
Vol.: (0123456789)
1 3

GeroScience 
https://doi.org/10.1007/s11357-023-00986-0

ORIGINAL ARTICLE

ATAC‑clock: An aging clock based on chromatin 
accessibility

Francesco Morandini · Cheyenne Rechsteiner · Kevin Perez · Viviane Praz · 
Guillermo Lopez Garcia · Laura C. Hinte · Ferdinand  von Meyenn · 
Alejandro Ocampo 

Received: 15 July 2023 / Accepted: 14 October 2023 
© The Author(s) 2023

Abstract The establishment of aging clocks high-
lighted the strong link between changes in DNA meth-
ylation and aging. Yet, it is not known if other epige-
netic features could be used to predict age accurately. 
Furthermore, previous studies have observed a lack of 
effect of age-related changes in DNA methylation on 
gene expression, putting the interpretability of DNA 
methylation-based aging clocks into question. In this 
study, we explore the use of chromatin accessibility to 
construct aging clocks. We collected blood from 159 

human donors and generated chromatin accessibility, 
transcriptomic, and cell composition data. We investi-
gated how chromatin accessibility changes during aging 
and constructed a novel aging clock with a median 
absolute error of 5.27 years. The changes in chromatin 
accessibility used by the clock were strongly related to 
transcriptomic alterations, aiding clock interpretation. 
We additionally show that our chromatin accessibility 
clock performs significantly better than a transcriptomic 
clock trained on matched samples. In conclusion, we 
demonstrate that the clock relies on cell-intrinsic chro-
matin accessibility alterations rather than changes in 
cell composition. Further, we present a new approach 
to construct epigenetic aging clocks based on chroma-
tin accessibility, which bear a direct link to age-related 
transcriptional alterations, but which allow for more 
accurate age predictions than transcriptomic clocks.

Keywords Aging · Epigenetic clock · Chromatin 
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Background

Aging is a biological process that is characterized by 
a progressive loss of physiological integrity on multi-
ple biological scales and increased vulnerability to dis-
ease and death [1]. Current global demographic trends 
toward an aged population highlight the importance of 
studying aging to understand its dynamics and mitigate 
its role as a driver of diseases late in life [2].

Francesco Morandini, Cheyenne Rechsteiner these authors 
contributed equally to this article.

Supplementary Information The online version 
contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11357- 023- 00986-0.

F. Morandini · C. Rechsteiner · V. Praz · G. Lopez Garcia · 
A. Ocampo (*) 
Department of Biomedical Sciences, University 
of Lausanne, Lausanne, Switzerland
e-mail: alejandro.ocampo@unil.ch

K. Perez · A. Ocampo 
EPITERNA SA, Route de la Corniche 5, Epalinges, 
Switzerland

G. Lopez Garcia 
Departamento de Lenguajes y Ciencias de la 
Computación, Universidad de Málaga, Málaga, Spain

L. C. Hinte · F.  von Meyenn 
Department of Health Sciences and Technology, ETH 
Zurich, Zurich, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s11357-023-00986-0&domain=pdf
http://orcid.org/0000-0002-3731-3647
https://doi.org/10.1007/s11357-023-00986-0
https://doi.org/10.1007/s11357-023-00986-0


 GeroScience

1 3
Vol:. (1234567890)

Epigenetics perturbations are a hallmark of aging [1, 
3]. In particular, the development of DNA-methylation-
based aging clocks has shown that changes in methyla-
tion occur throughout life and can be used to accurately 
predict age [4–9]. Since the discovery of methylation 
clocks, the field has shown that clocks can be built 
from other biological signals, such as transcriptomic 
or proteomic profiles [10–17]. Despite exploration of 
these different signals, epigenetic clocks have exclu-
sively used DNA methylation, thus far, partially due 
to data availability. Nonetheless, epigenetic regulation 
encompasses many mechanisms beyond DNA meth-
ylation [3]. Whether these different layers of epigenetic 
regulation can be used to predict age remains an open 
question. Additionally, because methylation of indi-
vidual CpGs correlates poorly with transcription of the 
downstream genes, it can be difficult to interpret what 
biological processes correspond to methylation fea-
tures used by clocks [18]. For these reasons, we sought 
to create an aging clock based on chromatin accessi-
bility. Chromatin accessibility integrates the effect of 
multiple epigenetic mechanisms and therefore provides 
a more comprehensive description of chromatin states 
than DNA methylation [19]. Previous studies have 
observed age-related changes in chromatin accessibil-
ity in multiple organisms [20–23]. Moreover, the het-
erochromatin loss theory of aging stems from observa-
tions of global de-repression of chromatin during aging 
[24, 25]. We envision that these age-related changes 
will allow the construction of a clock and expand our 
understanding of epigenetic dysregulation.

In this study, we generated chromatin accessibility 
and transcriptomic profiles from human blood samples 
spanning a broad range of ages using ATAC-seq [26, 27] 
and RNA-seq respectively. We then analyzed age-related 
changes in accessibility and how they relate to the tran-
scriptome. Subsequently, we used an elastic net regres-
sion model to predict age from chromatin accessibility 
profiles with good accuracy. Finally, we characterized 
the clock by investigating its predictors and comparing its 
performance to that of transcriptome-based clocks.

Results

Profiling human blood samples over a wide age range

Blood samples were acquired from 159 healthy 
donors (117 men, 42 women) covering an age range 

from 20 to 74 years (Fig. 1a). Peripheral blood mon-
onuclear cells (PBMCs) were isolated to generate 
ATAC-seq profiles from 157 samples, of which 143 
(105 men, 38 women) passed quality controls (age 
and sex distributions are  included in Supplementary 
Fig. 1a. A representative histogram of fragment size 
distribution is included in Supplementary Fig.  2b). 
From these samples, we detected a total of 80,400 
open chromatin regions (OCRs), of which 24.1% lay 
within 1 kbp of transcription start sites (TSS) and 
were thus annotated as promoters, 58.2% contained 
sites with reported enhancer activity, 5.0% were anno-
tated as both promoters and enhancers. The remain-
ing 12.7% OCRs which did not lie in the proximity 
of TSSs and had no reported enhancer activity will 
be referred to as “unannotated” (Fig.  1c). Principal 
component analysis of accessibility profiles placed 
samples on an aging trajectory along PC1 (PC1-
age Pearson’s r = 0.35, p = 2.14e-5, Supplementary 
Fig.  1c). Additionally, we performed RNA-seq on 
all 159 samples, from which we detected the expres-
sion of 16,155 genes. Of these samples, 144 passed 
quality control (age and sex distributions are included 
in Supplementary Fig.  1b) and 132 had a match-
ing ATAC-seq sample, which also passed quality 
control. Principal component analysis of expression 
profiles placed samples on an aging trajectory along 
PC1 and 2 (PC1-age Pearson’s r = -0.27, p = 9.89e-
4, PC2-age Pearson’s r = 0.26, p = 1.86e-3, Supple-
mentary Fig. 1c). Finally, we used flow cytometry to 
measure the proportions of monocytes, granulocytes, 
lymphocytes, total T cells, CD4 + T cells, CD8 + T 
cells, B cells, and NK cells in all samples (Supple-
mentary Fig. 2a, Supplementary Fig. 3a—g). During 
aging, we detected an increase in the proportions of 
NK cells (Pearson’s r = 0.31, p = 1e-4) and a decrease 
in the numbers of total T cells (Pearson’s r = -0.22, 
p = 5.3e-3) and CD8 + T cells (Pearson’s r = -0.24, 
p = 2.4e-3). The proportions of monocytes, granulo-
cytes, lymphocytes, CD4 + T cells, and B cells did 
not significantly correlate with age. Similar changes 
in PBMC compositions have been reported in previ-
ous studies [22, 28, 29].

Chromatin accessibility changes in a site-specific 
manner during aging

To understand the effect of aging on the epigenome, 
we analyzed global and site-specific changes in 
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chromatin accessibility. Based on the heterochromatin 
loss theory of aging we might expect to see a gradual 
de-repression of chromatin outside our OCRs. The 
fraction of reads within OCRs showed a negative 
trend during aging, but it was not significant (Pear-
son’s r = -0.13, p = 0.12, Supplementary Fig.  4a). 
We do however note that the fraction of reads within 
OCRs is sensitive to technical variation. Therefore, 
we asked if we could observe global changes through 
other means, such as changes in OCR width at pro-
moters or de-repression of repetitive elements. The 
average coverage profile around transcription start 
sites (TSS) did not differ between young (< 35 years 
old, n = 40) and old donors (> 55  years old, n = 44) 
(Supplementary Fig. 4c). Similarly, we saw no signif-
icant increase in accessibility of repetitive elements in 
general (Pearson’s r = 0.13, p = 0.14, Supplementary 
Fig.  4b, d) nor when considering repetitive element 
families individually (Supplementary Fig. 4e).

As for site-specific changes, we observed a con-
sistent opening of chromatin with age in 2622 
OCRs, and closing in 3765 OCRs (Spearman’s r, 
FDR < 0.01, Fig.  1b). Several examples of coverage 
profiles for OCRs that open, close, or do not change 
with age are shown in Fig. 1e, whereas Fig. 1f shows 
the correlation between the accessibility of the same 
OCRs and age. Among the opening OCRs, 6.0% 
were annotated as both promoters and enhancers, 
14.3% as promoters, 74.0% as enhancers, and 5.8% 
were unannotated. Among the closing OCRs, 5.4% 
were annotated as promoters and enhancers, 23.1% 
as promoters, 63.7% as enhancers, and 7.8% were 
unannotated. Interestingly, we observed significant 
enrichment of enhancers in both the opening and the 
closing OCRs compared to the background (Fisher’s 
Exact Test p = 9.44e-80 for opening, p = 1.08e-14 
for closing, Fig.  1c). Conversely, promoters were 
depleted in the opening OCRs but not in the closing 
ones (Fisher’s Exact Test p = 1.6e-25 for opening, 
p = 0.38 for closing). This suggests that enhancers 
could be particularly sensitive to changes in accessi-
bility during aging. Next, we linked OCRs to genes 
and investigated their involvement in biological pro-
cesses. We associated OCRs with their closest gene 
and performed GSEA [30] (Fig.  1d, Supplemen-
tary File 4). Terms with a positive enrichment score 
included regulation of IL8 and TNF production 
and defense to fungus, whereas terms with a nega-
tive enrichment score were related to regulation of 

heterochromatin assembly, including heterochroma-
tin assembly dependent on DNA methylation. We 
additionally performed GSEA on promoters only 
(Supplementary Fig.  5a) or associating enhancers 
to downstream genes using the PEREGRINE data-
set: a collection of enhancer-gene links predicted 
based on ChIA-PET, eQTL, and Hi-C of multiple tis-
sues, including blood [31] (Supplementary Fig.  5b). 
As with the previous method, terms with a positive 
enrichment score were associated with inflammation, 
while terms with a negative enrichment score were 
associated with regulation of chromatin assembly.

In conclusion, we found that chromatin accessi-
bility of PBMCs does not undergo significant global 
changes during aging, at least in the age range we 
analyzed (20–74  years). Instead, we detect changes 
in specific regulatory elements, most commonly 
enhancers, which are associated with increased 
inflammation and reduced heterochromatin assembly. 
It is particularly puzzling to see age-related repres-
sion of OCRs upstream of genes involved in hetero-
chromatin assembly, without observing significant 
global de-repression. It is also worth mentioning that 
ATAC-seq can only provide relative quantifications 
of accessibility, and therefore, a genome-wide, uni-
form increase in accessibility might be undetectable. 
Nonetheless, the correlations between accessibility at 
specific OCRs and age suggest that it should indeed 
be possible to construct an aging clock based on chro-
matin accessibility similar to what was done for DNA 
methylation.

Age-related changes in chromatin accessibility relate 
to coherent changes in expression

One limitation of aging clocks based on DNA meth-
ylation is that changes in methylation are difficult to 
relate to downstream cellular processes, thus limiting 
their interpretability. A previous study found that tran-
scription of genes downstream differentially methyl-
ated regions did not generally change in accordance 
with methylation during age [18]. The same study 
found that hypermethylation mostly affected genes 
whose expression was already low, thus explaining 
the apparent lack of effect on transcription.

Therefore, we asked if in our dataset we would be 
able to observe changes in expression coherent with 
the changes in chromatin accessibility. Out of 16,155 
expressed genes, 440 were increasing in expression 
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with age while 544 were decreasing (Spearman’s r, 
FDR < 0.01, Supplementary Fig.  5c). Terms with 
positive enrichment scores in GSEA (Fig.  2a, Sup-
plementary File 7) related to pathogen response 
(response to molecule of bacterial origin, response 
to lipopolysaccharide) and coagulation (hemosta-
sis, coagulation). Terms with negative enrichment 
scores related to B cell activity and complement 
activation (B cell receptor signaling pathway, com-
plement activation, humoral response by circulat-
ing Ig). These terms suggest alterations in immune 
function and inflammation, coherently with what 
we saw for chromatin accessibility. Terms related to 
heterochromatin assembly were also enriched in our 
transcriptomic data but to a lower extent than for 
chromatin accessibility. Investigating in more detail, 
we identified several genes whose expression and 
accessibility at regulatory elements both correlated 
to age (Fig.  2b, h shows coverage plots of one such 
gene: CD248) and sought to determine if these were 
more common than expected by chance. Therefore, 
we compared the age correlations of genes linked to 
OCRs with a positive correlation with age (Spear-
man r > 0, FDR < 0.01), negative correlation with 
age (Spearman r < 0, FDR < 0.01), and no correlation 
with age (FDR > 0.01). We found that overall, genes 
linked to promoters whose accessibility increased 
with age were upregulated during aging (one-tailed 

Kolmogorov–Smirnov Test, D = 0.33, p < 0.001, 
Fig.  2c), similarly genes linked to promoters that 
closed with age tended to be downregulated in aging 
(one-tailed Kolmogorov–Smirnov Test, D = 0.34, 
p < 0.001, Fig.  2c). This pattern was weaker when 
we looked at enhancers whose accessibility increased 
with age (one-tailed Kolmogorov–Smirnov Test, 
D = 0.15, p < 0.001, Fig.  2c) and enhancers whose 
accessibility decreases with age (one-tailed Kol-
mogorov–Smirnov Test, D = 0.25, p < 0.001, Fig. 2c), 
but still highly significant. We repeated this analy-
sis using the PEREGRINE gene-enhancer links but 
found that doing this reduced the agreement between 
chromatin accessibility and transcriptomic data (Sup-
plementary Fig. 5d). The agreement did not improve 
even when only considering gene-enhancer links that 
were validated in blood (Supplementary Fig.  5d). 
Finally, we wondered how the strength of the rela-
tionship between accessibility and transcription com-
pared to the association between methylation level 
and transcription. Thus, we used a publicly available 
DNA methylation dataset from Hannum et al. [6] to 
compute methylation-age correlations (Spearman’s 
r) and evaluated the pairwise correlations between 
age correlations of transcription, accessibility and 
methylation, genome-wide (Fig.  2f, g). We found 
that age-related changes in methylation had almost 
no correlation with transcriptomic alterations, both 
in enhancers and promoters (Pearson’s r = -0.017 
and -0.051 respectively). In comparison, changes in 
accessibility correlated with changes in transcrip-
tion, particularly at promoters (Pearson’s r = 0.318 
for promoters, r = 0.252 for enhancers). Interestingly, 
changes in accessibility were correlated with meth-
ylation changes at enhancers (r = -0.198) but weakly 
at promoters (r = -0.045). We also repeated this 
comparison focusing on CpGs whose methylation 
level was significantly correlated with age (Spear-
man’s r, FDR < 0.01, Fig.  2d, e) to ensure that we 
would not miss non-linear relationships. Age corre-
lations of genes downstream hypomethylating CpGs 
were significantly shifted towards positive values, 
albeit with minuscule effect sizes, at both promot-
ers and enhancers (One-tailed Kolmogorov–Smirnov 
test, D = 0.022, p = 4.3e-6 for promoters, D = 0.055, 
p = 4.7e-11 for enhancers). The converse was true for 
genes downstream hypermethylating CpGs at pro-
moters (D = 0.016, p = 2.8e-4) but not at enhancers 
(D = 0.020, p = 0.077 for enhancers). Thus, even when 

Fig. 1  Chromatin accessibility changes during aging. (A) 
PBMCs were isolated from blood samples of 159 healthy 
donors with a broad age distribution (20—74). ATAC-seq, 
RNA-seq, and flow cytometry profiles were generated from all 
samples. (B) Distribution of correlations between chromatin 
accessibility and age (Spearman’s r). Statistically significant 
closing OCRs are highlighted in blue, while statistically signif-
icant opening OCRs are highlighted in red (FDR < 0.01). (C) 
Annotation of statistically significant OCRs to regulatory ele-
ments. Enrichment for promoters and enhancers among open-
ing and closing OCRs. Log(odds ratios) and p-values were 
calculated using Fisher’s Exact test. (D) GSEA of chromatin 
accessibility changes during aging. Gene ontology biological 
process terms are plotted against the normalized enrichment 
score (NES). Terms with the top six positive (red) and negative 
(blue) NES are shown. (E) Accessibility profiles at the top two 
opening and closing OCRs, shown for representative samples 
of different ages. The y axis was rescaled using the same scale 
factors used for normalization of raw counts. The last col-
umn represents a housekeeping gene whose accessibility did 
not change during aging. Young: 20—22 years; Middle-aged: 
45—47 years, Old: 70—71 years. (F) Scatterplots of chroma-
tin accessibility (log(TPM)) against age of four OCRs with the 
strongest age correlation. Pearson’s r and p-values are indicated

◂
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focusing on CpGs with extreme methylation changes 
during aging, we saw little effect on transcription.

It is however crucial to consider that in this com-
parison, the strength of association between meth-
ylation and transcription could be underestimated 
because the methylation and expression data was 
not produced in matched samples. To have a fairer 
comparison, we substituted our RNA-seq data with 
another PBMC RNA-seq dataset from Marquez et al. 
[22]. To our surprise, age-related changes in chroma-
tin accessibility were still strongly correlated with 
transcriptomic alterations (Supplementary Fig.  5e, 
f, Pearson’s r = 0.314 for promoters, r = 0.235 for 
enhancers) while the correlation between methyla-
tion changes and expression changes remained weak 
(Pearson’s r = -0.023 for promoters, r = -0.046 for 
enhancers). Finally, prior reports have found the 
relationship between gene expression and gene body 
methylation can differ from the relationship between 
gene expression and promoter/enhancer methylation 

[32]. Thus, we correlated age-related changes in gene 
body methylation with age-related changes in gene 
expression but once again found very weak associa-
tions (Pearson’s r = -0.034 when using our RNA-seq 
data, r = -0.026 when using the Marquez et  al. data. 
Methylation data from Hannum et  al. was used in 
both cases).

Thus, we found that changes in chromatin acces-
sibility during aging associate with coherent tran-
scriptional alterations. Methylation changes, on the 
other hand, associated very weakly with age-related 
changes in expression. We therefore conclude that a 
clock constructed on chromatin accessibility would 
bear direct connection to transcriptomic alterations 
and their effect on biological processes.

Chromatin accessibility predicts age and the effect of 
SARS-CoV-2 infection

Having found many site-specific changes in chroma-
tin accessibility with age, we investigated whether 
these changes could be used to predict the age of 
the blood donors. To do so, we trained an elastic 
net regression model on the 143 ATAC-seq samples 
which passed quality control. We used nested cross-
validation to tune hyperparameters and estimate the 
performance of the model. Across the outer folds 
of the nested cross-validation, the model selected 
183 ± 58 OCRs as predictors and predicted age with 
an RMSE of 7.33 ± 1.62, MAE of 5.27 ± 1.19, and r 
of 0.88 ± 0.08 (Fig. 3a). We then trained a final model 
on all our ATAC-seq samples and tested its perfor-
mance on a completely distinct dataset by Marquez 
et  al. [22] comprising 84 samples after quality con-
trol (Fig. 3b). The predictions provided by our model 
were highly correlated with the real ages of individu-
als (r = 0.78). However, the age of most individuals 
was overestimated, leading to large RMSE (19.72) 
and MAE (17.29). The reasons for this inaccuracy 
might be the usage of a different ATAC-seq protocol 
by Marquez et  al. (The original ATAC-seq protocol 
[27] as opposed to Omni-ATAC [33]) and the differ-
ent genetic backgrounds of the sample populations. 
We believe that expanding the training dataset to 
include samples generated in different manners would 
improve the clock’s resilience to batch effects. We 
additionally asked if our clock would be able to detect 
the effect of health conditions. A previous study by 
Giroux et al. collected ATAC-seq data from PBMCs 

Fig. 2  Integrative analysis of gene expression, chromatin 
accessibility and DNA methylation during aging. (A) GSEA 
of gene expression changes during aging. Gene ontology bio-
logical process terms are plotted against the normalized enrich-
ment score (NES). Terms with the top six positive (red) and 
negative (blue) NES are shown. (B) Genes whose expression 
and accessibility at regulatory elements both correlated with 
age (Spearman’s r). The x-axis represents the significance of 
correlation in the ATAC-seq data while the y-axis represents 
the significance of correlation in the RNA-seq data. The sig-
nificance of the correlation is represented by the -log of FDR-
corrected p-values. (C) Distribution of gene expression age 
correlations of genes linked to promoters/enhancers which 
open during aging (Spearman’s r > 0, FDR < 0.01), close dur-
ing aging (Spearman’s r < 0, FDR < 0.01) or do not change 
(FDR ≥ 0.01). (D) Distribution of gene expression age correla-
tions of genes linked to CpGs in promoters/enhancers which 
gain methylation during aging (Spearman’s r > 0, FDR < 0.01), 
lose methylation during aging (Spearman’s r < 0, FDR < 0.01) 
or do not change (FDR ≥ 0.01). (E) Distribution of accessi-
bility age correlations of OCRs containing CpGs which gain 
methylation during aging (Spearman’s r > 0, FDR < 0.01), lose 
methylation during aging (Spearman’s r < 0, FDR < 0.01) or do 
not change (FDR ≥ 0.01). (F) Pairwise correlations between 
gene expression age correlations, accessibility age correlations, 
CpG methylation age correlations, specifically in promoter 
regions. (G) Pairwise correlations between gene expression 
age correlations, accessibility age correlations, CpG meth-
ylation age correlations, specifically in enhancer regions. (H) 
ATAC-seq and RNA-seq coverage tracks for the gene CD248, 
whose expression and accessibility at promoter and enhancer 
both decrease with age. Two young and two old samples are 
shown. The y axis was rescaled using the same scale factors 
used for normalization of raw counts
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of SARS-CoV-2 patients and healthy controls [34]. 
We trained an additional clock on samples from Mar-
quez et al. and this study and compared the discrep-
ancy between predicted age and real age for SARS-
CoV-2 negative and positive individuals. We found 
that this discrepancy was higher in positive patients 
(T-test, p = 0.006). We noted that in both Fig. 3a and 
b, the clock tended to overestimate the ages of young 
individuals. This could confound the comparison of 
positive and negative patients. Thus, we repeated the 
comparison on SARS-CoV-2 positive and negative 
individuals while accounting for the effect of chrono-
logical age on clock accuracy using a linear model: 
the effect of infection remained significant and added 
5  years to the predicted age of patients (SARS-
CoV-2 + effect = 5.35, p = 0.005, Fig. 3c).

The role of OCRs selected by the ATAC-clock

Next, we investigated the nature of the features of the 
final model: a total of 228 OCRs were selected, 116 of 
which were taken with a positive coefficient and 112 
with a negative one. Of all the OCRs selected by the 
model, 7.5% were annotated as promoters and enhanc-
ers, 19.3% as promoters, 57.0% as enhancers, and 
16.2% were unannotated. Interestingly, clock sites did 
not show enrichment for enhancers (Fisher’s exact test, 
odds ratio = 1.06, p = 0.73). This contrasts with the 
enhancer enrichment we saw in the set of age-corre-
lated OCRs. A likely explanation for this is that elastic 

net models do not simply select features based on their 
correlation to the response variable but aim to elimi-
nate redundant features. We then analyzed the rela-
tionship between the accessibility of OCRs selected 
by the clock and gene expression. As expected from 
our genome-wide analysis, we found a strong corre-
lation between the age-correlation of accessibility at 
OCRs and the age-correlation of transcription at the 
respective downstream genes, both in promoters and 
enhancers (Fig. 3e, f). This signifies that the chroma-
tin accessibility features selected by the clock can be 
directly related to transcriptomic changes and the bio-
logical processes associated with them.

With this knowledge, we investigated the clock 
OCRs with the largest absolute coefficients (Fig. 3d). 
Among these OCRs were both the promoter and 
enhancer of GREM2, a gene that encodes a senes-
cence-associated secretory phenotype (SASP) factor 
with a known association with aging in adipose tis-
sue and skin [35, 36]. The promoter of GREM2 was 
also selected in every nested cross-validation model, 
highlighting its robustness to predict age. In our data, 
both the GREM2 promoter (Spearman’s r = 0.44, 
q = 1.23e-5) and the GREM2 enhancer (Spearman’s 
r = 0.5, q = 3.83e-7) open with age and associated 
with increased transcription (Spearman’s r = 0.39, 
q = 2.1e-4). CR2, the gene that encodes the comple-
ment receptor type 2, has been previously shown to 
decline with age in B-cells and is associated with 
ischemic stroke, autoimmune disease, and chronic 
infection [37, 38]. In our data, chromatin accessibil-
ity at the CR2 promoter/enhancer strongly decreased 
with age (Spearman’s r = -0.59, q = 2e-10), in agree-
ment with CR2 expression (Spearman’s r = -0.42, 
q = 3.52e-5).

The ATAC clock shares some links with methylation 
clocks

Next, we looked for similarities between our clock 
and previously published methylation-based aging 
clocks. The Hannum clock [6] was trained on whole 
blood and bases its predictions on 71 CpGs. Our 
clock includes two OCRs which span Hannum clock 
sites: the promoter of ARHGEF33, and an enhancer 
of KLF13. Interestingly, the promoter of ARHGEF33 
was the feature with the strongest coefficient in our 
clock (-1.79). The Horvath pan-tissue clock [7] bases 
its predictions on 353 CpGs, but none of these lied 

Fig. 3  Chromatin accessibility predicts age. (A) Age pre-
dictions of the chromatin accessibility clock. The scatter plot 
shows the test set predictions from each outer fold of nested 
cross-validation (11 different models, each sample in the test 
set once). Mean and standard deviation for root mean squared 
error (RMSE), median absolute error (MAE), and Pearson 
correlation coefficient (r) are shown. (B) Age predictions of a 
clock trained on all our chromatin accessibility data and tested 
on an external dataset by Marquez et  al. (22) RMSE, MAE, 
and Pearson’s r are indicated. (C) Age predictions on SARS-
CoV-2 positive and negative patients. Prediction errors were 
adjusted to account for overestimation of age of young indi-
viduals compared to old. Statistical tests for unadjusted predic-
tions are included in the main text. (D) Annotation of the 16 
OCRs with the higher absolute coefficients in the final model 
ranked. Clock coefficients and age correlation of chromatin 
accessibility and gene expression level are shown for each 
OCR/gene pair. (E) Relationship between changes in gene 
expression, chromatin accessibility, and DNA methylation 
at promoters selected by the clock. (F) Relationship between 
changes in gene expression, chromatin accessibility, and DNA 
methylation at enhancers selected by the clock
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in the OCRs chosen by our clock, perhaps because 
the Horvath clock is trained on multiple tissues rather 
than just blood. Although few of our accessibility 
clock’s sites contained CpG sites used by the Han-
num and Horvath clocks, we investigated if the age-
related changes in accessibility observed in our data 
could be ascribed to changes in DNA methylation. 
We focused on the Hannum dataset as this was also 
obtained from blood samples. Of the 485,577 CpG 
markers in the Illumina Infinium 450 Human Meth-
ylation array, 168,778 fell within our OCRs (123,266 
in promoters, 22,278 in enhancers, 14,501 in OCRs 
annotated as both promoters and enhancers, and 3859 
in unannotated OCRs). We found that among enhanc-
ers selected by our clock, increased accessibility dur-
ing aging correlated with decreased methylation and 
vice versa (Pearson’s r = -0.49, p = 1.7e-9, Fig.  3f). 
This pattern was also seen in promoters chosen by 
our clock, but to a lesser extent (Pearson’s r = -0.30, 
p = 1.4e-6, Fig. 3e). Despite the association between 
changes in accessibility and both transcription and 
methylation, changes in methylation did not directly 
relate to changes in transcription neither at promoters 
(Pearson’s r = 0.053, p = 0.51, Fig. 3e) nor at enhanc-
ers (Pearson’s r = 0.098, p = 0.35, Fig. 3f).

Thus, although our clock shares few sites with the 
Hannum clock and none with the Horvath clock, it 
appears that age-related changes in accessibility might 
be partially related to methylation changes. This is not 
surprising, considering that DNA methylation is one 
of the epigenetic mechanisms contributing to chroma-
tin repression, which is in turn reflected in chromatin 
accessibility. Nonetheless, we consider it unlikely that 

the changes in chromatin accessibility used by our 
clock to predict age depend entirely on DNA methyla-
tion. Instead, the fact that changes in accessibility cor-
related with changes in gene expression, but changes 
in methylation did not, suggests that most age-related 
accessibility alteration could be the result of two over-
lapping processes: one with a direct effect on tran-
scription (perhaps chromatin remodeling) and DNA 
methylation.

Changes in chromatin accessibility predict age better 
than changes in gene expression

We wanted to compare the predictive power of 
our aging clock based on chromatin accessibil-
ity with that of clocks based on gene expression. 
Therefore, we used samples from donors for which 
we obtained both ATAC-seq and RNA-seq pro-
files to construct two separate clocks (Fig.  4a). In 
this direct comparison, the chromatin accessibil-
ity clock performed significantly better by two met-
rics (RMSE = 7.71 ± 1.13, MAE = 6.00 ± 1.42, and r 
0.86 ± 0.05 for the chromatin accessibility clock com-
pared with RMSE = 9.33 ± 1.24, MAE = 6.54 ± 1.91, 
and r = 0.78 ± 0.07 for the gene expression clock, 
two-tailed t-Test: p-values = 0.005 (RMSE), 0.46 
(MAE), 0.005 (r), Fig.  4b). We then trained a third 
“multiomic” clock using concatenated chroma-
tin accessibility and gene expression data (80,400 
OCRs + 16,155 genes, Fig. 4a). This multiomic clock 
predicted age better than the transcriptomic clock but 
with similar accuracy to the chromatin accessibility 
clock (RMSE = 7.55 ± 1.4, MAE = 5.61 ± 1.64, and 
r = 0.87 ± 0.06, Fig. 4b). Moreover, a final multiomic 
clock trained on all samples showed some preference 
towards chromatin accessibility features rather than 
transcriptomic ones, albeit non-significantly (Selected 
OCRs: 281, selected genes: 41, Fisher’s exact test: 
odds ratio = 1.38, p = 0.06). Additionally, OCRs cho-
sen by the multiomic clock had larger coefficients than 
the genes selected by the clock (Fig. 4c).

Thus, in our dataset, accessibility features appear 
to allow for better age predictions than gene expres-
sion features. However, we note that the BiT age clock 
was able to obtain better performance from gene 
expression data by binarizing the features in a data-
set with a similar number of samples to ours: n = 131, 
RMSE = 8.41, MAE = 5.24, r = 0.96 [17]. Finally, 
using both chromatin accessibility and transcriptomic 

Fig. 4  Chromatin accessibility allows for better age predic-
tion than gene expression. Correcting for cell composition 
improves clock accuracy. (A) Age predictions of chromatin 
accessibility, transcriptomic and multiomic clocks trained on 
matched samples (n = 132). RMSE, MAE, and Pearson’s r are 
indicated. (B) Score comparison of the chromatin accessibil-
ity, transcriptomic and multiomic clocks. Inner boxplots depict 
medians and first and third quartiles, with whiskers extending 
up to 1.5 × interquartile range. p-values were calculated using 
a two-tailed T-test. (C) Absolute coefficients of gene and OCR 
features selected by the multiomic clock. Features were stand-
ardized prior to clock training, bringing gene expression and 
chromatin accessibility features to the same scale (D) Age pre-
dictions of clocks trained on cell composition alone, chromatin 
accessibility without cell composition correction, and chroma-
tin accessibility with cell composition correction (n = 142). (E) 
Score comparison of the cell composition, chromatin accessi-
bility, and corrected chromatin accessibility clocks
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data to predict age does not significantly improve per-
formance compared to chromatin accessibility alone, 
but might aid interpretation of the clock.

Sex differences have little influence on the clock’s 
performance

Previous publications have reported important dif-
ferences in immune aging between women and men 
[22]. We observed that our chromatin accessibil-
ity clock tended to underestimate the age of women 
compared to men (T-test: p = 0.051, Supplementary 
Fig.  6a). Thus, we wondered if correcting for sex 
would improve clock performance. A clock trained 
on sex-corrected data did not perform better than its 
uncorrected counterpart (Supplementary Fig.  6b,  c). 
Therefore, it seems that sex differences do not have a 
large effect on clock performance.

The clock relies on cell-intrinsic changes in 
chromatin accessibility rather than changes in cell 
composition

Finally, because our flow cytometry data revealed 
a correlation between the size of certain immune 
cell populations and age, we wanted to understand 
to what extent the performance of the ATAC clock 
depended on changes in cell composition as opposed 
to cell-intrinsic changes in accessibility. To this end, 
we trained clocks using 142 samples for which we 
had both chromatin accessibility and cell composition 
data (Fig. 4d). A clock trained solely on cell composi-
tion had terrible performance (RMSE = 13.61 ± 1.26, 
MAE = 10.50 ± 1.82, r = 0.37 ± 0.19). Additionally, 
when we trained a clock on both cell composition and 
chromatin accessibility features, none of the 11 models 
selected by nested cross-validation used cell composi-
tion features as predictors. However, this does not pre-
clude that accessibility features could carry informa-
tion on cell composition. Thus, we investigated how 
correcting chromatin accessibility for cell composition 
changes affected clock performance. A clock trained on 
cell composition corrected data was significantly more 
accurate (RMSE = 4.61 ± 0.83, MAE = 3.27 ± 0.58, 
r = 0.95 ± 0.02, Fig.  4e) than a clock train on the 
same uncorrected data (RMSE = 7.31 ± 1.75, 
MAE = 6.21 ± 1.91, r = 0.87 ± 0.08). Conversely, when 
we corrected for changes in chromatin accessibility that 
could not be explained by changes in cell compositions, 

we again obtained a clock with terrible perfor-
mance (RMSE = 16.89 ± 7.51, MAE  =  12.59 ± 0.96, 
r  =  -0.16 ± 0.22). Thus, cell composition variability 
seems to affect clock performance negatively, even 
though certain cell population sizes correlate with 
age. Although correcting for cell composition yielded 
impressive performance, we note that this is not a real-
istic scenario for usage of the clock: cell composition 
correction requires knowing the age of samples to sep-
arate cell intrinsic and extrinsic effects. To see if cell 
composition correction would be viable in absence of 
age information, we tried correcting for cell composi-
tion without preserving age effects, but this yielded a 
very imprecise clock (Supplementary Fig.  6d). Alter-
natively, we tried estimating correction coefficients on 
the training set and using them to apply the correction 
on the test set within nested cross-validation, but clock 
performance did not significantly improve compared 
to a clock trained on uncorrected data (Supplementary 
Fig. 6d).

Thus, despite the mild correlation between the 
size of certain cell populations and age, cell com-
position alone is not sufficient to predict age accu-
rately. On the contrary, it seems that variation in 
cell composition decreases accuracy of the clock 
by introducing noise to chromatin accessibility 
data. This noise could reflect environmental effects 
such as recent exposure to pathogens, which could 
partially mask age-related changes in cell composi-
tion. Unfortunately, correction for cell composition 
in absence of age information did not improve clock 
performance compared to uncorrected data. None-
theless, a larger training dataset could allow for a 
better estimation of correction coefficients. In that 
case, the performance gain would need to be sub-
stantial to justify collecting flow cytometry data on 
top of performing ATAC-seq.

Discussion

One major limitation of epigenetic clocks lies in their 
difficult interpretability [39]. In particular, age-related 
changes in CpG methylation have been reported to cor-
relate poorly with transcription of downstream genes, 
making it difficult to draw a link between altered meth-
ylation and disruptions in cellular function [18]. To 
solve this, we have investigated the suitability of chro-
matin accessibility as a new biomarker of aging.
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Initially, we analyzed the effect of aging on global 
and local chromatin accessibility. We found that 
age-related changes were mostly focal, and prefer-
entially affected enhancers. The lack of significant 
global changes in accessibility contrasts with the het-
erochromatin loss theory of aging and with several 
observations of loss of repressive histone marks such 
as H3K9me3 and H3K27me3 [24, 25]. It is impor-
tant to note that ATAC-seq only allows for relative 
quantifications of accessibility, thus a global, uni-
form increase in chromatin accessibility would not 
have been detected with our methods. Nonetheless, 
we saw no significant gain in accessibility at repeti-
tive elements, change in TSS accessibility profiles, 
or flattening of the epigenetic landscape as would be 
indicated by a reduction in FRIP. Thus, the term “het-
erochromatin redistribution” may be more appropri-
ate to describe the changes that the epigenome under-
goes during aging. As to why enhancers appeared 
more prone to change accessibility during aging, 
we hypothesize that accessibility at enhancers may 
be more dynamic and thus more affected by local or 
systemic changes in the cellular environment. Future 
studies might investigate which chromatin factors 
(histone variants, post-translational modifications, 
transcription factors etc.) drive the observed changes 
in accessibility specifically at enhancers.

Next, we investigated the link between gene tran-
scription and chromatin accessibility at corresponding 
regulatory elements. In general, age-related changes 
in transcription and accessibility were related to simi-
lar biological processes, and at a site-specific level, 
we found that accessibility changes at promoters and 
enhancers associated with coherent transcriptional 
responses during aging. In contrast, DNA methylation 
exerted a weak effect on gene expression, as expected 
based on previous findings [18]. It follows that a chro-
matin accessibility clock would have a clearer link to 
cellular function than DNA methylation clocks, thus 
providing better interpretability.

We then showed for the first time that chromatin 
accessibility profiles of PBMCs can be used to pre-
dict the age of donors, with an RMSE of 7.33 years, 
MAE of 5.27  years, and r of 0.88. Importantly, we 
trained and validated our clock using nested cross-
validation, meaning that the test sets used to evaluate 
clock performance were not included in the training 
and hyperparameter tuning process, leading to unbi-
ased performance estimation. The clock predicts age 

accurately, although we expect performance could 
be improved further by adding more samples to the 
training set, as state-of-the-art methylation clocks 
have typically been trained on thousands of samples. 
When we tested our clock on previously published 
data generated with a different ATAC-seq protocol, 
we found that age predictions were highly correlated 
with chronological ages but tended to overestimate 
the actual value. We recommend the use of the Omni-
ATAC protocol to any researcher interested in using 
our clock, or perform ATAC-seq in general, as Omni-
ATAC provides higher quality data, in part by reduc-
ing mitochondrial DNA contamination [33]. Unfor-
tunately, we were limited in our work by the scarce 
availability of ATAC-seq data with reported age 
information. We believe that as more data becomes 
available, ATAC clocks could be trained to better 
tolerate differences in protocols and batch effects. 
We tested our clock on an additional public dataset, 
comprising ATAC-seq data of SARS-CoV-2 posi-
tive and negative individuals, finding that the infec-
tion associated with higher age predictions. A recent 
study has found a similar, transient increase in pre-
dicted age using methylation clocks [40]. Without 
matched cell composition data, we are not able to 
conclude whether this effect is mainly cell-intrinsic 
or driven by changes in circulating cell populations 
during infection. Nonetheless, this could signify that 
the systemic inflammation caused by SARS-CoV-2 
infection bears resemblance to inflammaging: chronic 
age-related increase in levels of inflammatory mark-
ers, which comprises both cell intrinsic and composi-
tional immune dysregulation [29, 41].

Since we had matched ATAC-seq and RNA-seq 
profiles, we could directly compare the performance 
of our chromatin accessibility clock to a transcrip-
tomic counterpart. In this direct comparison, our 
ATAC-clock performed significantly better. When we 
additionally developed a multiomic clock based on 
chromatin accessibility and transcriptome features, 
we saw that the multiomic clock performed similarly 
to the accessibility clock and relied on accessibility 
features more than on gene expression features, once 
again suggesting that chromatin accessibility data 
may allow for better age prediction than transcrip-
tomic data. It is possible that gene expression varies 
more rapidly than chromatin accessibility (for exam-
ple, in response to stress, circadian regulation etc.) 
thus introducing more noise to the prediction.
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Finally, we investigated the relative importance of 
changes in cell composition as opposed to cell-intrin-
sic changes in accessibility and found that cell com-
position correction improved the performance of the 
clock. Cell composition may depend on recent expo-
sure to pathogens, explaining why correction for cell 
composition may be beneficial.

Conclusion

We have shown the feasibility of an epigenetic clock based 
on chromatin accessibility, which bears a strong relation-
ship with transcription while performing better than tran-
scriptomic clocks. We hope that this will provide the field 
with a new method to produce interpretable aging clocks.

Methods

Blood collection

Anonymized whole blood from 159 donors between 
the ages of 20 and 74 was obtained from the Interre-
gional Blood Transfusion center in Lausanne-Epalin-
ges, Switzerland. The internal review board approved 
the study, and all donors gave written consent to the 
use of their blood for research purposes. Samples 
were processed within 4.5 h after blood collection.

PBMC isolation

Blood was diluted with equal amounts of Dulbecco’s 
phosphate-buffered saline (Gibco) and layered on top of 
Histopaque-1077 (Sigma-Aldrich). Density gradient cen-
trifugation was carried out according to the manufacturer’s 
protocol and PBMCs were collected and washed. Cells 
were counted on a LUNA-II Automated Cell Counter 
(Logos Biosystems) and immediately aliquoted for ATAC-
Seq library preparation, RNA extraction, and PBMC stain-
ing/fixation. All protocols were carried out simultaneously.

ATAC-Seq library preparation

ATAC-Seq library preparation was performed 
according to the Omni-ATAC protocol [33] using 
Tn5 provided by the EPFL Protein Production and 

Structure facility. Transposed fragments were puri-
fied using the MinElute PCR Purification Kit (Qia-
gen). The eluate was PCR amplified using 2 × NEB-
Next Master Mix (NEB) and pre-mixed primers with 
unique dual indexes for Illumina sequencing (IDT). 
The library was purified by double-sided bead size 
selection using SPRIselect (Beckman Coulter).

RNA extraction

RNA extraction was performed using the Monarch 
Total RNA Miniprep Kit (NEB) according to the 
manufacturer’s protocol.

PBMC staining and flow cytometry

Cells were stained with Ghost-Dye/V510, CD3 + /
V421, CD4 + /FITC, CD8 + /APC-Cy7, CD16 + /
PE, CD19 + /PE-Cy7 and CD56 + /APC (Biolegend). 
Cells were fixed in Fixation and Permeabilization 
Solution (BD). A Cytoflex S flow cytometer (Beck-
man Coulter) was used to analyze the subpopulation 
ratios.

ATAC sequencing and pre-processing

ATAC-Seq libraries were subjected to 150 bp paired-
end sequencing on an Illumina NovaSeq 6000 by 
Novogene (UK) Company Limited with a sequencing 
depth of 30 million reads. Raw reads were adapter 
and quality trimmed using Trim Galore! [42] and 
mapped to the GRCh38 build of the human genome 
using bowtie2 (with settings –very-sensitive -X 1000 
–dovetail) [43]. Before peak calling, raw bams were 
filtered to remove reads with multiple mappings, 
PCR duplicates, and mitochondrial reads using sam-
tools [44] and Picard tools [45].

Alignments in BAM format were converted to BED 
and used to call peaks with MACS2 (with settings -f 
BED -g "hs" –keep-dup "all" -q 0.01 –nomodel –shift 
-100 –extsize 200) [46]. To define a common peak-
set, we initially computed the union of all individual 
peak sets using BEDTools merge on the narrowPeak 
MACS2 outputs [47]. Next, we identified regions 
which were reliably called as peaks across multiple 
samples using BEDTools multiinter and filtering the 
output to regions called in 50 samples or more. We 
then filtered the union peakset to only peaks contain-
ing at least one of the reliably called regions using 
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BEDTools intersect. Finally, we discarded peaks over-
lapping the ENCODE blacklist [48].

We generated a raw count table using feature-
Counts [49], specifically counting Tn5 cut sites rather 
than whole fragments. Counts were first transformed 
to read densities by dividing the counts at each peak 
by the length of the peak in kilobases and then nor-
malized by dividing by the total number of reads-in-
peaks in millions.

We considered samples with less than 11 million 
good quality alignments and/or FRIP below 0.18 as 
low quality. We additionally discarded outliers in our 
samples using the elliptic envelope method on the first 
two principal components of the normalized counts 
in log scale. This removed 16 samples, including all 
samples with low sequencing depth and low FRIP.

Samples in the Marquez et al. [22] and Giroux et al. 
[34] datases used for testing the ATAC clock were 
processed starting from raw reads and subsequently 
mapped and filtered as our own samples. Peak calling, 
however, was not performed, and instead, the reads 
were counted over the peakset generated on our data 
alone. Outliers were removed as with our own dataset, 
but we did not impose a minimum FRIP, since we did 
not perform peak calling on these samples.

Coverage bigWig tracks were generated from 
regions centered around Tn5 cut sites using deep-
Tools bamCoverage [50] with the same scaling fac-
tors used to normalize the counts. TSS profiles were 
generated from the bigwig tracks using deeptools 
computeMatrix and plotProfile.

RNA sequencing and data pre-processing

RNA-Seq library preparation and sequencing were 
performed by Novogene (UK) Company Limited on 
an Illumina NovaSeq 6000 in 150 bp paired-end mode. 
Raw FASTQ files were assessed for quality, adapter 
content, and duplication rates with FastQC. Reads 
were aligned to the Human genome (GRCh38) using 
the STAR aligner (v2.7.9a) [51] with ’–sjdbOverhang 
100’. The number of reads per gene was quantified 
using the featureCounts function in the subread pack-
age [49]. Ensembl transcripts were mapped to gene 
symbols using the mapIds function in the Annota-
tionDbi package [52] with the org.Hs.eg.db package 
[53]. EdgeR was used to normalize row counts using 
the trimmed means of M-values method and filter 
low expression genes [54]. Finally, 15 outliers were 

removed using the same strategy employed for the 
ATAC-seq dataset. We used the same pipeline to pro-
cess the RNA-seq data by Marquez et al.

Clock construction and characterization

Training and validation of the elastic net model were 
carried out in Python using the Scikit-learn mod-
ule [55]. Features were standardized prior to train-
ing using a StandardScaler. Samples were assigned 
to 11 groups so that the age composition in each 
group would cover the age range uniformly. Nested 
cross-validation was used to tune hyperparameters 
and estimate the performance of the model. Both 
the outer and inner cross-validation loops were run 
as leave-one-group-out cross-validation, meaning 
that the outer loop used each of the 11 groups once 
as a test set, while the inner loop alternated over the 
remaining 10 groups. The performance of the models 
is reported using root mean squared error (RMSE), 
median absolute error (MAE), and the Pearson cor-
relation coefficient (r). Whenever multiple clocks 
were compared against each other, they were trained 
on samples sourced from the same donors and using 
the same partitions for cross-validation. Correction 
for sex and cell composition was performed in R 
using removeBatchEffect in the limma package [56], 
after preparing the data with voom [57]. Unless oth-
erwise specified, age information was included into 
the experimental design to preserve the age effect. 
When correction for cell composition was included 
as part of clock training, we fitted models explaining 
accessibility of each OCRs in the training set as a 
function of age and cell composition using a Mul-
tiOutputRegressor with LinearRegression. The fitted 
coefficients for cell composition features were then 
used to subtract the effect of cell composition from 
train and test sets.

Annotation of OCRs and repetitive elements

OCRs were annotated as promoters if they lay 
1000  bp upstream or downstream of the transcrip-
tion start sites. OCRs were annotated as enhancers 
if they overlapped regions annotated as enhanc-
ers in the PEREGRINE dataset [31]. Notably, we 
allowed OCRs to be annotated both as promoters 
and enhancers. In the case of promoters, OCRs 
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were linked to the closest gene, whereas for enhanc-
ers, we tested linking to the closest gene or using 
the gene-enhancer links in the PEREGRINE data-
set. Repetitive regions of the genome were identi-
fied using repeat masker [58].

Statistical analysis

Statistical analysis was carried out in R. GSEA was 
performed using the ClusterProfiler R package with 
1000 permutations [59]. When performing GSEA 
on ATAC-seq data, we created a ranked list of genes 
with the following procedure: 1) Starting from genes-
OCR links generated as described above we discarded 
OCRs with no linked gene 2) We discarded OCR-gene 
pairs in which the gene was not expressed. 3) When 
a gene was linked to multiple OCRs we selected the 
OCR-gene pair for which chromatin accessibility and 
expression were best correlated across the set of sam-
ples common to our ATAC-seq and RNA-seq data. 
This produces 1:1 OCR-gene links. Alternatively, we 
selected promoter-gene pairs only, which also yields 
1:1 links 4) We ranked genes based on the spearman 
correlation between chromatin accessibility at their 
linked OCR and age.
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