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Evolutionary transitions to a social lifestyle in insects are
associated with lineage-specific changes in gene expression,
but the key nodes that drive these regulatory changes are
unknown. We examined the relationship between social
organization and lineage-specific microRNAs (miRNAs).
Genome scans across 12 bee species showed that miRNA copy-
number is mostly conserved and not associated with sociality.
However, deep sequencing of small RNAs in six bee species
revealed a substantial proportion (20–35%) of detected miRNAs
had lineage-specific expression in the brain, 24–72% of which
did not have homologues in other species. Lineage-specific
miRNAs disproportionately target lineage-specific genes,
and have lower expression levels than shared miRNAs. The
predicted targets of lineage-specific miRNAs are not enriched
for genes with caste-biased expression or genes under positive
selection in social species. Together, these results suggest that
novel miRNAs may coevolve with novel genes, and thus
contribute to lineage-specific patterns of evolution in bees, but
do not appear to have significant influence on social evolution.
Our analyses also support the hypothesis that many new
miRNAs are purged by selection due to deleterious effects on
mRNA targets, and suggest genome structure is not as
influential in regulating bee miRNA evolution as has been
shown for mammalian miRNAs.
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1. Introduction

Eusociality has evolved several times in the hymenopteran insects. In itsmost basic form, this lifestyle involves
reproductive queens living with their worker daughters who forgo direct reproduction to cooperatively
defend the nest, care for their siblings and forage for the colony. Due to the complex nature of this lifestyle,
the evolution of eusociality probably requires modification of molecular pathways related to development,
behaviour, neurobiology, physiology and morphology [1]. The evolution of eusociality is thus expected to
involve both genetic changes as well as changes in the way the genome responds to the environment [2].
Recent studies have found that social insect species share evolutionary genomic changes that may reflect
an increased capacity for gene regulation [3,4]. Evidence for this comes from signatures of rapid evolution
of genes involved in transcription and translation, gene family expansions of transcription factors, and
increasing potential for transcription factor binding activity in conserved genes. Interestingly, while these
types of regulatory changes are common to independent origins and elaborations of eusociality, the specific
genes and regulatory elements involved are unique to each lineage [3–5]. This suggests that lineage-specific
processes are influential in generating new patterns of gene regulation that contribute to social behaviour.

Small, non-coding RNAs such asmicroRNAs (miRNAs)may be an important source of regulatory novelty
associated with the evolution of phenotypic complexity, including eusociality. MiRNAs are short (approx. 21–
22 nt), non-codingRNAs that regulate protein-coding genes through post-transcriptional binding to the 30 UTR
ofmessengerRNA(mRNA) transcripts, inmost casespreventing translationorcausingmRNAdegradation [6].
Each miRNA can target dozens to hundreds of mRNAs, and may therefore regulate multiple gene networks
[6,7]. Like mRNAs, miRNAs are spatially and temporally specific in their expression patterns. Thus, complex
changes in gene regulation can be achieved with relatively minor changes in miRNA expression. This can
result in major phenotypic shifts or fine-tuning of phenotypic optimization [6]. Novel miRNAs originate in a
variety of genomic features, including exons and introns of protein-coding and non-coding RNA genes,
transposable elements, pseudogenes or intergenic regions, and thus emerge and disappear over relatively
rapid timescales [8–11]. It is thus not surprising that expansion of the miRNA repertoire is associated with
the evolution of morphological complexity across the tree of life [9,12,13].

There is accumulating evidence for a role of miRNAs in regulating the social lives of insects. While most
miRNAs seem to be conserved in major lineages of insects [14,15], expression levels vary across individuals
performing different social functions, such as between workers performing different tasks in honeybees [16–18].
MiRNAs may also play a role in caste determination, as queen- and worker-destined larvae express different
sets of miRNAs throughout development in honeybees [19–21] and bumblebees [22]. Additionally, miRNAs
play a role in regulating some physiological correlates of social behaviour in honeybees, including activation of
ovaries in queens and workers [23] and response to the reproductive protein vitellogenin [24]. Together, these
studies suggest that miRNAs could play a role in the evolution of eusociality through their effects on gene
regulatory networks involved in socially relevant traits. A rigorous test of this hypothesis requires comparisons
of the presence, expression and function of miRNAs across related species that vary in social organization.

Here,we present a comparative analysis ofmiRNAs across bee specieswith variable social organization.
We first looked for miRNA repertoire expansions associated with eusociality by scanning 12 bee genomes
for known miRNAs, and statistically evaluating copy-number of each miRNA type with regard to
differences in sociality in a phylogenetic model. We then described and compared miRNAs expressed in
the brains of six bee species from three families that include repeated origins of eusociality. We tested the
hypothesis that changes in gene regulatory function associated with social evolution are facilitated by
lineage-specific miRNAs with two predictions: (i) If lineage-specific miRNAs are assimilated into
ancestral gene networks, their predicted target genes should be ancient and conserved. (ii) If lineage-
specific miRNAs play a role in social evolution, their predicted targets should be enriched for genes
associated with social behaviour (e.g. caste-biased expression) or genes that are under selection in social
species. We do not find evidence for a role of lineage-specific miRNAs in social evolution. However, we
do identify unexpected patterns of coevolution between miRNAs and their putative target genes. We
interpreted our results in light of current hypotheses for patterns of miRNA evolution in vertebrates.
2. Material and methods
2.1. microRNA diversification
We performed genome scans for small RNAs across 12 bee genomes (electronic supplementary material,
table S1) using covariance models implemented with Infernal (v. 1.1) cmsearch using the gathering
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Figure 1. Diversity of miRNAs expressed in the brains of six bee species. The three types of homology (shades of grey) correspond to
those in table 1. Black has not been previously detected in other species. Pie size corresponds to number of miRNAs detected from
small RNA sequencing. Boxes indicate social organization (green, complex eusociality; yellow, basic eusociality; pink, facultative
eusociality; blue, solitary). Phylogenetic relationships are following previous studies [28–30].
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threshold for inclusion (–cut_ga) [25] to find all Rfam (release 29.0) accessions in each genome. We used
Spearman rank regressions to test for associations between miRNA copy-number and social biology. We
categorized each species as solitary, facultative basic eusocial, obligate basic eusocial or obligate complex
eusocial following Kapheim et al. [4]. We used the ape package (v. 3.1) [26] in R (v. 3.5.0) [27] to calculate
phylogenetic independent contrasts for both social organization and miRNA copy-number, cor.test to
implement Spearman’s rank correlations and p.adjust with the Benjamini–Hochberg method to correct
for multiple comparisons.
2.2. Sample acquisition, RNA isolation and sequencing
We used the brain from a single adult female from six bee species, including both eusocial and solitary
species with well-studied behaviour from three bee families (figure 1). Details of sample collection, RNA
isolation and sequencing are provided in electronic supplementary material, table S2.
2.3. microRNA discovery and quantification
We used miRDeep2 (v. 2.0.0.8) [31] to identify and quantify miRNAs expressed in the brains of each
species, with a three-step process of miRNA detection to identify homologous miRNAs between
species. First, we gathered mature miRNA sequences previously described in other insect species
(electronic supplementary material, table S3). Reads for each sample were quality filtered (minimum
length 18, removal of reads with non-standard bases), adapter-trimmed, and aligned to the species’
genome (electronic supplementary material, table S1) with the mapper.pl script. Approximately
61–84% of reads successfully mapped (electronic supplementary material, table S2).

We then identified known and novel miRNAs in each sample with the miRDeep2.pl script, using our
set of insect miRNAs (electronic supplementary material, table S3) as known mature sequences. The
quantifier.pl script generated sets of known and novel miRNAs in each sample, along with quantified
expression information. We filtered novel miRNAs in each species according to the following criteria:
no rRNA/tRNA similarities, minimum of five reads each on mature and star strands of the hairpin
sequence, and a randfold p-value < 0.05. Randfold describes the RNA secondary structure of potential
precursor miR (pre-miRs) [31].
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We used these filtered miRNAs in a second run of detection and quantification, repeating the pipeline

above after adding mature sequences of novel miRNAs from each species to our set of known miRNAs.
This allowed detection of homologous miRNAs (based on matching seed sequences) not represented in
miRBase across our species. We applied the same set of filtering criteria as above.

Some novel miRNAs may exist in the genomes of other bees, even if they are not expressed. We used
blastn (-perc_identity 50 -evalue 1e-5) to search for homologous pre-miR sequences in 12 bee genomes
(electronic supplementary material, table S1) for each novel miRNA without a matching seed sequence.

2.4. microRNA localization
We used bedtools (v. 2.27.0) intersect [32] to find overlap of miRNAs with predicted gene models
(electronic supplementary material, table S4), and repetitive element annotations from previously
established repeat libraries that had been generated using Repeatmasker [4,28,33–36].

2.5. Target prediction
We extracted potential target sites 500 bp downstream from each gene model using bedtools flank and
getfasta [32], following previous studies [19] and an average 30 UTR of 442 nt in Drosophila melanogaster
[37]. Target prediction was run with miRanda (v. 3.3) [38] (minimum energy threshold −20, minimum
score 140, strict alignment to seed region [-en -20 -sc 140 –strict]) and RNAhybrid (v. 2.12) [39]
(minimum free energy threshold −20). We kept only miRNA-target gene pairs that were predicted by
both programs with p < 0.01.

2.6. Target age and functional enrichment
Gene ages were determined using orthogroups from OrthoDB (v. 9) [40], which includes Apis mellifera,
Bombus impatiens, Bombus terrestris, and Megachile rotundata. Gene sets of Megalopta genalis and Nomia
melanderi were mapped to Metazoa-level (330 species) orthogroups. Gene ages were inferred from the
taxonomic breadth of all species in each orthogroup, with at least one representative from each of the
following groups which does not belong to the next lower group: Vertebrata, Metazoa, Arthropoda,
Insecta, Holometabola, Hymenoptera, Aculeata, Apoidea. Genes without identifiable orthologues were
labelled ‘Unique’.

2.7. Enrichment tests of lineage-specific miRNA targets
For each species, gene expression datasets related to socially relevant phenotypes (e.g. caste)were compared
against targets of lineage-specificmiRNAs (electronic supplementarymaterial, table S5). ForM. genalis caste
data, RNAseq reads from Jones et al. [41] (NCBI PRJNA331103) were trimmed using Trimmomatic (v. 0.36)
[42] and aligned to a draft genome assembly ofM. genalis (NCBI PRJNA494872) [35] using STAR (v. 2.5.3)
[43]. Gene counts were obtained using featureCounts in the Subread package (v. 1.5.2) [44], and differential
expression analysis was conducted using edgeR [45] as in Jones et al. [41].

We also tested datasets identifying genes under selection in bee species [34,46,47] or across social
lineages of bees [4,48] for enrichment of lineage-specific miRNA targets (electronic supplementary
material, table S5). When necessary, we used reciprocal blastp (evalue < 10e−5) to identify orthologous
genes, and only genes with putative orthologues were included. Hypergeometric tests (using phyper
in R) were used to test for over- or under-enrichment between each pair of lists. The representation
factor (RF) given represents the degree of overlap relative to random expectation (RF = 1). RF
is calculated as RF = x/E, where x is the number of genes in common between two lists and E is
the expected number of shared genes. (E = nD/N, where n is the number of genes in list 1, D is the
number of genes in list 2, and N is the total number of genes.)
3. Results
3.1. Low levels of microRNA copy-number variation among bee genomes
Our genome scans revealed very little variation in copy-number of most miRNAs. Of the 50 miRNA Rfam
accessions, half had the same number of copies (1 or 2) in all 12 bee genomes (electronic supplementary
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material, table S6). The mean copy-number across all miRNAs in all bee genomes was 1.19 ± 0.74. One

exception was miR-1122, for which we found 70 copies in M. genalis, but no copies in the other species.
We did not find any significant associations between miRNA copy-number and social organization
(electronic supplementary material, table S6).

3.2. Expressed microRNA diversity in bee brains
We identified 97–245 known and novelmiRNAs expressed in the brains of each of our six species (electronic
supplementary material, table S7). The majority of these were intergenic or within introns (table 1). Each
species had at least one miRNA originating from exons of protein-coding genes and repetitive
DNA (table 1). Most of the overlap between miRNA precursors and repetitive DNA corresponded
to uncharacterized repeat elements, with few overlaps with well-characterized transposons or
retrotransposons (table 1). Variation in number of expressed miRNAs in each species was not related to
observable technical variation, such as sequencing centre, number of reads, number or proportion of
reads mapped to the genome or type of sample from which they were obtained (electronic
supplementary material, table S2). This variation in number of expressed miRNAs is similar to that
found in other groups of species with shorter divergence times [49].

Most detected miRNAs in each species had known homologues in at least one other species. However,
each species had a substantial proportion (20–35%) of detected miRNAs with lineage-specific expression in
the brain (table 1 and figure 1), 24–72% of which did not have any known homologues in other species
(table 1). We defined lineage-specific miRNAs as those with lineage-specific expression and with no seed
match to a known mature miRNA (table 1, columns 6–7), because these show the most evidence of being
real miRNAs that are unique to a particular species. (Sequence similarity of pre-miRs in other bee
genomes is not evidence that a mature miRNA is transcribed.) Lineage-specific miRNAs had
significantly lower expression levels compared with homologous miRNAs in each species (t-tests:
A. mellfera, M. rotundata, M. genalis p < 0.001, B. impatiens, B. terrestris p < 0.01, N. melanderi p < 0.05).

Lineage-specific miRNAs were localized both within genes and intergenically. The proportion of
lineage-specific miRNAs that were intra- or intergenic was similar to miRNAs with homologues for
every species except N. melanderi, for which a disproportionate number of lineage-specific miRNAs
were intragenic (χ2 = 4.78, p = 0.03). Genes that serve as hosts for intragenic lineage-specific miRNAs
were not significantly older than would be expected by chance (i.e. belong to orthogroups shared
with vertebrates) in any species (hypergeometric tests: p = 0.14–0.76). Across all species, genes serving
as hosts for intragenic lineage-specific miRNAs were not significantly older than genes hosting
miRNAs with known homologues (χ2 tests: p = 0.05–0.89).

Of miRNAs with homologues, most were expressed in all six species, but one miRNA (miR-305) was
expressed in the brains of each of the social, but not the solitary, species (figure 2). Although we did not
detect expression of miR-305 in the two solitary species, M. rotundata and N. melanderi, genome scans of
each species against the Rfam database suggested all bee species have one copy of miR-305 (electronic
supplementary material, table S6). Predicted targets of miR-305 differed across species. Oxysterol (OG
EOG091G0FV2) was a common target among the (social) Apidae bees, but was not among the targets for
M. genalis. However, arylformamidase (OG EOG091G0KT8), which is also involved in lipid metabolism and
transport, was a predicted target in M. genalis. Synaptobrevin (OG EOG091G0MPE), which is involved in
synaptic plasticity and neurotransmitter release, was a predicted target of miR-305 in B. impatiens.

3.3. Lineage-specific microRNAs preferentially target lineage-specific genes, but not genes with
caste-biased expression or genes under positive selection

If lineage-specific changes in gene regulatory function associated with social evolution are facilitated by
novel miRNAs inserted into existing gene networks, then predicted targets of lineage-specific miRNAs
should be highly conserved and enriched for genes with known functions in social evolution. Most
predicted mRNA targets of lineage-specific miRNAs were highly conserved and belonged to
orthogroups shared by vertebrates (figure 3; electronic supplementary material, table S8), but not
significantly more than expected given the large number of conserved genes in each genome
(hypergeometric tests: p > 0.99). We did, however, find significant enrichment for genes unique to each
species among the predicted targets of lineage-specific miRNAs (hypergeometric tests: A. mellifera:
RF = 1.51, p = 5.44e−5; B. impatiens: RF = 1.28, p = 0.02; B. terrestris: RF = 1.78, p = 1.90e−6; M. rotundata:
RF = 1.79, p = 0.0002; M. genalis: RF = 1.62, p = 1.48e−12; N. melanderi: RF = 1.78, p = 9.02e−5), indicating
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that novel miRNAs are more likely to target novel genes than would be expected by chance (figure 3;
electronic supplementary material, table S8).

We did not find support for the prediction that novel miRNAs should target genes that function in social
behaviour and evolution. We first considered the genes that are differentially expressed between castes in
social species, because these are likely to be involved in regulating behavioural and physiological aspects of
sociality. Predicted targets of lineage-specific miRNAs were not significantly enriched for genes with caste-
biased expression in the social species (electronic supplementary material, figure S1 and table S5). Also
contrary to our prediction, targets of lineage-specific miRNAs were not enriched for genes under positive
selection in any species (electronic supplementary material, figure S1 and table S5). In fact, genes under
positive selection in the halictid bees were significantly depleted for targets of lineage-specific miRNAs
(hypergeometric tests: M. genalis: RF = 0.3, p= 3.72e−7; N. melanderi: RF = 0.3, p= 9.79e−4). We also assessed
overlaps with genes previously found to be under positive selection in social species, compared with solitary
species [4,48], but found no significant overlap or depletion with predicted targets of lineage-specific genes
(hypergeometric tests: p> 0.05; electronic supplementary material, figure S1 and table S5).
Soc.Open
Sci.7:200517
4. Discussion
Eusociality is a major evolutionary innovation that requires regulatory changes in a wide range of
molecular pathways [1]. We tested the hypothesis that miRNAs play a role in the evolution of
eusociality via their regulatory effects on gene networks by comparing miRNA expression in a single
bee from three eusocial and three solitary species that span three families. Our results provide very
limited support for this hypothesis.

We identified a single miRNA (miR-305) that was expressed exclusively in the brains of social bees in
our study. The presence of this miRNA in the solitary bee genomes suggests that an evolutionary shift in
expression pattern may have accompanied at least two independent origins of eusociality in bees. This
miRNA coordinates Insulin and Notch signalling in D. melanogaster, both of which are important
regulators of social dynamics in insects [50–52]. Interestingly, miR-305 is also upregulated in worker-
destined compared with queen-destined honeybee larvae, and may thus play a role in caste
differentiation [20]. Further investigation with deeper sampling and additional social and solitary
species is necessary to determine whether this miRNA is expressed exclusively in the brains of social
species and how it may influence social behaviour.

We focused attention on miRNAs for which no mature miRNAs with seed matches were detected in
any other species, because these may influence the lineage-specific patterns of gene regulatory changes
previously shown to influence social evolution [3,4]. We hypothesized that if novel miRNAs are inserted
into existing gene networks that become co-opted for social evolution, they should target genes that are
highly conserved. Instead, we find that targets of lineage-specific miRNAs are enriched for lineage-
specific genes, while genes belonging to ancient orthogroups were not more likely to be targets than
expected by chance. This suggests that novel miRNAs coevolve with novel genes, as has been shown
for the evolution of cognitive function in humans [53]. Previous work in honeybees has shown that
taxonomically restricted genes play an important role in social evolution, with expression of these
genes biased toward glands with specialized functions for life in a social colony (e.g. the
hypopharyngeal and sting glands) [54], and upregulated in workers [55]. Thus, it is reasonable to
expect that new miRNAs targeting new genes could have important social functions.

Alternatively, it is possible that new miRNAs targeting lineage-specific genes are transient and will be
purged by natural selection because they are less integrated into existing gene networks [10,56,57].
Emergent miRNAs are expected to initially have limited expression to mitigate potential deleterious
effects on their target genes. Thus, lineage-specific miRNAs with low levels of expression may be in the
process of being purged and may not have accumulated gene targets with important functions [9,10].
Evidence for this model comes from primates [58] and flies [11,59]. Likewise, we find that lineage-specific
miRNAs have reduced expression compared with those with homologues. A purging process could
explain why there are large differences in the numbers of miRNAs detected in even closely related species
(e.g. the two Bombus species), though this could also be an effect of limited sampling. Functional analysis
of lineage-specific genes in additional tissues and life stageswill help to resolve their roles in social evolution.

We do not find support for the prediction that lineage-specific miRNAs should target genes
associated with caste in social bees. Consistent with this observation, regulatory relationships between
miRNAs and genes with caste-biased expression were not found among two other social insect
species [60]. Previous studies have identified miRNAs that are differentially expressed between queens
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and workers in honeybees [19–21] and bumblebees [22]. However, without comparison with other bee

species, it was unknown if these caste-biased miRNAs were unique to social species. Our results
suggest this is not the case. This is perhaps unsurprising in light of our finding that lineage-specific
miRNAs target an unexpectedly high proportion of lineage-specific genes, potentially through
coevolution. Although lineage-specific genes play an important role in sociality [61], most caste-biased
genes belong to highly conserved molecular pathways [62].

Lineage-specific miRNAs also showed no evidence for preferential targeting of genes under positive
selection—either within or across species. By contrast, we find these emergent miRNAs are less likely
than expected by chance to target genes under positive selection in the two halictid bees. A potential
explanation is that genes adaptively targeted by miRNAs tend to be under purifying selection to
maintain regulatory relationships with their targets, preventing gene mis-expression [63–65]. This
selective constraint is likely to be most significant in the 30 UTR, where miRNA binding sites are located.

A more likely explanation for both of these negative results involves the hypothesized pattern of
miRNA origins and assimilation [10]. This model suggests that new miRNAs are likely to have many
targets throughout the genome due to chance. Most initial miRNA-target regulatory relationships are
likely to have slightly deleterious effects, and would be quickly purged through purifying selection.
These deleterious effects could be particularly strong for target genes with caste-biased expression or
undergoing positive selection, because changes in the functional regulation of these genes are likely to
have significant fitness consequences. Also, genes with caste-biased expression and those under
positive selection are undergoing rapid evolution [66], and thus may be more likely to ‘escape’ control
by errant miRNAs. Indeed, it is easier for mRNAs to lose miRNA target binding sites, which typically
require exact sequence matches, than to gain them [10]. Thus, emergent miRNAs may not be expected
to target adaptively or fast evolving genes, regardless of their role in social evolution.

Our analyses reveal important differences in patterns of miRNA evolution between bees and other
species. For example, expansion in miRNA repertoire is associated with the evolution of animal
complexity in a wide range of species [9,12,13]. The evolution of eusociality from a solitary ancestor is
associated with increases in phenotypic complexity, and considered to be one of the major transitions
in evolution. We therefore hypothesized that evolutionary increases in social complexity would be
associated with expansions in the number of miRNAs found within bee genomes. On the contrary, we
find that most bees have a single copy of previously identified miRNAs in their genomes, consistent
with results of comparative genome scans across ants [3]. A recent study of miRNA diversity in
insects found that morphological innovations such as holometabolous development was accompanied
by the acquisition of only three miRNA families [15]. This suggests that insect evolution is not as
reliant on major expansions of miRNA families as other taxonomic groups.

Additionally, our characterization of lineage-specific miRNAs expressed in the brain of each species
reveals that genome structure is not as influential in regulating bee miRNA evolution as has been shown
for human miRNAs. Novel human miRNAs tend to arise within ancient genes that have multiple
functions and broad expression patterns, which may facilitate persistence of emergent miRNAs by
increasing their expression repertoire [56,57]. In our study, lineage-specific miRNAs did not differ from
previously identified miRNAs in their genomic locations in all but one species (N. melanderi). We also do
not find a consistent pattern between new miRNAs and host gene age, even though a similar proportion of
bee miRNAs are located within introns (31–43%; table 1), compared with in vertebrates (36–65%) [8].
However, the fact that 73–88% of bee miRNAs localized to genes are encoded on the sense strand suggests
that they would benefit from host transcription, as is observed in vertebrates [8]. Additional research with
insects will be necessary to identify general patterns of miRNA evolution in relationship to genome structure.

Our study identifies patterns of miRNA evolution in a set of bees that vary in social organization, and
highlights important similarities and differences in the emergence patterns and functions of mammalian
and insect genomes. We find no evidence that emergent miRNAs function in lineage-specific patterns of
social evolution, but we do find evidence of potential coevolution of novel miRNAs and species-specific
targets. We do not see an overall increase in the number of miRNAs in the genome or expressed in the
brains of species with more complex eusociality. However, we do find one miRNA (miR-305) expressed
in the brains of social, but not solitary, species. Empirical tests of miRNA function across additional
species with variable social organization will further improve our understanding of how gene
regulatory evolution gives rise to eusociality.

Ethics. Permission to collect samples of Megalopta genalis in Panama was granted by the Smithsonian Tropical Research
Institute, and samples were exported under permit SEX/A-37-15. Permission to collect samples of Nomia melanderiwas
granted by private landowners.



royalsocietypublishing.org/journal/rsos
R.Soc.Ope

10
Data accessibility. Sequences are deposited at NCBI SRA as BioProject PRJNA559906. Other data supporting this article are
available in electronic supplementary material, tables S1–S8. Relevant code for this research is stored in GitHub: www.
github.com/kapheimlab/bee_microRNA and have been archived within the Zenodo repository: https://zenodo.org/
badge/latestdoi/250347886.
Authors’ contribution. K.M.K. conceived of the study and designed the experiments. K.M.K., E.S., G.B. and Y.B.-S. collected
the data. K.M.K., B.M.J., E.S. and R.M.W. analysed the data. K.M.K. wrote the initial draft of the manuscript. All
authors edited and approved the final article for publication. All authors agree to be held accountable for the work
performed therein.
Competing interests. The authors declare no competing interests.
Funding. Financial support came from the USDA National Institute of Food and Agriculture (2018-67014-27542 to
K.M.K.); the Utah Agricultural Experiment Station, Utah State University (Project 1297, journal paper number 9239
to K.M.K.); the U.S.-Israel Binational Science Foundation (BSF 2012807 to G.B. and Y.B.-S.) and the Swiss National
Science Foundation (PP00P3_170664 to R.M.W.).
Acknowledgements. Sequencing was performed at the University of Illinois Roy J. Carver Biotechnology Center. We thank
the University of Utah High Performance Computing Center for computational time and assistance. Illustrations were
created by J. Johnson (LifeSciences Studios). G.B. thanks the Clark Way Harrison Visiting Professor in Arts and
Sciences that supported his stay in Washington University in St Louis. We thank G. Robinson for helpful feedback
on an earlier draft of this manuscript.
n
Sci.7:200
References
517
1. Sumner S, Bell E, Taylor D. 2018 A molecular
concept of caste in insect societies. Curr. Opin.
Insect Sci. 25, 42–50. (doi:10.1016/j.cois.2017.
11.010)

2. Whitfield CW, Band MR, Bonaldo MF, Kumar CG,
Liu L, Pardinas JR, Robertson HM, Soares MB,
Robinson GE. 2002 Annotated expressed
sequence tags and cDNA microarrays for studies
of brain and behavior in the honey bee. Genome
Res. 12, 555–566. (doi:10.1101/gr.5302)

3. Simola DF et al. 2013 Social insect genomes
exhibit dramatic evolution in gene composition
and regulation while preserving regulatory
features linked to sociality. Genome Res. 23,
1235–1247. (doi:10.1101/gr.155408.113)

4. Kapheim KM et al. 2015 Genomic signatures of
evolutionary transitions from solitary to group
living. Science 348, 24–32. (doi:10.1126/
science.aaa4788)

5. Warner MR, Qiu L, Holmes MJ, Mikheyev AS,
Linksvayer TA. 2019 Convergent eusocial
evolution is based on a shared reproductive
groundplan plus lineage-specific plastic genes.
Nat. Commun. 10, 2651. (doi:10.1038/s41467-
019-10546-w)

6. Bartel DP. 2018 Metazoan microRNAs. Cell 173,
20–51. (doi:10.1016/j.cell.2018.03.006)

7. Friedman RC, Farh KK-H, Burge CB, Bartel DP.
2009 Most mammalian mRNAs are conserved
targets of microRNAs. Genome Res. 19, 92–105.
(doi:10.1101/gr.082701.108)

8. Meunier J, Lemoine F, Soumillon M, Liechti A,
Weier M, Guschanski K, Hu H, Khaitovich P,
Kaessmann H. 2013 Birth and expression
evolution of mammalian microRNA genes.
Genome Res. 23, 34–45. (doi:10.1101/gr.
140269.112)

9. Berezikov E. 2011 Evolution of microRNA
diversity and regulation in animals. Nat. Rev.
Genet. 12, 846–860. (doi:10.1038/nrg3079)

10. Chen K, Rajewsky N. 2007 The evolution of
gene regulation by transcription factors and
microRNAs. Nat. Rev. Genet. 8, 93–103. (doi:10.
1038/nrg1990)
11. Lu J, Shen Y, Wu Q, Kumar S, He B, Shi S,
Carthew RW, Wang SM, Wu C-I. 2008 The birth
and death of microRNA genes in Drosophila.
Nat. Genet. 40, 351–355. (doi:10.1038/ng.73)

12. Christodoulou F et al. 2010 Ancient animal
microRNAs and the evolution of tissue identity.
Nature 463, 1084–1088. (doi:10.1038/
nature08744)

13. Heimberg AM, Sempere LF, Moy VN, Donoghue
PCJ, Peterson KJ. 2008 MicroRNAs and the
advent of vertebrate morphological complexity.
Proc. Natl Acad. Sci. USA 105, 2946–2950.
(doi:10.1073/pnas.0712259105)

14. Søvik E, Bloch G, Ben-Shahar Y. 2015 Function
and evolution of microRNAs in eusocial
Hymenoptera. Front. Genet. 6, 1–11. (doi:10.
3389/fgene.2015.00193)

15. Ylla G, Fromm B, Piulachs MD, Belles X. 2016
The microRNA toolkit of insects. Sci. Rep. 6,
1–13. (doi:10.1038/srep37736)

16. Greenberg JK et al. 2012 Behavioral plasticity in
honey bees is associated with differences in
brain microRNA transcriptome. Genes, Brain
Behav. 11, 660–670. (doi:10.1111/j.1601-183X.
2012.00782.x)

17. Liu F et al. 2012 Next-generation small RNA
sequencing for microRNAs profiling in Apis
mellifera: comparison between nurses and
foragers. Insect Mol. Biol. 21, 297–303. (doi:10.
1111/j.1365-2583.2012.01135.x)

18. Behura SK, Whitfield CW. 2010 Correlated
expression patterns of microRNA genes with
age-dependent behavioural changes in
honeybee. Insect Mol. Biol. 19, 431–439.
(doi:10.1111/j.1365-2583.2010.01010.x)

19. Ashby R, Forêt S, Searle I, Maleszka R.
2016 MicroRNAs in honey bee caste
determination. Sci. Rep. 6, 1–15. (doi:10.1038/
srep18794)

20. Shi YY, Zheng HJ, Pan QZ, Wang ZL, Zeng ZJ.
2015 Differentially expressed microRNAs
between queen and worker larvae of the honey
bee (Apis mellifera). Apidologie 46, 35–45.
(doi:10.1007/s13592-014-0299-9)
21. Weaver D et al. 2007 Computational and
transcriptional evidence for microRNAs in the
honey bee genome. Genome Biol. 8, R97.
(doi:10.1186/gb-2007-8-6-r97)

22. Collins DH, Mohorianu I, Beckers M, Moulton V,
Dalmay T, Bourke AFG. 2017 MicroRNAs
associated with caste determination and
differentiation in a primitively eusocial insect.
Sci. Rep. 7, 1–9. (doi:10.1038/srep45674)

23. MacEdo LMF et al. 2016 MicroRNA signatures
characterizing caste-independent ovarian
activity in queen and worker honeybees (Apis
mellifera L. Insect Mol. Biol. 25, 216–226.
(doi:10.1111/imb.12214)

24. Nunes FMF, Ihle KE, Mutti NS, Simoes ZLP,
Amdam G V. 2013 The gene vitellogenin affects
microRNA regulation in honey bee (Apis
mellifera) fat body and brain. J. Exp. Biol. 216,
3724–3732. (doi:10.1242/jeb.089243)

25. Cui X, Lu Z, Wang S, Jing-Yan Wang J, Gao X.
2016 CMsearch: simultaneous exploration of
protein sequence space and structure space
improves not only protein homology detection
but also protein structure prediction.
Bioinformatics 32, i332–i340. (doi:10.1093/
bioinformatics/btw271)

26. Paradis E, Claude J, Strimmer K. 2004 APE:
analyses of phylogenetics and evolution in
R language. Bioinformatics 20, 289–290.
(doi:10.1093/bioinformatics/btg412)

27. R Core Team. 2016 R: A language and
environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing.
See https://www.R-project.org/.

28. Sadd BM et al. 2015 The genomes of two key
bumblebee species with primitive eusocial
organization. Genome Biol. 16, 76. (doi:10.
1186/s13059-015-0623-3)

29. Branstetter MG, Danforth BN, Pitts JP, Faircloth
BC, Ward PS, Buffington ML, Gates MW, Kula
RR, Brady SG. 2017 Phylogenomic insights into
the evolution of stinging wasps and the origins
of ants and bees. Curr. Biol. 27, 1019–1025.
(doi:10.1016/j.cub.2017.03.027)

http://www.github.com/kapheimlab/bee_microRNA
http://www.github.com/kapheimlab/bee_microRNA
https://zenodo.org/badge/latestdoi/250347886
https://zenodo.org/badge/latestdoi/250347886
https://zenodo.org/badge/latestdoi/250347886
http://dx.doi.org/10.1016/j.cois.2017.11.010
http://dx.doi.org/10.1016/j.cois.2017.11.010
http://dx.doi.org/10.1101/gr.5302
http://dx.doi.org/10.1101/gr.155408.113
http://dx.doi.org/10.1126/science.aaa4788
http://dx.doi.org/10.1126/science.aaa4788
http://dx.doi.org/10.1038/s41467-019-10546-w
http://dx.doi.org/10.1038/s41467-019-10546-w
http://dx.doi.org/10.1016/j.cell.2018.03.006
http://dx.doi.org/10.1101/gr.082701.108
http://dx.doi.org/10.1101/gr.140269.112
http://dx.doi.org/10.1101/gr.140269.112
http://dx.doi.org/10.1038/nrg3079
http://dx.doi.org/10.1038/nrg1990
http://dx.doi.org/10.1038/nrg1990
http://dx.doi.org/10.1038/ng.73
http://dx.doi.org/10.1038/nature08744
http://dx.doi.org/10.1038/nature08744
http://dx.doi.org/10.1073/pnas.0712259105
http://dx.doi.org/10.3389/fgene.2015.00193
http://dx.doi.org/10.3389/fgene.2015.00193
http://dx.doi.org/10.1038/srep37736
http://dx.doi.org/10.1111/j.1601-183X.2012.00782.x
http://dx.doi.org/10.1111/j.1601-183X.2012.00782.x
http://dx.doi.org/10.1111/j.1365-2583.2012.01135.x
http://dx.doi.org/10.1111/j.1365-2583.2012.01135.x
http://dx.doi.org/10.1111/j.1365-2583.2010.01010.x
http://dx.doi.org/10.1038/srep18794
http://dx.doi.org/10.1038/srep18794
http://dx.doi.org/10.1007/s13592-014-0299-9
http://dx.doi.org/10.1186/gb-2007-8-6-r97
http://dx.doi.org/10.1038/srep45674
http://dx.doi.org/10.1111/imb.12214
http://dx.doi.org/10.1242/jeb.089243
http://dx.doi.org/10.1093/bioinformatics/btw271
http://dx.doi.org/10.1093/bioinformatics/btw271
http://dx.doi.org/10.1093/bioinformatics/btg412
https://www.R-project.org/
http://dx.doi.org/10.1186/s13059-015-0623-3
http://dx.doi.org/10.1186/s13059-015-0623-3
http://dx.doi.org/10.1016/j.cub.2017.03.027


royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.7:200517
11
30. Cardinal S, Danforth BNBN. 2011 The antiquity

and evolutionary history of social behavior in
bees. PLoS ONE 6, e21086. (doi:10.1371/journal.
pone.0021086)

31. Friedländer MR, MacKowiak SD, Li N, Chen W,
Rajewsky N. 2012 MiRDeep2 accurately
identifies known and hundreds of novel
microRNA genes in seven animal clades. Nucleic
Acids Res. 40, 37–52. (doi:10.1093/nar/gkr688)

32. Quinlan AR, Hall IM. 2010 BEDTools: a flexible
suite of utilities for comparing genomic
features. Bioinformatics 26, 841–842. (doi:10.
1093/bioinformatics/btq033)

33. Elsik CG et al. 2014 Finding the missing honey
bee genes: Lessons learned from a genome
upgrade. BMC Genomics 15, 1–29. (doi:10.
1186/1471-2164-15-86)

34. Kapheim KM et al. 2019 Draft genome assembly
and population genetics of an agricultural
pollinator, the solitary alkali bee (Halictidae:
Nomia melanderi). G3 9, 625–634. (doi:10.
1534/g3.118.200865)

35. Kapheim KM et al. 2020 Developmental
plasticity shapes social traits and selection in a
facultatively eusocial bee. Proc. Natl Acad. Sci.
USA 117, 13 615–13 625. (doi:10.1073/pnas.
2000344117)

36. Smith AF, Hubley R, Green P. 2013
RepeatMasker. See http://www.repeatmasker.
org/.

37. Grün D, Wang Y-L, Langenberger D, Gunsalus
KC, Rajewsky N. 2005 microRNA target
predictions across seven Drosophila species and
comparison to mammalian targets. PLoS
Comput. Biol. 1, e13. (doi:10.1371/journal.pcbi.
0010013)

38. Enright AJ, John B, Gaul U, Tuschl T, Sander C.
2004 MicroRNA targets in Drosophila. Genome
Biol. 5, R1. (doi:10.1186/gb-2003-5-1-r1)

39. Krüger J, Rehmsmeier M. 2006 RNAhybrid:
microRNA target prediction easy, fast and
flexible. Nucleic Acids Res. 34, W451–W454.
(doi:10.1093/nar/gkl243)

40. Zdobnov EM, Tegenfeldt F, Kuznetsov D,
Waterhouse RM, Simão FA, Ioannidis P,
Seppey M, Loetscher A, Kriventseva E V. 2017
OrthoDB v. 9.1: cataloging evolutionary and
functional annotations for animal, fungal, plant,
archaeal, bacterial and viral orthologs. Nucleic
Acids Res. 45, D744–D749. (doi:10.1093/nar/
gkw1119)

41. Jones BM, Kingwell CJ, Wcislo WT, Robinson GE.
2017 Caste-biased gene expression in a
facultatively eusocial bee suggests a role for
genetic accommodation in the evolution of
eusociality. Proc. R. Soc. B 284, 20162228.
(doi:10.1098/rspb.2016.2228)

42. Bolger AM, Lohse M, Usadel B. 2014
Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics 30, 2114–2120.
(doi:10.1093/bioinformatics/btu170)

43. Dobin A, Davis CA, Schlesinger F, Drenkow J,
Zaleski C, Jha S. 2013 STAR: ultrafast universal
RNA-seq aligner. Bioinformatics 29, 15–21.
(doi:10.1093/bioinformatics/bts635)

44. Liao Y, Smyth GK, Shi W. 2014 featureCounts:
an efficient general purpose program for
assigning sequence reads to genomic features.
Bioinformatics 30, 923–930. (doi:10.1093/
bioinformatics/btt656)

45. Robinson MD, McCarthy DJ, Smyth GK. 2010
edgeR: a bioconductor package for differential
expression analysis of digital gene expression
data. Bioinformatics 26, 139–140. (doi:10.1093/
bioinformatics/btp616)

46. Harpur BA, Kent CF, Molodtsova D, Lebon JM,
Alqarni AS, Owayss AA, Zayed A. 2014
Population genomics of the honey bee reveals
strong signatures of positive selection on worker
traits. Proc. Natl Acad. Sci. USA 111,
2614–2619. (doi:10.1073/pnas.1315506111)

47. Harpur BA, Dey A, Albert JR, Patel S, Hines HM,
Hasselmann M, Packer L, Zayed A. 2017 Queens
and workers contribute differently to adaptive
evolution in bumble bees and honey bees.
Genome Biol. Evol. 9, 2395–2402. (doi:10.1093/
gbe/evx182)

48. Woodard SH, Fischman BJ, Venkat A, Hudson
ME, Varala K, Cameron SA, Clark AG, Robinson
GE. 2011 Genes involved in convergent
evolution of eusociality in bees. Proc. Natl Acad.
Sci. USA 108, 7472–7477. (doi:10.1073/pnas.
1103457108)

49. Franchini P, Xiong P, Fruciano C, Schneider RF,
Woltering JM, Hulsey CD, Meyer A. 2019
MicroRNA gene regulation in extremely young
and parallel adaptive radiations of crater lake
cichlid fish. Mol. Biol. Evol. 36, 2498–2511.
(doi:10.1093/molbev/msz168)

50. Duncan EJ, Hyink O, Dearden PK. 2016 Notch
signalling mediates reproductive constraint in
the adult worker honeybee. Nat. Commun. 7,
1–10. (doi:10.1038/ncomms12427)

51. Hartfelder K, Tiberio GJ, Lago DC, Dallacqua RP,
Bitondi MMG. 2018 The ovary and its genes—
developmental processes underlying the
establishment and function of a highly
divergent reproductive system in the female
castes of the honey bee, Apis mellifera.
Apidologie 49, 49–70. (doi:10.1007/s13592-
017-0548-9)

52. Chandra V, Fetter-Pruneda I, Oxley PR, Ritger
AL, McKenzie SK, Libbrecht R, Kronauer DJC.
2018 Social regulation of insulin signaling and
the evolution of eusociality in ants. Science 361,
398–402. (doi:10.1126/science.aar5723)

53. Barbash S, Shifman S, Soreq H. 2014 Global
coevolution of human microRNAs and their
target genes. Mol. Biol. Evol. 31, 1237–1247.
(doi:10.1093/molbev/msu090)

54. Jasper WC, Linksvayer TA, Atallah J, Friedman D,
Chiu JC, Johnson BR. 2015 Large-scale coding
sequence change underlies the evolution of
postdevelopmental novelty in honey bees.Mol. Biol.
Evol. 32, 334–346. (doi:10.1093/molbev/msu292)

55. Johnson B, Tsutsui N. 2011 Taxonomically
restricted genes are associated with the evolution
of sociality in the honey bee. BMC Genomics 12,
164. (doi:10.1186/1471-2164-12-164)

56. França GS, Hinske LC, Galante PAFF, Vibranovski
MD. 2017 Unveiling the impact of the genomic
architecture on the evolution of vertebrate
microRNAs. Front. Genet. 8, 1–8. (doi:10.3389/
fgene.2017.00034)

57. França GS, Vibranovski MD, Galante PAF. 2016
Host gene constraints and genomic context
impact the expression and evolution of human
microRNAs. Nat. Commun. 7, 11438. (doi:10.
1038/ncomms11438)

58. Berezikov E, Thuemmler F, van Laake LW, Kondova I,
Bontrop R, Cuppen E, Plasterk RHA. 2006 Diversity
of microRNAs in human and chimpanzee brain. Nat.
Genet. 38, 1375–1377. (doi:10.1038/ng1914)

59. Tang T, Kumar S, Shen Y, Lu J, Wu M-L, Shi S,
Li W-H, Wu C-I. 2010 Adverse interactions
between micro-RNAs and target genes from
different species. Proc. Natl Acad. Sci. USA 107,
12 935–12 940. (doi:10.1073/pnas.1007591107)

60. Patalano S et al. 2015 Molecular signatures of
plastic phenotypes in two eusocial insect species
with simple societies. Proc. Natl Acad. Sci. USA 112,
13 970–13 975. (doi:10.1073/pnas.1515937112)

61. Sumner S. 2014 The importance of genomic
novelty in social evolution. Mol. Ecol. 23,
26–28. (doi:10.1111/mec.12580)

62. Rehan SM, Toth AL. 2015 Climbing the social
ladder: the molecular evolution of sociality.
Trends Ecol. Evol. 30, 426–433. (doi:10.1016/j.
tree.2015.05.004)

63. Chen K, Rajewsky N. 2006 Natural selection on
human microRNA binding sites inferred from
SNP data. Nat. Genet. 38, 1452–1456. (doi:10.
1038/ng1910)

64. Saunders MA, Liang H, Li W-H. 2007 Human
polymorphism at microRNAs and microRNA
target sites. Proc. Natl Acad. Sci. USA 104,
3300–3305. (doi:10.1073/pnas.0611347104)

65. Franchini P, Xiong P, Fruciano C, Meyer A. 2016
The role of microRNAs in the repeated parallel
diversification of lineages of midas cichlid fish
from Nicaragua. Genome Biol. Evol. 8,
1543–1555. (doi:10.1093/gbe/evw097)

66. Linksvayer TA, Wade MJ. 2009 Genes with social
effects are expected to harbor more sequence
variation within and between species. Evolution
63, 1685–1696. (doi:10.1111/j.1558-5646.2009.
00670.x)

http://dx.doi.org/10.1371/journal.pone.0021086
http://dx.doi.org/10.1371/journal.pone.0021086
http://dx.doi.org/10.1093/nar/gkr688
http://dx.doi.org/10.1093/bioinformatics/btq033
http://dx.doi.org/10.1093/bioinformatics/btq033
http://dx.doi.org/10.1186/1471-2164-15-86
http://dx.doi.org/10.1186/1471-2164-15-86
http://dx.doi.org/10.1534/g3.118.200865
http://dx.doi.org/10.1534/g3.118.200865
http://dx.doi.org/10.1073/pnas.2000344117
http://dx.doi.org/10.1073/pnas.2000344117
http://www.repeatmasker.org/
http://www.repeatmasker.org/
http://www.repeatmasker.org/
http://dx.doi.org/10.1371/journal.pcbi.0010013
http://dx.doi.org/10.1371/journal.pcbi.0010013
http://dx.doi.org/10.1186/gb-2003-5-1-r1
http://dx.doi.org/10.1093/nar/gkl243
http://dx.doi.org/10.1093/nar/gkw1119
http://dx.doi.org/10.1093/nar/gkw1119
http://dx.doi.org/10.1098/rspb.2016.2228
http://dx.doi.org/10.1093/bioinformatics/btu170
http://dx.doi.org/10.1093/bioinformatics/bts635
http://dx.doi.org/10.1093/bioinformatics/btt656
http://dx.doi.org/10.1093/bioinformatics/btt656
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1073/pnas.1315506111
http://dx.doi.org/10.1093/gbe/evx182
http://dx.doi.org/10.1093/gbe/evx182
http://dx.doi.org/10.1073/pnas.1103457108
http://dx.doi.org/10.1073/pnas.1103457108
http://dx.doi.org/10.1093/molbev/msz168
http://dx.doi.org/10.1038/ncomms12427
http://dx.doi.org/10.1007/s13592-017-0548-9
http://dx.doi.org/10.1007/s13592-017-0548-9
http://dx.doi.org/10.1126/science.aar5723
http://dx.doi.org/10.1093/molbev/msu090
http://dx.doi.org/10.1093/molbev/msu292
http://dx.doi.org/10.1186/1471-2164-12-164
http://dx.doi.org/10.3389/fgene.2017.00034
http://dx.doi.org/10.3389/fgene.2017.00034
http://dx.doi.org/10.1038/ncomms11438
http://dx.doi.org/10.1038/ncomms11438
http://dx.doi.org/10.1038/ng1914
http://dx.doi.org/10.1073/pnas.1007591107
http://dx.doi.org/10.1073/pnas.1515937112
http://dx.doi.org/10.1111/mec.12580
http://dx.doi.org/10.1016/j.tree.2015.05.004
http://dx.doi.org/10.1016/j.tree.2015.05.004
http://dx.doi.org/10.1038/ng1910
http://dx.doi.org/10.1038/ng1910
http://dx.doi.org/10.1073/pnas.0611347104
http://dx.doi.org/10.1093/gbe/evw097
http://dx.doi.org/10.1111/j.1558-5646.2009.00670.x
http://dx.doi.org/10.1111/j.1558-5646.2009.00670.x

	Brain microRNAs among social and solitary bees
	Introduction
	Material and methods
	microRNA diversification
	Sample acquisition, RNA isolation and sequencing
	microRNA discovery and quantification
	microRNA localization
	Target prediction
	Target age and functional enrichment
	Enrichment tests of lineage-specific miRNA targets

	Results
	Low levels of microRNA copy-number variation among bee genomes
	Expressed microRNA diversity in bee brains
	Lineage-specific microRNAs preferentially target lineage-specific genes, but not genes with caste-biased expression or genes under positive selection

	Discussion
	Ethics
	Data accessibility
	Authors' contribution
	Competing interests
	Funding
	Acknowledgements
	References


