation of the mineralocorticoid pathway has been 
involved in the pathophysiology of CSCR [19-23]. Notice-
ably, oxidative stress is one of the pathogenic consequences of 
activation of the mineralocorticoid-receptor pathway, particu-
larly in the heart [24], kidneys [25], and vascular system [26]. 
In addition, disruption of the circadian rhythm and sleep 
disorders are associated with oxidative stress [3,27]. To our 
knowledge, only one recent study [28] has investigated the 
link between oxidative stress and oxygen end-products, and 
a decrease in biologic antioxidant potential in patients with 
CSCR compared to controls. The aims of this pilot study were 
to optimize methods for measuring free and protein-bound 
MDA in human tear fluid and to measure MDA in the tears 
of patients with CSCR and investigate possible correlations 
with disease activity.

METHODS

Subjects and tear collection: This study adhered to the ARVO 
statement on human subjects and was designed in accordance 
with the tenets of the Declaration of Helsinki. Collection of 

clinical data and biologic samples and their analysis were 
approved by the Ethics Committee of the Swiss Federal 
Department of Health (CER-VD n°19/15 and CER-91 VD 
n°340/15). Collection of clinical data and biologic samples 
and their analysis were approved by the Ethics Committee 
of the Swiss Federal Department of Health (CER-VD n°19/15 
and CER-VD n°340/15). All patients and control subjects gave 
written informed consent before enrolling in the study. A 
total of 34 healthy volunteers were recruited, and tears from 
15 of the participants were pooled and used for the develop-
ment and validation of the method for measuring MDA levels 
(Appendix 1). The 19 samples left (11 men and eight women) 
were subsequently analyzed individually (Table 1, Appendix 
1). For the CSCR study, 31 untreated male patients with 
CSCR (eight acute and 23 chronic CSCR cases, Table 1) were 
included. The inclusion criteria were 1) age between 25 and 70 
years old; 2) absence of any acute disease, notably infectious 
diseases; 3) absence of any non-controlled chronic disease, 
including cardiovascular diseases, endocrinological disease, 
inflammatory diseases, and malignancy; 4) absence of other 
associated ocular pathology; and 5) absence of regular contact 
lens use. Smoking was not considered an exclusion criterion, 
or controlled diabetes and treated hypertension.

The diagnosis of CSCR was confirmed with fluorescein 
and indocyanine green angiography, fundus autofluores-
cence, and spectral-domain optical coherence tomography 
(SD-OCT), including evaluation of choroidal thickness. 
Subjects underwent multimodal retinal imaging on Spectralis 
(Heidelberg Engineering, Heidelberg, Germany). A 20 × 20° 
97-section raster scan (approximately 6 × 6 mm) was acquired 
using the enhanced-depth imaging (EDI) mode.

Acute CSCR was defined as the first episode of serous 
retinal detachment lasting for less than 6 months. Chronic 
CSCR was defined by the presence of RPE alterations on 
fundus autofluorescence and at least one current or previous 
CSCR episode lasting more than 6 months (with or without 
serous retinal detachment at the moment of tear collection). 

Table 1. Characteristics of the healthy controls and the CSCR population.

Clinical characteristics
Controls CSCR (only men)
Men Women Active Chronic

Number of patients, (samples) 11 (11)* 8 (8)* 8 (8) 23 (23)
Age, years (mean ± SD) 44±10 38±12 46±12 49±10
Smokers, n (%) 4 (36) 2 (25) 3 (37) 6 (26)
Treated Hypertension, n (%) 0 1 (12.5) 0 3 (13.0)
Controlled Diabetes, n (%) 0 0 0 2 (8.7)

CSCR=central serous chorioretinopathy; SD=standard deviation * right eye only was chosen for all healthy controls
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Tear samples were collected between March 2014 and June 
2016 at Jules-Gonin Eye Hospital (Lausanne, Switzerland).

Tear samples were collected with Schirmer paper strips 
(Biotech Vision Care PVT LTD, Gujarat, India) inserted in 
the lower conjunctival fornix of both eyes for a maximum of 
3 min, or less if the strip was filled earlier to reduce patient 
discomfort. No tear stimulation, topical anesthetic, or other 
eye drops were used before sample collection. External 
factors such as harsh lighting, background noise, and extreme 
room temperature, all known to affect the content of tear 
samples, were strictly supervised to ensure reproducibility. 
Care was taken to avoid damage to the ocular surface. Appla-
nation tonometry was not performed before tear sampling. 
The trained technician who collected the tear samples wore 
gloves, and the Schirmer paper was not in contact with patient 
skin to avoid contamination. The strip was then inserted into 
a modified 0.5-ml tube with an opening in the bottom, and 
this assembly was placed in a 1.5-ml tube and centrifuged 
at 6708 ×g for 7 min at 4 °C without any additional buffer to 
retrieve the tear sample. After centrifugation, the samples 
were immediately stored at −80 °C until analysis. In some 
cases, the tears of both eyes were further separately analyzed.

Determination of MDA levels in tears: Two analytical 
methods (see Appendix 1) were initially considered for the 
determination of MDA levels in tears. The first method, 
described by Benlloch-Navarro et al. [18], is based on fluores-
cence detection of the 2-thiobarbituric (TBA) derivative after 
high-performance liquid chromatography (HPLC) separation. 
The drawbacks of this method are a weak specificity for MDA 
[29] and a possible overestimation of the levels, due to the 
use of harsh derivatization conditions (temperature and acidic 
milieu) [30]. To avoid these difficulties, we tested a second 
derivatization strategy based on the use of 2-aminoacridone 
(2-AA), allowing mild and selective derivatization of MDA. 
As MDA can easily bind to amino groups of proteins through 
the formation of Schiff’s bases [29], the free and bound forms 
of MDA should ideally be determined. Thus, we adapted to 
the tear samples the method described by Giera et al. for urine 
samples [31], to determine the free and bound MDA fraction, 
the latter obtained after basic hydrolysis. The use of methyl-
MDA as internal standard was also assessed.

For validation purposes, the tears from 15 healthy volun-
teers were collected as described above. Tear samples were 
diluted ten times in water (v/v) and then mixed together to 
prepare three pooled samples (one pool for the development 
and validation of the TBA method, one pool for the develop-
ment and validation of the 2-AA method, and one pool for the 
comparison of the two methods). The pooled samples were 
stored at −20 °C. A stability study for MDA using the 2-AA 

method indicated an approximate 25% decrease after 1-day 
storage at −20 °C but stable concentrations for the next 7 days 
from this point forward (data not shown). The analytical vali-
dation of the two methods was performed using the calibra-
tion range, limit of detection and quantification, repeatability, 
and recovery, as detailed in the Appendix 1. To compare the 
sensitivity, bias, and precision of the two methods, the same 
sample of pooled tears was analyzed with both methods. The 
MDA levels in tears from eight healthy women and 11 age-
matched healthy volunteer men (n = 11 samples from the right 
eye only) and from 31 patients with CSCR (Table 1) were 
determined with the validated 2-AA method.

CSCR activity assessment using SD-OCT: For this study, 
active CSCR was defined by the presence of serous retinal 
detachment on SD-OCT. The maximum height of serous 
retinal detachment was measured on SD-OCT as the axial 
distance between the inner RPE surface and the outer aspect 
of the photoreceptor outer segments. Subfoveal choroidal 
thickness (SFCT) was evaluated manually on enhanced-depth 
imaging horizontal OCT scans, from the RPE to the interface 
between the outer choroid and the sclera. All imaging assess-
ments were performed by two independent observers (AD, 
AM) on anonymized images. The mean between the two 
measurements was retained for the analysis.

Statistical analyses: Agreement between the two observers 
for the SD-OCT imaging evaluation was calculated using the 
intraclass correlation coefficient (ICC) with the ‘irr’ package 
on R software (Version 3.3.0, R Foundation for Statistical 
Computing, R Core Team, 2016, Vienna, Austria; R-project). 
Based on the lower end of the 95% confidence interval 
(CI) of the ICC, agreement was considered poor (<0.50), 
moderate (0.50–0.75), good (0.75–0.90), or excellent (>0.90). 
The Spearman coefficient was used to investigate possible 
correlations between the total MDA levels with the height of 
the serous retinal detachment, using GraphPad Prism (version 
5.0f, GraphPad Software, La Jolla, CA). Comparations 
between groups were performed using the non-parametric 
Mann–Whitney test. Multivariate regression was performed 
using the lm function on R software. For statistical compari-
sons, differences with a p value less than or equal to 0.05 
were considered statistically significant.

RESULTS

The 2-AA assay is more sensible and precise than the TBA 
assay and allows the determination of free and total MDA 
levels: From an analytical point of view, the TBA and 2-AA 
assays were sensitive enough to determine the MDA levels 
in tears (limits of quantification <25 nM) in a reproducible 
manner (coefficient of variation <18%). However, the 2-AA 
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assay presented additional advantages: It allowed the deter-
mination of free and total MDA levels in tears, and it was 
possible to use an internal standard (methyl-MDA) to correct 
for possible matrix effects. In addition, the assay was more 
sensible and precise than the TBA assay (see Appendix 1). 
As illustrated in Table 2, the two methods provided different 
results when applied to the same tear sample. The MDA 
level measured with the TBA assay was about 15 times lower 
compared to the total MDA levels obtained with the 2-AA 
assay. In addition, compared to the total MDA levels, the free 
MDA levels were observed to be negligible (<1%), often at the 
level of the detection limit (Table 2).

Total MDA levels in the tears of patients with CSCR correlate 
with disease activity: When the 2-AA method was applied 
to tears from the right eye of 19 healthy donors (11 men and 
eight women), the levels of MDA were statistically signifi-
cantly higher in men compared to women (mean ± SD: 9,914 
± 6,126 nM versus 4,635 ± 1,173 nM, p = 0.006). Therefore, 
samples from male patients with CSCR (n = 31 samples) 
were compared to male healthy donors (n = 11 samples). 
The detailed clinical characteristics of the 31 patients with 
CSCR are provided in Appendix 2. No difference was found 
in tear MDA levels between the entire CSCR cohort (7,898 
nM ± 6,285) and the healthy donors (9,914 ± 6,126 nM; p 
= 0.12). However, the MDA levels were statistically signifi-
cantly higher in the patients with acute CSCR compared to 
the patients with chronic CSCR (mean ± SD: 12,295 nM ± 
8,495 nM versus 6,614 nM ± 4,613 nM, p = 0.02). As nine 
of 23 patients with CSCR presented without serous retinal 
detachment at the moment of tear sampling, we repeated the 
analysis only with patients with serous retinal detachment. 
The MDA levels remained statistically significantly higher 
in the patients with acute CSCR compared to the patients 
with chronic active CSCR (mean ± SD: 12,295 ± 8,495 
nM versus 6,790 ± 3,969 nM, p = 0.03). Additionally, the 
MDA levels measured in the tears of patients with CSCR 
correlated statistically significantly with the height of serous 

retinal detachment on SD-OCT at the time of sampling (p = 
0.02, r = 0.40, Figure 1 and Figure 2). Agreement between 
the two observers for the evaluation of the serous retinal 
detachment height on SD-OCT was excellent (ICC: 0.998, 
95% CI:0.994–0.999). Choroidal thickness did not correlate 
with the tear MDA levels among patients with CSCR (p = 
0.6). A multivariate analysis of systemic and ocular factors 
potentially influencing MDA levels in tears among patients 
with CSCR identified the height of serous retinal detachment 
as the only statistically significantly contributing parameter 
(p = 0.041). Age (p = 0.20), smoking (p = 0.17), or SFCT (p 
= 0.51) did not influence MDA levels in the tears of patients 
with CSCR (Table 3).

DISCUSSION

In this study, we developed a method for accurately deter-
mining the level of MDA in tears, accounting for the technical 
specificities of this particular body fluid. MDA is commonly 
measured as a marker of lipid peroxidation in human fluids 
[9,10], but methods for measuring MDA levels require 
specific adjustments depending on the matrix. Optimized 
and sensitive analytic methods are particularly crucial when 
the sample volume is very small, as is the case for tears (a few 
microliters per sample). We provide evidence that the selected 
analytical methodology might have a strong impact on the 
results. The 15-times lower MDA concentration obtained 
with the TBA assay compared to the 2-AA assay could be 
due to differences in hydrolysis efficiency (perchloric versus 
sodium hydroxide, respectively). The basic hydrolysis of 
plasma samples is more effective for releasing protein-bound 
MDA than strong acidic conditions [32]. In biologic matrix, 
MDA can be found under two forms: free or bound to SH or 
NH2 groups of macromolecules, such as proteins or nucleo-
sides [33]. By applying the developed 2-AA method to tears, 
we determined that the free MDA levels were very low and 
that most of this oxidative biomarker was bound to macro-
molecules (free MDA/total MDA <1%; Table 1). This result 

Table 2. Comparison of the malondialdehyde concentrations obtained with the thio-
barbituric acid (TBA) assay and the 2-aminoacridone (2-AA) assay on two samples of 

pooled tears obtained from 5 (Pool 1) or 6 (Pool 2) healthy subjects. 

  TBA assay 2-AA assay TBA/2-AA* Ratio free MDA/ total 
MDA

Pool 
number

MDA [nM] Free MDA 
[nM]

Total MDA [nM] [%] [%]

Pool 1 337±42 (n=4) 34±11 (n=4) 5′420±250 (n=3) 6.2 0.63
Pool 2 524±190 (n=4) 47±7 (n=5) 6’554±840 (n=7) 8.0 0.72

The number of repetitions (n) of the MDA measurement is indicated in brackets. MDA=malondialdehyde; TBA=thiobarbituric acid; 
2-AA=2-aminoacridone * considering the total MDA measured with the 2-AA technique
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is in line with other reports showing that levels are underes-
timated if only free MDA levels were measured, in healthy 
[34] and disease conditions [35]. Importantly, complement 
factor H, involved in the pathophysiology of CSCR and other 
retinal disorders, was shown to directly interact with MDA, 
neutralizing at least partly its pathogenic effect [36,37].

The MDA levels in the tears of healthy volunteers were 
two times higher in men, compared to women. The rela-
tionship between gender and oxidative stress is important, 
because oxidative stress is implicated in many diseases that 
affect men and women differently, such as cardiovascular 
conditions [38]. For example, plasma biomarkers of oxidative 

Figure 1. Height of serous retinal detachment on spectral-domain optical coherence tomography correlates with total MDA levels in tears 
of patients with CSCR. A: Chronic CSCR (without subretinal fluid). B: Chronic CSCR, extrafoveolar subretinal fluid (height = 75 µm) C: 
Chronic CSCR with foveal subretinal fluid (height = 158 µm). CSCR, central serous chorioretinopathy.
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stress are higher in men than in women [39]. Similarly, ROS 
production is higher in vascular cells from men than in those 
from women [40]. Overall, women seem to be less susceptible 
to oxidative stress [38]. These findings are particularly inter-
esting in CSCR, where most cases occur in men, and because 
risk factors, such as hypertension or coronary heart disease, 
also have a male predilection, suggesting a possible role of 
oxidative stress in CSCR pathophysiology.

Although no statistically significant difference in the 
total MDA tear levels was found between the entire CSCR 
and control groups, the MDA levels were statistically signifi-
cantly higher in acute CSCR than in chronic cases. In addi-
tion, the total MDA levels in tears were positively correlated 

with the height of serous retinal detachment, which reflects 
disease activity in acute and chronic cases. Patients with 
chronic CSCR with signs of epitheliopathy had lower MDA 
tear levels than patients with acute CSCR, suggesting that the 
increase in the total MDA tear level is associated with higher 
serous retinal detachment, a sign of activity of CSCR. It can 
be also hypothesized that the presence of a larger amount of 
subretinal fluid reflects a more extended outer blood barrier 
breakdown and facilitates passage of compounds from 
the subretinal space toward the choroid and the periocular 
spaces, via transscleral diffusion and venous uptake. This 
would potentially influence MDA levels measured at the 
ocular surface. As a result of the blood barrier breakdown, 

Figure 2. Height of serous retinal 
detachment correlates with total 
MDA concentrations in tears of 
patients with CSCR (p = 0.022, r = 
0.40, Spearman coefficient). Round 
point: chronic CSCR, Triangular 
point: acute CSCR. CSCR, central 
serous chorioretinopathy.

Table 3. Multivariate analysis of factors influencing the level of MDA in 
tears among 31 patients with central serous chorioretinopathy.

Factor Coefficient P value
Age, years (≥50 versus <50 years) 30.2 0.20
Smoking (yes versus no) 33.4 0.17
Serous retinal detachment height, µm (by 10-µm increment) 0.23 0.041
Subfoveal choroidal thickness (by 10-µm increment) −0.07 0.51

MDA=malondialdehyde Multiple R2=0.23
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plasma proteins can leak in the subretinal space, including 
free hemoglobin and hemoglobin byproducts, which lead 
to intraocular iron accumulation and generation of oxygen 
free radicals. Noticeably, the oxidative stress–mediated 
retinal toxicity of iron accumulation has been demonstrated 
in several models of alteration in the blood–retinal barrier 
[41,42]. Further studies in patients with subretinal fluid from 
other origins, such as rhegmatogenous retinal detachment 
or choroidal neovascularization, could provide insights into 
the specificity and significance of the observed correlation 
between serous retinal detachment height and MDA tear 
levels. Markers of lipid peroxidation have been identified 
in the subretinal fluid of patients with retinal detachment, 
particularly associated with myopia, and thought to originate 
from rod outer segments [43]. Lipid peroxidation is also 
associated with age-related macular degeneration and MDA 
directly linked to autophagy deregulation in RPE cells and to 
VEGF production [44].

Regarding the potential interest of MDA as a biomarker 
for retinal diseases, statistically significant associations 
were reported among the plasma MDA level, the presence 
of ARMS2 genetic variants, and imaging phenotypes in 
neovascular age-related macular degeneration and polypoidal 
choroidal vasculopathy [45]. However, to our knowledge, the 
present study is the first to demonstrate a link between the 
activity of a retinal disease and tear levels of MDA.

This study has several weaknesses, including the 
following: The number of cases in each group was limited, 
inherent to an exploratory pilot study. Only male CSCR cases 
and controls were included, related to the male predominance 
of CSCR and to the preliminary observation of the influence 
of gender on MDA levels, which would have biased the results 
if male and female subjects had been included. The measures 
on SD-OCT were subjective, compensated by the biobserver 
evaluation. Longitudinal analysis of the MDA levels over 
the course of CSCR episodes was lacking, which should be 
investigated in future studies. Additionally, the choice of the 
analytical method strongly affected MDA level measures, 
which emphasizes the need for further research in this field.

In conclusion, these preliminary results suggest that an 
optimized analytical method with enhanced sensitivity for 
the measurement of total MDA in tears could provide a novel 
biomarker of oxidative stress for retinal diseases. This tool 
could also prove useful for investigating lipid peroxidation 
in other ocular conditions. Additional confirmation is needed 
in larger cohorts of patients with CSCR and in other retinal 
diseases associated with subretinal fluid.

APPENDIX 1. MDA ANALYTICAL MERTHODS

To access the data, click or select the words “Appendix 1.” 
Comparison of methods to measure MDA in tears.

APPENDIX 2. CLINICAL CHARACTERISTICS 
OF 31 PATIENTS WITH CENTRAL SEROUS 
CHORIORETINOPATHY ASSESSED FOR TEAR 
MDA LEVELS.

To access the data, click or select the words “Appendix 2.”
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