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Abstract
Constitutively expressed by innate immune cells, the cytokine macrophage migra-
tion inhibitory factor (MIF) initiates host immune responses and drives pathogenic 
responses in infectious, inflammatory, and autoimmune diseases. Dendritic cells 
(DCs) express high levels of MIF, but the role of MIF in DC function remains poorly 
characterized. As migration is critical for DC immune surveillance, we investigated 
whether MIF promoted the migration of DCs. In classical transwell experiments, 
MIF−/− bone marrow-derived DCs (BMDCs) or MIF+/+ BMDCs treated with ISO-1, 
an inhibitor of MIF, showed markedly reduced spontaneous migration and chemo-
taxis. CD74−/− BMDCs that are deficient in the ligand-binding component of the 
cognate MIF receptor exhibited a migration defect similar to that of MIF−/− BMDCs. 
Adoptive transfer experiments of LPS-matured MIF+/+ and MIF−/− and of CD74+/+ 
and CD74−/− BMDCs injected into the hind footpads of homologous or heterolo-
gous mice showed that the autocrine and paracrine MIF activity acting via CD74 
contributed to the recruitment of DCs to the draining lymph nodes. Mechanistically, 
MIF activated the Src/PI3K signaling pathway and myosin II complexes, which were 
required for the migration of BMDCs. Altogether, these data show that the cytokine 
MIF exerts chemokine-like activity for DC motility and trafficking.
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1  |   INTRODUCTION

Migration of leukocytes from the bloodstream into tissues is 
essential for the maintenance of homeostasis, body surveil-
lance, and the mounting of host responses to danger signals 
sensed by sentinel innate immune cells in injured tissues.1-3 
Inflammatory mediators released by innate immune cells 
trigger complex leukocyte-vessel wall interactions resulting 
in the trans-endothelial migration, extravasation, and nav-
igation of leukocytes into the interstitium. Microbial prod-
ucts, extracellular matrix, chemokines and cytokines, and 
lipid mediators are key drivers of adhesion-dependent and 
adhesion-independent leukocyte migration.1,4-6 The binding 
of chemokines to cognate G-protein-coupled receptors of leu-
kocytes activates intracellular signaling pathways including 
the Rho family of GTPases, Ca2+ signaling, phosphoinositide 
3-kinase (PI3K)-Akt, and mitogen-activated protein kinases 
(MAPKs) that generate a bipolar mechanosensory state for 
cell migration.1-7

Macrophages and dendritic cells (DCs) are the main 
sentinel cells of the innate immune system that patrol pe-
ripheral tissues. They play a fundamental role in the re-
cruitment of leukocytes following exposure to harmful 
environmental compounds, microbial products, or endog-
enous danger molecules. Tissue macrophages are an abun-
dant source of a broad array of cytokines and chemokines 
that stimulate the migration of leukocytes into peripheral 
tissues. DCs are a heterogeneous group of hematopoietic 
cells bridging innate and adaptive immunity.8,9 Beyond the 
production of cytokines, one key function of the classical 
(also called conventional) population of DCs is their ability 
to capture antigens in peripheral tissues and transport them 
via the lymphatic vessels into the draining lymph nodes 
where they present antigens to naïve T cells.3 Following 
the endocytosis of foreign or self-antigens, DCs undergo 
a maturation process and up-regulate the expression of 
C-C chemokine receptor (CCR) 7, which results in an in-
creased motility and haptotaxis into the lymphatic vascula-
ture through the interaction of CCR7 with chemokine (C-C 
motif) ligand (CCL) 21 expressed by the lymphatic endo-
thelium.3,10,11 Upon arrival in the sub-capsular sinus of the 
draining lymph nodes, a CCL21 gradient guides classical 
DCs to the T-cell–rich zone where they support the activa-
tion, maturation, and development of effector functions of 
antigen-specific CD4+ and CD8+ T cells.

Cytokines are crucial effector molecules of innate 
immunity that play an essential role in the activation of 
phagocytes, the recruitment of leucocytes, and the matu-
ration and migration of DCs.12 Within the superfamily of 
cytokines, macrophage migration inhibitory factor (MIF) 
occupies a special place.13,14 MIF and its close relative D-
dopachrome tautomerase (D-DT, also coined MIF-2) are 
the only identified members of this cytokine family.15 MIF 

acts as an enzyme and a hormone, a unique feature among 
cytokines. Other distinctive MIF traits are its constitutive 
expression and circulation at high concentration in the 
bloodstream and body fluids.16 MIF is released promptly by 
a broad range of immune and endocrine cells in response to 
a vast array of stimuli and stress hormones including glu-
cocorticoids.16-18 Within the innate immune system, mono-
cytes, macrophages, and DCs express copious amounts of 
MIF, which they further upregulate during acute inflam-
mation to support robust innate immune responses.19-21 
MIF mediates these effects via a positive regulation of the 
expression of Toll-like receptor 4 (TLR4), the inhibition 
of p53, and the counter-regulation of the immune suppres-
sive effects of glucocorticoids.17,22-25 Hence, MIF acts as 
an initiator or regulator of infectious, inflammatory, and 
auto-immune diseases and represents a target for the man-
agement of pathological conditions.14,26-41 Extracellular 
MIF signals through a multicomponent receptor complex 
composed of CD74 and CD44.42-46 CD74 also works in as-
sociation with C-X-C motif chemokine receptor (CXCR) 
2, CXCR4, or CXCR7.42-46 By contrast, the intracellular 
MIF acts through an interaction with p53, COP9 signalo-
some subunit 5/c-Jun-activation domain-binding protein 1 
(CSN5/JAB-1), thioredoxin-interacting protein, and ribo-
somal protein S19.47-50 Downstream signaling pathways 
activated by MIF include the extracellular signal-regulated 
kinase (ERK1/2), p38, and c-jun N-terminal kinase (JNK), 
MAPKs and PI3K/Akt.51-55

Unexpectedly given its name, MIF displayed chemokine-
like function as a non-cognate ligand for CXCR2 and 
CXCR4.44 Subsequent work indicated that MIF promotes the 
chemotaxis of neutrophils, B cells, eosinophils, and myeloid-
derived suppressor cells through the engagement of one or 
several of its receptors, that is, CD74, CRXR2, CXCR4, 
and CXCR7, as well as indirectly through the chemokine 
(C-C motif) ligand (CCL) 2/MCP-1.46,56-59 Given that MIF 
is expressed abundantly in DCs and that migration is a key 
feature of DCs, we explored whether MIF was a bona fide 
chemotactic factor for DCs using genetic and pharmacologi-
cal approaches.

2  |   MATERIALS AND METHODS

2.1  |  Ethical considerations

Animal experiments were approved by the Service des 
Affaires Vétérinaires, Direction Générale de l'Agriculture, 
de la Viticulture et des Affaires Vétérinaires (DGAV), état 
de Vaud (Epalinges, Switzerland) under authorizations n.° 
876.9, 877.8, and 877.9 to TR and were performed according 
to Swiss and ARRIVE guidelines (http://www.nc3rs.org.uk/
arriv​e-guide​lines).

http://www.nc3rs.org.uk/arrive-guidelines
http://www.nc3rs.org.uk/arrive-guidelines
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2.2  |  Mice and cells

Eight to twelve-week-old BALB/cAnNCrl and C57BL/6N  
mice were purchased from Charles River Laboratories 
(L'Arbresle, France). MIF−/− BALB/c mice60 and MIF−/− 
C57BL/6N mice61 were backcrossed at least eight times 
onto BALB/cAnNCrl and C57BL/6N genetic backgrounds. 
CD74−/− C57BL/6N mice were obtained from Prof Richard 
Bucala (Yale University School of Medicine, New Haven, 
CT). Mice were housed under specific pathogen-free con-
ditions in the animal facility of the Centre des Laboratoires 
d’Epalinges (Switzerland, license number VD-H04) at 22°C, 
with 70% humidity in ambient air and 12-hour light/dark cy-
cles. Colonies were free of norovirus and mouse hepatitis virus. 
Bone marrow cells were cultured in IMDM containing 2 μM 
2-mercaptoethanol (βME), 2  mM L-glutamine, 100  U/mL 
penicillin, 100  μg/mL streptomycin (Invitrogen, San Diego, 
CA), and 10% of heat-inactivated FCS (Biochrom AG, Berlin, 
Germany) supplemented with 50  ng/mL of granulocyte-
macrophage colony-stimulating factor and 20  ng/mL of 
IL-4 (ProSpec, East Brunswick, NJ). Loosely adherent bone 
marrow-derived dendritic cells (BMDCs) were collected after 
seven days.62 BMDCs were incubated 36 hours with 10 ng/
mL Ultrapure Salmonella minnesota LPS (List Biologicals 
Laboratories, Campbell, CA) to generate activated DCs.

2.3  |  Cell migration assay

Cell migration was assessed using Corning Costar Transwell 
cell culture inserts or Corning Transwell-COL collagen-
coated membrane inserts (Corning Life Sciences BV) with 
5 μm pore size (Corning BV Life Sciences, Amsterdam, NL). 
Briefly, MIF+/+ and MIF−/− BMDCs were washed with PBS 
and incubated for 1 hour in RPMI 1640 medium (Invitrogen) 
containing 0.1% BSA (Sigma-Aldrich, Buchs, Switzerland). 
In some experiments, BMDCs were preincubated for 1 hour 
with recombinant MIF (rMIF) or inhibitors of MIF [4,5-dihyd
ro-3-(4-hydroxyphenyl)-5-isoxazoleacetic acid methyl ester, 
known as ISO-1, 100  μM], CXCR2 (SB225002, 100  μM), 
CXCR4 (AMD3100, 100  μg/mL), MEK-1/2 (U0126, 
10 μM), myosin II (blebbistatin, 100 μM), PI3K (Ly29002, 
10 μM; wortmannin, 1 μM), ROCK (Y27632, 5 μM), or SRC 
(PP2, 10 μM; Src inhibitor-1, 5 nM). Five × 105 cells were 
transferred to the transwell inserts. The lower chamber of 
the transwell device contained medium with or without re-
combinant CCL5 (500 ng/mL), CCL19 (250 ng/mL), CCL20 
(100 ng/mL), CCL21 (250 ng/mL), or CXCL12 (250 ng/mL). 
The number of cells migrating into the lower chamber was 
assessed after 6 hours. MIF was prepared as described pre-
viously.22,44 Chemokines were from Peprotech (Rocky Hill, 
NJ), and other reagents were from Sigma-Aldrich (Buchs, 
Switzerland) or Tocris (Zug, Switzerland).

2.4  |  RNA analysis

Total RNA was isolated, reversed transcribed, and used in 
real-time quantitative PCR conducted with a QuantStudio 
12K Flex system (Life Technologies, Carlsbad, CA).63 
Primer pairs are listed in Table S1. Relative gene specific ex-
pression levels were calculated with the 2∆∆CT method using 
Hprt as a reference gene.

2.5  |  Flow cytometry analysis

BMDCs were incubated with the 2.4G2 antibody (BD 
Biosciences, Erembodegem, Belgium) to block non-specific 
binding and stained with antibodies listed in Table S2. Dead 
cells were excluded following 7-ADD staining. Data were 
acquired using a LSR II flow cytometer (BD Biosciences) 
and analyzed using the FlowJo 10.2 software (FlowJo LLC, 
Ashland OR).64

2.6  |  Adherence to fibronectin-coated 
glass slides

BMDCs were seeded onto fibronectin-coated (5-6  μg/cm2) 
glass multi-well microscope slides at a density of 1.5 × 105 
cells/cm2. After 1 hour, slides were washed with PBS, stained 
with DIFF QUICK (Sigma-Aldrich), and mounted with cov-
erslips. The number of adherent cells was determined in a 
semi-automated manner using the Image J software.

2.7  |  Western blot analysis

Total cell extracts were obtained by incubating BMDCs in 
10 mM HEPES pH 7.9, 10 mM KCl, 0.1 M EDTA, 0.1 mM 
EGTA, 1 mM DDT, 2.5 mM PMSF, 0.6% NP-40, cOmplete, 
Mini Protease, and PhosSTOP phosphatase inhibitor cock-
tails (Roche Applied Science, Basel, Switzerland) for 10 min-
utes on ice. Proteins were fractioned through 8-12% PAGE 
and transferred onto nitrocellulose membranes (Schleicher 
& Schuell, Keene, NH). Membranes were incubated with 
antibodies described in Table S2. The signals were detected 
using the ECL system (GE Healthcare, Little Chalfont, UK), 
and the images were recorded using a Fusion Fx system 
(Vilber Lourmat, Collégien, France). Full-size western blots 
and quantification data are shown in Figures S3 and S4.

2.8  |  In vivo migration assay

C57BL/6N MIF+/+ and MIF−/− BMDCs and CD74+/+ 
and CD74−/− BMDCs were differentiated for 36  hours 
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with 10  ng/mL Ultrapure LPS, labeled with either 
5-carboxyfluorescein diacetate succinimidyl ester (CFSE) 
(CellTrace CFSE Cell Proliferation Kit, Invitrogen) or 
CellVue Claret Far-red fluorescent cell linker (Sigma-
Aldrich), washed, mixed at a 1:1 ratio (5  ×  106 cells of 
each preparation), and injected into the left hind footpad 
of either MIF+/+ or MIF−/− mice. Twenty-four hours later, 
popliteal lymph nodes were collected and analyzed by flow 
cytometry using antibodies directed against CD3, CD11c, 
CD19, and MHC-II (Table S2).

2.9  |  Graphical representation and 
statistical analyses

Graphs were plotted and statistical analyses were performed 
using Prism 8.3.0 (GraphPad Software, Inc). Violin plots 
show the 25th and 75th percentile, and the median. The bars 
depict mean  ±  SD. Comparisons between different groups 
were performed using the analysis of variance followed by 
parametric (two-tailed unpaired Student's t-test) or non-
parametric (two-tailed Mann-Whitney test) statistical tests.  
P values less than .05 were considered to indicate statistical 
significance (*P < .05; **P < .01; ***P < .005).

3  |   RESULTS

3.1  |  MIF promotes spontaneous and 
chemokine-induced migration of DCs

To determine whether MIF regulates the migration of DCs, 
BMDCs derived from MIF+/+ and MIF−/− mice were sub-
jected to transwell migration assays performed in the presence 
or in the absence of homeostatic (CCL19, CCL21), inflam-
matory (CCL5, CCL20), or mixed homeostatic/inflammatory 
(CXCL12) chemokines acting through CCR7 (CCL19 and 
CCL21), CCR1/3/4/5 (CCL5), CCR6 (CCL20), and CXCR4/
CXCR7 (CXCL12). The number of migrating cells was as-
sessed after 6 hours of incubation. As shown in Figure 1A, 
the spontaneous migration of MIF−/− BMDCs was 1.9-fold 
(C57BL/6) and 1.6-fold (BALB/c) lower than that of MIF+/+ 
BMDCs, respectively (P = .0017 and P = .026). Chemokines 
increased the migration of MIF+/+ BMDCs by a factor of 2 to 
3. MIF−/− C57BL/6 BMDCs exhibited severely impaired mi-
gration upon exposure to CCL19, CCL21, CCL5, or CCL20 
(1.6-, 1.6-, 2.0-, and 1.9-fold reduction; P = .053, .001, .02, 
and .04, respectively) (Figure  1B). Interestingly, migration 
of MIF−/− BMDCs was not impaired when it was induced by 
CXCL12 (Figure 1B). Spontaneous migration and CCL21-
induced chemotaxis of MIF−/− C57BL/6 BMDCs matured 
for 3 days with LPS were also markedly lower (2.6- to 3.1-
fold) than that of MIF+/+ C57BL/6 BMDCs (Figure S1A). 

Unless specified otherwise, all subsequent experiments were 
performed with cells derived from C57BL/6 mice.

We also performed transwell migration assays with wild-
type BMDCs treated with ISO-1, an inhibitor of MIF.65 
ISO-1 reduced the spontaneous and the CCL21-induced mi-
gration of MIF+/+ BMDCs (2-fold and 1.5-fold; P = .041 and 
P = .016) (Figure 1C). Next, we used a recombinant mouse 
MIF (rMIF) for add-back experiments in MIF-deficient 
BMDCs. BMDCs were incubated with rMIF for 1 hour be-
fore being used in transwell migration assays. rMIF increased 
in a dose-dependent manner spontaneous and CCL21-
induced migration of MIF−/− BMDCs (2.7-fold and 5.5-fold) 
(Figure 1D) indicative of a paracrine effect of MIF on sponta-
neous and chemokine-induced migration of BMDCs.

We then examined the contribution of MIF receptors to the 
migration of BMDCs using CD74+/+ and CD74−/− BMDCs 
and pharmacological inhibitors of CXCR2 (SB225002) and 
CXCR4 (AMD3100) (Figure  1E,F). Like MIF−/− BMDCs, 
CD74−/− BMDCs exhibited a marked decrease of sponta-
neous and chemokine-induced (CCL19 or CCL21) migration 
(1.8-, 2.0-, and 1.9-fold; P = .001, .011, and .09, respectively) 
(Figure  1E). The CXCR4 inhibitor AMD3100 exhibited a 
small effect on CCL21-induced but not on spontaneous che-
motaxis of MIF+/+ BMDCs (P = .016). The CXCR2 inhibitor 
SB225002 did not affect migration (Figure 1F).

Taken together, these results show that MIF plays an im-
portant role in the spontaneous migration and in the chemo-
taxis of DCs and that it exerts its effects predominantly in a 
CD74-dependent manner.

3.2  |  MIF deficiency impairs the 
migration of DCs into draining lymph nodes

To evaluate the effect of autocrine and paracrine MIF on the 
migration of DCs in vivo, we used a model of adoptive cell 
transfer. Fluorochrome-labelled, LPS-matured MIF+/+ and 
MIF−/− BMDCs were injected in the footpads of MIF+/+ and 
MIF−/− mice, and the number of cells that migrated into the 
popliteal draining lymph nodes was assessed after 24  hours 
by flow cytometry. As shown in Figure 2A, MIF+/+ mice in-
jected with MIF+/+ BMDCs had the highest number of cells 
migrating into the draining lymph nodes. Migrating BMDCs 
were reduced by 36% (P = .004) in MIF+/+ mice injected with 
MIF−/− BMDCs, by 36% (P = .002) in MIF−/− mice injected 
with MIF+/+ BMDCs, and by 54% (P = .0006) in MIF−/− mice 
injected with MIF−/− BMDCs. Thus, in vivo both autocrine and 
paracrine MIF contributed to an optimal migration of DCs to 
the draining lymph nodes. To test whether CD74 was involved 
in these effects, we quantified the migration of CD74+/+ and 
CD74−/− BMDCs into the draining lymph nodes of wild-type 
recipient mice (Figure 2B). The migration of CD74−/− BMDCs 
was reduced by 35% when compared with that of CD74+/+ 
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BMDCs (P = .02). These results indicate that the paracrine ef-
fects of MIF on DC migration are CD74-dependent.

3.3  |  MIF regulates integrin expression and 
adhesion of DCs to extracellular matrix

Leukocyte integrins (Itg) and adhesion molecules interact 
with the extracellular matrix including collagen, laminin, and 
fibronectin. We therefore examined whether MIF deficiency 
affected the expression of various integrins and adhesion 

molecules such as Itgα4 (CD49d), Itgβ1 (CD29), Itgβ2 (CD18), 
intercellular adhesion molecule 1 (Icam1, CD54), DC-specific 
intercellular adhesion molecule-3-grabbing non-integrin 
(Dcsign, CD209a), and vascular cell adhesion molecule 1 
(Vcam1, CD106). MIF−/− BMDCs expressed lower Itga4 and 
Itgb1 mRNA levels than MIF+/+ BMDCs (1.6-fold and 1.4-fold 
reduction, P = .04 and P = .006). The mRNA levels of Itgb2, 
Icam1, Dcsign, and Vcam1 decreased, but the differences were 
not statistically significant (Figure 3A). Flow cytometry analy-
ses confirmed a reduced expression of Itgβ1 (CD29), but not of 
Itgβ2 (CD18), in MIF−/− BMDCs (Figure 3B).

F I G U R E  1   MIF promotes spontaneous and chemokine-induced migration of DCs. Spontaneous (A) and chemokine-dependent (B–F) 
migration of MIF+/+ and MIF−/− (A,B), and CD74+/+ and CD74−/− (E) BMDCs isolated from C57BL/6N (A–F) or BALB/c (A) mice (n = 3 to 
13 mice per experiment) with or without pretreatment for 1 hour with ISO-1 (100 μg/mL) (C), recombinant mouse MIF (1-300 mg/mL) (D), 
or inhibitors of CXCR4 (AMD3100, 100 µg/mL) or CXCR2 (SB225002, 100 µM) (F). Chemoattractants CCL19, CCL21, and CXCL12 were 
used at 250 ng/mL, CCL5 at 500 ng/mL, and CCL20 at 100 ng/mL. Migrating cells were enumerated after 6 hours. Results are expressed as 
the number of migrating cells (A) or as a migration index expressed as a fold change of the experimental conditions (CCL19, CCL21, CCL5, 
CCL20, CXCL12) over the mean of the control (ie, spontaneous migration of MIF+/+ BMDCs), which was set at 1 (B-F). *P < .05, **P < .01, 
***P < .005
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Very late antigen-4 (VLA-4) composed of heterodimers 
of Itgα4 and Itgβ1 interacts with VCAM1 and fibronectin. 
To determine whether the decreased expression of CD29 in 
MIF−/− BMDCs was functionally meaningful, we quantified 
the adhesion of BMDCs to fibronectin-coated glass slides. 
Compared to untreated MIF+/+ BMDCs, ISO-1-treated MIF+/+ 
BMDCs and MIF−/− BMDCs exhibited significant reductions 
in adherence to fibronectin by 2.3-fold and 2.8-fold (P = .03 and 
P =  .004, respectively) (Figure 3C). Similar results were ob-
tained when comparing MIF+/+ and MIF−/− BMDCs obtained 
from BALB/c mice (MIF+/+ vs. MIF−/− adherent BMDCs: 
3393 ± 374 vs. 2324 ± 344, n = 3, P = .01). In agreement with 
these observations, spontaneous migration and CCL19 and 
CCL21-stimulated chemotaxis of MIF−/− BMDCs were 2.1- to 
3.6-fold lower than those of MIF+/+ BMDCs in migration as-
says performed with collagen-coated transwells (Figure S1B). 
These results indicate that the endogenous MIF is required for 
maximal expression of integrins on BMDCs for an optimal in-
teraction with the extracellular matrix.

3.4  |  MIF activates the Src/PI3K pathway

Several signaling pathways including the Src, PI3K/Akt, and 
MAPK regulate the migration of DCs.66 Among these signal-
ing modules, the RAF/MEK/ERK pathway suppresses DC mi-
gration.67 As MIF can induce activation of PI3K/Akt, MEK/
ERK1/2, and Src pathways,45,52,55 we examined the role of 
PI3K/Akt, Src, and MAPK pathways in migration of DCs in 
transwell migration assays using specific pharmacological in-
hibitors. Inhibitors of PI3K (wortmannin and Ly294002) and 

Src (Src inhibitor 1) decreased spontaneous migration (PI3K 
inhibitors) and CCL21-induced chemotaxis (PI3K and Src 
inhibitors) of MIF+/+ BMDCs, in line with previous obser-
vations.66 In contrast, the inhibitor of MEK1/2 (U0126), the 
MAPK kinase upstream of ERK1/2, had no impact on the 
migration of DCs (Figure 4A and Figure S2A). Western blot 
analyses of the levels of phosphorylated PI3K, phosphorylated 
Akt, and phosphorylated Src in MIF+/+ and MIF−/− BMDCs 
stimulated with CCL21 are shown in Figure  4B and Figure 
S3. CCL21 induced a rapid, robust, and transient increase in 
phosphorylated Akt and phosphorylated ERK1/2 and a modest 
increase in phosphorylated PI3K p85 and phosphorylated Src, 
while phosphorylated PI3K p55 was markedly reduced. Levels 
of phosphorylated PI3K and phosphorylated Src were reduced 
in MIF−/− BMDCs. This was not the case for phosphorylated 
Akt and ERK1/2. These results indicate that MIF supports 
the activation of kinase cascades (PI3K and Src) implicated 
in spontaneous and chemokine-induced migration of DCs. Of 
note, PI3K inhibition with wortmannin also reduced spontane-
ous and CCL21-induced migration of MIF−/− BMDCs (1.7-
fold and 1.6-fold, P = .03 and .02, respectively), suggesting that 
PI3K-mediated migration of DCs is partly MIF-independent.

3.5  |  MIF is involved in myosin II-dependent 
motility of DCs

Myosin II (MII) is an actin motor protein and essential 
regulator of cell morphology and cell migration.7 MII is a 
hexamer composed of two heavy chains of 230 kDa, two es-
sential light chains of 17 kDa, and two regulatory light chains 

F I G U R E  2   MIF deficiency impairs the migration of DCs into satellite lymph nodes. A, B, BMDCs were cultured for 72 hours with LPS 
(5 µg/mL). One million MIF+/+ or MIF−/− (A) and CD74+/+ or CD74−/− (B) BMDCs labeled with CFSE or CellVue Far red dyes were mixed in 
a 1:1 ratio and injected into the hind footpads of MIF+/+ and MIF−/− mice (A) and CD74+/+ mice (B). After 24 hours, popliteal lymph nodes were 
collected and the number of BMDCs that had migrated into the draining lymph nodes was quantified by flow cytometry. Representative dot plots 
of the detection of MIF+/+ and MIF−/− DCs transferred into MIF+/+ or MIF−/− mice are shown in panel A. Data are a pool of two (A) and one (B) 
experiments. Each point represents one individual mouse. Bar graphs represent mean ± SEM. *P < .05, **P < .01, ***P < .005
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of 20 kDa (MLC II). The activity of MII is dependent on the 
phosphorylation of MLC II at serine 19 (Ser19) and at threo-
nine 18 (Thr18). The upstream regulators of MII include Rho 
GTPases and ROCK1/2. Upon activation by RhoA, ROCK1 
inhibits the MLC phosphatase, thereby increasing the phos-
phorylation of MLC II that supports actomyosin assembly. 
Phosphorylation at Ser19/Thr18 induces conformational 
changes of MII and stimulates MII filament formation and 
ATPase activity that is required for cell motility.

Given the key role played by MII in the cell movement, 
we investigated the effects of pharmacological inhibitors of 
MII (blebbistatin) and ROCK (Y27632) on the migration of 
BMDCs. Blebbistatin and Y27632 inhibited the spontaneous 
migration and CCL21-dependent chemotaxis of MIF+/+ 

BMDCs (blebbistatin: 2.7- and 3.8-fold decrease, P  =  .05 
and P = .012; Y27632: 1.4- and 1.5-fold decrease, P = .03 
and P = .004) (Figure 5A,B). Blebbistatin was also found to 
decrease the chemotaxis of MIF+/+ BMDCs upon stimula-
tion with CCL19, CCL5, and CCL20 (Figure S2B). Next, we 
examined by western blotting the effect of MIF on the phos-
phorylation of MLC II at Ser19 and Thr18/Ser19 II in MIF+/+ 
and MIF−/− BMDCs after stimulation with CCL21. CCL21 
induced a rapid (peaking after one minute) and persistent 
(up until 60  minutes) elevation of phosphorylated MLC II 
in MIF+/+ BMDCs, which was delayed, of lower magnitude 
and of shorter duration in MIF−/− BMDCs (Figure 5C, Figure 
S4). These data indicate that MIF promotes MII-dependent 
motility of DCs.

F I G U R E  3   MIF-deficiency in DCs reduces integrin expression and adherence to fibronectin. A, Itga4, Itgb1, Itgb2, Icam1, Dcsign, and 
Vcam1 mRNA levels in MIF+/+ and MIF−/− BMDCs (n = 4 mice) were determined by RT-PCR, normalized to Hprt mRNA levels and reported 
to the respective mRNA levels of MIF+/+ BMDCs set at 1. B, CD18 (encoded by Itgb2) and CD29 (encoded by Itgb1) expression in MIF+/+ and 
MIF−/− BMDCs assessed by flow cytometry (n = 3 mice) with representative histogram plots (the black area represents staining with an isotype-
matched control antibody). Data are expressed as the mean fluorescence intensity (MFI). C, Number of MIF+/+ and MIF−/− BMDCs adherent to 
fibronectin-coated glass slides. Cells were preincubated for 1 hour with or without ISO-1 (100 μg/mL) and left in contact for 30 minutes with the 
glass slides and adherent cells counted. Data are mean ± SD from one experiment performed with BMDCs derived from three individual mice per 
group and are representative of two independent experiments. *P < .05, **P < .01
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4  |   DISCUSSION

Using genetic and pharmacological approaches, we showed 
that MIF promotes steady-state migration and chemotaxis of 
BMDCs in vitro and in vivo in a classical model of adop-
tive transfer and homing of DCs to the lymph nodes. The 
impairment of DC migration was especially striking when 
transferring MIF-deficient DCs into MIF-deficient recipi-
ent mice, indicating that MIF is playing an active role in 
DC recruitment and lymph node trafficking by haptotaxis. 
Mechanistically, MIF migration stimulating activity was 
mediated by the promotion of cellular adhesion via the ex-
pression of β1 integrin (CD29) and the activation of the Src/
PI3K signaling pathway, which induced cellular locomotion 
through MII-dependent contraction (Figure 6).

Many of the biological effects of MIF require the activa-
tion of a receptor complex consisting of CD74, the ligand-
binding unit, and CD44, the signal-transducing element. Via a 
pseudo(E)LR motif and a chemokine-mimicking N-like loop, 
MIF also functions as a non-canonical ligand for the chemo-
kine receptors CXCR2 and CXCR4.44,68 Working in concert 
with CD74, CXCR2 or CXCR4 mediates MIF chemokine-like 
activity for monocytes, eosinophils, neutrophils, NKT cells, 
T cells, or B cells.44,57,58,68,69 MIF also facilitates CXCL1-
induced neutrophil chemotaxis.56 The present data provide 
genetic evidence that CD74 was required for maximal spon-
taneous migration and chemotaxis of DCs. In sharp contrast, 
a previous study reported an increased migration of CD74-
deficient DCs.70 The reasons underlying these diametrically 
opposed results remain unclear. Our data are consistent with 

F I G U R E  4   Reduced baseline and chemokine-induced phosphorylation of PI3K and Src in MIF deficient DCs. A, Spontaneous migration 
and CCL21-induced (250 ng/mL) chemotaxis of MIF+/+ and MIF−/− BMDCs with or without pre-treatment for 1 hour with wortmannin (1 µM), 
U0126 (10 μM), or Src Inhibitor I (10 nM). The migration index was calculated as described in the legend of Figure 1. Data are mean ± SEM from 
BMDCs derived from four individual mice per group. *P < .05, **P < .01, ***P < .005. B, Western blots of phosphorylated (p) and total PI3K, 
Akt, Src, ERK1/2, β-actin, and tubulin in MIF+/+ and MIF−/− BMDCs cultured with CCL21 (250 ng/mL) for 0 to 60 minutes. Full-size blots are 
shown in Figure S3. Signal intensities were quantified by imaging. Ratios of phosphorylated over total protein or tubulin (phosphorylated ERK1/2) 
were normalized to those of MIF+/+ BMDCs set at 1. Data are representative of one (PI3K), three (ERK1/2), and four (Src and Akt) independent 
experiments. C, Quantitative assessment of phosphorylated Src, Akt, and ERK1/2. Each dot represents one independent experiment. Statistically 
significant P values are shown in the graph
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studies that showed a role for CD74 in the migration of mono-
cytes, NKT cells, B cells, and CLL cells.44,57,58,68,69 CD74-
dependent promotion of DC migration by MIF relied on the 
activation of the Src and PI3K kinases, which is in agree-
ment with previous studies, demonstrating the activation of 
these pathways by MIF.43,45,52,55 Given that CXCR4 inhibi-
tion only modestly affected MIF migratory effects and that 
genetic deficiency or pharmacological inhibition of CXCR4 
causes major defect of myelopoiesis and DC maturation and 
survival,71-75 we did not perform in vivo experiments using 
CXCR4 targeting approaches. p53 and CSN5/JAB1 have 
been reported to affect the cell motility in a MIF-independent 
manner.76-78 We did not investigate whether MIF promoted 
DC migration via p53 or CSN5/JAB1, but are not aware of 
previous findings suggesting that it might be the case.

MIF has been involved in the recruitment of antigen-
presenting cells in the epidermis or in the dermis.79 Transwell 
cell migration experiments carried out with a competitive in-
hibitor of CXCR2 (SB22502 at 100 nM) resulted in a 34% 
reduction of the migration of immature human DCs. With 
the same experimental setting, we found that CXCR2 inhi-
bition with SB22502 tested at wide dose range (30  nM to 
300 μM; shown using 100 μM in Figure 1F) had no impact 
on BMDCs migration. In contrast, inhibition of CXCR4 re-
sulted in a modest but statistically significant reduction of 

BMDC chemotaxis, in line with studies showing an involve-
ment of the MIF/CXCR4 axis in monocyte and T-cell che-
motaxis.44,75 Integrins play an essential role in haptotactic 
migration of leukocytes driven by ligands in the extracellular 
matrix.1,80 The exploration of the mechanisms involved in 
MIF-dependent DC migration indicated that MIF modulates 
the expression of β1 integrin. These findings are consistent 
with earlier studies in which MIF upregulated the expression 
of αvβ3 integrin in endometrial adenocarcinoma and chon-
drosarcoma cells and of β1 integrin in podocytes.81-84

Functionally, integrin expression was associated with 
increased motility of chondrosarcoma cells and increased 
adhesion of podocytes.82,84 β2 integrins have been impli-
cated in the arrest of monocytes induced by MIF44 and in 
the CCL2-dependent emigration of monocytes out of blood 
vessels.85 Of note, the activation of CD74 by MIF in CLL 
cells resulted in the expression of Tap63 and of VLA-4, 
a heterocomplex of α4 and β1 integrins that enabled the 
migration of CLL to the bone marrow.86 VLA-4 mediated 
MIF-induced cellular recruitment of macrophages and 
the adhesion and arrest of leukocytes on the endothelium 
through VCAM-1 or fibronectin. In line with these find-
ings, we observed that MIF-modulated Itga4 mRNA ex-
pression with the reduced adherence of MIF−/− or ISO-1 
treated BMDCs to fibronectin-coated glass slides. Overall, 

F I G U R E  5   Reduced chemokine-induced myosin II phosphorylation in MIF deficient DCs. A, B, Spontaneous and CCL21-induced (250 ng/
mL) migration of MIF+/+ and MIF−/− BMDCs with or without pre-treatment for 1 hour with blebbistatin (bleb, 100 µM) (A) or Y27632 (5 µM) (B). 
The migration index was calculated as described in the legend of Figure 1. Data are mean ± SD from 3 (A) or 4-9 (B) mice. *P < .05, **P < .01, 
***P < .005. C, Expression levels of phosphorylated (p) MLC II (at Ser19 and Thr18/Ser19) and tubulin by MIF+/+ and MIF−/− BMDCs cultured 
for 0-60 minutes with CCL21 (250 ng/mL). Samples were analyzed by Western blotting and signals quantified by imaging. Phosphorylated MLC 
II over tubulin ratios was normalized to those obtained from control MIF+/+ BMDCs set at 1. Data are representative of two experiments. Full-size 
blots are shown in Figure S4
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these data are consistent with the notion that integrins 
mediate adhesion-dependent migration of DCs in a two-
dimensional environment, whereas an actin-protrusive and 
integrin-independent mode of locomotion is critical for mi-
gration in three-dimensional environments.5

Upon binding of extracellular matrix proteins, integrin 
ligands, chemokines, cytokines, and growth factors to their 
cognate receptors, the family of Rho GTPases activates a 
signaling cascade that drives MII-dependent actinomyosin 
formation, cell protrusion, and motility of leukocytes includ-
ing DCs.1,7 The Rho-associated protein kinases (ROCK1 and 
ROCK2) inhibit the activity of MLC phosphatase, thus aug-
menting the state of MLC II phosphorylation by MLC kinase, 
which supports DCs migration. We found that inhibition of 
ROCK or of MII reduced the steady-state migration and che-
motaxis of BMDCs. Mechanistically, MIF exerted its effects 
through the phosphorylation of the MLC II chains at Thr18 
and Ser19. In a similar fashion, MIF promoted the activity of 
the Rho GTPase Rac1 and the migration of human lung ade-
nocarcinoma cells and the induction of MLC kinase activity 
in fibroblasts.87,88

Taken together with previous work conducted in tumor and 
immune cells, our data indicate that MIF affects leukocyte traf-
ficking in an integrin-dependent (transendothelial migration) or 
integrin-independent (migration into lymphoid organs) man-
ner mainly via an interaction with the CD74 receptor and the 
activation of a Src/PI3K signaling pathway (Figure 6). This is 
the first report unraveling the signaling pathway, whereby MIF 
drives the activation of cell motility in immune cells. These ob-
servations reinforce the view that MIF plays a central role in 
promoting inflammatory and immune responses and that tar-
geting MIF or its receptors are attractive immunotherapeutic 
approaches for the management of pathological conditions.
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Supplementary Table S1. Oligonucleotides used in RT-PCR analyses 

Target Forward primer (5’->3’) Reverse primer (5’->3’) 
Ccr5 AGGTGAGACATCCGTTCCCCCTA GGCAGGAGCTGAGCCGCAATTT 
Ccr7 GTACCTTGCTCCAGGCACGC TGCGGAACTTGACGCCGATG 
Dcsign GGTGCCTGGTCCACAGTCA CAGCACAGAACAAACAGCTAGGA 
Hprt GTTGGATACAGGCCAGACTTTGTTG GATTCAACTTGCGCTCATCTTAGGC 
Icam1 GGTCCGTGCAGGTGAACTG CTTTCAGCCACTGAGTCTCCAA 
Itga4 CGCTGCTGCACTTCATCTCTT CGGCCACTGACCAGAGTTG 
Itgb1 TGGAGAAAACTGTGATGCCGTAT GCTGGTGCAGTTTTGTTCACTT 
Itgb2 CCAAGGCCTGGAGCTACAAC TCTTCCAGCTTGTGCCAAGA 
Vcam1 GGCTGCGAGTCACCATTGT CGTCCTCACCTTCGCGTTTA 

 



Supplementary Table S2. Antibodies and dyes used in this study 

Purpose Target Clone Coupling Brand (reference) 
Flow cytometry CD3 G4.18 PE eBiosciences (12-0030-81) 
 CD11b M1/70 APC, PECy7, PerCPCy5.5 BD Biosciences (561690, 561098, 561114) 
 CD11c N418 PE, APC eBiosciences (12-0114-82) 
 CD18 M18/2  FITC, PE eBioscience (11-0181-82, 12-0181-82) 
 CD29 HMb1-1 FITC, PE, PECy7 eBioscience (11-0291-82, 12-0291-82, 25-0291-82) 
 CD49b DX5 PE eBiosciences (12-5971-63) 
 CD74 In-1 FITC BD Biosciences (555318) 
 CD182/CXCR2 TG11 PerCPCy5.5 eBioscience (129101) 
 CD184/CXCR4 L276F12 APC BioLegend (146508) 
 CD197/CCR7 4B12 PE BD Biosciences (560682) 
 F4/80 C1:A3-1 Biot Cedarlane Lab (CL8940B) 
 Ly-6C AL-21 FITC eBiosciences (11-5931-81) 
 Ly-6G 1A8 PE eBiosciences (12-9668-80) 
 MHCII M5/114.15.2 PE, PB eBiosciences, BioLegend (107620) 
 Anti-rat IgG2a polyclonal FITC Southern Biotech 
 7-ADD   eBiosciences (00-6993-50) 
Western blotting Actin Polyclonal  Cell Signaling Technology (4967) 
 Akt 40D4  Cell Signaling Technology (2920) 
 Phospho-MLC II Ser19 Polyclonal  Cell Signaling Technology (3671) 
 Phospho-MLC II 

Thr18/Ser19 
Polyclonal  Cell Signaling Technology (3674) 

 Phospho-Akt 587F11  Cell Signaling Technology (4051) 
 Phospho-ERK1/2 Polyclonal  Cell Signaling Technology (9101) 
 Phospho-PI3K Polyclonal  Cell Signaling Technology (4228) 
 Phospho-Src Polyclonal  Cell Signaling Technology (2101) 
 PI3K Polyclonal  Cell Signaling Technology (4228S) 
 Src 36D10  Cell Signaling Technology (2109) 
 Tubulin Polyclonal  Cell Signaling Technology (2148) 

APC: allophycocyanin; PB: Pacific Blue; Biot: biotin; PE: phycoerythrin; FITC: fluorescein isothiocyanate 



Legends for supplementary Figures S1-S4 

Supplementary Figure S1. MIF deficiency impairs spontaneous and chemokine-induced 

migration of LPS-matured BMDCs. Spontaneous and chemokine-induced migration of 

MIF+/+ and MIF-/- BMDCs incubated for 3 days with (A) or without (B) with LPS (5 μg/ml) 

using classical transwells (A) or transwells coated with collagen (B). CCL19 and CCL21 were 

used at 250 ng/ml. Migrating cells were counted after 6 hours. The migration index was 

calculated as described in Figure 1. Data are mean obtained using BMDCs derived from two to 

three individual mice per group.  

Supplementary Figure S2. Inhibitors of PI3K (Ly294002) and myosin II (blebbistatin) 

impair spontaneous migration and chemokine-dependent chemotaxis of BMDCs. 

Spontaneous migration and chemokine-dependent chemotaxis of MIF+/+ and MIF-/- BMDCs 

with or without pre-treatment for 1 hour with Ly294002 (10 μM, A) or blebbistatin (100 μM, 

B). CCL19 and CCL21 were used at 250 ng/ml, CCL5 at 500 ng/mL and CCL20 at 100 ng/ml. 

Migrating cells were counted after 6 hours. The migration index was calculated as described in 

Figure 1. Data are mean obtained using BMDCs derived from two individual mice per group. 

Supplementary Figure S3. Detection of total and phosphorylated PI3K, Akt, Src, ERK1/2, 

β-actin and tubulin by Western blotting. MIF+/+ and MIF-/- BMDCs were cultured for 0, 1, 

10, 30 and 60 min with 250 ng/mL CCL21. Protein extracts were analyzed by Western blotting 

for PI3K (A), Akt, Src and ERK1/2 (B) phosphorylation. Signal intensities were quantified by 

imaging. Ratios of phosphorylated over total protein and of phosphorylated ERK1/2 over 

tubulin were normalized to those of MIF+/+ BMDCs set at 1. 

Supplementary Figure S4. Detection of MLC II phosphorylation at Ser19 and 

Thr18/Ser19 and tubulin by Western blotting. MIF+/+ and MIF-/- BMDCs were cultured for 

0, 1, 10, 30 and 60 min with 250 ng/mL CCL21. Protein extracts were analyzed by Western 

blotting for MLC II phosphorylation at Ser19 and Thr18/Ser19. Signal intensities were 

quantified by imaging. Ratios of phosphorylated MLC II over tubulin were normalized to those 

of MIF+/+ BMDCs set at 1. Each dot represents data obtained from one independent mouse. 
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