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Constant low-to-moderate
mechanical asymmetries during
800-m track running
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Australia, Perth, WA, Australia, 2Institute of Sport Sciences, ISSUL, University of Lausanne, Lausanne,
Switzerland, 3Movement to Health (M2H), Montpellier-1 University, EuroMov, Montpellier, France
Introduction: Modifications in asymmetry in response to self-paced efforts have
not been thoroughly documented, particularly regarding horizontally-derived
ground reaction force variables. We determined the magnitude and range of
gait asymmetries during 800 m track running.
Methods: Eighteen physical education students completed an 800 m self-paced
run on a 200 m indoor track. During the run, vertical and horizontal ground
reaction forces were measured at a sampling frequency of 500 Hz using a 5 m-
long force platform system, with data collected once per lap. The following
mechanical variables were determined for two consecutive steps: contact time
and duration of braking/push-off phases along with vertical/braking/push-off
peak forces and impulses. The group mean asymmetry scores were evaluated
using the “symmetry angle” (SA) formula, where scores of 0% and 100%
correspond to perfect symmetry and perfect asymmetry, respectively.
Results: There was no influence of distance interval on SA scores for any of the
nine biomechanical variables (P≥0.095). The SA scores were ∼1%–2% for
contact time (1.3 ± 0.5%), peak vertical forces (1.8 ± 0.9%), and vertical impulse
(1.7 ± 1.0%). The SA scores were ∼3%–8% for duration of braking (3.6 ± 1.1%) and
push-off (3.2 ± 1.4%) phases, peak braking (5.0 ± 2.1%) and push-off (6.9 ± 3.1%)
forces as well as braking (7.6 ± 2.3%) and push-off (7.7 ± 3.3%) impulses. The
running velocity progressively decreased at 300 m and 500 m compared to that
at 100 m but levelled off at 700 m (P < 0.001).
Discussion: There were no modifications in gait asymmetries, as measured at
200-m distance intervals during 800-m track running in physical education
students. The 800 m self-paced run did not impose greater mechanical
constraints on one side of the body. Experimental procedures for characterizing
the gait pattern during 800 m track running could be simplified by collecting
leg mechanical data from only one side.
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Introduction

Middle-distance events (i.e., 800 m and 1,500 m) are part of the programme contested

at major athletics championships. These races are associated with large cardio-metabolic

demands, as shown by attainment of maximal oxygen uptake only ∼45 s after the onset

of an overground 800 m run (1). In contrast to physiological requirements which are

well established, the biomechanical aspects of the 800 m race have been less studied, yet

available evidence indicates that high mechanical constraints are placed on the

neuromuscular system (2). For example, fatigued runners generated reduced peak
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braking and push-off forces, resulting in a shorter stride length

during 800 m track running (3). Collectively, these observations

suggest that as runners become fatigued, they become less

capable of tolerating ground impact.

One important methodological limitation of previous analyses is

that minimal asymmetry between legs is often assumed. This

assumption is often made to simplify data collection, such as

unilateral data collection due to camera positioning constraints or a

limited number of available force plates (4), and/or data analysis,

which involves pooling of data from both limbs (5). This is not in

keeping with the substantial body of knowledge suggesting that

most uninjured runners present low-to-moderate gait asymmetries

(6, 7). This suggests that collecting unilateral data may not be the

optimal approach for accurately describing the biomechanical effects

of fatigue during middle-distance events. This is because there is a

possibility that the lower extremities fatigue at different rates (8).

Several experiments have documented asymmetries in fatigued

runners. For example, Gao et al. (9) indicated that a fatigue

protocol induced by running resulted in increased asymmetry in

knee flexion angle, hip flexion angle, hip extension angle, and the

hip flexion moment. Furthermore, amateur runners completing a

fixed-pace 10 km treadmill run (∼45 min) exhibited increased

asymmetry. The asymmetric patterns were primarily observed in

the vertical oscillation of the center of mass, as evidenced by 3D

accelerometer data. Notably, significant changes occurred after

approximately 15 min of running (10). Contrastingly, no

noticeable differences in gait asymmetries were observed during

repeated treadmill sprints in elite female Rugby Sevens players

(11). Nevertheless, the current body of evidence regarding how

fatigue affects asymmetries during running bouts is inconclusive,

as highlighted in a systematic review conducted by Heil et al. (8).

In most previous asymmetry studies, experimentally-imposed

exercise intensities (i.e., fixed running velocity) were prescribed to

determine the effects of fatigue, with participants running for a

certain distance [i.e., 10,000 m (7)] or duration [i.e., 130 min (12)]

but also until exhaustion [i.e., at their maximal aerobic velocity

(13)]. This approach likely results in an unnatural control of stride

mechanical pattern, and is not representative of real-world

scenarios where runners tend to modulate their pace tactically (14).

While instrumented treadmills have mainly been used to quantify

asymmetry for multiple steps (10, 15), treadmill running mechanics

may differ from overground running during the stance phase [i.e.,

lower knee flexion and shorter contact times (16)]. When

comparing maximal effort bend sprinting to straight-line sprinting,

research unveils substantial differences between the left and right

steps in mechanical variables, including ground contact time,

touchdown distance, and hip flexion/extension and abduction/

adduction angles (17). It is possible (although currently unknown)

that the distinct functional roles of the left and right steps during

bend running could have implications for the straight sections of

an indoor track. To overcome this problem, modifications in

asymmetry in response to self-paced efforts should be assessed

during track running to reflect the actual running demands.

As reviewed by Heil et al. (8), most previous fatigue experiments

focussed on assessing changes in asymmetries by examining potential

pre-post differences (9, 18, 19), yet few have documented
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adjustments occurring at regular time points during the exhaustive

protocol. Because asymmetry scores are largely metric-dependent,

not only one parameter [e.g., contact time during a 5,000 m run

(20)] should be measured to consider a runner as asymmetric (7).

Another literature drawback is the use of separate (non-specific)

tasks/procedures such as unilateral jump tests to detect asymmetry

under fatigue (21), which may not depict “real” running demands

since muscles are stressed differently. Finally, asymmetry assessments

of exhaustive runs have often been limited to vertical ground reaction

force (GRF) variables (7, 22). In the horizontal direction, whether

braking and push-off are characterized by similar magnitude for

bilateral leg differences, and if the onset and progression of fatigue-

related asymmetries are also metric-dependent (i.e., phase duration,

peak force, impulse), is largely undetermined.

The purpose of this study was to assess stride mechanical

asymmetries, including phase duration, peak forces, and

impulses, during an 800-m self-paced run conducted on an

overground track. We hypothesized that variations in running

mechanics between limbs would vary depending on the specific

variable measured (greater for horizontally- vs. vertically-derived

variables) and that these differences would become more

pronounced as the distance covered increased.
Methods

Participants

A convenience sample of 18 male participants (mean age:

21.2 ± 2.8 years; mean height: 1.78 ± 0.40 m; mean body mass:

70.4 ± 6.6 kg) was recruited for this study. All participants were

physical education students who had engaged in physical

activities, including high-intensity efforts such as soccer and

rugby, in the six months preceding the study. Although they

were not specialists in middle-distance running, all participants

were accustomed to running an 800 m distance three times a

year as part of their physical performance assessment. Selection

criteria included a history of training volume exceeding 3 h/wk

on average (4.9 ± 1.2 h/wk), while a medical questionnaire was

administered to exclude individuals with any lower limb injuries

within the past three months. Participants provided written

informed consent to participate in this study after receiving

information about the procedures approved by the local ethical

committee and in compliance with the Declaration of Helsinki.
Protocol overview

While this study was conducted as part of a larger project

investigating alterations in running mechanics during 800 m self-

paced running (3), it is important to note that the primary

outcome measures in the current study (gait asymmetries) do

not overlap with previous analyses.

Participants commenced with a standardized warm-up

comprising ten min of running at a speed of 10 km/h, followed by

ten min of athletic drills, stretching, and three accelerated runs
frontiersin.org
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(interspersed with 1 min of passive rest) over a 50 m distance. The

running velocity for these accelerated runs was chosen subjectively

and corresponded to the start pace for an 800 m race, as described

previously (23). After a 3 min recovery period, participants

completed an 800 m time trial on a 200 m indoor Tartan track

with banked corner. Each athlete ran individually and had the

freedom to select their own pace to complete the 800 m time trial

as quickly as possible. Split times at every 200 m were provided to

the athletes, and verbal encouragement was given during the time

trial. All tests were conducted at the same time of day, between 4

and 8 pm, with a consistent air temperature of 20–22°C.
Data collection

At intervals equivalent to one lap (200 m), the vertical and

anterior-posterior components of the GRF were assessed using a

5 m-long force platform system with a natural frequency of

200 Hz, as positioned at the end of a straight line (i.e., 100, 300,

500, and 700 m from the start line) (23). This system comprised

five individual force plates, each measuring 1.00 m by 1.00 m,

arranged in series and covered with a Tartan mat. The force

plates were levelled with the stadium track. Kistler piezoelectric

sensors (KI 9067, Kistler, Winterthur, Switzerland) were installed

on each force platform.

Before conducting each test, the GRF signals were calibrated

following the manufacturer’s recommended procedure, with a

sampling frequency of 500 Hz, using MP100 hardware (Biopac

Systems Inc., Santa Barbara, CA, USA). The data were then

stored for subsequent analysis using commercially available

software (Acqknowledge 3.6.7, Biopac Systems Inc., CA, USA) (3).

The participants’ instantaneous running velocity on the force

platform system was recorded using a radar Stalker ATS

SystemTM (Radar Sales, Minneapolis, MN, USA) with a sampling

frequency of 35 Hz. This radar device was positioned on a tripod

at a height of 1 m, which approximately aligned with the height

of the participants’ center of mass.
Data analyses

During each lap, specifically at distance intervals of 100, 300,

500, and 700 m, there were typically two to four ground contacts

registered on the force platform system. The number of contacts

depended on factors such as step length and the distance

between the first foot contact and the entry point of the force

plate area. For each ground contact, the amplitude of the active

peak of the vertical GRFs was measured. Data from the two

highest consecutive steps, representing one stride within each

200 m interval, were selected for the final analysis.
Running mechanical parameters

Contact and flight times (in seconds) were defined based on the

vertical GRFs being either greater than or less than 10 N, following
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the method used by Girard et al. (3). Peak amplitudes of the vertical

GRFs, as well as the peak braking and push-off forces, were

calculated. The duration of the braking and push-off phases (in

seconds) during ground contact was assessed using the anterior-

posterior GRFs. Specifically, the braking phase was identified when

the anterior-posterior GRF signal was negative, and the push-off

phase when it was positive. Values for vertical, braking, and push-

off impulses (in N·s−1) were computed by multiplying the effective

force applied to the running surface by the corresponding foot-

ground contact times for each of these phases.
Symmetry angle

To assess inter-leg symmetry for each participant, the

symmetry angle (SA) equation, as described by Zifchock et al.

(24), was employed:

Symmetry angle (SA) =

45�� tan�1 left
right

� �� �����
����

90�
� 100

but if

45��tan�1 left
right

� �� �
. 90�

Then

45�� tan�1 left
right

� �
� 180�

� �����
����

90�
� 100

The SA is calculated as the arctan function of the ratio between two

values from each leg, with a SA score of 0% signifying perfect

symmetry and 100% indicating perfect asymmetry.
Statistical analysis

The data is presented as mean ± SD along with a 95%

confidence interval (CI95%). To analyze the impact of the

distance interval on the nine biomechanical variables, a repeated

measures single-factor ANOVA was conducted across each 200 m

interval (100, 300, 500, and 700 m). Mauchly’s test of sphericity

was employed to assess assumptions of variance across all

ANOVA results. In the event of a significant main effect, a

Bonferroni post-hoc multiple comparison was carried out. For

each ANOVA, partial eta-squared (η²) was computed as a

measure of effect size, with values of 0.01, 0.06, and above 0.14

considered as small, medium, and large, respectively (25). All

statistical analyses were performed using SPSS statistical software

version 27.0 (IBM Corp., Armonk, NY, USA), and the

significance level was set at P < 0.05.
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Results

Symmetry angle scores

The distance interval had no impact on SA scores for any of the

nine biomechanical variables (P≥ 0.095; see Figures 1–3). Therefore,

the group mean and the range of SA scores are subsequently

presented in the text as pooled values, which represent the average

across the four distance intervals. This approach provides a

meaningful benchmark for the expected magnitudes of asymmetry

during an 800 m time trial for each specific metric.

The SA scores were ∼1%–2% for contact time [1.3 ± 0.5%

(CI95% 1.0–1.5); range: 0.6–2.2], peak vertical forces [1.8 ± 0.9%

(CI95% 1.3–2.2); range: 0.5–3.3], and vertical impulse [1.7 ± 1.0%

(CI95% 1.2–2.2); range: 0.1–3.8] (Figure 1).
FIGURE 1

Vertical force-related variables for both legs (left panels) and symmetry ang
vertical forces (B,E) and vertical impulse (C,F). Values are mean with 95% co
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The SA scores were ∼3%–8% for duration of braking [3.6 ± 1.1%

(CI95% 3.1–4.2); range: 1.7–5.3] and push-off [3.2 ± 1.4% (CI95% 2.5–

3.9); range: 1.4–5.9] phases, peak braking [5.0 ± 2.1% (CI95% 4.0–

6.1); range: 0.6–9.4] and push-off [6.9 ± 3.1% (CI95% 5.4–8.5);

range: 1.7–12.8] forces as well as braking [7.6 ± 2.3% (CI95% 6.5–

8.7); range: 2.7–12.4] and push-off [7.7 ± 3.3% (CI95% 6.2–9.4);

range: 3.2–13.7] impulses (Figures 2, 3, respectively).
Running velocity

The average performance in the 800-m run was ∼156 ± 8 s,

with individual times ranging from 138 to 164 s. This

corresponds to an average running velocity of 17.6 ± 1.3 km.h−1.

Following the initial 100 m (at a speed of 19.4 km/h), the
le scores (right panels) during the 800 m run. Contact time (A,D), peak
nfidence interval (n= 18).
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FIGURE 2

Braking phase-related variables for both legs (left panels) and symmetry angle scores (right panels) during the 800 m run. Braking phase duration (A,D),
peak braking forces (B,E) and braking impulse (C,F). Values are mean with 95% confidence interval (n= 18).
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running velocity gradually decreased. At the 300 m mark, it had

reduced by −5.7 ± 4.6%, at the 500 m mark by −10.4 ± 8.3%, and

it stabilized at the 700 m mark with a decline of −9.1 ± 13.5%

compared to the initial velocity (all P < 0.001).
Discussion and implications

Summary of main findings

In an 800 m time trial where running velocity gradually decreased

between 300 and 700 m, no changes in SA scores were detected at any

distance intervals. This finding contradicts our initial hypothesis, as it

suggests that alterations in gait asymmetries did not intensify as the
Frontiers in Sports and Active Living 05
run progressed. It is worth noting that this occurred despite the

presence of fatigue-related changes in kinematics and kinetics,

which were described elsewhere (3). Overall, the 800 m time trial

did not result in increased mechanical constraints on one side of

the body compared to the other.

During an 800 m time trial where running velocity

progressively decreased from 300 to 700 m (3), no modification

in SA scores was observed at any distance intervals. Contrary to

our hypothesis, adjustments in gait asymmetries were not shown

to be magnified throughout the run. This occurred despite the

presence of fatigue-related kinematic and kinetic alterations,

which were described elsewhere (3). Overall, running an 800 m

time trial did not expose one side of the body to heightened

mechanical constraints.
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FIGURE 3

Push-off phase-related variables for both legs (left panels) and symmetry angle scores (right panels) during the 800 m run. Push-off phase duration (A,
D), peak push-off forces (B,E) and push-off impulse (C,F). Values are mean with 95% confidence interval (n= 18).
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Constant asymmetry throughout the run

The strong sense one gets from reading the Heil et al. (8) review

is that studies assessing the biomechanical manifestation of fatigue on

asymmetries have mixed findings, even for runs of the same distance

(i.e., 10,000 m) with reports of unchanged (7) or increased side-to-

side differences (10). In line with the well-preserved SA scores

reported here for 800 m self-paced track running, two previous

studies failed to measure meaningful asymmetry differences

throughout a 5,000 m time trial [i.e., every 200 m (20)] and a

constant-velocity 10,000 m treadmill run [i.e., at 1,500, 3,000, 5,000,

7,500 and 9,500 m distance intervals (7)]. Contrastingly, earlier

research has documented that various biomechanical factors, such

as knee internal rotation and knee stiffness (22), or anteroposterior
Frontiers in Sports and Active Living 06
accelerations (26), tend to exhibit increased asymmetry during

fatigued running. Furthermore, SA scores for knee abduction

moment, knee extension angles, and hip joint flexion moment have

been shown to rise after participants completed running-induced

fatigue protocols (9, 19). These seemingly discrepant findings

concerning biomechanical manifestation of fatigue may be related

to the diversity in the used protocols. For example, some studies

use treadmill runs at constant velocity (7, 10), whereas other

studies implement self-paced overground trials (20) to assess gait

asymmetries during exhaustive runs. It is clear that the former

methods are less appropriate for evaluating whether running-

induced fatigue alters asymmetries because they could lead to an

unnatural control of gait characteristics. Evaluating changes in

bilateral leg asymmetry during self-paced runs, like 800 m track
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running, poses challenges in distinguishing true fatigue from auto-

regulatory mechanisms. External regulation of running speed at

200 m intervals may help explore variations in symmetry, but its

accuracy, especially during overground running, may be questionable.

Arguably, the adaptations from one side to the other are not solely

mechanically driven but also depend on neuromuscular control

strategies, which can be influenced by increasing fatigue, even when

external load metrics (i.e., GRF signals) do not show asymmetry, as

observed in this study. In a study by Jacques et al. (27), lower

activation of the soleus muscle was observed in the dominant leg

during the running phase of a simulated cycle-run transition,

indicating a greater susceptibility to fatigue. Interestingly, such

differences in muscle activation between legs were probably not

caused by external loading since there were no kinetic and kinematic

differences between the limbs. Future middle-distance investigations

should therefore determine if a modification in inter-segmental

coordination, that requires further EMG [i.e., timing and amplitude

of muscle activation; Jacques et al. (27)] and kinematic [i.e., joint

angles and moments (9)] data from dominant and non-dominant

legs, would emerge to maintain constant asymmetries under fatigue.
SA scores are inconsistent between
vertically- vs. horizontally-derived variables

Another important finding is that, on average, vertically-derived

measures exhibited the lowest degree of asymmetry when compared

to mechanical variables calculated from the horizontal GRF signal.

Similar observations have been made during single (15) or

repeated treadmill sprints (11, 28) and a graded exercise test (29),

although contradictory findings also exist [e.g., 30 m sprint on a

non-motorized treadmill (30)]. A qualitative examination of the

SA scores further suggests that asymmetries in peak forces and

impulses (∼3%–8%) were approximately twice as large as those in

phase durations (∼1%–2%). Consistent with previous research on

perceptually-regulated interval running (31), adjustments occurring

during the braking and push-off phases had comparable

asymmetry scores. In contrast, deviations from symmetry,

particularly for peak force, were reported to be two-to-three times

larger during braking than during push-off phases in the context

of repeated treadmill sprints (11) and across a range of constant

velocities from low to high (6). Taken together, these observations

emphasize that the extent of side-to-side differences depends on

the specific metric, with variables derived from the horizontal GRF

signal being the most asymmetrical.
Individual responses

Consistent with earlier investigations (29, 31), the SA scores for

most runners exhibited a range roughly double the magnitude of the

mean value across all metrics. A plausible explanation for this

phenomenon could be the substantial variation in running styles

among participants, as we did not assess their foot strike patterns in

this study (32). Other individual characteristics not measured in this

study that can contribute to large inter-individual differences in gait
Frontiers in Sports and Active Living 07
asymmetry include leg length discrepancies, strength asymmetries,

joint range of motion, and previous injury (33). Furthermore, a

considerable proportion of our participant sample consisted of team

sport players who often display asymmetry between their dominant

and non-dominant sides, which is typically attributed to the

repetitive and unilateral nature of certain sport-specific actions [i.e.,

exclusively using the dominant leg to kick the ball (33)]. It is crucial

to differentiate between a broad trend derived from the group mean

SA scores of all tested runners and the individual diversity in the

asymmetry profile when quantifying bilateral leg differences during

fatigued running. Depending on the “baseline” SA scores (i.e., at the

100 m mark), variations in the alterations of asymmetries during

later distance intervals (i.e., 300–700 m intervals) may occur for

individuals with higher or lower asymmetry values in “fresh”

conditions (8). A suggestion for future studies is therefore to focus

less on searching for universal fatigue-induced change in SA scores

and more on exploring the emergence of context-specific

compensatory strategies (34).
Limitations and additional considerations

This study has several noteworthy limitations. Firstly, an

important caveat was that due to the use of a 5 m force platform

system, we analyzed only one stride (comprising one left and one

right step) at each of the four distance intervals. Furthermore, we

could not ascertain whether the initial ground contact was made

with the left or right foot (or vice versa). Consequently, it can not

be ruled out that the first step on the force plate may differ between

laps for a given individual. We therefore relied on the SA score

(24), a dimensionless measure of asymmetry that mitigates artificial

inflation or problems associated with normalization to one of the

two limbs, unlike other symmetry measures. In our context, this

made the SA score a robust metric for assessing asymmetry when

comparing kinetic variables. Secondly, the study’s participants

consisted of healthy, male physical education students who were

not specialized in running. Consequently, it may not be appropriate

to generalize our findings to athletes with a history of injury or

differing running experience. Mo et al. (35) provided backing for

this observation, noting that novice runners exhibited inconsistent

asymmetries, recreational runners displayed their most symmetrical

pattern at their preferred velocity, and competitive runners

demonstrated a more symmetrical manner overall. Thirdly, it is

important to note that a considerable portion of the total distance

covered on a 200 m indoor track involves the bend portion.

Although we collected GRFs at the end of the straight line, it can

not be ruled out that SA scores (and fatigue-related asymmetries)

might have shown variations if force data were collected on curved

paths, introducing distinct mechanical constraints between the

inside and outside legs (36). It is worth mentioning that gait

asymmetry for contact time remained relatively consistent on both

straight and curved sections (2.7% vs. 2.8%) during a 5,000 m time

trial conducted on a 400 m synthetic track (20).

The absence of a significant time interval effect in our study

may, in part, be attributed to the relatively modest sample size of

eighteen participants. Although we did not conduct an a priori
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sample size calculation, it is worth mentioning that our sample size

aligns with the range reported in a recent systematic review that

explored the impact of exercise-induced fatigue on inter-limb

asymmetries (8). Estimating an appropriate sample size for gait

asymmetry studies poses challenges as it involves determining

the main parameter of interest while considering expected power

and effect size. As also emphasized in our study, relying on a

single metric may not fully capture the comprehensive

biomechanical response in asymmetry studies (33).

More sophisticated statistical approaches, such as statistical

parametric mapping, are needed to quantify asymmetry in fatigued

runners. These methods consider the entire gait cycle rather than

discrete values (i.e., peak forces), and can determine if force traces

differ between legs at specific periods during the gait cycle (27). To

address potential variability in gait asymmetry, it may also be

beneficial to consider using the symmetry function index (37) in

future studies examining the entire gait cycle. This approach involves

calculating the integral of the absolute difference between the left and

right leg’s stance phases, allowing for the analysis of symmetry from

various perspectives, including sagittal, transverse, and frontal

indices. To better understand the biomechanical manifestation of

fatigue on side-to-side differences, it is recommended that future

running studies include information about ankle, knee, and hip joint

angles and angular velocities using a 3-D motion capture system.

Indeed, previous studies assessing this aspect have reported increased

bilateral asymmetries for gait kinematics (9, 19, 22). Finally, in our

study, it was not verified whether the tested runners were rearfoot,

midfoot, or forefoot strikers. Therefore, it remains unknown to what

extent the habitual foot strike pattern influences the mechanical side-

to-side differences during track running.
Conclusion

In non-specialist runners, there were no discernible differences in

asymmetries between vertically-derived parameters (i.e., contact time,

peak vertical force, and vertical impulses) and horizontally-derived

parameters (i.e., braking/push-off phase duration, peak braking/

push-off forces, and braking/push-off impulses) during 800 m self-

paced track running. Regardless of the distance interval, bilateral leg

differences were approximately twice as large for the braking and

push-off phases compared to vertical GRF asymmetry. While the

mean SA scores provided in this study offer reference data, it is

essential to note that these values should not serve as fixed

benchmarks for expected asymmetry magnitude, as they are

inherently influenced by individual characteristics and the specific

task (33). Practically, experimental procedures for characterizing the

gait pattern during 800-m track running could be simplified by

collecting leg mechanical data from only one side.
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