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Abstract

INTRODUCTION:We investigated blood DNA methylation patterns associated with

15 well-established cerebrospinal fluid (CSF) biomarkers of Alzheimer’s disease (AD)

pathophysiology, neuroinflammation, and neurodegeneration.

METHODS:We assessed DNA methylation in 885 blood samples from the European

Medical Information Framework for Alzheimer’s Disease (EMIF-AD) study using the

EPIC array.
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RESULTS: We identified Bonferroni-significant differential methylation associated

with CSF YKL-40 (five loci) and neurofilament light chain (NfL; seven loci) levels, with

two of the loci associated with CSF YKL-40 levels correlating with plasma YKL-40 lev-

els. A co-localization analysis showed shared genetic variants underlying YKL-40DNA

methylation and CSF protein levels, with evidence that DNAmethylationmediates the

association between genotype and protein levels. Weighted gene correlation network

analysis identified two modules of co-methylated loci correlated with several amyloid

measures and enriched in pathways associated with lipoproteins and development.

DISCUSSION: We conducted the most comprehensive epigenome-wide association

study (EWAS) of AD-relevant CSF biomarkers to date. Future work should explore

the relationship between YKL-40 genotype, DNAmethylation, and protein levels in the

brain.

KEYWORDS

Alzheimer’s disease (AD), amyloid, biomarker, blood, cerebrospinal fluid (CSF), DNAmethylation,
epigenetics, epigenome-wide association study (EWAS), genome-wide association study (GWAS),
methylation quantitative trait loci (mQTL), mild cognitive impairment (MCI), neurofilament light
(NfL), protein quantitative trait loci (pQTL), tau, YKL-40

Highlights

∙ BloodDNAmethylation was assessed in the EMIF-ADMBD study.

∙ Epigenome-wide association studies (EWASs) were performed for 15 Alzheimer’s

disease (AD)–relevant cerebrospinal fluid (CSF) biomarker measures.

∙ Five Bonferroni-significant loci were associated with YKL-40 levels and seven with

neurofilament light chain (NfL).

∙ DNAmethylation in YKL-40 co-localized with previously reported genetic variation.

∙ DNA methylation potentially mediates the effect of single-nucleotide polymor-

phisms (SNPs) in YKL-40 on CSF protein levels.

1 BACKGROUND

Because populations are now living for longer, the number of demen-

tia cases is increasing, and it is estimated that by 2050 there will be

115 million people living with dementia worldwide. Alzheimer’s dis-

ease (AD) is a chronic neurodegenerative disease that accounts for

~70% of dementia cases. The disease is characterized by the aggre-

gation of two proteins: amyloid beta (Aβ), forming senile plaques, and

hyperphosphorylated tau forming neurofibrillary tangles (NFTs).2-4

Pathology begins decades before symptoms appear, meaning that by

the time an individual receives a clinical diagnosis there is already con-

siderable neuropathology present.5–8 In recent years there has been

much research interest in detecting AD-relevant biomarkers prior to

the onset of clinical symptoms.9 Several different types of biomarkers

could have utility for prodromal AD diagnosis. This includes the mea-

surement of aberrant levels of proteins in the blood,10 cerebrospinal

fluid (CSF),11–13 and brain14,15 as well as imaging the structure and

function of the brain.16,17

CSF biomarkers have been used for diagnostic and monitoring pur-

poses as the interstitial fluid of the brain is in direct contact with

the CSF and, therefore, the CSF can offer an accurate reflection of

disease progression. Through the sampling of CSF, it is possible to

detect AD-relevant changes including changes to the levels of Aβ40 or
Aβ42,18 the Aβ40/42 ratio,11,12 total tau (t-tau) levels19 and phospho-

rylated tau (p-tau) levels.20 More recently neurofilament light (NfL),21

neurogranin,22,23 and chitinase-3-like protein 1 (CHI3L1, also known

as YKL-40)24 have also shown utility as CSF biomarkers for neu-

rodegeneration, neuroinflammation, or synaptic damage in AD and

other neurodegenerative diseases, and they are thus becoming more

routinely measured in a research context. Lumbar puncture to col-

lect CSF is less expensive in contrast to other methodologies such as

imaging-based techniques;25 however, it is still a relatively invasive

process. As such, a number of studies have recently focused on iden-

tifying protein changes in the blood that mirror AD-relevant protein

changes in the CSF,26 with the view of developing a more accessible

biomarker.
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There is a growing interest in studying epigenetic mechanisms in

AD, mediating interactions between genetic and environmental risks.

Epigenetic processes regulate gene expression, with the most well

characterized being that ofDNAmethylation. Several epigenome-wide

association studies (EWASs) have identified robust and reproducible

alterations in DNA methylation in the AD brain.27–32 Similarly, alter-

ations in blood have been identified in individuals with AD or mild

cognitive impairment (MCI) compared to non-demented controls,33–35

or associated with cognitive performance in healthy older people.36 A

recent study has used blood DNA methylation profiles as surrogates

formodifiable and non-modifiable risk factors for dementia, in order to

assess dementia risk.37 Another recent study has identified bloodDNA

methylomic alterations associated with levels of three AD-relevant

biomarkers, namely Aβ42, p-tau181, and t-tau.38 In the current study

we investigated whether DNAmethylation patterns in the blood were

associated with alterations in 15 AD-relevant CSF biomarker levels

and explored how these relate to previously described genetic variants

associated with these traits in this cohort. Finally, we used network

approaches to identify modules of co-methylated loci associated with

the different CSF biomarkers, performing gene ontology (GO) analysis

to identify altered pathways.

2 METHODS

2.1 Subjects and samples

This study was undertaken as a part of the European Medical Infor-

mation Framework for Alzheimer’s Disease Multimodal Biomarker

Discovery (EMIF-AD MBD) study.39 One aim of EMIF-AD MDB is to

improve the access to, and use of, health-related data, with empha-

sis on AD-related biomarker research. To achieve this, the EMIF-AD

MBD study retrospectively combined clinical data, sample collections,

biofluid-based biomarker analyses, and imaging scans from 1221 sub-

jects that had been collected across different centers, with details

of this provided elsewhere.39 This cohort consisted predominantly of

individuals of European ancestry. For our study, whole-blood DNA

samples were utilized from a subset of 953 participants, of which

805 were extracted locally at the respective recruitment centers and

148 at the University of Lübeck. In total 936 samples remained after

DNA quality control (QC) which included agarose gel electrophore-

sis, determination of A260/280 and A260/230 ratios, and PicoGreen

quantification.40

2.2 Bisulfite treatment and Illumina Infinium
bead array

DNA was bisulfite treated using the EZ-DNA methylation kit (Zymo

Research, Orange, CA, USA). Samples were then analyzed using the

Illumina Infinium Human Methylation EPIC BeadChip Array (EPIC

array) (Illumina, USA), which interrogates >850,000 methylation sites

throughout the genome, with all arrays run in one consecutive batch

RESEARCH INCONTEXT

1. Systematic review: Robust and reproducible alter-

ations in DNA methylation have been identified in the

Alzheimer’s disease (AD) brain, and more recently in the

blood. However, studies exploring blood DNA methyla-

tion patterns associated with cerebrospinal fluid (CSF)

biomarker measures are in their infancy.

2. Interpretation: Our work represents the largest

epigenome-wide association study (EWAS) of AD-

relevant CSF biomarker measures, both in terms of

sample size (N = 885) and the number of biomarker mea-

sures assessed (N = 15). We showed evidence that DNA

methylation in the YKL-40 gene may mediate the previ-

ously described protein quantitative trait loci (pQTL) for

this gene, where single-nucleotide polymorphisms (SNPs)

have been reported to alter CSF protein levels.

3. Future directions: Our study has nominated several dif-

ferentiallymethylated loci, whichwarrant further investi-

gation as to their functional role in AD. In addition, future

research should further explore how DNA methylation

potentially mediates the cis effect of genetic variation on

CSF YKL-40 levels.

at the Institute of Clinical and Medical Biology (UKSH, Campus-Kiel,

Germany). For each probe on the array, DNA methylation levels were

indexed by beta values, that is, the ratio of the methylated signal

divided by the sum of the methylated and unmethylated signal (M/[M

+U]).

2.3 Microarray QC and data normalization

Initial QC of the resulting EPIC array data was conducted using

GenomeStudio (version 2011.1) to visually check the status of staining,

extension, hybridization, target removal, sodium bisulfite conversion,

specificity, and non-polymorphic and negative controls. Subsequently,

IDAT files were loaded into R (version 3.5.2) using the methylumi

package41 to create a MethylumiSet object. Samples were excluded

from further steps if themean background intensity of negative probes

was <1000, the mean detection P-values were >0.05, the bisulfite

conversion efficiency was <80%, or there was a mismatch between

reported and predicted sex. Sample and probe exclusion was per-

formed using the pfilter function within the wateRmelon package;42

samples were removed with a detection P > 0.05 in more than 5% of

probes, probeswith<3bead count in 5%of samples, and probes having

1% of samples with a detection P > 0.05. Duplicate and related sam-

ples were also removed. After QC, 861,666 probes and 885 samples

remained. Quantile normalizationwas applied using the dasen function

in the wateRmelon package.
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2.4 Data analysis

In the current study, we utilized DNA methylation data generated in

this subset of 885 subjects for whom various CSF biomarker measures

had been collected in parallel with the EPIC DNA methylation profiles

(Table 1). In total we analyzed 15 (partially correlated) biomarker traits

in the current study, including tau CSF levels as quantitative (p-tau

assay Z-score, t-tau assay Z-score) and binary variables (abnormal

p-tau, abnormal t-tau), amyloid CSF levels as quantitative (Aβ38 levels,
Aβ40 levels, Aβ42 levels, Aβ Z-score, Aβ42/40 ratio) and binary vari-

ables (Aβ42/40 ratio dichotomized, amyloid status, abnormal Aβ42),
and CSF levels of three other protein biomarkers of neurodegener-

ation (NfL), neuroinflammation (YKL-40), and synaptic dysfunction

(neurogranin), as well as disease status (control, MCI, AD). P-tau assay

Z-score, t-tau assay Z-score, Aβ42 levels, and Aβ42/40 ratio were log-

transformed prior to analyses due to high inflation of the test statistics,

as described previously.40 Some variables were correlated (Figure S1)

and details on biomarker measurements can be found in Table 1. Sam-

ples with a biomarker value more than three standard deviations (SD)

from the mean were excluded from the corresponding analysis. Linear

regression analyses were performed to examine the association of

DNA methylation with each of the 15 CSF biomarker variables, while

controlling for the effects of age, sex, bisulfite plate, center, the first

four genetic principal components (PCs: as described in ref.40), and cell

type proportions (calculated using the estimateCellCounts function in

the minfi package43). Our samples were predominantly of European

ancestry (N = 864 + 11 outliers), with a small number of individuals

of African (N = 1), Hispanic (N = 3), East Asian (N = 1 + 2 outliers), or

South Asian (N = 3) descent, and the inclusion of the four genetic PCs

captured and controlled for this ethnic diversity. Bonferroni signifi-

cance was used to account for multiple testing of 861,666 CpG probes

(P< 5.80 × 10−8). We also repeated these analyses with disease status

as a categorical variable (control,MCI, AD) as an additional covariate to

control for diagnosis, which could confound results. To investigate the

association of blood DNA methylation with disease status we used an

analysis of variance (ANOVA), with post hoc Tukey’s Honest Significant

Difference (HSD) tests to identify differentially methylated positions

(DMPs) between the different groups, which adjusts for the number

of comparisons with adjusted P values (Padj) that account for the three

comparisons reported. To identify differentially methylated regions

(DMRs) consisting ofmultiple adjacentDMPsweused comb-p44 with a

distance of 500 bp and a seeded P = 1.0 × 10−4, with DMRs defined as

containing at least three probes and having a Šidák-corrected P < 0.05

(herein referred to as Padj). DMPs and DMRs were annotated in tables

using both the Illumina (UCSC) gene annotation (which is derived from

the genomic overlap of probes with RefSeq genes or up to 1500 bp of

the transcription start site [TSS] of a gene) and the “Genomic Regions

Enrichment of Annotations Tool” (GREAT)45 annotation (which anno-

tates a probe to genes with a TSS within 5 kb upstream or 1 kb

downstream).

2.5 Overlap with genetic variants identified from
CSF biomarker GWAS

Linkage disequilibrium (LD) regions were generated for significant

SNPs from the Hong et al. 40 and Hong et al. 46 genome-wide asso-

ciation studies (GWASs) using the LDproxy function in the LDlinkR

package47 using a D value of 0.1 to determine LD regions. For each

biomarker EWAS, we took forward all probes that reached a P-value

threshold of < 1 × 10−4 and assessed whether these fell into the

LD region for their associated biomarker analysis from the GWAS

analyses.

In addition, we conducted a Bayesian co-localization test to demon-

strate co-localization between the genomic region associated with the

CSF YKL-40marker (chr1:203115267:203181560), as reported in the

GWAS by Hong et al.46 and CpGs annotated to CHI3L1 (YKL-40). We

obtained cis-methylation quantitative trait loci (mQTLs: genetic varia-

tion affectingDNAmethylation) with a P-value threshold of< 1× 10−5

associated with eight DMPs linked to CSF YKL-40 from the Genetics

of DNAMethylationConsortium (goDMC).48 We tested for a potential

pleiotropic effect between DNAmethylation and CSF protein markers

using the coloc.abf function in the coloc R package (version 5.1.0.1).49

A posterior probability larger than 0.99 for having one common causal

variant for both traits in the co-localization analysiswas considered for

further causal inference tests (CITs).

We examined themediation of DNAmethylation on the association

between the SNPs in CHI3L1 (YKL-40) and CSF YKL-40 levels using

the R package ‘cit’50 and the ‘cit.cp’ function with 500 permutations

for conditional analysis. The overall P-value (omnibus p-value) was

reported based on collective conditional analysis, and a threshold of

P < 0.05 was considered nominally significant. In order to focus on

independent genetic variants within the genomic region of interest,

we performed clumping on the CSF YKL-40 GWAS summary stats

reported by Hong et al.46 with the following parameters: –clump-p1

1.0E-5 –clump-p2 0.05 –clump-r2 0.6 –clump-kb 250.

2.6 Assessment of plasma YKL-40 protein levels

Plasma YKL-40 protein levels were assessed in a subset of 568 of the

subjects using the Somalogic 4k array on the SOMAscan assay plat-

form as described previously.51 Data were COMBAT normalized to

remove batch effects52 and, after outlier removal, 560 samples were

taken forward for analysis. To control for confounding variables, the

effects of age, sex, center, the first four genetic PCs (to control for eth-

nicity), and cell proportions (estimated in the DNA methylation data)

were regressed out. We then used Pearson’s correlation to assess the

correlation between plasma YKL-40 protein levels and DNA methy-

lation levels for the Bonferroni-significant differentially methylated

loci in the YKL-40 gene. Subsequently, we examined the correlation

between plasma YKL-40 protein levels and CSF YKL-40 protein levels.



6726 SMITH ET AL.

T
A
B
L
E
1

D
em

o
gr
ap
h
ic
in
fo
rm

at
io
n
o
n
th
e
sa
m
p
le
s
an
d
C
SF

m
ea
su
re
s
in
cl
u
d
ed

in
th
e
an
al
ys
is
.

V
ar
ia
b
le

D
es
cr
ip
ti
o
n

V
ar
ia
b
le

ty
p
e

N
u
m
b
er

o
f

sa
m
p
le
s

D
ia
gn
o
si
s

(C
/M

C
I/
A
D
)

Tr
an
sf
o
rm

at
io
n

U
n
it
s

M
ea
su
re
,m

ea
n

(±
SD

)

N
o
rm

al
/

A
b
n
o
rm

al

A
ge
,m

ea
n

(±
SD

)

G
en

d
er

M
/F

Ta
u

P
ro
te
in

t-
ta
u
as
sa
y

Z
-s
co
re

Z
-s
co
re

fo
r
C
SF

t-
ta
u

p
at
h
o
lo
gy

(l
o
ca
l)

Q
u
an

ti
ta
ti
ve

7
0
1

1
5
8
/3
9
6
/1
4
7

Lo
g-

tr
an

sf
o
rm

ed

N
A

−
0
.6
7
1
(±

1
.2
5
)

N
A

6
8
.8
0
(±

8
.6
5
)

3
3
6
/3
6
5

A
b
n
o
rm

al
t-
ta
u

D
ic
h
o
to
m
o
u
s
C
SF

t-
ta
u

as
se
ss
m
en

t
(l
o
ca
l)

B
in
ar
y

7
1
8

1
6
0
/4
0
0
/1
5
8

N
A

N
A

N
A

3
4
2
/3
7
6

6
8
.8
2
(±

8
.6
7
)

3
4
1
/3
7
7

p
-t
au

as
sa
y

Z
-s
co
re

Z
-s
co
re

fo
r
C
SF

p
-t
au

p
at
h
o
lo
gy

(l
o
ca
l)

Q
u
an

ti
ta
ti
ve

6
9
4

1
5
8
/3
9
3
/1
4
3

Lo
g-

tr
an

sf
o
rm

ed

N
A

-0
.4
5
7
(±

1
.1
5
)

N
A

6
8
.7
6
(±

8
.6
5
)

3
3
1
/3
6
3

A
b
n
o
rm

al
p
-t
au

D
ic
h
o
to
m
o
u
s
C
SF

p
-t
au

as
se
ss
m
en

t
(l
o
ca
l)

B
in
ar
y

7
1
9

1
6
0
/4
0
0
/1
5
9

N
A

N
A

N
A

3
7
1
/3
4
8

6
8
.8
2
(±

8
.6
6
)

3
4
1
/3
7
8

A
m
yl
o
id

P
ro
te
in

A
b
n
o
rm

al
A
β4

2
D
ic
h
o
to
m
o
u
s
C
SF

A
β4

2

as
se
ss
m
en

t
(l
o
ca
l)

B
in
ar
y

7
1
9

1
6
0
/4
0
0
/1
5
9

N
A

N
A

N
A

3
2
9
/3
9
0

6
8
.8
2
(±

8
.6
6
)

3
4
1
/3
7
8

A
β4

2
A
β4

2
C
SF

as
se
ss
m
en

t

(c
en

tr
al
)

Q
u
an

ti
ta
ti
ve

6
6
0

1
1
8
/3
9
0
/1
5
2

Lo
g-

tr
an

sf
o
rm

ed

p
g/
m
l

2
9
2
.5
4
(±

1
5
8
.1
7
)

N
A

6
9
.4
6
(±

8
.3
8
)

3
1
5
/3
4
5

A
β4

0
A
β4

0
C
SF

as
se
ss
m
en

t

(c
en

tr
al
)

Q
u
an

ti
ta
ti
ve

6
6
8

1
2
1
/3
9
5
/1
5
2

N
A

p
g/
m
l

5
0
0
1
.6
7
(±

1
7
5
3
.2
5
)

N
A

6
9
.4
4
(±

8
.3
6
)

3
2
2
/3
4
6

A
β3

8
A
β3

8
C
SF

as
se
ss
m
en

t

(c
en

tr
al
)

Q
u
an

ti
ta
ti
ve

6
6
3

1
2
1
/3
9
1
/1
5
1

N
A

p
g/
m
l

2
1
4
3
.6
3
(±

8
1
1
.2
9
)

N
A

6
9
.4
6
(±

8
.3
9
)

3
1
8
/3
4
5

A
βZ

-s
co
re

Z
-s
co
re

fo
r
C
SF

A
β

p
at
h
o
lo
gy

(c
en

tr
al
)

Q
u
an

ti
ta
ti
ve

8
7
9

3
2
1
/3
9
9
/1
5
9

N
A

N
A

-0
.4
7
(±

1
.0
2
)

N
A

6
8
.8
2
(±

8
.2
7
)

4
3
1
/4
4
8

A
β4

2
/4
0
ra
ti
o

R
at
io
o
fC

SF
A
β4

2
/4
0

(c
en

tr
al
)

Q
u
an

ti
ta
ti
ve

6
7
2

1
2
1
/3
9
7
/1
5
4

Lo
g-

tr
an

sf
o
rm

ed

N
A

0
.0
6
0
(±

0
.0
2
)

N
A

6
9
.4
7
(±

8
.3
6
)

3
2
3
/3
4
9

A
β4

2
/4
0
ra
ti
o

d
ic
h
o
to
m
iz
ed

D
ic
h
o
to
m
o
u
s
C
SF

A
β4

2
/4
0

ra
ti
o
(c
en

tr
al
)

B
in
ar
y

6
7
3

1
2
1
/3
9
8
/1
5
4

N
A

N
A

N
A

2
5
9
/4
1
4

6
9
.4
6
(±

8
.3
6
)

3
2
4
/3
4
9

A
m
yl
o
id
st
at
u
s

D
ic
h
o
to
m
o
u
s
am

yl
o
id

cl
as
si
fi
ca
ti
o
n

B
in
ar
y

8
8
5

3
2
4
/4
0
2
/1
5
9

N
A

N
A

N
A

4
2
7
/4
5
8

6
8
.8
0
(±

8
.2
5
)

4
3
5
/4
5
0

O
th
er

Y
K
L-
4
0

Y
K
L-
4
0
C
SF

as
se
ss
m
en

t

(c
en

tr
al
)

Q
u
an

ti
ta
ti
ve

6
6
4

1
2
0
/3
9
4
/1
5
0

N
A

p
g/
m
L

1
6
9
2
2
1
.5
0
(±

5
9
9
9
1
.0
0
)

N
A

6
9
.3
0
(±

8
.3
3
)

3
2
0
/3
4
4

N
fL

N
eu

ro
fi
la
m
en

t
lig
h
t
C
SF

as
se
ss
m
en

t
(c
en

tr
al
)

Q
u
an

ti
ta
ti
ve

6
6
2

1
2
1
/3
8
9
/1
5
2

N
A

p
g/
m
L

1
0
6
0
.3
8
(±

7
6
2
.1
8
)

N
A

6
9
.4
5
(±

8
.3
8
)

3
1
6
/3
4
6

N
eu

ro
gr
an

in
N
eu

ro
gr
an

in
C
SF

as
se
ss
m
en

t
(c
en

tr
al
)

Q
u
an

ti
ta
ti
ve

6
1
3

1
0
0
/3
6
8
/1
4
5

N
A

p
g/
m
L

1
3
1
.9
5
(±

1
1
7
.0
8
)

N
A

6
9
.4
9
(±

8
.4
0
)

2
8
6
/3
2
7

D
ia
gn

o
si
s

D
ia
gn

o
si
s
o
fc
o
n
tr
o
l,
M
C
I,

o
r
A
D

C
at
eg
o
ri
ca
l

8
8
5

3
2
4
/4
0
2
/1
5
9

N
A

N
A

N
A

N
A

6
8
.8
0
(±

8
.2
5
)

4
3
5
/4
5
0

N
ot
e:
Sa
m
p
le
n
u
m
b
er
s,
th
e
m
ea
n
o
f
ea
ch

m
ea
su
re
,t
h
e
sp
lit

o
f
n
o
rm

al
/a
b
n
o
rm

al
cl
as
si
fi
ca
ti
o
n
,t
h
e
m
ea
n
ag
e
at

w
h
ic
h
th
e
m
ea
su
re

w
as

ta
ke
n
,a
n
d
th
e
sp
lit

o
f
m
al
es

(M
)a
n
d
fe
m
al
es

(F
)(
M
/F
)i
s
sh
o
w
n
fo
r
ea
ch

o
f

th
e
1
5
m
ea
su
re
s
ta
ke
n
as

a
p
ar
t
o
ft
h
is
st
u
d
y.
T
h
e
te
rm

s
“l
o
ca
l”
an

d
“c
en

tr
al
”r
ef
er

to
th
e
lo
ca
ti
o
n
o
ft
h
e
d
at
a
an

al
ys
is
,w

it
h
“l
o
ca
l”
an

al
ys
es

b
ei
n
g
u
n
d
er
ta
ke
n
se
p
ar
at
el
y
at

ea
ch

co
lle
ct
io
n
si
te

an
d
“c
en

tr
al
”a
n
al
ys
es

b
ei
n
g
u
n
d
er
ta
ke
n
to
ge
th
er

at
o
n
e
ce
n
tr
al
lo
ca
ti
o
n
.I
fb

o
th

“l
o
ca
l”
an

d
“c
en

tr
al
”
m
ea
su
re
s
w
er
e
av
ai
la
b
le
fo
r
a
gi
ve
n
C
SF

va
ri
ab

le
,w

e
u
se
d
th
e
“c
en

tr
al
”
m
ea
su
re

fo
r
o
u
r
an

al
ys
es
.N

A
re
fe
rs
to

n
o
t
ap
p
lic
ab

le
in
th
at

as
se
ss
m
en

t.
T
h
e
co
h
o
rt
w
as

p
re
d
o
m
in
an

tl
y
o
fE

u
ro
p
ea
n
an

ce
st
ry

(N
=
8
7
5
),
w
it
h
1
0
in
d
iv
id
u
al
s
fr
o
m
o
th
er

et
h
n
ic
b
ac
kg
ro
u
n
d
s
(A
fr
ic
an

:N
=
1
,H

is
p
an

ic
:N

=
3
,E
as
t
A
si
an

:N
=
3
,S
o
u
th

A
si
an

:N
=
3
).

A
b
b
re
vi
at
io
n
s:
A
β,
am

yl
o
id
b
et
a;
A
D
,A

lz
h
ei
m
er
’s
d
is
ea
se
;C

SF
,c
er
eb

ro
sp
in
al
fl
u
id
;F
,f
em

al
e;
M
C
I,
m
ild

co
gn

it
iv
e
im

p
ai
rm

en
t;
M
,m

al
e;
N
A
,n
o
t
ap
p
lic
ab

le
;N

fL
,n
eu

ro
fi
la
m
en

t
lig
h
t;
SD

,s
ta
n
d
ar
d
d
ev
ia
ti
o
n
.



SMITH ET AL. 6727

For this analysis we also regressed out the effects of age, sex, center,

and genetic PCs from the CSF YKL-40 protein data.

2.7 Weighted gene correlation network analysis
(WGCNA)

Weighted gene correlation network analysis (WGCNA) was per-

formed to identify modules of highly co-methylated probes using the

blockwiseModules function in the WGCNA package.53 Analyses were

performed on the normalized data, where the effects of confound-

ing variables identified in Section 2.4 were removed (e.g., age, sex,

bisulfite plate, center, the first four genetic PCs, cell type propor-

tions). We performed un-signed analyses to determine correlations

in positive and negative directions, on data regressed for all covari-

ates (listed previously). Generated modules were then correlated with

all diagnosis and biomarker phenotypic measures, and modules that

reached a multiple testing threshold of P < 9.62 × 10−4 (to account

for the number of modules) were taken forward for downstream anal-

yses. Hub probes were identified with the chooseTopHubInEachModule

function.

Genes annotated to the significantly associated modules were

analyzed using the STRING Database54,55 to determine protein–

protein interactions (PPIs). GO pathway analysis was performed on

significantly associated modules using the gometh function from the

missMethyl package56 to apply gene set testing on GO categories.

2.8 Data and code availability

Genome-wide DNAmethylation data for the 885 EMIF-ADMBD sam-

ples are stored on an online data platform using the “tranSMART” data

warehouse framework. Access can be requested from the correspond-

ing author who will forward the request to the EMIF-AD data access

team. All analytical scripts/code are available at https://github.com/

UoE-Dementia-Genomics/EMIF_Biomarkers_Methylation

3 RESULTS

3.1 EWAS on disease status

First, we used an ANOVA, with post hoc Tukey’s HSD tests to compare

DNA methylation differences between the three diagnostic groups:

control, MCI, and AD (Table S1). Although no probes passed our

stringent Bonferroni significance threshold, the most significant DMP

was annotated to the gene body of OLFM3 (cg03104428: F = 10.58,

P = 2.89 × 10−5), and was nominally significantly differentially methy-

lated between control and AD (Padj = 9.58 × 10−3) and MCI and AD

subjects (Padj = 1.53 × 10−5). Of interest, OLFM3 was recently iden-

tified, and independently replicated, in an ultra-deep CSF proteomics

study as a novel AD biomarker, in addition to being elevated in both

MCI and AD post-mortem human brain samples.57 Our regional anal-

ysis, to identify DMRs consisting of multiple adjacent DMPs, did not

reveal any significant regions.

3.2 EWAS on CSF tau variables

Next, we performed EWASs exploring the association of DNA methy-

lation with our four CSF tau variables (t-tau assay Z-score: Table S2,

abnormal t-tau: Table S3, p-tau assay Z-score: Table S4, abnormal p-

tau: Table S5). Although we did not identify any significant DMPs after

Bonferroni correction in these analyses, a number of loci nearly passed

this conservative significance threshold. Given that there was a mod-

est correlation between these measures and disease status (Figure

S1), we also performed EWASs, where we additionally controlled for

this covariate, although this did not substantially affect the results

(Tables S2–S5). Our regional analysis identified three significant DMRs

associated with p-tau assay Z-score (Table S6A), including a four-

probe DMR residing in LINC00857 (Figure S2A: Padj = 1.97 × 10−6),

a three-probe DMR residing in C3 (Figure S2B: Padj = 3.77 × 10−6),

and an eight-probe DMR located 191 bp from the CMYA5 gene tran-

scription start site (TSS) (Figure S2C: Padj = 8.72 × 10−6). We also

identified three significant DMRs associated with abnormal p-tau lev-

els (Table S6B), which included a 10-probe DMR residing in S100A13

(Figure S3A: Padj = 8.48 × 10−8), a 13-probe DMR in ZBTB22 (Figure

S3B: Padj = 4.27 × 10−6), and a four-probe DMR in SPATS2 (Figure S3C:

Padj = 6.72 × 10−6). We did not identify any DMRs associated with the

t-tau assessments.

3.3 EWAS on CSF amyloid measures

Next, we probed for DMPs associated with eight CSF amyloid mea-

sures (abnormal Aβ42: Table S7, Aβ42 levels: Table S8, Aβ40 levels:

Table S9, Aβ38 levels: Table S10, Aβ Z-score: Table S11, Aβ42/40 ratio:
Table S12, Aβ42/40 ratio dichotomized: Table S13, and amyloid status:

Table S14). As for the analyses with CSF tau variables, none passed

the conservative Bonferroni-significance threshold. However, a num-

ber of significant DMRs emerged for the various amyloid measures.

We identified five DMRs associated with abnormal Aβ42 (Table S15A),
including five probes residing inMX2 (Figure S4A: Padj = 1.35 × 10−11),

five probes in ABCG2 (Figure S4B: Padj = 1.29 × 10−8), four

probes in RHOH (Figure S4C: Padj = 9.47 × 10−8), 12 probes

in ZBTB22 (Figure S4D: Padj = 2.98 × 10−5), and a four-probe

DMR in SLFN12 (Figure S4E: Padj = 4.30 × 10−5). We identified

eight DMRs associated with Aβ42 levels (Table S15B), including

six probes in AKR1E2 (Figure S5A: Padj = 2.05 × 10−7), seven

probes in ADHFE1 (Figure S5B: Padj = 5.15 × 10−7), five probes

in ANKMY1 (Figure S5C: Padj = 7.68 × 10−5), seven probes in

RGMA (Figure S5D: Padj = 4.69 × 10−6), five probes in RBBP7

(Figure S5E: Padj = 1.04 × 10−4), four probes in LOC101929241

(Figure S5F: Padj = 3.11 × 10−4), three probes in MX2 (Figure S5G:

Padj = 9.63 × 10−4), and eight probes in VARS2 (Figure S5H:

Padj = 5.62 × 10−3). In our Aβ40 analysis we identified two DMRs

https://github.com/UoE-Dementia-Genomics/EMIF_Biomarkers_Methylation
https://github.com/UoE-Dementia-Genomics/EMIF_Biomarkers_Methylation
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(Table S15C), including five probes residing 18 bp from the TGFBI

gene TSS (Figure S6A: Padj = 1.82 × 10−7) and five probes in

ANKMY1 (Figure S6B: Padj = 5.92 × 10−7). Two DMRs were identi-

fied in the Aβ38 analysis (Table S15D), which included four probes

in STRA6 (Figure S7A: Padj = 1.27 × 10−7) and five probes in TGFBI

(Figure S7B:Padj =5.93×10−7). TheAβZ-score analysis identified four
DMRs (Table S15E), which included five probes in MX2 (Figure S8A:

Padj = 1.61 × 10−12), 15 probes in ZFP57 (Figure S8B: Padj = 2.61 × 10-
12), six probes in FURIN (Figure S8C:Padj =1.73×10−6), and five probes

in CD24 (Figure S8D: Padj = 4.11 × 10−6). We identified one 12-probe

DMR associated with Aβ42/40 ratio (Table S15F), which resided in

ZFP57 (Figure S9: Padj = 7.13 × 10−8). Similarly, we identified one five-

probe DMR in the amyloid status analysis (Table S15G), which resided

inMX2 (Figure S10: Padj = 2.14× 10−12).

3.4 EWAS on other disease-relevant CSF
biomarkers

Aside from CSF tau and amyloid measures, we also had available CSF

biomarkers of neuroinflammation (YKL-40), neurodegeneration (NfL),

and synaptic dysfunction (neurogranin). In our EWAS of YKL-40 (Table

S16 and Figure 1A), we identified five Bonferroni-significant probes, all

residing within ~1 kb of each other in the CHI3L1 gene, which encodes

the YKL-40 protein (cg07423149: P = 4.91 × 10−13, cg14085262:

P = 2.62 × 10−12, cg03625911: P = 2.77 × 10−12, cg17014757:

P = 1.44 × 10−11, cg08768186: P = 3.99 × 10−10). All these probes

remained significant after including disease status as an additional

covariate. For the EWAS on NfL, we identified seven Bonferroni-

significant loci (Table S17 and Figure 2), (cg16073540 [OSBPL5]:

P = 1.46 × 10−9, cg24329658 [TRIM10]: P = 6.71 × 10−9, cg26422266

[PTGFRN]: P = 8.28 × 10−9, cg12817352 [METRNL]: P = 2.16 × 10−8,

cg16625929 [TUBGCP2]: P= 2.45× 10−8, cg06064220 [unannotated]:

P = 3.69 × 10−8, cg14894702 [BNC1]: P = 3.89 × 10−8), with all except

cg16625929 remaining significant after controlling for disease sta-

tus. We did not identify any Bonferroni-significant loci associated with

neurogranin (Table S18).

Our regional analysis identified three significant DMRs associ-

ated with YKL-40 levels (Table S19A), including an eight-probe DMR

within the CH13L1 (YKL-40) gene (Figure 1B: Padj = 1.51 × 10−47),

a seven-probe DMR in the HS3ST3B1 gene (Figure S11A: Padj
1.83 × 10−8), and a four-probe DMR in CYP26C1 (Figure S11B:

Padj = 6.68 × 10−3). The NfL regional analysis identified eight sig-

nificant DMRs (Table S19B), including a six-probe DMR 24 bp from

the TEX12 TSS (Figure S12A: Padj = 1.85 × 10−11), eight probes

in the SORD gene (Figure S12B: Padj = 1.26 × 10−9), ten probes

in the S100A13 gene (Figure S12C: Padj = 8.47 × 10−9), three

probes in CCDC71L (Figure S12D: Padj = 2.08 × 10−7), five probes

in NAALAD2 (Figure S12E: Padj = 1.43 × 10−6), five probes in

STK16 (Figure S12F: Padj = 3.00 × 10−6), three probes in CNTN3

(Figure S12G: Padj = 5.06 × 10−3), and four probes in PRDM9 (Figure

S12H: Padj = 6.28 × 10−3). Finally, the neurogranin regional analy-

sis identified four significant DMRs (Table S19C), including six probes

in AVP (Figure S13A: Padj = 1.52 × 10−7), seven probes in SORD

(Figure S13B: Padj = 1.11 × 10−5), four probes in STRA6 (Figure S13C:

Padj = 1.45 × 10−5) and a three-probe DMR in FAR2 (Figure S13D:

Padj = 4.43 × 10−5).

3.5 Eight DMRs overlap between different CSF
biomarker analyses

We identified eight overlapping or identical DMRs that featured in

more than one of the CSF biomarker analyses (Figure 3). The DMR

spanning three or five overlapping probes in MX2 featured in four

of the amyloid analyses (abnormal Aβ42, Aβ42 levels, Aβ Z-score,

amyloid status), which are measures that all show a modest degree of

correlation (Figure S1). Several other DMRs featured in more than one

of the amyloid analyses. A five-probe DMR was identified in ANKMY1

in the Aβ42 and Aβ40 levels analyses, which are measures with a

modest degree of correlation (r = 0.62). The five-probe DMR in TGFBI

found in the Aβ40 and Aβ38 levels analyses, and the DMR spanning

at least 12 probes in the ZFP57 gene in the Aβ Z-score and Aβ42/40
ratio analyses, are not surprising given that these measures are very

highly correlated. Of interest, we identified common DMRs between

different types of CSF biomarkers. A four-probe DMR in STRA6 was

identified in theAβ38 levels and neurogranin levels analyses, which are
measures with amodest degree of correlation (Figure S1: r= 0.49). It is

interesting to note that we identified some common DMRs associated

with biomarker measures that showed a lower degree of correlation.

An overlapping DMR spanning 12 or 13 probes in the ZBTB22 gene

was identified in the abnormal Aβ42 and abnormal p-tau analyses,

which are measures that show a more modest degree of correlation

(Figure S1: r = 0.33). The overlapping DMR of seven or eight probes

in SORD in the NfL and neurogranin analyses was of interest, as these

measures show a low degree of correlation (Figure S1: r = 0.22). Simi-

larly, abnormal p-tau and NfL levels have a low degree of correlation

(Figure S1: r = 0.18), yet we identified an identical 10-probe DMR in

S100A13.

3.6 Overlap with GWAS results from AD
biomarker analyses

Previouswork fromourgrouphas identifiedgenome-wideassociations

between several genetic variants and the CSF biomarker measure-

ments in a largely overlapping portion of the EMIF cohort.40,46 Here,

we were interested in investigating whether the genomic loci iden-

tified in these prior GWAS may also show signals of differential

methylation, which could suggest that DNA methylomic variation is

driven by SNP variation in cis. Given that for the majority of our

EWAS, we did not identify any Bonferroni-significant DMPs and as

this represented a candidate-based analysis, we used a less conser-

vative threshold (P < 1 × 10−4) to identify DMPs from the EWAS

that resided in genomic regions where SNPs had been identified in

the GWAS for each respective biomarker. For the tau analyses we
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F IGURE 1 ADMR in the CHI3L1 gene in blood is associated with CSF YKL-40 levels. (A) AManhattan plot highlighting five
Bonferroni-significant DMPs in the CHI3L1 (YKL-40) gene identified from linear regression analysis. The X-axis shows chromosomes 1–22,
followed by the X (23) and Y (24) chromosomes, whereas the Y-axis shows –log10(p). The horizontal red line denotes Bonferroni significance
(P= 5.80 × 10−8). The 1000most significant DMPs can be found in Table S16. (B) Themost significant DMR in the YKL-40 analysis featured eight
probes in the CHI3L1 (YKL-40) gene (chr1:203155737-203156784). The X-axis shows genomic position, whereas the Y-axis shows –log10(p). A
horizontal red line denotes Bonferroni significance (P= 5.80× 10−8). Red probes represent a positive effect size (ES)≥1%, green probes represent
a negative ES≥1% across the range of the analysis. Filled circles denote the probes in the DMR. ES is defined as the%methylation difference
across the range of values. Underneath the gene tracks are shown in black. Full details on the DMR can be found in Table S19A. (C) Co-localization
analysis of CSF YKL-40–associated differential methylation and its GWAS-nominated genomic region. Shown are overlapping SNPs observed
between the region reported in the GWAS of CSF YKL-40 levels by Hong et al. and cis-mQTLs near cg03625911, cg14085262, cg07423149, and
cg17014757, also corresponding to our four most significant DMPs in our EWAS. (D) Evidence that DNAmethylation in CH13L1 (YKL-40) may
mediate the association between SNP variation and CSF protein levels, shown as an example for cg07423149 and rs10399931. Shown are a
robust mQTL corresponding to the association between genotype at rs10399931 (CC, CT, TT) andDNAmethylation at cg07423149 (corrected
beta levels) (left panel), a robust pQTL corresponding to the association between rs10399931 genotype and CSF YKL-40 levels (middle panel), and
the correlation betweenDNAmethylation at cg07423149 and CSF YKL-40 levels, colored by genotype at rs10399931 (right panel). Correlation of
blood DNAmethylation at (E) cg14085262 and (F) cg03625911 in the YKL-40 gene (Y-axis) with YKL-40 plasma protein levels (X-axis), with both
DNAmethylation and protein data. (G) Correlation of CSF YKL-40 protein levels (Y-axis) with plasma protein levels (X-axis). Data shown in E–G
have been regressed for the effects of covariates. Abbreviations: CSF, cerebrospinal fluid; DMPs, differentially methylated positions; DMR,
differentially methylated region; ES, effect size; EWAS, epigenome-wide association study; GWAS, genome-wide association study; mQTL,
methylation quantitative trait loci; pQTL, protein quantitative trait loci; SNP, single-nucleotide polymorphism.
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F IGURE 2 Differential methylation in the blood is associated with CSFNfL levels. Shown is aManhattan plot, with the seven
Bonferroni-significant DMPs labeled with gene name or cg ID (if unannotated). The X-axis shows chromosomes 1–22, followed by the X (23) and Y
(24) chromosomes, whereas the Y-axis shows –log10(p). The horizontal red line denotes Bonferroni significance (P= 5.80 × 10−8). Abbreviations:
CSF, cerebrospinal fluid; DMPs, differentially methylated positions; NfL, neurofilament light.

identified four DMPs that co-localized with reported GWAS signals.

This included one DMP in GALNT14 (cg14501323) in the t-tau Z-

score analysis (Table S20A), one DMP in TMEM136 (cg22210493) in

the abnormal t-tau analysis (Table S20B), and two DMPs located in,

or proximal to, the ANKRD11 gene (cg07619583, cg17289913) in the

abnormal p-tau analysis (Table S20C). We identified co-localization

of DMPs with GWAS hits for seven of the eight amyloid biomarker

measures. In the Aβ42 levels analysis we identified co-localized

DMPs in AKAP8L (cg27090975), PPP6R2 (cg18512769), and HDAC9

(cg27365190) (Table S21A). In the Aβ40 levels analysis we iden-

tified three co-localized DMPs (Table S21B), residing in TUBGCP6

(cg09169375), ZNF254 (cg09777776), and one unannotated, but

located ~1 kb from the FAM171A1 gene (cg02680903). For the Aβ38
levels analysis two co-localized DMPs were identified (Table S21C),

one located in OAS2 (cg11318133) and one in TUBGCP (cg09169375),

which co-localized with the same SNP we had identified in the Aβ40
level co-localization analysis. In the Aβ Z-score analysis, three DMPs

co-localized with the GWAS signals (Table S21D), including the APOC1

gene (cg13880303), the UBXN10/UBXN10-AS1 region (cg18722282),

andHLA-DMA (cg22961241). The same probe in APOC1was also iden-

tified in the Aβ42/40 ratio co-localization analysis (and had been the

most significant probe in the EWAS: P = 2.71 × 10−7), along with

a probe in APOE (cg06750524), (Table S21E). We identified one co-

localized probe in the Aβ42/40 ratio dichotomized analysis (Table

S21F) in CCL20 (cg25384507) and one in the amyloid status analysis

(Table S21G) thatwas unannotated, but located near theAPOC1 region

and co-localizedwithmanyof the sameSNPs thatwere identified in the

Aβ Z-score and Aβ42/40 ratio analyses. We identified eight DMPs in

theNfL analysis that co-localizedwith the corresponding GWAS (Table

S22A), including two unannotated loci (cg23455685, cg14464583),

and loci inTMEM232 (cg10285888),ATXN1 (cg07885635),TMEM106B

(cg05433004), ZNF385C (cg27283039), PPP1R2 (cg24326567), and

SORD (cg00891891), which interestingly resided in the DMR identi-

fied in the NfL and neurogranin analyses.We also identified twoDMPs

in the neurogranin analysis that co-localized with the previous GWAS

(Table S22B), located inGPSM1 (cg14203108) andPAEP (cg12053709).

It is notable that for YKL-40 we observed co-localization of the

five Bonferroni-significant DMPs and one additional DMP in CH13L1

(YKL-40) with SNPs in this region reported in the correspondingGWAS

(Table S22C), suggesting that the methylation patterns we observed

are driven by genetic variation at this locus. To explore this further

we used a Bayesian approach to test whether the risk variants resid-

ing in the genomic region associated with CSF YKL-40 (reported by

Hong and colleagues [chr1:203115267-203181560]46) are associated

with the DMPs we had identified in this gene. Taking forward eight

DMPs corresponding to cis-mQTLs (P < 1 × 10−5) in this region in

the goDMC database,48 we tested for possible pleiotropic effects

between DNAmethylation and CSF protein levels. We identified com-

mon causal variants associated with CSF YKL-40 levels and DNA

methylation at six CpG sites in this gene (cg03625911, cg02097014,

cg07423149, cg14085262, cg17014757, and cg19081101), (Table S23

and Figure 1C) and so examined this further with CIT. Indeed, DNA

methylation at all six CpG sites showed evidence ofmediating the asso-

ciation between genetic variation and CSF YKL-40 levels (Table S24

and Figure 1D).

3.7 Relationship of YKL-40 blood DNA
methylation with plasma protein levels

Next, as we had related DNA methylation patterns in blood to CSF

protein levels in the CSF, we decided to explore whether there was
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F IGURE 3 A number of commonDMRs featured inmore than one CSF biomarker analysis. Three DMRs overlapping in CSF tau analyses, four
other DMRs overlapping in CSF amyloid analyses, and four DMRs overlapping between different CSF protein biomarker analyses. Each segment
on the plot shows probes that pass different significant thresholds (gray< 1 × 10−4, blue< 1 × 10−6, red<Bonferroni threshold) with orange lines
connecting overlapping or identical DMRs from different CSF analysis. Abbreviations: CSF, cerebrospinal fluid; DMRs, differentially methylated
regions.

a relationship with plasma YKL-40 levels. For the five Bonferroni-

significant differentially methylated loci we had identified in our CSF

YKL-40 EWAS, two of these showed a significant correlation with

plasma YKL-40 levels (cg14085262: r = −0.17, P = 1.02 × 10−5,

Figure1E; cg03625911: r=−0.11,P=3.23×10−3; Figure1F). Further-

more, we observed a significant correlation between plasma YKL-40

levels and CSF YKL-40 levels (r= 0.266, P= 1.84× 10−10, Figure 1G).

3.8 Blood DNA co-methylation networks
associated with CSF biomarker measurements

Next we investigated whether any loci showed co-methylation pat-

terns that were correlated with the various CSF biomarker measures.

To this end, we used WGCNA and identified 52 modules of highly

co-methylated probes before testing their association with disease
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status and the 15 CSF biomarker measurements (Figure S14). These

analyses revealed two modules that showed a significant correla-

tion with our traits of interest after correcting for multiple testing

(P < 9.62 × 10−4), which were the orange and saddle brown modules

(Figure S14A). The orange module, which consisted of 167 probes

(Table S25), showed a significant negative correlation with CSF

Aβ42 levels (r = −0.13, P = 5.99 × 10−5), Aβ40 levels (r = −0.12,
P = 4.07 × 10−4), and Aβ38 levels (r = −0.13, P = 1.22 × 10−4). GO

analysis highlighted several pathways associated with the splicesome,

lipoproteins, and membranes (Figure 4A). PPI analysis for genes anno-

tated to the probes within the orange module identified a number of

connected proteins, including ITPR1 and HSP90AA1 (Figure 4B). The

saddlebrown module, consisting of 157 probes (Table S26), showed

a significant correlation with CSF Aβ42/40 ratio dichotomized after

correcting for multiple testing (r = −0.11, P = 9.12 × 10−4), as well as a

nominally significant correlation with several other amyloid measures

(abnormal Aβ42 levels: r = −0.072, P = 0.033; Aβ Z-score: r = 0.073,

P = 0.029; Aβ42/40 ratio: r = 0.095, P = 4.51 × 10−3; amyloid status:

r = −0.08, P = 0.017), in addition to abnormal t-tau (r = −0.072,
P = 0.032) and YKL-40 (r = −0.081, P = 0.016) levels. This module

was enriched for developmental pathways, with four false discovery

rate (FDR)–significant terms (Figure 4C). PPI analysis highlighted a

number of highly connected proteins in the module, most notably

NCAM1, which interacts with 14 other proteins within this module

(Figure 4D).

4 DISCUSSION

To our knowledge, our study represents the largest and most com-

prehensive EWAS of CSF biomarker levels of amyloid, tau, neurode-

generation, and neuroinflammation to date, investigating 15 different

CSF measures in 885 individuals. The most significant DMPs we iden-

tified were in the YKL-40 analysis, where we identified a region of

differential methylation spanning ~1 kb in the CHI3L1 gene close to

the TSS, which encodes the YKL-40 protein. YKL-40 constitutes a gly-

coprotein that is secreted by activated macrophages, chondrocytes,

neutrophils, and synovial cells, and is thought to play a role in the

process of inflammation and tissue remodeling. In addition to being a

CSF biomarker of neuroinflammation, YKL-40 protein concentration

has been shown to be significantly increased in the plasma of early

AD patients, and positively correlated with neuropsychological test

scores.58 Similarly, in Parkinson’s disease (PD), YKL-40 protein levels

in peripheral blood mononuclar cells (PBMCs) have been shown to be

three-fold higher than in healthy controls, and this was correlatedwith

alterations in mitochondrial function.59 YKL-40 gene expression has

also been reported to be increased in the cerebellum of women with

AD when compared to men with AD.60 A previous GWAS in the same

cohort had already highlighted genetic variation at this locus, altering

protein expression in cis,46 and DNA methylation in this region itself

appears to be largely determinedby genetic factors, as indicated byour

co-localization analysis with these GWAS data previously generated

in the same samples.46 We provide evidence that DNA methylation

in CH13L1 (YKL-40) may mediate this protein quantitative trait loci

(pQTL: genetic variation affecting protein expression), thereby alter-

ing CSF YKL-40 protein levels. One caveat of this approach was that

we assessedDNAmethylation in blood, whereas YKL-40 protein levels

were assessed in the CSF. Although proteins in the CSF do origi-

nate from the brain, it has been reported that ~80% of CSF proteins

are derived from the blood,61 and therefore it is plausible that the

DNA methylation alterations in YKL-40 that we observed in blood are

directly mediating the CSF pQTL. In a subset of our cohort we had

access to plasma YKL-40 protein levels, and we showed a significant

correlation between CSF and plasma protein levels. Furthermore, two

of the Bonferroni-significant DMPs in YKL-40 also showed a correla-

tion with plasma protein levels. Given that Schilde et al. showed that

YKL-40 protein levels are altered in PBMCs, it is plausible that CSF

YKL-40 protein levels are reflecting changes in blood cells, rather than

brain cells, and this could represent a downstream peripheral conse-

quence of neuroinflammation. It would be of interest, therefore, to

investigate YKL-40 DNA methylation and protein expression in the

brain in relation to genetic variation to assess whether the alterations

we observed in the CSF likely reflect changes in the brain or in the

blood.

In addition to the robust associations identified in the CSF YKL-40

analysis, we also identified seven Bonferroni-significant DMPs in the

CSF NFL analysis, annotated to OSBPL5, TRIM10, PTGFRN, METRNL,

TUBGCP2, and an intergenic probe. TRIM10 is a gene that has been

shown previously to be hypermethylated in both the brain and blood

of patients with PD compared to controls,62 which is interesting as

serumNfL is associatedwith cognitive decline in patientswithPD.63 Of

interest, PTGFRN protein levels have previously shown to be altered

in CSF-derived extracellular vesicles in patients with AD relative to

MCI.64

A recent study had reported several differentiallymethylated loci in

blood that were associated with CSF Aβ42, p-tau181, and t-tau levels

in 202 individuals in the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) cohort.38 The authors stratified their analysis, performing

separate EWAS in the AD and control subjects, and identified four

FDR-significant loci in their p-tau181analysis (all in theADgroup), four

in the t-tau analysis (three in the AD group, one in the control group),

and112 loci in theAβ42analysis (all in theADgroup).However, noneof

these FDR-significant loci featured in the 1000most significant loci we

identified in any of our EWASs. It is worth noting, however, that for our

corresponding analyses (e.g., Aβ42, p-tau Z-score, t-tau Z-score)we did
not identify any significant loci after multiple-testing (Bonferroni) cor-

rection. Similarly, another key difference between our studies includes

the stratification by disease status (N = 123 control, N = 79 AD), and

the absence of MCI subjects in the ADNI analyses, which may explain

our lack of replication of their findings.

In total, significant DMRs were identified in 12 of the 15 analy-

ses, with eight overlapping regions featuring in multiple CSF measures

analyses. A DMR inMX2 (MX dynamin-like GTPase 2) was identified in

four of the amyloid analyses (abnormal Aβ42, Aβ42, Aβ Z-score, amy-

loid status) and is an interferon-regulated gene that has been shown

previously in microglia to be responsive to Aβ.65 A DMR in TGFBI
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F IGURE 4 WGCNA identified two significant bloodDNAmethylationmodules associatedwith CSF biomarker levels. (A) Shown are the top 20
most significant terms for GO enrichment analyses in the orangemodule, consisting of 167 probes, which was Bonferroni significantly associated
with CSF Aβ42, Aβ40, and Aβ38 levels. The term titles are displayed along the Y-axes, with –log10(P) for enrichment significance shown along the
X-axis. Points are sized by the proportion of the overall GO numbers represented in that specific module. (B) PPI analysis of the genes annotated to
themodule highlighted several proteins that were highly connected, including ITPR1 andHSP90AA1. (C) Shown are the top 20most significant GO
terms for the saddlebrownmodule, consisting of 157 probes, which was Bonferroni significantly associated with CSF Aβ42/40 ratio dichotomized,
as well as nominally significantly associatedwith abnormal Aβ42 levels, AβZ-score, Aβ42/40 ratio, and amyloid status. The term titles are displayed
along the Y-axis, with –log10(P) for enrichment significance shown along the X-axis. The red dashed vertical line denotes the FDR significance
threshold. (D) PPI analysis identified several highly connected proteins, including NCAM1. Abbreviations: Aβ, amyloid beta; CSF, cerebrospinal
fluid; FDR, false discovery rate; GO, gene ontology; PPI, protein–protein interaction;WGCNA, weighted gene correlation network analysis.

(transforming growth factor beta-induced) featured in the Aβ40 and

Aβ38 analyses, which is interesting because the protein has been pre-

viously shown to be upregulated in plasma in MCI subjects.66 The

other two genes that featured DMRs in multiple amyloid analyses

resided in ZFP57 (zinc finger protein 57) (Aβ Z-score, Aβ42/40 ratio)

and ANKMY1 (ankyrn repeat and MYND domain containing 1) (Aβ42,

Aβ40), which to our knowledge have not been robustly associatedwith
AD previously.

We identified several regions that overlappedbetween thedifferent

typesofCSFproteinbiomarker analyses; for example,ZBTB22 (zinc fin-

ger andBTBdomain containing22) in theabnormal p-tauandabnormal

Aβ42 analyses, S100A13 (S100 calcium binding protein 13) between
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the abnormal p-tau and NfL analyses, STRA6 (signaling receptor and

transporter of retinol) between the Aβ38 and neurogranin analyses,

and SORD (sorbitol dehydrogenase) between the NfL and neurogranin

analyses. Lower expression of S100A13 protein in plasma has been

observed in individuals with a high polygenic risk score (PRS) for AD,67

whereas serum protein expression has been associated with APOE

genotype.68 One noteworthy DMR that only featured in one DMR

analysis was RGMA (repulsive guidance molecule BMP co-receptor A),

which was identified in the Aβ42 levels analysis, and is located within

81 bp of two CpG sites that were identified in a large meta-analysis of

DNAmethylomic studies in AD post-mortem cortex.31

Having observed that the Bonferroni-significant DMPs in the

CH13L1 (YKL-40) gene in theYKL-40CSFEWASweredrivenbygenetic

variation in cis, we were also interested to investigate whether any

DMPs in our other EWASs resided in genomic regions identified in

the corresponding GWASs undertaken previously in the same cohort.

We identified four DMPs across the four tau analyses, 16 across the

amyloid analyses, eight in the NfL analysis, and two in the neurogranin

analysis. Of particular interest was a CpG in the APOE gene, which we

identified in the Aβ42/40 ratio analysis alongside a CpG in the nearby

APOC1 gene, which also featured in the Aβ Z-score analysis. The ε4
allele of the APOE gene is the greatest genetic risk factor for spo-

radic AD,69 and a recent EWAS reported this CpG to be significantly

differentially methylated in blood in non-demented APOE ε4 carriers

compared to ε2.70 In the future it will be of interest to explore whether
the presence of an APOE ε4, or indeed ε2 allele, affects methylation

across the entire gene.

We used WGCNA to identify modules of co-methylated loci that

were associated significantly with CSF biomarker levels, identifying

two modules that passed the Bonferroni significance threshold. The

firstmodule (orange),whichwas correlatedwithCSFAβ42 levels, Aβ40
levels, and Aβ38 levels, was enriched for lipoprotein and plasma mem-

brane pathways, with the hub gene HSP90AA1 having been previously

shown to be differentially expressed in MCI and AD blood, and is cor-

related with the levels of various immune cells, whereas in the brain,

its expression levels are correlated with α- and β-secretase activity.71

The second module (saddlebrown), which was Bonferroni significantly

correlatedwithAβ42/40 ratio dichotomized, aswell as being nominally

significantly correlatedwith several amyloidmeasures (abnormalAβ42
levels, Aβ42/40 ratio, amyloid status), abnormal t-tau, and YKL-40 lev-

els was enriched for developmental pathways. Of interest, NCAM1,

which was the most connected module from the PPI analysis, has been

previously shown to be differentially expressed in the CSF of patients

with AD.72

Blood is a heterogeneous fluid andwehave reported previously that

AD is associatedwith small changes in blood cell proportions.73 There-

fore, one limitation of our study is that we have used whole blood for

DNAmethylomic profiling. Although we have attempted to control for

this in our analyses by including cell proportions as covariates, future

studies performedonDNA isolated fromspecific cell typeswould allow

the identification of cell type–specific signatures associatedwith these

biomarkers. A second potential limitation is that our study uses amulti-

center design, utilizing whole blood samples collected previously as

part of existing largeADbiomarker studies fromdifferent clinics. How-

ever, by adjusting for a sample origin variable (“center”) as a potential

confounder on the level of recruitment in our analyses we likely min-

imized the effect of this heterogeneity in our data. More importantly,

all laboratory experiments for DNA methylation profiling on the EPIC

array were performed in one batch, which should minimize technical

variation as a source of bias. Still, it will be important to replicate all

DMPs and DMRs identified in our study in samples from other, ide-

ally more homogenous, populations. It is worth noting that our study

was undertaken predominantly in individuals of European ancestry;

however, it is important that future EWASs are undertaken in more

ethnically diverse populations or in different ethnic groups. Third, with

the exception of the YKL-40 analysis, where we observed DNAmethy-

lation alterations of up to 17% (cg17014757), the vast majority of

differentiallymethylated lociwe identified in ourDMPandDMRanaly-

ses for the different CSF biomarkers were relatively modest. Although

these individual CpGs are, therefore, unlikely to have utility as sin-

gle biomarkers, there is the possibility that these could be combined

into panels, or combined with other omic data modalities as multi-

modal markers. In addition, as discussed previously, cell type–specific

DNAmethylation profiling will be important in the future as these will

likely yield larger effect sizes (ESs). Fourth, aside from the YKL-40 anal-

ysis, the majority of our analyses do not allow any direct inference

on potential downstream (or upstream) mechanisms, for example, on

gene or protein expression and howdifferential expressionmay lead to

the observed impact on the AD-relevant CSF outcome variables ana-

lyzed here. Furthermore, even though our CIT provided evidence that

YKL-40 DNA methylation mediates the pQTL for CSF YKL-40 protein

levels, it is worth noting that the mQTL we identified was in the blood,

whereas the pQTL is within the CSF. Therefore, future studies should

aim to explore the relationship between YKL-40 genetic variation,

DNA methylation, and protein levels within the same tissue. Finally,

EWASs in general do not allow one to distinguish cause–effect rela-

tionships, meaning that all observed associations may reflect changes

in DNA methylation either preceding (and perhaps partially causing)

variation in biomarker levels or they may reflect (at least partially) a

direct consequence of the disease process. Future studies integrating

different “omic” data sets and/or employing targeted molecular exper-

iments using in vitro or in vivo models will allow a more informed

functional interpretation of nominated loci. Notwithstanding, we have

undertaken a large and comprehensive study of DNAmethylationwith

respect to various CSF biomarker levels and identified a number of

DMPs andDMRs of interest. Most notably we have demonstrated that

DNAmethylation in theCH13L1 (YKL-40) genemaymediate its protein

expression and suggests the pQTL previously identified for CSF YKL-

40 levels is in part regulated by epigenetic mechanisms. Looking to the

future it will be of interest to explore the relationship between YKL-

40 genetic variation, DNA methylation, and protein expression in the

brain.
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