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ABSTRACT
Computed tomography (CT) has influenced numerous fields since its inception in the 1970s.
The field of palaeoanthropology significantly benefited from this efficient and non-invasive
medium in terms of the conservation, reconstruction and analysis of fossil human remains.
Over the past decade, there has been a steady increase in the number of forensic
anthropological studies incorporating virtual osteological analyses. Because of the increasing
importance of these modern cross-sectional imaging techniques and the requirement for
standardized parameters in forensic science, we deemed it important to outline the history and
development of CT applications in these related academic areas. The present paper outlines
the history of “virtual anthropology” and osteological multi-detector CT in the context of
palaeoanthropology and forensic anthropology.
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Introduction

The use of digital imaging techniques, such as com-
puted tomography (CT) or optical surface scanning,
has contributed to numerous medical-related domains,
including biology, palaeontology, biological anthropol-
ogy, archaeology, forensic science and materials sci-
ence. As a non-invasive diagnostic tool, these
techniques have many advantages. The digitized object
can be examined externally and internally, while being
simultaneously manipulated without causing damage
to the object. Investigations are repeatable and verifi-
able at any time, and digital data or 3D-printed hard
copies of the object can be easily replicated and shared
within the scientific community.

Over the past two decades, there has been a steady
increase in the use of multi-detector computed tomog-
raphy (MDCT), and the demand for specific data-
acquisition and post-processing parameters in medical
research has led to various recommendations and pro-
tocols [1–6]. However, different research areas require
specific solutions. Indeed, the implementation of CT in
palaeoanthropology and forensic anthropology arose
to specifically address the needs of these fields. This
review aims to outline the history of “virtual anthro-
pology” and CT in the fields of palaeoanthropology
and forensic anthropology.

The use of CT in palaeoanthropology

The introduction of clinical CT by Hounsfield [7–9]
led to immediate benefits for palaeoanthropology; the

non-invasive aspect of the technique allowed research-
ers to conserve precious and often fragile fossils, pre-
historic human skeletal remains and mummified
remains [10,11]. Around the same time, specific scan-
ning protocols and guidelines were developed for the
technique [12–16]. Subsequent discussions by Tate
and Cann [12] to modify the Hounsfield unit scale for
the high density of fossil bones led to the development
of an extended scale for the better visualization of
internal structures. Sumner et al. [14] focused on
improving the accuracy and precision of the measure-
ments, providing a solution for the treatment of beam-
hardening artefacts. In particular, the studies by Ruff
and Leo [15] and Spoor et al. [16] highlighted the
potential sources of error in this technique, such as
inaccuracies in measurement due to partial volume
effect and incorrect threshold values, or the problem-
atic correlation of CT-number values and tissue densi-
ties depending on the X-ray beam energy (tube
voltage); these issues still occur in modern medical
research [17–19]. The authors also provided specific
guidelines for bone scanning, image processing and
interpretation of the data.

The development of spiral CT in 1989 [20] provided
enhanced cross-sectional data acquisition and better
image processing software for 3D surface reconstruc-
tion. This proved to be an advantage for the investiga-
tion of the Tyrolean Iceman, also known as “€Otzi”, a
mummified corpse from the Chalcolithic period dis-
covered at the Austrian–Italian border in the Alps in
1991 [21–24]. Full-body, 3-mm, spiral CT scanning
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was performed to examine the internal bony structures
of the corpse. The high-resolution images obtained
made it possible to detect particularly small fractures
that would have remained invisible using conventional
radiography. zur Nedden and colleagues [23,24] recon-
structed the skull of the Tyrolean Iceman in 3D using
post-processing software of the CT workstation and
though 3D printing. They applied stereolithography, a
computer-guided 3D printing technique that uses UV
lasers and photohardening resin, to create a 3D model,
layer by layer. The group then compared measure-
ments from the real skull, the virtual skull and the
model, and demonstrated the accuracy of the measure-
ments. The study also shed light on various problem-
atic artefacts, such as pseudo-lesions, which may occur
due to volume averaging effects [23]; this problem has
yet to be solved in medical research [25–27].

From as early as the 1990s, it became popular to digi-
tize fossils in palaeoanthropological studies, no longer
restricting data collection to CT alone. Optical surface
scanning and micro-CT are two additional techniques
commonly used according to the purpose of the
research [28]. Weber and co-workers, who took part in
the study of the Tyrolean Iceman, first coined the term
“virtual anthropology” [29–31] as a multidisciplinary
approach combining knowledge from related academic
areas such as anthropology, palaeontology, primatology,
medicine, mathematics, statistics, computer science and
engineering [31]. According to the authors, the potential
of digitized objects lies in the permanency of the data,
and the accessibility to internal anatomical structures
that would otherwise remain hidden during routine
external examinations. Digitization also allows for
reproducibility and the use of advanced analyses (i.e.
geometric morphometrics), not to mention, the ease of
data sharing [31]. CT-based research in palaeoanthro-
pology using 3D reconstructions has focused primarily
on morphometric and shape analyses to investigate
human evolution [30,32–39]. To meet the complexity of
this new field of research, two textbooks on virtual
anthropology were published, providing profound tech-
nological insight and specific guidelines [28,40].

One of the most recent discoveries in palaeoanthro-
pology – Homo naledi, an extinct hominin species
from South Africa [41] – shows the positive effects of
this “digital revolution”, and is a good example of the
consistent application of Weber’s [29] demand for
“Glasnost in Palaeoanthropology”; i.e. free accessibility
of digitized fossil data to enhance scientific progress
and transparency. Weber and his co-workers published
the first data-set of a hominid skull [29]. Fifteen years
on, many scientists now publish their 3D data, i.e. sur-
face scans of several skeletal parts of Homo naledi were
made available (open-access) on the MorphoSource
website, a data archive for 3D fossil data [42]. Making
the data accessible allowed for the immediate exchange
of information among the research community.

Palaeontology and zooarchaeology are two related
academic areas of palaeoanthropology that have
benefited from imaging techniques. MDCT and other
digital visualization tools have been extensively used to
reconstruct extinct species, apply advanced statistical
methods and facilitate the sharing of data [43]. Addi-
tionally, comparative osteological collections have been
established to highlight the anatomical variations in the
skeleton among species. This is particularly advanta-
geous when access to reference collections of real bones
is restricted or unavailable [44,45]. du Plessis and co-
workers [46] have demonstrated the potential of auto-
mated laser preparation, which is used to separate fossil
bones and surrounding sediments. The technology is
based on density differences in materials using data
obtained from a micro-CT scanner. The authors found
that preliminary planning and preparation in a virtual
environment before the laser ablation of the rock pre-
vents damage to the object and is also time-saving.

Current studies on craniometrics and virtual recon-
struction [47,48] are showing a rising interaction
among palaeoanthropology, medical research and
forensic sciences. Benazzi and Senck [47] have
explored different methods of virtual 3D reconstruc-
tion for preoperative planning incorporating knowl-
edge and methods garnered from palaeoanthropology.
Guyomarc’h et al. [48], in their comparison of different
post-processing software, have discussed the uncer-
tainties in measurements due to surface reconstruc-
tion, showing that every phase of digitization involves
a certain risk of shape alteration. This problem affects
not only palaeoanthropology or preoperative planning,
but also facial reconstruction. These examples illustrate
the importance of knowledge transfer from one disci-
pline to another. Indeed, forensic medicine has
benefited from advances in palaeoanthropology and
medical research, but has also contributed to numer-
ous methodological advances; this concept is further
developed in the following section.

Post-mortem MDCT and forensic anthropology

Radiographic techniques are well established in foren-
sic medicine and forensic anthropology [49–51], and
are used for trauma diagnosis and to identify unknown
deceased remains by comparing individual features
using ante- and post-mortem radiographs [52–54].
Quatrehomme et al. [55], for example, emphasized
that trabecular bone morphology can lead to positive
identification. Stephan and co-workers [56,57] devel-
oped a geometric–morphometric method of clavicle-
shape comparison using optical surface scan and
radiographs. Furthermore, Derrick et al. [58] have
modified software used in spine injury diagnosis to
identify vertebrae in ante- and post-mortem compari-
sons of radiographs. Plain radiography is inexpensive
and easy to use, and methods specific to forensic
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radiography are still being developed. In contrast, the
routine application of MDCT in forensic medicine and
forensic anthropology is a relatively recent develop-
ment, presumably because its high cost and limited
accessibility previously hindered its regular use.

The term post-mortem computed tomography
(PMCT) was introduced in the early 1980s by Krantz
and Holta

�
s [59], who used CT scanning to enhance

autopsy findings in diving fatalities. However, CT was
not used frequently until the mid-1990s. Reichs [60,61]
was the first to compare radiographic and CT images of
the frontal sinuses, and provided technical and method-
ological recommendations for standardization. Donchin
et al. [62] conducted one of the first studies comparing
whole-body CT scanning with the findings of conven-
tional autopsy. The authors showed that while neither
method was superior, combining the methods could
potentially improve the results of medico-legal investi-
gations. On the other hand, in studies evaluating the
potential of CT data to enhance methods for forensic
facial reconstructions, Phillips and Smuts [63] found
that soft tissue thickness measurements obtained by CT
were more accurate than those obtained by conven-
tional methods. Using a semi-automated method, Qua-
trehomme et al. [64] presented various advantages and
pitfalls of using CT data for 3D facial reconstruction.

About 10 years ago, Dirnhofer and co-workers [65,66]
developed the “image-guided virtual autopsy” as a sup-
porting tool for conventional autopsy techniques. As
emphasized by Weber [29], there are several advantages
of virtual autopsy, including the permanency of the
digitized images, the reproducibility of the methods and
the potential to share the data for more objective
investigations.

At present, forensic imaging is routinely used in sev-
eral medico-legal institutes and this has provided more
opportunities for forensic anthropologists to use post-
mortem MDCT. Hence, there has been a rapid surge in
the use of post-mortemMDCT in forensic anthropology,
with two main types of publications: (1) studies describ-
ing the generalized use of MDCT in disaster victim iden-
tification in the medico-legal context, and case reports,
highlighting the utility of MDCT-imaging for specific
cases [67–80]; (2) other studies have usedMDCT to eval-
uate skeletal traits to build a database for the biological
profiling of unidentified human remains. Most of these
types of studies have used MDCT for age [81–100],
sex [86,101–130], stature [116,119,128,131–137] and
body mass [138–140] estimations; or to validate a range
of general measurements [48,141–148]. Several other
studies have compared conventional radiographic meth-
ods to MDCT: for example, MDCT has been used to
compare ante- and post-mortem radiographic images of
frontal sinus patterns [60,61,149] – which are reliable
in positive identification [150,151] – and paranasal
sinuses [152]. Other studies have tested the utility of
MDCT to measure trabecular bone for estimations of

age at death [81,84–86,96]. Wade et al. [90] and de
Froidmont et al. [144] sought to compare conventional
radiography and MDCT, both showing the superiority
of MDCT over conventional radiography in the analysis
of fine anatomical structures.

Improved access to MDCT devices in the past five
years has led to an increase in the list of publications
using this technique. By routinely using post-mortem
MDCT, it is now possible to continuously collect digital
data, which provides a foundation for sound research.
Indeed, the work by Torimitsu et al. [122–126,133–136]
and Zhang et al. [128-129,137] has resulted in scanning
protocols that allow for better comparability and
reproducibility.

Radiography and MDCT are also used to estimate
age of the living. Specialists of different disciplines,
including forensic pathologists, odontologists, radiol-
ogists and anthropologists take into consideration
mainly physical, dental and osseous (hand wrist,
medial clavicle) developmental changes to assess the
age of minor or young adult individuals [153–155].
The methods used are mainly derived from paediatric
radiology and odontology, and the acquisition proto-
cols follow clinical guidelines to keep radiation doses
as low as possible. MDCT acquisition parameters, such
as tube potential, tube current, beam collimation,
among others, must be adequately balanced to obtain
appropriate image quality [2,156–159]. Schmeling and
co-workers, who mainly explore the ossification of the
medial epiphyses of the clavicle [158–161], have tested
different reconstruction slice thicknesses to determine
the optimal parameters for measurements. They rec-
ommend working with the thinnest slice thickness pos-
sible, as this parameter considerably influences the
results of the ossification stages [162].

Despite the increase in studies on MDCT, few have
published appropriate technical parameters, which
minimizes reproducibility and limits cross compari-
sons with other studies. In their review of the literature
on CT examinations of human mummies, O’Brien
et al. [163] criticized the lack of reproducibility due to
insufficiently published technical parameters, indicat-
ing that clearly defined scanning protocols were miss-
ing in about one-third of papers (n = 31) published
between 1979 and 2005. This is in line with our obser-
vations [164] during a review of forensic anthropologi-
cal studies on MDCT bone imaging published between
2005 and 2015 (n = 40). While most studies mentioned
the device manufacturer, post-processing software (or
at least the workstation) and slice thickness, few
(n = 8) published all parameters shown in Figure 1.
Two current papers in mummy research have revisited
this topic: Conlogue [165] described basic scanning
parameters and discussed the advantages and limita-
tions of MDCT applied to mummified human remains.
Cox [166] criticized the lack of technical knowledge
and standard parameters for MDCT. However, in
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forensic anthropology, there are an increasing number
of papers that critically discuss the technical parame-
ters of MDCT. Grabherr et al. [86] explain the influ-
ence of slice thickness and reconstruction filters and,
as mentioned above, Guyomarc’h et al. [48] detail how
surface reconstruction is affected by the choice of the
segmentation algorithm. Likewise, Villa et al. [96]
highlight the issues concerning the visualization of sur-
face reconstruction of virtual bones, and emphasize
that CT scanning parameters have an impact on sur-
face reconstruction, as small osseous structures are
improperly displayed.

The approaches to digitize bones differ between
forensic anthropology and palaeoanthropology. The
close connection between forensic anthropology and
forensic medicine has meant that imaging techniques
primarily used as diagnostic tools employ standard
parameters taken from routine clinical assays. In addi-
tion, research has focused on the development and
evaluation of methods that are used for identification.

Conclusion and perspectives

Ideal research conditions for anthropologists would
include a comprehensive collection of documented
skeletons, with a balanced distribution of age and sex,
and information pertaining to stature, weight and/or

medical history. Routine post-mortem MDCT gener-
ates an invaluable data pool that could serve future
research and method evaluation. The ease of accessibil-
ity, the permanency of the data and the non-invasive-
ness of the investigation has fuelled research using CT
approaches in forensic anthropology over the past
decade. However, until it becomes routine practice to
publish the scan parameters, technical information
and types of post-processing performed, the potential
for MDCT will remain underused. Indeed, the choice
of appropriate image processing software affects the
data [48]. Comparative studies on post-processing
parameters, such as segmentation algorithms, are thus
also required so that adjustments can be made to stan-
dardize the data for its generalizability. Finally, there is
a need to intensify the transfer of knowledge among
palaeoanthropology, palaeontology, archaeology and
other related academic fields. With almost 30 years of
experience with bone imaging, research into forensic
anthropology could profit from already-existing meth-
ods for better future solutions.

Acknowledgments

The author thanks the anonymous reviewers for their
insightful comments and suggestions that helped to improve
the manuscript.

Figure 1. Quantity of acquisition parameters published in forensic anthropological studies from 2005 to 2015 (n = 40) [164, p. 22, Fig. 2].

168 T. ULDIN



Disclosure statement

The author declares that she has no conflict of interest.

ORCID

Tanya Uldin http://orcid.org/0000-0001-7958-232X

References

[1] Geijer M, El-Khoury GY. MDCT in the evaluation of
skeletal trauma: principles, protocols, and clinical
applications. Emerg Radiol. 2006;13:7–18.

[2] Kalra MK, Saini S, Rubin GD (eds.). MDCT: from
protocols to practice. Milan, Berlin, Heidelberg, New
York: Springer Italia; 2008.

[3] Davies AM, Pettersson H (eds.). Orthopedic imaging:
techniques and applications. Berlin, Heidelberg:
Springer; 2012.

[4] Halliburton S, Arbab-Zadeh A, Dey D, et al. State-of-
the-art in CT hardware and scan modes for cardio-
vascular CT. J Cardiovasc Comput Tomogr.
2012;6:154–163.

[5] Parmar HA, Ibrahim M, Mukherji SK. Optimizing
craniofacial CT technique. Craniofacial Trauma Neu-
roimaging Clin N Am. 2014;24:395–405.

[6] Zhang Y, Smitherman C, Samei E. Size specific opti-
mization of CT protocols based on minimum detect-
ability. Med Phys. 2017;44:1301–1311.

[7] Hounsfield GN. Computerized transverse axial scan-
ning (tomography). 1. Description of system. Br J
Radiol. 1973;46:1016–1022.

[8] Hounsfield GN. Picture quality of computed tomog-
raphy. AJR Am J Roentgenol. 1976;127:3–9.

[9] Hounsfield GN. Potential uses of more accurate CT
absorption values by filtering. AJR Am J Roentgenol.
1978;131:103–106.

[10] Jungers WL, Minns RJ. Computed tomography and
biomechanical analysis of fossil long bones. Am J
Phys Anthropol. 1979;50:285–290.

[11] Harwood-Nash DCF. Computed tomography of
ancient Egyptian Mummies. J Comput Assist
Tomogr. 1979;3:768–773.

[12] Tate JR, Cann CE. High-resolution computed tomog-
raphy for the comparative study of fossil and extant
bone. Am J Phys Anthropol. 1982;58:67–73.

[13] Conroy GC, Vannier MW. Noninvasive three-dimen-
sional computer imaging of matrix-filled fossil skulls
by high-resolution computed tomography. Science.
1984;226:456–458.

[14] Sumner DR, Mockbee B, Morse K, et al. Computed
tomography and automated image analysis of prehis-
toric femora. Am J Phys Anthropol. 1985;68:225–232.

[15] Ruff CB, Leo FP. Use of computed tomography in
skeletal structure research. Am J Phys Anthropol.
1986;29:181–196.

[16] Spoor CF, Zonneveld FW, Macho GA. Linear meas-
urements of cortical bone and dental enamel by com-
puted tomography: applications and problems. Am J
Phys Anthropol. 1993;91:469–484.

[17] Whyms BJ, Vorperian HK, Gentry LR, et al. The
effect of computed tomographic scanner parameters
and 3-dimensional volume rendering techniques on
the accuracy of linear, angular, and volumetric meas-
urements of the mandible. Oral Surg Oral Med Oral
Pathol Oral Radiol. 2013;115:682–691.

[18] Molteni R. Prospects and challenges of rendering tis-
sue density in Hounsfield units for cone beam com-
puted tomography. Oral Surg Oral Med Oral Pathol
Oral Radiol. 2013;116:105–119.

[19] Cotter MM, Whyms BJ, Kelly MP, et al. Hyoid bone
development: an assessment of optimal CT scanner
parameters and three-dimensional volume rendering
techniques. Anat Rec. 2015;298:1408–1415.

[20] Kalender WA, Seissler W, Klotz E, et al. Spiral volu-
metric CT with single-breath-hold technique, contin-
uous transport, and continuous scanner rotation.
Radiology. 1990;176:181–183.

[21] H€opfel F, Platzer W, Spindler K (eds.). Der Mann im
Eis: Bericht €uber das Internationale Symposium 1992
in Innsbruck. Innsbruck: Eigenverlag der Universit€at
Innsbruck; 1992.

[22] Seidler H, Bernhard W, Teschler-Nicola M, et al.
Some anthropological aspects of the prehistoric Tyro-
lean ice man. Science. 1992;258:455–457.

[23] Zur Nedden D, Knapp R, Wicke K, et al. Skull of a
5,300-year-old mummy: reproduction and investiga-
tion with CT-guided stereolithography. Radiology.
1994;193:269–272.

[24] Zur Nedden D, Wicke K, Knapp R, et al. New findings
on the Tyrolean “Ice Man”: archaeological and CT-
body analysis suggest personal disaster before death. J
Archaeol Sci. 1994;21:809–818.

[25] Fasel JH, Beinemann J, Schaller K, et al. A critical
inventory of preoperative skull replicas. Ann R Coll
Surg Eng. 2013;95:401–404.

[26] Fasel JHD, Beinemann J, Schaller K, et al. Computer
science tools for manual editing of computed tomo-
graphic images: impact on the quality of 3D printed
models. Surg Sci. 2014;05:439–443.

[27] Huotilainen E, Jaanimets R, Val�a�sek J, et al. Inaccura-
cies in additive manufactured medical skull models
caused by the DICOM to STL conversion process.
J Craniomaxillofac Surg. 2014;42:e259–e265.

[28] Weber GW, Bookstein FL. Virtual anthropology: a
guide to a new interdisciplinary field. Wien, London:
Springer; 2011.

[29] Weber GW. Virtual anthropology (VA): a call for
glasnost in paleoanthropology. Anat Rec B New Anat.
2001;265:193–201.

[30] Weber GW, Sch€afer K, Prossinger H, et al. Virtual
anthropology: the digital evolution in anthropological
sciences. J Physiol Anthropol Appl Human Sci.
2001;20:69–80.

[31] Weber GW. Virtual anthropology. Am J Phys
Anthropol. 2015;156(Suppl 59):22–42.

[32] Zollikofer CPE, Ponce de Le�on MS, Martin RD. Com-
puter-assisted paleoanthropology. Evol Anthropol.
1998;6:41–54.

[33] Zollikofer, CPE, Ponce de Le�on, MS. Visualizing pat-
terns of craniofacial shape variation in homosapiens.
Proc R Soc Lond B Biol Sci. 2002;269:801–807.

[34] Gunz P, Mitteroecker P, Neubauer S, et al. Principles
for the virtual reconstruction of hominin crania. J
Hum Evol. 2009;57:48–62.

[35] Neeser R, Ackermann RR, Gain J. Comparing the
accuracy and precision of three techniques used for
estimating missing landmarks when reconstructing
fossil hominin crania. Am J Phys Anthropol.
2009;140:1–18.

[36] Wu X, Schepartz LA. Application of computed
tomography in paleoanthropological research. Prog
Nat Sci. 2009;19:913–921.

FORENSIC SCIENCES RESEARCH 169

http://orcid.org/0000-0001-7958-232X


[37] Benazzi S, Gruppioni G, Strait DS, et al. Technical note:
virtual reconstruction of KNM-ER 1813 Homo habilis
cranium. Am J Phys Anthropol. 2014;153:154–160.

[38] Guipert G, Lumley MA de, Lumley H de. Restaura-
tion virtuelle d’Arago 21. C R Palevol. 2014;13:51–59.

[39] Huseynov A, Zollikofer, CPE, Coudyzer W, et al.
Developmental evidence for obstetric adaptation of
the human female pelvis. Proc Natl Acad Sci USA.
2016;113:5227–5232.

[40] Zollikofer, CPE., Ponce de Le�on, MS. Virtual recon-
struction: a primer in computer-assisted paleontology
and biomedicine. Hoboken (NJ): Wiley; 2005.

[41] Berger LR, Hawks J, Ruiter DJ de, et al. Homo naledi,
a new species of the genus Homo from the Dinaledi
Chamber. South Africa Elife. 2015;4:e09560; [cited
2015 Sept 28]; [1-35] DOI: 10.7554/eLife.09560

[42] Project: rising star [Internet]. Durham: Duke Univer-
sity [cited 2015 Sept 28]; Available from: http://mor
phosource.org/index.php/Detail/ProjectDetail/Show/
project_id/124.

[43] Cunningham JA, Rahman IA, Lautenschlager S, et al.
A virtual world of paleontology. Trends in Ecol Evol.
2014;29:347–357.

[44] Niven L, Steele TE, Finke H, et al. Virtual skeletons: using
a structured light scanner to create a 3D faunal compara-
tive collection. J Archaeol Sci. 2009;36:2018–2023.

[45] Betts MW, Maschner HD, Schou CD, et al. Virtual
zooarchaeology: building a web-based reference col-
lection of northern vertebrates for archaeofaunal
research and education. J Archaeol Sci. 2011;38:755.
e1–755.e9.

[46] Du Plessis A, Steyn J, Roberts DE, et al. A proof of
concept demonstration of the automated laser
removal of rock from a fossil using 3D X-ray tomog-
raphy data. J Archaeol Sci. 2013;40:4607–4611.

[47] Benazzi S, Senck S. Comparing 3-dimensional virtual
methods for reconstruction in craniomaxillofacial
surgery. J Oral Maxillofac Surg. 2011;69:1184–1194.

[48] Guyomarc’h P, Santos F, Dutailly B, et al. Three-
dimensional computer-assisted craniometrics: a com-
parison of the uncertainty in measurement induced
by surface reconstruction performed by two computer
programs. Forensic Sci Int. 2012;219:221–227.

[49] Hines E, Rock C, Viner MD. Radiography. In:
Thompson TJU, Black SM, editors. Forensic human
identification: an introduction. Boca Raton (FL):
CRC; 2007, p. 221–228.

[50] Brogdon BG, Lichtenstein JE. Forensic radiology in
historical perspective. In: Thali MJ, Viner MD, Brog-
don BG, editors. Brogdon’s forensic radiology. 2nd
ed. Boca Raton (FL): CRC Press; 2011. p. 9–23.

[51] Leo C, O’Connor JE, McNulty JP. Combined radio-
graphic and anthropological approaches to victim
identification of partially decomposed or skeletal
remains. Radiography. 2013;19:353–362.

[52] Riddick L. Identification of the dead. In: Thali MJ,
Viner MD, Brogdon BG, editors. Brogdon’s forensic
radiology. 2nd ed. Boca Raton (FL): CRC Press; 2011.
p. 79–83.

[53] Brogdon BG. Radiological identification: anthropo-
logical Parameters. In: Thali MJ, Viner MD, Brogdon
BG, editors. Brogdon’s forensic radiology. 2nd ed.
Boca Raton (FL): CRC Press; 2011. p. 85–106.

[54] Brogdon BG. Radiological identification of individual
remains. In: Thali MJ, Viner MD, Brogdon BG, edi-
tors. Brogdon’s forensic radiology. 2nd ed. Boca
Raton (FL): CRC Press; 2011. p. 153–176.

[55] Quatrehomme G, Biglia E, Padovani B, et al. Positive
identification by X-rays bone trabeculae comparison.
Forensic Sci Int. 2014;245:e11–e14.

[56] Stephan CN, Amidan B, Trease H, et al. Morphomet-
ric comparison of clavicle outlines from 3D bone
scans and 2D chest radiographs: a shortlisting tool to
assist radiographic identification of human skeletons.
J Forensic Sci. 2014;59:306–313.

[57] Stephan CN, Guyomarc’h P. Quantification of per-
spective-induced shape change of clavicles at radiog-
raphy and 3D scanning to assist human
identification. J Forensic Sci. 2014;59:447–453.

[58] Derrick SM, Raxter MH, Hipp JA, et al. Development
of a computer-assisted forensic radiographic identifi-
cation method using the lateral cervical and lumbar
spine. J Forensic Sci. 2015;60:5–12.

[59] Krantz P, Holta
�
s S. Postmortem computed tomogra-

phy in a diving fatality. J Comput Assist Tomogr.
1983;7:132–134.

[60] Reichs KJ, Dorion R. The use of computed tomogra-
phy (CT) scans in the comparison of frontal sinus
configurations. Can Soc Forensic Sci J. 1992;25:1–16.

[61] Reichs KJ. Quantified comparison of frontal sinus
patterns by means of computed tomography. Forensic
Sci Int. 1993;61:141–168.

[62] Donchin Y, Rivkind AI, Bar-Ziv J, et al. Utility of
postmortem computed tomography in trauma vic-
tims. J Trauma. 1994;37:552–556.

[63] Phillips VM, Smuts NA. Facial reconstruction: utiliza-
tion of computerized tomography to measure facial
tissue thickness in a mixed racial population. Forensic
Sci Int. 1996;83:51–59.

[64] Quatrehomme G, Cotin S, Subsol G, et al. A fully
three-dimensional method for facial reconstruction
based on deformable models. J Forensic Sci.
1997;42:649–652.

[65] Dirnhofer R, Jackowski C, Vock P, et al. VIRTOPSY:
minimally invasive, imaging-guided virtual autopsy.
Radiographics. 2006;26:1305–1333.

[66] Thali MJ, Dirnhofer R, Vock P (eds.). The virtopsy
approach: 3D optical and radiological scanning and
reconstruction in forensic medicine. Boca Raton (FL):
CRC Press/Taylor & Francis; 2009.

[67] Haglund WD, Fligner CL. Confirmation of human
identification using computerized tomography (CT).
J Forensic Sci. 1993;38:708–712.

[68] Smith DR, Limbird KG, Hoffman JM. Identification
of human skeletal remains by comparison of bony
details of the cranium using computerized tomo-
graphic (CT) scans. J Forensic Sci. 2002;47:937–939.

[69] Rutty GN, Robinson CE, BouHaidar R, et al. The role
of mobile computed tomography in mass fatality inci-
dents. J Forensic Sci. 2007;52:1343–1349.

[70] Rutty GN, Robinson C, Morgan B, et al. Fimag: the
United Kingdom disaster victim/forensic identification
imaging system. J Forensic Sci. 2009;54:1438–1442.

[71] Sidler M, Jackowski C, Dirnhofer R, et al. Use of mul-
tislice computed tomography in disaster victim iden-
tification – advantages and limitations. Forensic Sci
Int. 2007;169:118–128.

[72] Dedouit F, Telmon N, Costagliola R, et al. New iden-
tification possibilities with postmortem multislice
computed tomography. Int J Legal Med.
2007;121:507–510.

[73] Dedouit F, Telmon N, Costagliola R, et al. Virtual
anthropology and forensic identification: report of
one case. Forensic Sci Int. 2007;173:182–187.

170 T. ULDIN

https://doi.org/10.7554/eLife.09560
http://morphosource.org/index.php/Detail/ProjectDetail/Show/project_id/124
http://morphosource.org/index.php/Detail/ProjectDetail/Show/project_id/124
http://morphosource.org/index.php/Detail/ProjectDetail/Show/project_id/124


[74] Dedouit F, Gainza D, Franchitto N, et al. Radiological,
forensic, and anthropological studies of a concrete block
containing bones. J Forensic Sci. 2011;56:1328–1333.

[75] Dedouit F, Guglielmi G, Perilli G, et al. Virtual
anthropological study of the skeletal remains of San
Fortunato (Italy, third century AD) with multislice
computed tomography. J Forensic Radiol Imaging.
2014;2:9–16.

[76] Blau S, Robertson S, Johnstone M. Disaster victim
identification: new applications for postmortem com-
puted tomography. J Forensic Sci. 2008;53:956–961.

[77] Bassed RB, Hill AJ. The use of computed tomography
(CT) to estimate age in the 2009 Victorian Bushfire
victims: a case report. Forensic Sci Int. 2011;205:48–51.

[78] O’Donnell C, Iino M, Mansharan K, et al. Contribu-
tion of postmortem multidetector CT scanning to
identification of the deceased in a mass disaster: expe-
rience gained from the 2009 Victorian bushfires.
Forensic Sci Int. 2011;205:15–28.

[79] Brough AL, Rutty GN, Black SM, et al. Post-mortem
computed tomography and 3D imaging: anthropolog-
ical applications for juvenile remains. Forensic Sci
Med Pathol. 2012;8:270–279.

[80] Brough AL, Morgan B, Robinson C, et al. A minimum
data set approach to post-mortem computed tomog-
raphy reporting for anthropological biological profil-
ing. Forensic Sci Med Pathol. 2014;10:504–512.

[81] Pasquier E, De Saint Martin Pernot L, Burdin V, et al.
Determination of age at death: assessment of an algo-
rithm of age prediction using numerical three-dimen-
sional CT data from pubic bones. Am J Phys
Anthropol. 1999;108:261–268.

[82] Telmon N, Gaston A, Chemla P, et al. Application of
the Suchey-Brooks method to three-dimensional
imaging of the pubic symphysis. J Forensic Sci.
2005;50:1–6.

[83] Dedouit F, Bindel S, Gainza D, et al. Application of
the iscan method to two- and three-dimensional
imaging of the sternal end of the right fourth rib.
Technical note. J Forensic Sci. 2008;53:288–295.

[84] Barrier P, Dedouit F, Braga J, et al. Age at death esti-
mation using multislice computed tomography recon-
structions of the posterior pelvis. J Forensic Sci.
2009;54:773–778.

[85] Ferrant O, Roug�e-Maillart C, Guittet L, et al. Age at
death estimation of adult males using coxal bone and
CT scan: a preliminary study. Forensic Sci Int.
2009;186:14–21.

[86] Grabherr S, Cooper C, Ulrich-Bochsler S, et al. Esti-
mation of sex and age of “virtual skeletons” – a feasi-
bility study. Eur Radiol. 2009;19:419–429.

[87] Pommier S, Adalian P, Gaudart J, et al. Fetal age esti-
mation using orbital measurements: 3D CT-scan
study including the effects of trisomy 21. J Forensic
Sci. 2009;54:7–12.

[88] Dang�Tran K, Dedouit F, Joffre F, et al. Thyroid car-
tilage ossification and multislice computed tomogra-
phy examination: a useful tool for age assessment? J
Forensic Sci. 2010;55:677–683.

[89] Moskovitch G, Dedouit F, Braga J, et al. Multislice
computed tomography of the first rib: a useful tech-
nique for bone age assessment. J Forensic Sci.
2010;55:865–870.

[90] Wade A, Nelson A, Garvin G, et al. Preliminary
radiological assessment of age-related change in the
trabecular structure of the human os pubis. J Forensic
Sci. 2011;56:312–319.

[91] Chiba F, Makino Y, Motomura A, et al. Age estima-
tion by multidetector CT images of the sagittal suture.
Int J Legal Med. 2013;127:1005–1011.

[92] Chiba F, Makino Y, Motomura A, et al. Age estima-
tion by quantitative features of pubic symphysis using
multidetector computed tomography. Int J Legal
Med. 2014;128:667–673.

[93] Lottering N, MacGregor DM, Meredith M, et al. Eval-
uation of the Suchey–Brooks method of age estima-
tion in an Australian subpopulation using computed
tomography of the pubic symphyseal surface. Am J
Phys Anthropol. 2013;150:386–399.

[94] Lottering N, MacGregor DM, Barry MD, et al. Intro-
ducing standardized protocols for anthropological
measurement of virtual subadult crania using com-
puted tomography. J Forensic Radiol Imaging.
2014;2:34–38.

[95] Lottering N, Reynolds MS, MacGregor DM, et al.
Morphometric modelling of ageing in the human
pubic symphysis: sexual dimorphism in an Australian
population. Forensic Sci Int. 2014;236: 195.e1–
195.e11.

[96] Villa C, Buckberry J, Cattaneo C, et al. Technical note:
reliability of Suchey–Brooks and Buckberry–
Chamberlain methods on 3D visualizations from CT
and laser scans. Am J Phys Anthropol. 2013;151:158–
163.

[97] Villa C, Buckberry J, Cattaneo C, et al. Quantitative
analysis of the morphological changes of the pubic
symphyseal face and the auricular surface and impli-
cations for age at death estimation. J Forensic Sci.
2015;60:556–565.

[98] Villa C, Hansen MN, Buckberry J, et al. Forensic age
estimation based on the trabecular bone changes of
the pelvic bone using post-mortem CT. Forensic Sci
Int. 2013;233:393–402.

[99] Wink AE. Pubic symphyseal age estimation from
three-dimensional reconstructions of pelvic CT scans
of live individuals. J Forensic Sci. 2014;59:696–702.

[100] Boyd KL, Villa C, Lynnerup N. The use of CT scans in
estimating age at death by examining the extent of
ectocranial suture closure. J Forensic Sci.
2015;60:363–369.

[101] Mahfouz M, Badawi A, Merkl B, et al. Patella sex
determination by 3D statistical shape models and non-
linear classifiers. Forensic Sci Int. 2007;173:161–170.

[102] Kharoshah MAA, Almadani O, Ghaleb SS, et al. Sex-
ual dimorphism of the mandible in a modern Egyp-
tian population. J Forensic Leg Med. 2010;17:213–
215.

[103] Ramsthaler F, Kettner M, Gehl A, et al. Digital foren-
sic osteology: morphological sexing of skeletal
remains using volume-rendered cranial CT scans.
Forensic Sci Int. 2010;195:148–152.

[104] Uysal Ramadan S, T€urkmen N, Dolgun NA, et al. Sex
determination from measurements of the sternum
and fourth rib using multislice computed tomography
of the chest. Forensic Sci Int. 2010;197: 120.e1–120.e5.

[105] Decker SJ, Davy-Jow SL, Ford JM, et al. Virtual deter-
mination of sex: metric and nonmetric traits of the
adult pelvis from 3D computed tomography models. J
Forensic Sci. 2011;56:1107–1114.

[106] Uthman AT, Al-Rawi NH, Al-Naaimi AS, et al. Eval-
uation of maxillary sinus dimensions in gender deter-
mination using helical CT scanning. J Forensic Sci.
2011;56:403–408.

FORENSIC SCIENCES RESEARCH 171



[107] Bilfeld MF, Dedouit F, Rousseau H, et al. Human
coxal bone sexual dimorphism and multislice com-
puted tomography: geometric morphometric analysis
of 65 adults. J Forensic Sci. 2012;57:578–588.

[108] Bilfeld MF, Dedouit F, Sans N, et al. Ontogeny of size
and shape sexual dimorphism in the ilium: a multi-
slice computed tomography study by geometric mor-
phometry. J Forensic Sci. 2013;58:303–310.

[109] Bilfeld MF, Dedouit F, Sans N, et al. Ontogeny of size
and shape sexual dimorphism in the pubis: a multi-
slice computed tomography study by geometric mor-
phometry. J Forensic Sci. 2015;60:1121–1128.

[110] Zech WD, Hatch G, Siegenthaler L, et al. Sex determi-
nation from os sacrum by postmortem CT. Forensic
Sci Int. 2012;221:39–43.

[111] Karakas HM, Harma A, Alicioglu B. The subpubic
angle in sex determination: anthropometric measure-
ments and analyses on Anatolian Caucasians using
multidetector computed tomography datasets. J
Forensic Leg Med. 2013;20:1004–1009.

[112] Kim DI, Kwak DS, Han SH. Sex determination using
discriminant analysis of the medial and lateral con-
dyles of the femur in Koreans. Forensic Sci Int.
2013;233:121–125.

[113] Mokrane F, Dedouit F, Gell�ee S, et al. Sexual dimor-
phism of the fetal ilium: a 3D geometric morphomet-
ric approach with multislice computed tomography. J
Forensic Sci. 2013;58:851–858.

[114] Djorojevic M, Rold�an C, Garc�ıa-Parra P, et al. Mor-
phometric sex estimation from 3D computed tomog-
raphy os coxae model and its validation in skeletal
remains. Int J Legal Med. 2014;128:879–888.

[115] Franklin D, Cardini A, Flavel A, et al. Morphometric
analysis of pelvic sexual dimorphism in a contempo-
rary Western Australian population. Int J Legal Med.
2014;128:861–872.

[116] Rodr�ıguez S, Gonz�alez A, Sim�on A, et al. The use of
computerized tomography in determining stature and
sex from metatarsal bones. Leg Med (Tokyo).
2014;16:252–257.

[117] Dong H, Deng M, Wang W, et al. Sexual dimorphism
of the mandible in a contemporary Chinese Han pop-
ulation. Forensic Sci Int. 2015;255:9–15.

[118] Petaros A, Sholts SB, Slaus M, et al. Evaluating sexual
dimorphism in the human mastoid process: a view-
point on the methodology. Clin Anat. 2015;28:593–
601.

[119] Hishmat AM, Michiue T, Sogawa N, et al. Virtual CT
morphometry of lower limb long bones for estimation
of the sex and stature using postmortem Japanese
adult data in forensic identification. Int J Legal Med.
2015;129:1173–1182.

[120] Michel J, Paganelli A, Varoquaux A, et al. Determina-
tion of sex: interest of frontal sinus 3D reconstruc-
tions. J Forensic Sci. 2015;60:269–273.

[121] Savall F, Faruch-Bilfeld M, Dedouit F, et al. Metric sex
determination of the human coxal bone on a virtual
sample using decision trees. J Forensic Sci.
2015;60:1395–1400.

[122] Torimitsu S, Makino Y, Saitoh H, et al. Estimation of
sex in Japanese cadavers based on sternal measure-
ments using multidetector computed tomography.
Leg Med (Tokyo). 2015;17:226–231.

[123] Torimitsu S, Makino Y, Saitoh H, et al. Morphometric
analysis of sex differences in contemporary Japanese
pelves using multidetector computed tomography.
Forensic Sci Int. 2015;257:530.e1–530.e7.

[124] Torimitsu S, Makino Y, Saitoh H, et al. Sex estimation
based on scapula analysis in a Japanese population
using multidetector computed tomography. Forensic
Sci Int. 2016;262:285.e1–285.e5.

[125] Torimitsu S, Makino Y, Saitoh H, et al. Sexual deter-
mination based on multidetector computed tomo-
graphic measurements of the second cervical vertebra
in a contemporary Japanese population. Forensic Sci
Int. 2016;266:588.e1–588.e6.

[126] Torimitsu S, Makino Y, Saitoh H, et al. Sex determi-
nation based on sacral and coccygeal measurements
using multidetector computed tomography in a con-
temporary Japanese population. J Forensic Radiol
Imaging. 2017;9:8–12.

[127] M Didi AL, Azman RR, Nazri M. Sex determination
from carpal bone volumes: a multi detector computed
tomography (MDCT) study in a Malaysian popula-
tion. Leg Med (Tokyo). 2016;20:49–52.

[128] Zhang K, Cui JH, Luo YZ, et al. Estimation of stature
and sex from scapular measurements by three-dimen-
sional volume-rendering technique using in Chinese.
Leg Med (Tokyo). 2016;21:58–63.

[129] Zhang K, Luo YZ, Chen XG, et al. Sexual dimorphism
of sternum using computed tomography – volume
rendering technique images of Western Chinese. Aust
J Forensic Sci. 2016;48:297–304.

[130] Koterova A, Veleminska J, Dupej J, et al. Disregarding
population specificity: its influence on the sex assess-
ment methods from the tibia. Int J Legal Med.
2017;131:251–261.

[131] Karakas HM, Celbis O, Harma A, et al. Total body
height estimation using sacrum height in Anatolian
Caucasians: multidetector computed tomography-
based virtual anthropometry. Skeletal Radiol.
2011;40:623–630.

[132] Giurazza F, Del Vescovo R, Schena E, et al. Stature
estimation from scapular measurements by CT scan
evaluation in an Italian population. Leg Med (Tokyo).
2013;15:202–208.

[133] Torimitsu S, Makino Y, Saitoh H, et al. Stature esti-
mation in Japanese cadavers using the sacral and coc-
cygeal length measured with multidetector computed
tomography. Leg Med (Tokyo). 2014;16:14–19.

[134] Torimitsu S, Makino Y, Saitoh H, et al. Stature esti-
mation based on radial and ulnar lengths using three-
dimensional images from multidetector computed
tomography in a Japanese population. Leg Med
(Tokyo). 2014;16:181–186.

[135] Torimitsu S, Makino Y, Saitoh H, et al. Stature esti-
mation in Japanese cadavers based on scapular meas-
urements using multidetector computed tomography.
Int J Leg Med. 2015;129:211–218.

[136] Torimitsu S, Makino Y, Saitoh H, et al. Stature
estimation in Japanese cadavers based on pelvic
measurements in three-dimensional multidetector
computed tomographic images. Int J Legal Med.
2015;129:633–639.

[137] Zhang K, Chang YF, Fan F, et al. Estimation of stature
from radiologic anthropometry of the lumbar verte-
bral dimensions in Chinese. Leg Med (Tokyo).
2015;17:483–488.

[138] Lorkiewicz-Muszy�nska D, Przysta�nska A, Kociemba W,
et al. Body mass estimation in modern population using
anthropometric measurements from computed tomog-
raphy. Forensic Sci Int. 2013;231: 405.e1–405.e6.

[139] Elliott M, Kurki H, Weston DA, et al. Estimating fos-
sil hominin body mass from cranial variables: an

172 T. ULDIN



assessment using CT data from modern humans of
known body mass. Am J Phys Anthropol.
2014;154:201–214.

[140] Jung GU, Lee UY, Kim DH, et al. Selecting best-fit mod-
els for estimating the body mass from 3D data of the
human calcaneus. Forensic Sci Int. 2016;262:37–245.

[141] Robinson C, Eisma R, Morgan B, et al. Anthropologi-
cal measurement of lower limb and foot bones using
multi-detector computed tomography. J Forensic Sci.
2008;53:1289–1295.

[142] Verhoff MA, Ramsthaler F, Kr€ahahn J, et al. Digital
forensic osteology – possibilities in cooperation with the
Virtopsy® project. Forensic Sci Int. 2008;174:152–156.

[143] Franklin D, Cardini A, Flavel A, et al. Concordance of
traditional osteometric and volume-rendered MSCT
interlandmark cranial measurements. Int J Legal
Med. 2013;127:505–520.

[144] De Froidmont S, Grabherr S, Vaucher P, et al. Virtual
anthropology: a comparison between the performance
of conventional X-ray and MDCT in investigating the
trabecular structure of long bones. Forensic Sci Int.
2013;225:53–59.

[145] Brough AL, Bennett J, Morgan B, et al. Anthropologi-
cal measurement of the juvenile clavicle using multi-
detector computed tomography – affirming reliability.
J Forensic Sci. 2013;58:946–951.

[146] Lorkiewicz-Muszynska D, Kociemba W, Sroka A,
et al. Accuracy of the anthropometric measurements
of skeletonized skulls with corresponding measure-
ments of their 3D reconstructions obtained by CT
scanning. Anthropol Anz. 2015;72:293–301.

[147] Richard AH, Parks CL, Monson KL. Accuracy of
standard craniometric measurements using multiple
data formats. Forensic Sci Int. 2014;242:177–185.

[148] Stull KE, Tise ML, Ali Z, et al. Accuracy and reliability
of measurements obtained from computed tomogra-
phy 3D volume rendered images. Forensic Sci Int.
2014;238:133–140.

[149] Uthman AT, Al-Rawi NH, Al-Naaimi AS, et al. Eval-
uation of frontal sinus and skull measurements using
spiral CT scanning: an aid in unknown person identi-
fication. Forensic Sci Int. 2010;197:124.

[150] Christensen AM. Assessing the variation in individual
frontal sinus outlines. Am J Phys Anthropol.
2005;127:291–295.

[151] Christensen AM. Testing the reliability of frontal
sinuses in positive identification. J Forensic Sci.
2005;50:18–22.

[152] Ruder TD, Kraehenbuehl M, Gotsmy WF, et al.
Radiologic identification of disaster victims: a simple
and reliable method using CT of the paranasal
sinuses. Eur J Radiol. 2012;81:e132.

[153] Schmeling A, Grundmann C, Fuhrmann A, et al. Cri-
teria for age estimation in living individuals. Int J
Legal Med. 2008;122:457–460.

[154] Schmeling A, Garamendi PM, Prieto JL, et al. Foren-
sic age estimation in unaccompanied minors and
young living adults. In: Vieira DN, editor. Forensic
medicine: from old problems to new challenges.
Rijeka: InTech; 2011. p. 77–120. doi:10.5772/19261

[155] Black SM, Aggrawal A, Payne-James J (eds.). Age esti-
mation in the living: the practitioner’s guide. Oxford:
Wiley-Blackwell; 2010.

[156] Schmeling A, Reisinger W, Wormanns D, et al. Strah-
lenexposition bei R€ontgenuntersuchungen zur foren-
sischen Alterssch€atzung Lebender. Rechtsmedizin.
2000;10:135–137.

[157] Mahesh M. MDCT physics: the basics: technology,
image quality and radiation dose. Philadelphia (PA):
Lippincott Williams & Wilkins; 2012.

[158] Schmeling A, Schulz R, Reisinger W, et al. Studies on
the time frame for ossification of the medial clavicular
epiphyseal cartilage in conventional radiography. Int
J Legal Med. 2004;118:5–8.

[159] Schulz R, M€uhler M, Mutze S, et al. Studies on the
time frame for ossification of the medial epiphysis of
the clavicle as revealed by CT scans. Int J Legal Med.
2005;119:142–145.

[160] Kellinghaus M, Schulz R, Vieth V, et al. Forensic age
estimation in living subjects based on the ossification
status of the medial clavicular epiphysis as revealed
by thin-slice multidetector computed tomography.
Int J Legal Med. 2010;124:149–154.

[161] Kellinghaus M, Schulz R, Vieth V, et al. Enhanced
possibilities to make statements on the ossification
status of the medial clavicular epiphysis using an
amplified staging scheme in evaluating thin-slice CT
scans. Int J Legal Med. 2010;124:321–325.

[162] M€uhler M, Schulz R, Schmidt S, et al. The influence of
slice thickness on assessment of clavicle ossification in
forensic age diagnostics. Int J Legal Med.
2006;120:15–17.

[163] O’Brien JJ, Battista JJ, Romagnoli C, et al. CT imaging
of human mummies: a critical review of the literature
(1979–2005). Int J Osteoarchaeol. 2009;19:90–98.

[164] Uldin T. Virtual anthropology: the forensic approach
[dissertation]. Geneva: University of Geneva; 2016.

[165] Conlogue G. Considered limitations and possible
applications of computed tomography in mummy
research. Anat Rec (Hoboken). 2015;298:1088–
1098.

[166] Cox SL. A critical look at mummy CT scanning. Anat
Rec (Hoboken). 2015;298:1099–1110.

FORENSIC SCIENCES RESEARCH 173

https://doi.org/10.5772/19261

	Abstract
	Introduction
	The use of CT in palaeoanthropology
	Post-mortem MDCT and forensic anthropology
	Conclusion and perspectives
	Acknowledgments
	Disclosure statement
	References

