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ABSTRACT Beta-lactamase-mediated degradation of beta-lactams is the most common 
mechanism of beta-lactam resistance in Gram-negative bacteria. Beta-lactamase-encod­
ing genes can be transferred between closely related bacteria, but spontaneous 
inter-phylum transfers (between distantly related bacteria) have never been repor­
ted. Here, we describe an extended-spectrum beta-lactamase (ESBL)-encoding gene 
(blaMUN-1) shared between the Pseudomonadota and Bacteroidota phyla. An Escherichia 
coli strain was isolated from a patient in Münster (Germany). Its genome was sequenced. 
The ESBL-encoding gene (named blaMUN-1) was cloned, and the corresponding enzyme 
was characterized. The distribution of the gene among bacteria was investigated using 
the RefSeq Genomes database. The frequency and relative abundance of its closest 
homolog in the global microbial gene catalog (GMGC) were analyzed. The E. coli strain 
exhibited two distinct morphotypes. Each morphotype possessed two chromosomal 
copies of the blaMUN-1 gene, with one morphotype having two additional copies located 
on a phage-plasmid p0111. Each copy was located within a 7.6-kb genomic island 
associated with mobility. blaMUN-1 encoded for an extended-spectrum Ambler subclass 
A2 beta-lactamase with 43.0% amino acid identity to TLA-1. blaMUN-1 was found in 
species among the Bacteroidales order and in Sutterella wadsworthensis (Pseudomona­
dota). Its closest homolog in GMGC was detected frequently in human fecal samples. 
This is, to our knowledge, the first reported instance of inter-phylum transfer of an 
ESBL-encoding gene, between the Bacteroidota and Pseudomonadota phyla. Although 
the gene was frequently detected in the human gut, inter-phylum transfer was rare, 
indicating that inter-phylum barriers are effective in impeding the spread of ESBL-encod­
ing genes, but not entirely impenetrable.
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B eta-lactamases refer to enzymes catalyzing the hydrolysis of the beta-lactam ring, 
thereby inactivating the antibiotic properties of the molecule (1). While some 

Enterobacterales intrinsically harbor beta-lactamases, the biggest threat to health 
is due to the acquisition and exchange by pathogens of beta-lactamases-encoding 
genes, especially those encoding for extended-spectrum beta-lactamases (ESBLs) and 
carbapenemases. How the first move from the original host of the antibiotic resistance 
gene (ARG) and Enterobacterales species is barely known or based on in silico prediction 
in most instances (2, 3). Recently, Ebmeyer et al. described the origin of 37 ARGs found 
in Enterobacterales and provided evidence for the original gene-providing species for 27 
groups of ARGs (2). Strikingly, 36/37 of transfer events occurred within the Pseudomona­
dota phylum (to which Enterobacterales belong). However, an exception was observed 
with tet(X), which was proposed to originate from Sphingomonas, a genus from the 
Bacteroidota phylum (4). This observation supports that ARG transfers from other phyla 
to Pseudomonadota could spontaneously occur, albeit at a relatively rare frequency (3).
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This lack of knowledge regarding ARG-providing species to Enterobacterales pointed 
at the intestinal microbiota as a potential reservoir (5). The dominant fraction of the 
intestinal microbiota is made of strict anaerobic bacteria which possess a vast diversity 
of ARGs including some encoding beta-lactamases (6), many of which have proven to 
be functional when transferred to Escherichia coli (7). However, ARGs from commensal 
anaerobic bacteria strongly differ from those found in Enterobacterales, stressing that 
their transfer to Enterobacterales would be particularly rare or would not persist so it 
would go unseen from the scientific community (8).

In a recent work, we searched for ARGs in 70,301 E. coli genomes from the EnteroBase 
using ARG databases including ARGs from intestinal strict anaerobic bacteria (9, 10). We 
could identify four ARGs presumably originating from non-Pseudomonadota, including a 
beta-lactamase-encoding gene also found in bacteria from the Bacteroidota phylum and 
that we propose to characterize in the present work.

RESULTS

Phenotypic characterization

An E. coli genome was identified as possessing a beta-lactamase-encoding gene which 
was only found in the ResFinderFG and Mustard databases (6, 9–11). The strain of 
interest belonged to the A phylogroup, sequence type 744/2 according to the Warwick 
University/Pasteur Institute schemes, respectively, and serotype Onovel132:H10, fimH 
allele 54. It was isolated in 2015 from a wound infection in a patient hospitalized at 
the University Hospital of Münster, Germany (12). The subcultures in LB media yielded 
two distinct morphotypes: white and regular shaped colonies or grayish and less regular 
colonies (Fig. 1). Both morphotypes were maintained in subsequent cultures.

From the antibiotic susceptibility testing, the E. coli strain isolate characterized by 
white and regular colonies displayed an ESBL phenotype with synergies being observed 
between clavulanic acid, cefotaxime, cefepime, and aztreonam (Fig. S1). Particularly, the 
strain showed a high level of resistance to cefuroxime, ceftazidime, aztreonam, and 
temocillin with MICs > 256 µg/mL (Table 1). It remained susceptible to carbapenems 
and cefoxitin, and to beta-lactam–beta-lactamase inhibitor combinations (clavulanic 

FIG 1 Morphological aspects of the two types of colonies (W: white colonies and G: gray colonies) 

observed after streaking the strain on lysogeny broth (LB) media.
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acid, tazobactam, and avibactam). Besides, the strain was resistant to cotrimoxazole 
and fluoroquinolones but was susceptible to aminoglycosides. The same phenotype 
was observed for gray colonies, except for some beta-lactam antibiotics (aztreonam, 
cefuroxime, cefotaxime, ceftazidime, and piperacillin) against which gray colonies were 
slightly less resistant (as observed from inhibition diameters).

Beta-lactamase characterization

The MUN-1 amino-acid sequence was studied and compared to that of other beta-lacta­
mases (Fig. 2) and was identified as an Ambler subclass A2 beta-lactamase (13). The 
closest beta-lactamases were TLA-1 (43.0% amino acid identity) and CepA (42.1% amino 
acid identity).

The cloned and expressed blaMUN-1 gene in E. coli TOP10 showed a similar resistance 
phenotype to the original strain (Table 1). The most potent inhibitor was clavulanic acid 
(50% inhibitory concentration; IC50 0.32 nM), followed by tazobactam (IC50 0.8 nM) and 
avibactam (IC50 3.8 nM).

Molecular characterization

White and gray E. coli strain isolates were sequenced using short-read and long-read 
technologies to identify the blaMUN-1 gene locations. The hybrid assembly produced two 
contigs for the gray colonies and three contigs for the white colonies (Table S1).

Circular bacterial chromosomes of 4,764,212 bp and 4,762,657 bp were identified for 
the gray and the white colonies, respectively. The ARG and virulence gene contents were 
similar in both morphotypes (Tables S2 and S3). Of note, 11 ARGs were located on a 
26,418-bp antibiotic resistance genomic island (Fig. S2). The difference in the bacterial 
chromosome between the two morphotypes consisted in the presence of two additional 
insert sequences (0.78 kb each containing transposase-encoding genes) in the chromo­
some from the gray strain. One was cutting a glycosyltransferase-encoding gene and the 
other, an L,D-transpeptidase-encoding gene. blaMUN-1 was detected in two copies on the 

TABLE 1 Minimal inhibitory concentrations of the white colonies, the E. coli TOP10 cloned or not cloned with the blaMUN-1 gene, and the kinetic parameters of 
purified MUN-1 beta-lactamase

Beta-lactam MIC (µg/mL) for Escherichia coli Kinetic measurement

Clinical strain TOP10 (pBLA-x) TOP10 Kcat (s
−1) Km (µM) Kcat/Km (µM−1 s−1) Ki (µM)

Amoxicillin >256 >256 4 NDa ND ND ND
Amoxicillin + clavulanic acid 4 4 4 ND ND ND ND
Ampicillin ND ND ND 290 280 1 ND
Piperacillin >256 >256 2 <0.01 ND ND 0.0072
Piperacillin + tazobactam 4 4 2 ND ND ND ND
Penicillin G ND ND ND 210 95 2.2 ND
Temocillin 256 256 4 ND ND ND ND
Ticarcillin ND ND ND <0.01 ND ND 0.0036
Cephalothin ND ND ND 30 15 2 ND
Cefuroxime >256 >256 0.5 ND ND ND ND
Ceftriaxone 16 16 0.12 ND ND ND ND
Cefotaxime 4 2 0.12 <0.01 ND ND ND
Ceftazidime >256 >256 0.25 <0.01 ND ND 0.58
Ceftazidime + avibactam 0.06 0.03 0.25 ND ND ND ND
Cefepime 4 2 0.06 <0.01 ND ND ND
Ceftolozane + tazobactam 0.06 0.06 0.06 ND ND ND ND
Aztreonam >256 >256 0.03 2 45 0.04 ND
Imipenem 0.25 0.25 0.25 <0.01 ND ND 0.0013
Meropenem 0.03 0.03 0.03 <0.01 ND ND 0.019
Ertapenem 0.03 0.03 0.03 <0.01 ND ND 0.017
aND: not done.
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bacterial chromosome. Each blaMUN-1 copy was borne by a 7.6-kb genomic island (Fig. 3) 
annotated with five additional open reading frames encoding for a site-specific inte­
grase, a helix-turn-helix crp-type domain-containing protein, a helicase, a DNA primase, 
and a plasmid recombination enzyme. The first 7.6-kb genomic island containing 
blaMUN-1 gene was located at 59.85 min and the second at 93.42 min on the E. coli 
genetic map (14). The GC content of the 7.6-kb genomic island was 45.4%, which was 
lower than the GC content of the entire chromosome (50.6%). The only shared character­
istic found at the borders of each 7.6-kb genomic island was their low GC content, with 
an average of 34.3% GC in the 200-bp flanking each 7.6-kb genomic island copy.

A 127,245-bp circular p0111 phage plasmid bearing two copies of the blaMUN-1 gene 
was exclusively detected in the white colonies (Table S1). One copy was located on a 
7.6-kb genomic island that was 100% identical to the ones found on the chromosome. 
A second 7.6-kb genomic island carrying the other gene copy was identified adjacent to 
the first 7.6-kb genomic island. However, this island was distinguished by the insertion 
of two insertion sequences (IS; IS3 family transposase ISEc52) between the blaMUN-1 

FIG 2 Phylogenetic tree of amino acid sequences of representative beta-lactamases found in the bacterial realm including the MUN-1 beta-lactamase (in red). 

Phylogenetic tree was rooted on PenA (found in the genus Burkholderia) which is distantly related from all the other beta-lactamases.
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gene and the plasmid recombination enzyme-encoding gene. Similar to the bacterial 
chromosome, the border of each 7.6-kb genomic island exhibited a lower GC content 
(mean of 31.5%) compared to the overall phage-plasmid GC content (46.6%). Next to the 
two 7.6-kb genomic islands, a 11-kb DNA fragment was shared between the p0111 and 
the chromosome suggesting recombination between the p0111 and the chromosome. 
Besides the bacterial chromosome, each morphotype had a circular IncFII plasmid of 
60 kb. Of note, it did not embed any ARG.

Distribution of the blaMUN-1 gene

We searched for blaMUN-1 using RefSeq Genomes databases from NCBI and BLASTN 
(70% nucleotide identity, 80% coverage) (15). A total of 125 hits were obtained, with the 
blaMUN-1 gene being present in 28 species (100% nucleotide identity and coverage), 27 
of which belonged to the Bacteroidota phylum, specifically within the Bacteroidales 

FIG 3 Genetic contexts showing the environment of the blaMUN-1 gene in different species. The first three lines describe the genetic contexts of each copy 

of the blaMUN-1 gene in the E. coli strain. Next, illustrative representatives from the RefSeq Genomes database were chosen for the following reasons: Sutterella 

wadsworthensis was the only other Pseudomonadota found to bear the blaMUN-1 gene; Bacteroides uniformis was the only genome in which copies of blaMUN-1 

gene were found on a chromosome and on a plasmid; Phocaeicola vulgatus, Bacteroides thetaiotaomicron, Odoribacter splanchnicus, Phocaeicola massiliensis, 

Phocaeicola dorei, Bacteroides xylanisolvens, and Barnesiella propionica were chosen as they were the only genomes showing a genetic context that differed from 

the 7.6-kb genomic island. The red box delineates the 7.6-kb genomic island described in this work. The colors in the arrows correspond to the function of each 

gene. A nucleotide identity percentage between adjacent lines is displayed with a gray scale.
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order (Table S4). A unique hit was detected in the Pseudomonadota phylum with 
Sutterella wadsworthensis. Similar to our E. coli strain, the blaMUN-1 gene was spor­
adically detected in multiple copies (maximum of six copies/genome in Bacteroides 
uniformis). We could not determine whether the sequence holding the blaMUN-1 gene 
was chromosomal or plasmidic, one exception being a B. uniformis genome (AP019724.1 
and AP019725.1) bearing two copies of the 7.6-kb genomic island (containing the 
blaMUN-1 gene), one being on a plasmid surrounded by sequences annotated as IS256 
family transposase and site-specific integrase. Interestingly, two sequences on this 
plasmid were annotated as phage protein, yet none had homologs located on the 
p0111 phage plasmid found in the E. coli strain. Some variants of the blaMUN-1 gene 
were found in Bacteroides salyersiae, Bacteroides xylanisolvens, Parabacteroides distasonis, 
Leyella stercorea, and Phocaeicola vulgatus (97.0%–99.9% nucleotide identity). Addition­
ally, Barnesiella propionica was shown to bear a gene with 71.9% nucleotide identity 
and 88% coverage to blaMUN-1 gene. Of note, blaMUN-1 was not constantly found in 
any species (Table S4). Using a phylogenetic tree based on the 16S rRNA-encoding 
gene sequences of each species found to possess blaMUN-1, we observed the closest 
species to E. coli were S. wadsworthensis (cophenetic distance 0.22) and two species from 
the Alistipes genus (cophenetic distance 0.40; Fig. 4). The most distant species bearing 
blaMUN-1 was L. stercorea (cophenetic distance 0.61). Besides, MGnify and the global 
microbial gene catalog (GMGC) databases were used to analyze the distribution of the 
blaMUN-1 gene in various environments (16, 17). blaMUN-1 was also detected mostly in 
bacteria from the Bacteroidales order (86%–100% of the hits; Tables S5 and S6). We 
identified a close homolog to blaMUN-1 in the GMGC (GMGC10.047_051_980.UNKNOWN
—Prevotellamassilia timonensis—100% amino acid identity and 92.4% cover). It was 
detected in several sub-catalogs but mainly in the human gut sub-catalog where it was 
found in 26.8% of the samples, with a mean relative abundance of 104.5/10 M reads 
(median: 12, min: 0, max: 5,371; Fig. 5).

blaMUN-1 was in most instances borne by the same 7.6-kb genomic island, also found 
in the E. coli strain except for 9 out of 125 hits with distinct genetic contexts (Fig. 3). 
In a P. vulgatus strain (NZ_JAHOIR010000010.1), blaMUN-1 was held by a 7.6-kb genomic 
island with 82.0% nucleotide identity. Then, in a Bacteroides thetaiotaomicron strain 
(NZ_JANUPG010000001.1), it was located on a shorter version of the 7.6-kb genomic 
island (63% cover) which consisted of the blaMUN-1 gene (100% cover, 100% identity), 
the plasmid recombination enzyme (100% cover, 99.9% identity), and the site-specific 
integrase-encoding genes (99% cover, 80.60% identity). In six cases, the blaMUN-1 gene 
was found at the edges of contigs, making it challenging to confirm the presence of the 
complete 7.6-kb genomic island (Fig. 3). Finally, a distinct genetic context was identified 
for the variant of blaMUN-1 (71.9% nucleotide identity) detected in B. propionica.

DISCUSSION

The detection of the blaMUN-1 gene, encoding an ESBL, in both Bacteroidota and 
Pseudomonadota phyla, suggests the possibility of inter-phylum transfer of ESBL-
encoding genes.

The characterized MUN-1 beta-lactamase was an Ambler subclass A2 beta-lactamase 
with an ESBL phenotype (13). Notably, it conferred resistance to several beta-lactam 
antibiotics, including temocillin, which is unusual among class A beta-lactamases (18). 
While it showed high MICs for piperacillin or ceftazidime, no hydrolysis of the com­
pounds was detected. This could be due to the strong binding of the enzyme to the 
substrate (acylation step) but without the final step of deacylation that would lead to 
hydrolysis of the beta-lactam. Therefore, the substrate is not able to act as an antibiotic 
due to this strong binding but no hydrolysis rate can be detected from the method we 
used (19).

The distribution analysis revealed that blaMUN-1 was predominantly present in 
bacteria belonging to the Bacteroidales order with a single exception in a S. wadswor­
thensis genome. This suggests that inter-phylum transfer of the blaMUN-1 gene has 
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indeed occurred at least once. The blaMUN-1 gene was most commonly found in 
association with the conserved 7.6-kb genomic island. The GC content of this genomic 
island was closer to that of Bacteroides than E. coli, suggesting a relatively recent inter-
phylum transfer event. The distribution analysis of the gene homologous to the blaMUN-1 
gene in the GMGC catalog revealed that it was predominantly detected in the human gut 
sub-catalog, in more than a quarter of the human gut samples. This supports that the 
transfer of blaMUN-1 occurred between E. coli and intestinal bacteria, either in the gut or 
in situations such as wounds.

Contamination of sequencing data by beta-lactamase-encoding genes associated 
with Taq polymerase producers can occur (20, 21). Here, several copies of blaMUN-1 were 
detected at several locations of the chromosome and the p0111 phage plasmid, both 

FIG 4 Cophenetic distance between species holding the blaMUN-1 gene based on the 16S rRNA-encoding gene. Heatmap represents the cophenetic distance 

between species. If no strain holding the blaMUN-1 gene from the species was found to hold a 16S rRNA-encoding gene, 16S rRNA-encoding gene was retrieved 

from strains that do not hold the blaMUN-1 gene (this was the case for Alistipes putredinis in gray). Gemmata sp. did not hold a blaMUN-1 gene in its genome but its 

16S rRNA-encoding gene was used to root the phylogenetic tree.

Full-Length Text Antimicrobial Agents and Chemotherapy

April 2024  Volume 68  Issue 4 10.1128/aac.01459-23 7

https://doi.org/10.1128/aac.01459-23


circular, suggesting that it does not come from contamination. Moreover, the beta-
lactamase-encoding gene usually found as a contaminant in sequencing data is usually 
blaTEM-1, which is found here in the circular chromosome in the resistance genomic 
island with other ARGs. Yet, the beta-lactamase-encoding gene we extensively describe, 
blaMUN-1, encodes for MUN-1 whose closest homologs are not from the TEM family but 
TLA-1 and CepA which are found in E. coli and Bacteroides genus, respectively (22–24).

This paper has limitations. First, we could not determine the precise progenitor 
of blaMUN-1 because of its association with mobility. Moreover, no species constantly 
carrying blaMUN-1 could be identified. The precise genetic events leading to the presence 
of blaMUN-1 also remain hypothetical. The E. coli strain exhibited two morphotypes, one 
of which harbored an additional p0111 phage plasmid carrying two extra copies of the 
blaMUN-1 gene. These repetitive regions and mixed strains complicate the sequencing 
data analysis but the combination of short-read and long-read sequencing technologies 
undoubtedly facilitated read assembly and allowed the identification of this transfer 
between the chromosome and p0111. Yet, it cannot definitively establish the involve­
ment of p0111 in horizontal gene transfer (HGT). The P1 phage-plasmid subgroup, of 
which p0111 is a member, is specifically found in E. coli. It has been associated with ARGs 
but was not found in Bacteroidota phyla so far (25, 26). The blaMUN-1 gene was also 
detected on a plasmid in B. uniformis, raising the possibility that this plasmid contributed 
to the inter-phylum transfer event. In vitro experiments demonstrated that the trans­
formation of E. coli with a plasmid from Bacteroides fragilis was possible but conjuga­
tion between these two species was unsuccessful (27). However, in vitro experiments 
between two strains do not reflect a complex bacterial ecosystem. Inter-phylum transfer 
of DNA, including conjugation between Bacteroidota and Pseudomonadota, was shown 
to be possible within complex bacterial communities (8, 28, 29). A. putredinis and S. 
wadsworthensis are the closest related Bacteroidota and Pseudomonadota species based 
on their 16S rRNA-encoding genes but we cannot state which bacteria were involved 
in this HGT. However, the 7.6-kb genomic island should be involved as it is found 
in both phyla and is composed of genes associated with recombination events. The 

FIG 5 Frequency of the GMGC unigene GMGC10.047_051_980.UNKNOWN (100% identity and 96.4% cover in amino acid with the blaMUN-1 gene) in unigene 

sub-catalogs where it is found and the associated number of mapped reads. (A) Number of samples found in each sub-catalog containing (in red) or not (in blue) 

the GMGC unigene GMGC10.047_051_980.UNKNOWN. (B) Boxplot representation of normalized number of reads (out of 10 million reads) mapping onto the 

GMGC unigene GMGC10.047_051_980.UNKNOWN in each GMGC sub-catalog where it was found. The normalization takes into account the size of the gene and 

the number of reads in each sample from the sub-catalogs. First, median, and third quartiles are represented in each box. Whiskers extend from the hinge to the 

smallest/largest value at most/no further than 1.5× inter-quartile range from the hinge. Points represent outliers.
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gene annotated as a plasmid recombination enzyme-encoding gene using Bakta was 
annotated as a mobilization protein-encoding gene in NCBI. This gene is linked to the 
relaxase domain of MobM and is responsible for recombination in a site-specific manner. 
The E. coli strain from this study could have acquired DNA from a Bacteroidales species 
or a S. wadsworthensis harboring blaMUN-1, with subsequent transpositions of the 7.6-kb 
element on p0111 and the chromosome.

Here was the first, to our knowledge, evidence of a shared ESBL-encoding gene 
between Bacteroidota and Pseudomonadota phyla. This observation shows that 
ESBL-encoding gene transfers between distantly related species can spontaneously 
occur. How such transfer actually occurred and why it has not widely spread subse­
quently remain to be answered.

MATERIALS AND METHODS

Bioinformatic analyses

In our previous work (9), we identified a putative beta-lactamase-encoding gene 
sharing 100% nucleotide identity with a beta-lactamase-encoding gene from ResFin­
derFG (beta_lactamase|KU546399.1|feces|AMX, 100% identity, 93.9% cover) and Mustard 
(MC3.MG60.AS1.GP1.C4251.G1). We propose the name blaMUN-1 with regard to the city 
where the original strain was collected (Münster, Germany).

Strain characterization

The E. coli strain with the beta-lactamase-encoding gene was re-tested for antibiotic 
susceptibility by the disk diffusion method on Mueller-Hinton agar according to the 
CASFM/EUCAST guidelines (2022 v1.0) and re-sequenced using Illumina (San Diego, CA, 
USA) and Oxford Nanopore (Oxford Nanopore Technologies, UK) chemistries (Flongle 
R9.4.1). The quality of Illumina and Nanopore reads was assessed using FastQC (v0.11.9). 
Trim galore (v0.6.7) was used to remove Illumina adapters and trimmed reads with 
a quality threshold of 30. The hybrid assembly of Illumina and Nanopore reads was 
performed using Unicycler (v0.4.9b) (30). The phylogroup of the strain was performed 
using the ClermonTyping (v23.06.05) tool and the sequence type with MLST (v2.19.0). 
Serotype and virulence genes were characterized using the ABRicate (v1.0.0) software 
and the ecoh and a home-made database, respectively. The fimH allele was determined 
using FimTyper (v1.1). ARGs were identified using the Diamond software (v2.1.8) and 
the ResFinder database (v4.0) (31). PlasmidFinder was used to characterize plasmid 
incompatibility groups. Contigs were annotated using Bakta (v1.8.2) (32, 33).

Distribution of the blaMUN-1 gene

The distribution of blaMUN-1 and potential variants was assessed using BLASTN (70% 
identity, 80% coverage) online with RefSeq Genomes database from NCBI (as of 24 
August 2023) (15). Its genetic environment was annotated using Bakta (v1.8.2) and 
visualized using Clinker (34). Cophenetic distance between each species bearing the 
blaMUN-1 gene was determined using their 16S rRNA-encoding gene. If no 16S rRNA-
encoding gene could be found in any representative species bearing the blaMUN-1 gene, 
a 16S rRNA-encoding gene sequence from a non-bearing species was used. The 16S 
rRNA-encoding genes were used for alignment with MAFFT (v7.407), and a phylogenetic 
tree was made using IQ-TREE (v1.6.9, with ultrafast bootstrap and general time reversible 
model) (35–37). Additionally, blaMUN-1 was also searched in the GMGC and in MGnify (16, 
17). The distribution, relative abundance, and frequency of the best hit obtained with 
GMGC were also analyzed in the catalog.

Characterization of MUN-1

The blaMUN-1 gene was translated into protein and aligned with other beta-lactama­
ses retrieved from the ResFinder (v4.0) database using MAFFT (v7.407). To assess the 
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phylogenetic distance between each beta-lactamases, a phylogenetic tree was made 
using IQ-TREE (v1.6.9, with ultrafast bootstrap and LG model). The blaMUN-1 gene was 
cloned into a pTOPO-kanR vector using the pCR-Blunt TOPO cloning kit (Invitrogen) 
using specific primers spanning the full gene in order to express the whole protein. The 
resulting recombinant plasmid was transformed by heat shock into E. coli TOP10 (pTOPO/
blaMUN-1).

Purification of the MUN-1 beta-lactamase was carried out by ion-exchange chro­
matography, and its molecular mass was determined by SDS-12% PAGE (GeneScript) 
analysis. Purified beta-lactamase was used for kinetic measurements. IC50 values were 
determined for clavulanic acid, tazobactam, and avibactam (detailed protocol in the 
Supplementary Materials).
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