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Abstract Urban areas have been shown to impact rainfall by altering both its intensity and spatial structure
at sub‐hourly and sub‐kilometer scales. However, there is currently no clear understanding of the precise pattern
of change and the mechanisms that drive these changes. Since the hydrological response in urban areas is highly
sensitive to such rainfall properties, understanding these changes is critical to improving our ability to assess
urban flood risk. We use 7 years of high‐resolution weather radar data (4‐ or 5‐min and 1 km) to analyze changes
in patterns of rainfall intensity, spatial structure, and storm evolution across eight urban areas within Europe and
the United States. The use of the same methodology across the different cities enables a consistent comparison
among them.We track convective rainfall events using a storm tracking algorithm and assess changes in rainfall
properties in the upwind, center, and downwind regions of each city. We also investigate changes in the
frequency of storm initiations, terminations, splitting, and merging. Our results show that urban areas act to
intensify rainfall—mostly over them, but sometimes on their peripheries. Overall, larger cities tend to show the
largest rainfall enhancements. Our findings highlight that rainfall spatial structure is altered over the urban core;
usually resulting in more spatially concentrated rainfall. We also observe increased storm initiations over most
cities and increased storm splitting over one. Given that demographic projections show that future urban
population will increase, our results point toward an increased future flood risk in growing cities.

Plain Language Summary Urban flood risk is highly sensitive to the intensity and patterns of
precipitation. At the same time, urban areas have been shown to impact rainfall by altering these properties. It is
important to improve our understanding of how rainfall is modified by cities to better anticipate future flood
risk. Here, we use weather radar observations to analyze changes in rainfall intensity and patterns across eight
urban areas within Europe and the United States. Our results show that rainfall becomes more intense over cities
compared to their surroundings, and sometimes on the city edges. Larger cities show larger increases in
intensity. Our findings also show that rainfall usually becomes more spatially concentrated when passing the
cities. Finally, we observe that more storms emerge over the cities in comparison to their surroundings, mostly
in the late afternoon to evening hours. Given that we expect that cities will become larger and denser in the
future, our results indicate that future flood risk may also increase in growing cities as urban rainfall trends
toward increasing extremes.

1. Introduction
Urban areas are becoming larger and more populated. As of 2018, over half of the world's population is living in
urban areas and this has been projected to increase to 68% by 2050 (UN‐DESA, 2018). To accommodate for this,
urban areas are expanding and their form is also changing (Marshall, 2007; Seto et al., 2010). Urban development
results in land use changes that increase flood risk, mainly because the permeability of the land surface is reduced
(Jha et al., 2012). At the same time, short‐duration rainfall events caused by convection, which are the most
relevant for urban flooding, are expected to intensify with global warming (Seneviratne et al., 2021; Westra
et al., 2014). It is also anticipated that heavy rainfall will intensify in the urban environment, but the complexity of
the system makes it particularly difficult to accurately estimate the city effects (Han et al., 2014). Thus, flood risk
is expected to increase in cities due to this increased exposure and hazard. To reduce urban flood hazards, and
make future cities more flood‐sustainable, there is a need to first understand how extreme rainfall events are
modified due to the urban environment and then suggest ways to improve the urban drainage systems.
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The main hypothesized mechanisms behind urban rainfall modification fall into three main categories: changes to
thermodynamic, dynamic, and microphysical processes (Oke et al., 2017). In the first case, the urban heat island
(UHI) effect destabilizes the boundary layer and induces thermally driven circulations which cause low‐level
convergence and convection (Han & Baik, 2008; Lin & Smith, 1986; Olfe & Lee, 1971). In addition, urban
areas may also alter the availability of moisture in the urban boundary layer (Mölders & Olson, 2004; Shep-
herd, 2006). Secondly, urban surface roughness can modify airflow near and over urban areas. This may slow
down near‐surface winds over cities, causing convergence and upward motion upwind and over them, and
divergence and downward motion downwind of them (Oke et al., 2017). Thirdly, increased urban aerosol con-
centrations can suppress or enhance precipitation. Aerosols can suppress precipitation by absorbing and reflecting
solar radiation, which leads to the heating of the atmosphere (Haywood & Boucher, 2000; Ramanathan
et al., 2001), or, by increasing the concentration of cloud condensation nuclei which can increase the number of
small cloud drops nucleated and slow down the conversion of cloud water to rainfall (Han et al., 2014; Haywood
& Boucher, 2000; Rosenfeld et al., 2008). Increased concentration of cloud condensation nuclei may also cause
large drops to grow by coalescing with small cloud droplets, resulting in enhanced convection (Braham Jr, 1974;
Changnon et al., 1976; Johnson, 1982). There are many processes involved in urban rainfall modification and
complex interactions among them. A meta‐analysis by Liu and Niyogi (2019) concluded that although there is a
general agreement that rainfall is modified in urban areas, there is a large variety of impacts reported in different
studies (e.g., the type of effect, magnitude, and location).

There are observational findings indicating that the magnitude and frequency of heavy rainfall have increased in
or around urbanized areas (e.g., Changnon & Westcott, 2002; Kishtawal et al., 2010; Lu et al., 2024; Niyogi
et al., 2017; Shastri et al., 2015), however, there are not many studies that have assessed urban impacts on short‐
duration heavy rainfall events. These types of events often trigger urban pluvial floods, and their intensification is
expected to increase urban flood risk further (Fowler, Ali, et al., 2021). So far, studies point towards an inten-
sification of sub‐daily rainfall extremes in urban areas compared to their surroundings (Huang et al., 2022; Li
et al., 2020; P. Yang et al., 2017). Some observational studies have investigated urban impacts on heavy storms by
analyzing high space‐time resolution weather radar data (Kingfield et al., 2018; Lorenz et al., 2019; Niyogi
et al., 2011; Yeung et al., 2015). However, there is no clear agreement among these studies regarding the urban
impact on the properties of rainfall, such as on storms' extent and intensification, at the small‐scale that was
investigated (Lalonde et al., 2023). For example, in Indianapolis, US, downwind storm intensification and
increased storm extent have been reported (Niyogi et al., 2011). Conversely, in Berlin, Germany, there are more
cases of storm attenuation rather than intensification over and downwind of the city and reduced rain cell sizes
(Lorenz et al., 2019).

Most of the urban rainfall literature has focused on studying urban influences on rainfall intensity and amount.
Cities have been found to enhance rainfall mostly over and downwind of them (Liu & Niyogi, 2019), and
sometimes upwind (Kingfield et al., 2018) or on their lateral sides (Dou et al., 2015; Y. Zhang et al., 2017).
However, it is difficult to compare the findings among studies as different methodologies were used to assess the
urban influence on rainfall intensification (Liu & Niyogi, 2019). As concluded by Lalonde et al. (2023), there is a
current need to generalize these effects by conducting multi‐city studies with consistent methodologies. Some
studies have investigated the relationship between urban rainfall intensification and city characteristics (e.g., size,
shape, population, urban heat, and aerosol emissions) (Ashley et al., 2012; Forney et al., 2022; Huff & Chang-
non, 1973; Kingfield et al., 2018; Lu et al., 2024; Schmid & Niyogi, 2013; Westcott, 1995; W. Zhang et al., 2022;
Zhu et al., 2017). City size and population are the main characteristics that have shown a link to this intensifi-
cation. These links have been mainly explored amongst US cities from usually the same region or through
modeling experiments focused on one city. There is therefore a need to determine whether these relationships hold
when comparing cities within different geographical regions, climates, and of largely different urban forms.

Aside from examining changes in rainfall intensity, it is also essential to examine how urban areas impact the
spatial and temporal structure of rainfall; these two factors may be more important than rainfall intensification
when it comes to triggering urban floods (Belachsen et al., 2017; Desa & Niemczynowicz, 1996; Peleg
et al., 2022; Rozalis et al., 2010; Syed et al., 2003; L. Yang et al., 2016). For example, the findings of Zhou
et al. (2021) indicate that more localized rainfall, but not necessarily more intense rainfall, can increase flood risk
in urban areas. Storm spatial extent (i.e., area) and homogeneity (i.e., level of spatial variability of the rainfall
intensities within a rain field) have been shown to vary with temperature in regional and global studies (Ghanghas
et al., 2023; Lochbihler et al., 2017; Peleg et al., 2018; Wasko et al., 2016). Rainfall structure changes are
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hypothesized to occur due to differences in dynamic and thermodynamic processes (Fowler, Lenderink,
et al., 2021; Wasko et al., 2016). Because cities are generally warmer, drier, and rougher than their surroundings
(Oke, 1973; Oke et al., 2017), it is expected that urban areas may alter storm structure as well. Some studies have
found evidence of urban impacts on storm spatial structure by assessing changes in rain cell area or in storm
splitting and merging in or around cities (Lorenz et al., 2019; Niyogi et al., 2011; L. Yang et al., 2014).
Nevertheless, further research is needed to investigate how the spatial structure of rainfall is modified in different
urban areas to determine if these patterns can be generalized to more cities.

Regarding the evolution and temporal structure of storms, several observational studies have shown that urban
areas can also impact storms' life cycles. For example, urban areas have been found to experience more thun-
derstorm initiations compared to their surroundings, especially in the late afternoon (Changnon et al., 1976;
Haberlie et al., 2015; Yeung et al., 2015), as well as increased rainfall frequency (Ashley et al., 2012; Burian &
Shepherd, 2005; Changnon et al., 1976; Huff & Changnon, 1972; Kingfield et al., 2018;Marelle et al., 2020;Mote
et al., 2007). There is also evidence that cities may contribute to the splitting and merging of storms upwind and
downwind of them, respectively (Lorenz et al., 2019; Niyogi et al., 2011; L. Yang et al., 2014), or to increase
storm attenuation over them (Lorenz et al., 2019). It is currently not possible to compare these effects and their
magnitude amongst cities as most of these studies have been performed in single or few cities and the meth-
odologies used to quantify these effects were different.

To improve the understanding of urban influences on extreme rainfall and enhance generalizability, we focus on
evaluating various rainfall modification effects over eight different urban areas with diverse characteristics and
climates, while utilizing the same methodology across all cities. We use high‐resolution weather radar data to
track the evolution of heavy rainfall and assess changes in its properties at minute and kilometer scales in urban
areas and their surroundings. We aim to: (a) understand how different urban areas modify the intensity of
convective rainfall events; (b) investigate how the rainfall spatial structure is altered due to the urban area; (c)
evaluate changes in convective rainfall occurrence and storm life cycle; and (d) generalize our findings by
exploring the links between these urban rainfall modification effects and city properties, such as city size,
population, background climate, and type of urban form.

2. Methods and Data
2.1. Study Areas

We explored eight cities from different regions, characterized by diverse urban forms, background climates, and
sizes (Figure 1 and Table 1). Four of the cities are located in Europe (Milan, Italy; Berlin, Germany; and London
and Birmingham, United Kingdom), while the other four are located in the United States (Phoenix, Arizona;
Charlotte, North Carolina; Atlanta, Georgia; and Indianapolis, Indiana). Besides the diversity in characteristics
mentioned above, we chose these cities as they have available and good quality high‐resolution weather radar data
and are often exposed to heavy short‐duration rainfall events in the summer months. Moreover, potential rainfall
influences from other factors than the city are not foreseen as these cities are built on relatively flat terrain (i.e.,
minimal exposure to orographic effects), and they are not coastal or near large water bodies (i.e., rainfall is not
potentially influenced by enhanced‐lake humidity or breeze).

Although population density and/or impervious built‐up area are usually used to classify urban areas (e.g.,
Kishtawal et al., 2010; Niyogi et al., 2017; Singh et al., 2016), there is no standardized method to define the
boundaries and hence the size of urban areas (Kingfield et al., 2018). We used existing boundaries from regional
agencies to define the extent of the urban areas. For the US cities, we used the 2020 US Census Bureau's urban
area delineations, which use housing unit density and population criteria to define urban areas (Census Bu-
reau, 2022). To obtain the urban boundaries of the remaining cities, we used local administrative unit boundaries
from Eurostat (2020). We compared all urban area boundaries to maps of Local Climate Zones (LCZ) (Stewart &
Oke, 2012) and if necessary (i.e., for London and Birmingham), we combined several of the units to obtain a
larger boundary that was in better agreement with the LCZ maps (Figure 1).

2.2. Weather Radar Data Sets

Rainfall information is derived from weather radars, which are capable of providing continuous rainfall estimates
in space and time (i.e., a time series of gridded rainfall fields) for the cities examined and their surrounding areas.
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It should be noted that we have not used ground data from rain gauges, nor have we validated the rainfall data
obtained from radars, but rather we have relied on quality control conducted by the data providers listed below.
However, we do not expect this to have a significant impact on our analyses given that we are interested in
relative, rather than absolute values. Given our interest in analyzing urban impacts on heavy short‐duration
rainfall, data were only obtained for the summer months (May to September/October), during which convec-
tive rainfall is more likely to occur (Barbero et al., 2019). Data span the period of 2015–2021 for all cities.

The European data sets are based on networks of C‐band radars, with a 1 km and 5 min space–time resolution.
Such small‐scale resolution is necessary to examine urban‐induced changes in rainfall that may trigger urban flash
floods (Ochoa‐Rodriguez et al., 2015) and C‐band radars have been effectively used for this purpose in the past
(Lorenz et al., 2019). We obtained radar data from the fourth‐generation weather radar system of MeteoSwiss
(Germann et al., 2015) for Milan, from the Radar Climatology (RADKLIM) data set (Winterrath et al., 2018)

Figure 1. Maps of the study areas and their LCZs, using the same map scale. Urban boundaries are delineated in black. LCZ maps were obtained from Demuzere
et al. (2019), Demuzere, Bechtel, et al. (2020), Demuzere, Hankey, et al. (2020), and Demuzere et al. (2021).

Table 1
Characteristics of the Eight Studied Cities

Urban area Lat. [°N] Area [km2] Population [M] Köppen classification

Milan 45.5 182 1.41 Cfa—Temperate, no dry season, hot summer

Birmingham 52.5 302 1.38 Cfb—Temperate, no dry season, warm summer

Berlin 52.5 892 3.66 Dfb—Cold, no dry season, warm summer

London 51.5 1,240 8.96 Cfb—Temperate, no dry season, warm summer

Indianapolis 39.8 1,870 1.70 Cfa—Temperate, no dry season, hot summer

Charlotte 35.2 2920 2.05 Cfa—Temperate, no dry season, hot summer

Phoenix 33.5 3,210 4.40 BWh—Arid, desert, hot

Atlanta 33.8 6,350 5.00 Cfa—Temperate, no dry season, hot summer

Note. Population data are for the year 2020 (sources: Census Bureau, 2022; DESTATIS, 2023; Istat, 2023; Nomis, 2020) and
the Köppen‐Geiger climate classification is from Beck et al. (2018).
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from the German Weather Service (DWD) for Berlin, and for the UK cities, we derived radar data from the Met
Office's NIMROD product (Golding, 1998).

For the US cities, rainfall data were obtained from the Multi‐Radar Multi‐Sensor (MRMS) Surface Precipitation
Rate product from the National Centers for Environmental Prediction (NCEP) (J. Zhang et al., 2016). As opposed
to the European radar products, the MRMS data are based on networks of mainly S‐band radars and are corrected
with numerical weather prediction models. Nonetheless, similar to the C‐band, it has been proven useful in
capturing rainfall that causes flooding in urban areas (Gerard et al., 2021). MRMS has a space‐time resolution of
1 km and 2 min; however, we used data every 4 min to closely match the resolution of the other products. We
carefully examined the composite products for each of the cities, ensuring that each city has at least one radar
coverage within a distance of acceptable operational range (up to 100 km) and that no radars were found within a
distance of 6 km from the city center to eliminate the cone of silence effect. The radar data quality and some of its
limitations are addressed in the Discussion section.

2.3. Urban Heat and Dry Island Data

To temporally cross‐reference radar data patterns with diurnal UHI and urban dry island (UDI) patterns, we
computed diurnal UHI and UDI cycles for the different urban areas. We used hourly air temperature and dew
point temperature (TD) and/or relative humidity (RH) climate station data from at least one station near each city
center and one from a rural surrounding area, for the whole study period (Table S1 in Supporting Information S1).
We then standardized the UHI and UDI cycles by their maximum hourly value to be able to compare the diurnal
patterns across cities.

2.4. Storm Tracking

We tracked the evolution of heavy rainfall in space and time using a storm‐tracking algorithm developed by
Moseley et al. (2019). Using similarity criteria, the algorithm identified a user‐defined rainfall cluster (hereafter
referred to as objects) in two consecutive time steps and derived the moving vector between them (Figure 2). We
set the algorithm to identify connected grid points (objects) that contained rainfall intensity values over
10 mm hr− 1 and that formed an area greater than 9 km2. These imposed thresholds were chosen following Peleg
andMorin (2012) to ensure that we track mostly the heavy‐convective rain cells. Objects that overlapped between
subsequent time steps were then linked into a track. The algorithm iteratively computed a mean advection velocity
field after objects were identified to improve the identification of tracks when objects did not overlap due to being
small and/or the advection velocity being high (Moseley et al., 2019).

Figure 2. An example of a track's trajectory over Milan and how upwind and downwind distances are defined. The radar rain
fields of two objects belonging to the track are displayed at two different times and the center of mass of each object
pertaining to this track is marked with a cross. The mean direction of motion of the track is shown with a black arrow and the
vector perpendicular to it defines the upwind and downwind areas, which are separated with a dashed line. Radial distances
(in km) from the city center are labeled and depicted in gray lines. (a) 10‐km wide bins are illustrated; upwind (downwind)
bins are shaded in blue (green). (b) 20‐kmwide bins are illustrated; three urban bins and the upwind control bin shaded in red.
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We computed the mean direction of motion of each track and defined upwind and downwind locations for each
track individually; objects with a center of mass before (after) the city center were classified as upwind
(downwind). We considered objects from all tracks identified by the tracking algorithm that were less than 75 km
away from the urban centers and that belonged to tracks with a lifetime greater than 15 min. We did not impose
any further criteria to include or exclude tracks, hence tracks were included regardless of how close they moved
from the urban centers or how their trajectories changed in space and time (i.e., whether and where they were
initiated, terminated, bifurcated, split, or merged). An example of a storm‐tracking procedure for a single track in
the city of Milan is presented in Figure 2. The algorithm was also capable of identifying the “life cycle” of the
tracked storms, namely where and when they initiated, terminated, split, or merged.

2.5. Evaluating Changes in Rain Cell Properties

We first determined how far upwind or downwind from the urban center each object was by calculating the radial
distance from each object's weighted center of mass to the urban center. We then extracted different rain cell
properties (mean intensity, maximum intensity, and area) for all objects from the tracks identified by the tracking
algorithm. To assess the spatial structure of each rain field, we used a metric that quantifies grid‐homogeneity,
named Spatial Homogeneity (SH). This unitless metric was introduced by Ghanghas et al. (2023) and quantifies
the spatial homogeneity of rain fields and can be used to compare rain fields of different intensities. To compute
this metric for each object, we first centered each object's intensity field on a window of 17‐by‐17 grid cells using
its weighted center of mass. This window size was chosen because it was large enough to generally cover object
rainfall values over the 10 mm hr− 1 threshold. Next, the intensity values of each radar grid cell were sorted in
descending order and a cumulative normalization was performed, following Ghanghas et al. (2023):

SH =
1

289 ×∑288
i=0Pi −

P0
289

P0 −
P0
289

, (1)

where P0 is the maximum and P288 the minimum intensity value of the window. This metric quantifies how much
a particular rainfall field differs from a case where rainfall occurs only at the center pixel, relative to the difference
between a case where there is only rainfall at the center and a case where all pixels have the same rainfall intensity
value. More localized and convective rainfall fields will have a metric closer to zero, and more uniform and
stratiform fields will have a metric closer to one. Figure 1 in Ghanghas et al. (2023) illustrates this concept.

Studies have shown that urban impacts on rainfall may occur at different locations within or near urban areas, and
not only over or downwind of them (e.g., Changnon et al., 1976; Changnon & Westcott, 2002). For example, in
some cases, reduced rainfall intensities and lightning activity have been observed directly over urban centers
along with increased peaks in the city periphery (Lorenz et al., 2019; Shi et al., 2022), or on their lateral sides due
to airflow bifurcation (Bornstein & Lin, 2000; Dou et al., 2015). Therefore, to explore where rainfall modification
occurred within our study areas, we first explored changes in object properties (mean intensity, area, and SH) as a
function of their distance from the city centers. We grouped all objects into 10‐km wide bins and then compared
the distributions of the different object properties between bins, up to 75 km upwind and downwind of the urban
centers (Figure 2a). This relatively small bin size allowed us to detect changes at a fine spatial scale.

Next, to quantify changes in rainfall property from a surrounding control region to the urban area, we grouped
objects into four larger bins (20‐km wide). First, an upwind control bin (40–60 km from the city center) that
served as a reference, and then, three urban bins: one positioned directly over the city center, and two bins
adjacent to the latter (10–30 km upwind and downwind) (Figure 2b). The aim here was to obtain statistics of
object properties over and near the edges of the urban areas as well as in a control region, at a coarser spatial scale
and with increased sample size. We assume that the control bin is not influenced by the urban area and serves as a
reference; this assumption is based on several studies indicating that urban impacts on rainfall upwind of cities are
observed up to distances of approximately 30–40 km (Liu & Niyogi, 2019). We then calculated the maximum
median change from the control to any of the three urban bins (as shown in Figure 2b). The statistical significance
and confidence intervals of these median changes were evaluated using a non‐parametric permutation test
(Ernst, 2004). We then explored the relationship between the urban rainfall effects and city size, population, and
average upwind storm intensity, by plotting these variables for all cities against each other.
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2.6. Storm Evolution Patterns

We investigated urban impacts on the evolution of storms by comparing the frequency of different life cycle
events (initiations, terminations, splits, and merges) between the control and urban bins (Figure 2b). We
computed the total number of track initiations in each bin, and normalized each value by its bin's area, to account
for the fact that bins further away from the city center had a larger area and therefore more rainfall occurrences.
For the remaining track life cycle events, we normalized event occurrences by the total number of object oc-
currences in each bin. This was done to remove the effect introduced by changes in object occurrences (i.e.,
increased object occurrences results in increased amounts of other life cycle events). We then compared the
frequency of all life cycle events between bins by performing a permutation test (Ernst, 2004). We also examined
track initiation changes on an hourly basis since urban areas have been shown to increase rainfall occurrence,
especially in the late afternoon hours (e.g., Ashley et al., 2012; Huff & Changnon, 1973; Westcott, 1995). Here,
the same procedure was applied but data was binned into 5‐hr wide rolling bins. The permutation test was also
used to assess the differences in initiation frequency between the control and central urban bin at each 5‐hr
rolling bin.

3. Results
3.1. Changes in Rainfall Areal Mean Intensity

The distribution of the mean areal intensity of the objects is displayed in Figure 3. It illustrates increases in both
means and medians near or over urban areas compared to upwind distances (40–70 km).Maximum increases were
typically observed directly above the city centers, except for Birmingham and Berlin, which displayed lower
intensities over the city but enhancements near their downwind and/or upwind edges (Figure 3 and Figure S1 in
Supporting Information S1). The maximum median increases from the upwind regions (bins 35–75 km from the
urban center) to the urban areas (extending 15 km from the urban centers) in Figure 3 were approximately 4% for

Figure 3. Box plots showing the distributions of object areal mean intensity at different distances from the urban centers. Upwind (downwind) distances are negative
(positive) and are shaded in blue (green). The central line marks the median and the upper (lower) box borders, the 25th (75th) percentile. The mean of each distribution
is marked with a black triangle. The extent of each city (average diameter) is marked with a red segment.
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Milan, 5% for Indianapolis, 8% for Atlanta and Berlin, 9% for Charlotte, 10%
for Birmingham and London, and 15% for Phoenix.

We then quantified the maximum control‐to‐urban changes in mean object
intensity using larger bins (Figure 4). The median control‐to‐urban changes
were statistically significant across all cities, except for Milan (Figure 4). We
found that larger cities tended to show greater intensification effects. For
example, in the three smallest cities (i.e., areas smaller than 1,000 km2), mean
rainfall intensified by 0.9%–3.4%. In contrast, the three largest cities (i.e.,
with areas above 2000 km2) showed an intensification of 5.2%–11%. Cities
with generally higher mean storm intensities showed greater rainfall inten-
sification effects as well; however, it is noteworthy that these cities were also
the largest. The intensification appeared to be less related to population than
to city size. Figure S1 in Supporting Information S1 displays control‐to‐urban
changes in mean object intensity at all three urban bins. As also evident in
Figure 3, there are differences in the magnitude and direction of the rainfall
effect across the different urban bins, however, the positive correlation be-
tween city extent and rainfall intensification is still apparent.

3.2. Diurnal Intensification Patterns

We next explored hourly control‐to‐urban rainfall intensity changes down-
wind, upwind, and over the cities (Figure 5) and found that the magnitude of

the intensification generally varied for different times of the day. Much higher intensification rates were displayed
when examining rainfall intensification on an hour‐by‐hour basis, compared to Figure 4, where the effects are
averaged over the whole day. In addition, some urban areas only displayed significant changes at specific times

Figure 4. Maximum median increase in object areal mean intensity from the
control to any of the three urban bins. The maximum median change is
plotted against the size of the urban area. The color of the scatter points
shows the average upwind storm intensity, its size represents the population
(P), and a red outline indicates that the change in the median was statistically
significant (p < 0.05). The error bars show the 5th–95th confidence intervals
of the median differences.

Figure 5. Diurnal cycles of median changes in object mean intensity, from the control to the urban bins. The median differences were computed over moving windows of
5 hours. The shaded areas show the 5th–95th confidence intervals of the median differences. The dots indicate that the median changes at a particular time bin were
significant (p < 0.05).
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and in some cases, opposite effects were observed during different periods.
For example, in Milan, significant intensification only occurred around the
afternoon hours, ranging from 5% to 15%. Birmingham displayed intensifi-
cation effects only during the nighttime hours, between 5% and 11%, upwind,
over, and downwind of the city. Atlanta experienced most of the intensifi-
cation during the daytime hours, from 3% to 21%, both over the city and
downwind. Both Charlotte and Phoenix showed significant intensification
during most times of the day, mostly over the cities but also upwind and
downwind. Over these cities, rainfall intensification ranged from 2% to 46%
and 8%–30%. Berlin and London both showed opposite effects at different
times of the day. In Berlin, rainfall intensified in the upwind and downwind
regions, from 4% to 7%, in the late afternoon until midnight, and in the early
morning hours, upwind rainfall was weakened between 5% and 10%. In
London, rainfall intensified from the afternoon until nighttime, between 5%
and 10%, and weakened in the upwind and downwind regions during the
night, by 7%–14%.

3.3. Changes in Rainfall Spatial Structure

Control‐to‐urban changes in the spatial structure of objects (SH index and
area) are shown in Figure 6 and Figures S2, and S3 in Supporting Informa-

tion S1. All urban areas, except Berlin, showed statistically significant changes in object SH in at least one of the
urban bins (Figures 6 and Figure S1 in Supporting Information S1). Changes in object area were significant over
three cities. Phoenix and Atlanta showed significant changes in both SH and area; SH medians decreased by 18%
and 12%, respectively, over the urban areas, compared to the control region (Figure 6). Median object area
decreased by 11% in both cases. In Milan, Birmingham, London and Indianapolis, median object SH decreased
between 4% and 16%, however, the changes in area were not statistically significant. Overall, most urban areas
displayed an increase in rainfall heterogeneity and a decrease or no change in the object area. The opposite
occurred in two cities (Berlin and Charlotte), which showed increased rainfall homogeneity by 6% and 15%, and
increased object area at the order of 9% and 12%. We found no evidence of links between urban impacts on
rainfall spatial structure and city characteristics, such as urban extent and population size.

3.4. Storm Life Cycles

Six out of the eight urban areas experienced more track initiations compared to their control regions. These
differences were statistically significant in five cities: Milan, London, Indianapolis, Charlotte, and Atlanta (Figure
S4 in Supporting Information S1). These cities showed increases of 18%–42%, and the maximum increase usually
occurred directly over them. The diurnal patterns of initiations for the control and urban bins are presented in
Figure 7, and their difference is in Figure 8. Both the control and urban bins displayed diurnal patterns, with
minimum occurrences at night and maximum values in the late afternoon (Figure 7). Similar to Figure 5, we
observed variations in the differences between control and urban bins at different times of the day, compared to
the average over the entire day (Figure 8 vs. Figure S4 in Supporting Information S1). Most statistically sig-
nificant control‐to‐urban differences occurred between the afternoon and late evening hours in London and
Atlanta, which showed maximum increases of approximately 85%. In Birmingham, Indianapolis, and Charlotte,
the highest increases (from 42% to 126%) occurred between the late afternoon and evening hours. In Milan, the
largest increases (up to 54%) happened at night. Berlin and Phoenix did not display statistically significant
changes in track initiation patterns. Unlike for storm initiation patterns, there were no significant changes in the
number of track termination, splitting, and merging events between the control and urban regions, except for
increased storm splitting in Berlin (Figure S4 in Supporting Information S1).

Next, we compared initiation patterns with diurnal UHI and UDI cycles. UHI diurnal cycles showed similar
patterns as the UDI, when computed with RH data. When computing the UDI with TD data, we found the largest
urban moisture deficits earlier in the day (usually in the afternoon to evening hours, instead of at nighttime).
Figure 7 and Figure S5 in Supporting Information S1 show that peak control‐to‐urban initiation differences did
not generally occur during peak UHI hours or when rural‐to‐urban RH differences were highest. This only
happened in Milan and Birmingham, where both peaked at night or in the evening, respectively. In Atlanta,

Figure 6. Maximum median change in object spatial heterogeneity (SH
index) from the control to any of the three urban bins, plotted against city
size. An increase (decrease) in SH represents a decrease (increase) in rainfall
heterogeneity. The color of the scatter points shows the median rural‐to‐
urban change in object area and its size represents the population (P). A red
outline indicates that the change in median object SH was statistically
significant (p < 0.05). A solid (dashed) outline indicates that the change in
median object area was (not) statistically significant.
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Charlotte and Indianapolis, the highest track initiation differences were found when rural‐to‐urban TD differences
were largest (i.e., when the moisture deficit was largest). Or, in the case of London, when the urban moisture
island was at its minimum (Figure S6 in Supporting Information S1).

4. Discussion and Implications
Our results have shown that heavy rainfall is intensified directly over cities or in two cases, over the city
boundaries. As discussed in Liu and Niyogi (2019), downwind rainfall enhancement seems to be a commonly
highlighted result in the literature, however, over‐the‐city effects seem to occur as well, and with a similar
magnitude. Differences in the reported location of the urban effect (upwind, over, downwind, or laterally) appear
to be linked to study methodologies (e.g., observational vs. modeling studies, and case study vs. climatological
studies) (Liu & Niyogi, 2019). It is thus difficult to compare the location of the urban effect across studies in
different cities and based on different methodologies. Here, we have found that urban rainfall effects may occur at
different locations relative to the city centers, depending on the city (Figure 3). Drivers for these differences could
include the climatology of the area, orographic forcing in the surroundings, the presence of aerosols, or large
gradients in temperature and humidity at the urban boundaries due to the land‐surface discontinuity.

We next explored intensification links to different city characteristics, such as population, urban form, and mean
storm intensity, and found that intensification is positively related to city size (Figure 4). These results are in
agreement with Schmid and Niyogi (2013) and Forney et al. (2022), who showed that urban rainfall modification
increased linearly with city size. Since demographic projections show that urban population will globally increase
in the future (UN‐DESA, 2018) and this is expected to result in urban land expansion (Seto et al., 2010), our
results point toward increased intensification of (convective) summer rainfall that may lead to increase in future
flood risk in large cities. A factor that was not explored in our study but that may be linked to the rainfall
modification potential may be city shape. As discussed byW. Zhang et al. (2022), different city shapes may result
in different urban‐rural circulation patterns and result in different rainfall anomalies. Future studies should further

Figure 7. Diurnal cycles of track initiation frequency in the control and urban bins. A moving mean calculation was applied to the data using a rolling window width of
5 hr. The occurrences in each bin were normalized by the area of each bin. The background fill color represents the hourly mean standardized UHI values.
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investigate links between rainfall modification and city properties (especially size and shape) by investigating
additional urban areas from different regions and local climates, with consistent methodologies. It is important to
note that the reported city sizes are determined by the urban delineation method used. Defining urban boundaries
with demographic and land cover data has potential limitations, because urban influence may extend beyond
landform changes (Niyogi et al., 2017; Singh et al., 2020). As suggested by Singh et al. (2020), several
comprehensive approaches can be used to define urban areas, which can be applied in future research.

We observed distinct diurnal patterns of rainfall intensification across the different cities (Figure 5), with
intensification occurring both during the daytime and/or nighttime hours, depending on the city. The former may
occur because the UHI circulation is expected to be stronger at daytime compared to nighttime (even though the
UHI tends to be lower) because increased surface heating results in enhanced vertical mixing (Niyogi et al., 2011).
Additionally, we note that a drier urban near‐surface environment (i.e., apparent in most of the studied cities;
Figure S6 in Supporting Information S1) may increase atmospheric instability and result in moisture convergence
over the city (Argüeso et al., 2016; Li et al., 2020). Yet, nighttime UHI peaks have also been reported to cause
rainfall enhancement over or downwind of inland cities due to increased urban instability (Ganeshan et al., 2013;
Lorenz et al., 2019). To understand why different diurnal patterns of rainfall modification are being observed in
different cities, these patterns should be investigated across more cities, and the driving processes should be
explored through modeling studies.

The accuracy of the urban rainfall intensification quantification was in some cases limited by the radar data
quality, and resulted in under‐ and over‐estimations in some study areas. The radar data quality was checked by
exploring potential beam blockages and ground echoes that may systematically bias the estimates in specific
locations. Maps of mean object rainfall intensity and total rainfall occurrence revealed some issues in a few cities.
For example, the weather radar in Indianapolis was located close to the city center (approximately 12 km
southwest of it) and this resulted in an area of underestimated rainfall intensities and reduced rainfall occurrence.
In this case, we expect that the rainfall intensification effect over the city is higher than what is observed in

Figure 8. Diurnal cycles of track initiation frequency difference between the control and central urban bin. A moving mean calculation was applied to the data using a
rolling window width of 5 hr. The shaded area shows the 5th–95th confidence interval of the differences. The dots indicate that the differences at a particular time bin
were significant (p < 0.05). The background fill color represents the hourly mean standardized UHI values.
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Figures 3 and 4. Charlotte and Phoenix presented partial beam blockages within or around the city areas,
potentially resulting in an overestimated rainfall intensification effect. Although we found some areas within the
study domains with decreased radar quality, we expect that the impacts on the results are decreased due to the
Lagrangian approach adopted.

To compare urban impacts across the different studied cities in a consistent manner, we binned data and compared
it across bins of the same size for all cities. This framework may be limiting when the studied cities have a wide
range of sizes. For example, in the case of Atlanta, the largest city studied, urban rainfall intensification might be
underestimated since the control bin is close to the city boundaries and may already be experiencing some urban
influences. In the case of Milan, the control bin did contain orographic influences, due to the presence of the Alps,
starting approximately 40 km north of the city center. This resulted in intensification underestimation since in-
tensities over the mountainous regions were higher than in the adjacent flat terrain. There are alternative ways of
defining the rural (or in our case, the control) and urban influenced regions, as for example, Niyogi et al. (2011)
used a threshold that was twice the city size. Future studies could consider using a “moving threshold,” where the
control bin is shifted further upwind if a city is larger or closer to the city if smaller.

Aside from increased urban rainfall intensities, we also detected changes in rainfall spatial structure over urban
areas (Figure 6). Rainfall spatial structure changes with temperature have been shown to vary regionally (e.g.,
Ghanghas et al., 2023; Lochbihler et al., 2017; Peleg et al., 2018; Wasko et al., 2016). Our results agree with the
expected regional changes in the spatial extent of short‐duration extreme precipitation due to temperature in-
creases, as reported by Ghanghas et al. (2023). In most cities, a decrease in spatial homogeneity was observed
compared to the surrounding areas. This suggests that rainfall is more localized and clustered over the cities and
that there is a re‐distribution of moisture from the low to the high intensities. This implies that in most of the
studied cities, urban flood risk may increase, given that rainfall extremes are more spatially concentrated and also
more intense. L. Yang et al. (2015) discussed the potential for underestimating flood magnitudes if spatial rainfall
patterns are not taken into account.

Over the cities of Berlin and Charlotte, we found increases in rainfall homogeneity (i.e., rainfall becomes less
spatially clustered); the results in Berlin are also in agreement with Ghanghas et al. (2023), who reported an
increase in spatial homogeneity with increased temperatures in central Europe. However, the results in Charlotte
do not follow the expected spatial rainfall modifications due to background temperature increase. Further studies
are needed to understand the dynamic and thermodynamic mechanisms behind these spatial structure changes and
the differences across cities. The observed spatial structure changes are likely not only due to rural‐to‐urban
temperature changes but also to other urban effects, such as moisture, aerosols and increased surface rough-
ness (Han et al., 2014). This may also explain why we have observed larger changes in SH over urban areas,
compared to the anticipated change in SH magnitude with temperature reported by Ghanghas et al. (2023), when
considering the average UHI magnitude. Additionally, the changes we have observed in rainfall spatial structure
are most probably sensitive to the rainfall intensity threshold used (10 mm hr− 1).

Assessing changes in storm life cycle over the urban areas revealed significant increases in convective rainfall
initiation over six cities, at least at some time of day (Figure 8). Peak initiation differences between rural and
urban areas occurred in the late afternoon to evening hours, and not usually during peak UHI hours. This is
generally the time when the urban boundary layer (UBL) is most unstable (Lemonsu & Masson, 2002; Rotach
et al., 2005). This indicates that, generally, boundary layer instability is preferable for the initiation of new
convective cells and that high rural‐to‐urban temperature differences together with a more stable UBL (e.g.,
during nighttime hours) are not sufficient to trigger convective initiations. Furthermore, we found that in some
cities, these peaks occurred when rural‐to‐urban moisture deficits were the highest (Figure S6 in Supporting
Information S1). The warmer and drier urban environment creates favorable conditions for convection, that is, the
thermodynamic gradient results in increased vertical uplift and moisture convergence, where moist air is brought
from the surrounding areas and lifted over the city (Argüeso et al., 2016; Li et al., 2020). Our results are in
agreement with Westcott (1995), who found maximum increases in lightning flash frequency (a proxy for
convective activity) at this time of day in the Midwestern US, and with Burian and Shepherd (2005), who found
greater rainfall amounts and occurrences between noon and midnight over Houston, US, compared to its sur-
roundings. Two of the studied cities, Phoenix and Berlin, did not show increases in storm initiations over them. In
Phoenix, this may be a result of orographic effects; we found an area of increased rainfall occurrence over the
mountains northeast of the city, therefore increasing initiation occurrences in the control region. In Berlin, this
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might be due to lower radar quality, since the control bin was sometimes placed over an area where the coverage
of two radar systems intersected, which displayed anomalously high rainfall occurrences.

A few studies have reported increases in storm splitting and merging in or around cities (Lorenz et al., 2019;
Niyogi et al., 2011; L. Yang et al., 2014). While we did observe an increase in the frequency of splitting and/or
merging in some urban regions relative to the increases in rainfall occurrence, these changes were not statistically
significant. Berlin was the only city that displayed significant increases in storm splitting over it (Figure S4 in
Supporting Information S1). We therefore did not find sufficient evidence to support that, in general, urban areas
changed patterns of storm splitting, merging, or terminating. These effects might only take place in some cities
and not in others, for example, Yeung et al. (2015) also investigated storm splitting over New York City, US, and
found no urban impacts on storm splitting. However, our results may be sensitive to the ability of the storm
tracking algorithm to correctly identify these events.

Prior to this work, several city‐based studies have conducted detailed weather radar data analysis on the impacts
of urban areas on rainfall. Our results are in general agreement with the results reported. For example, Lorenz
et al. (2019) generally reported the following in Berlin: rainfall intensification at the city periphery exclusively
(usually upwind), over‐the‐city attenuation during the daytime or nighttime intensification over the city, and
potential increased storm splitting over the city. We found significant rainfall intensification only in the city
peripheries (i.e., the upwind and downwind urban bins, Figure S1 in Supporting Information S1) in the evening to
early night hours (Figure 5), upwind rainfall attenuation in the early morning hours (Figure 5), and significant
increases in storm splitting over the city (Figure S4 in Supporting Information S1). In Indianapolis, Niyogi
et al. (2011) observed significantly more rain cells in the downwind than upwind regions and suggested this may
be due to increased rain cell splitting or increased initiations. Here, we found increased rainfall occurrence in the
late afternoon hours over and downwind of the city, which was explained by the latter (Figures 7 and 8). They also
found a greater number of smaller cells in the downwind region and larger cells upwind. Although we did not
observe this, we instead found considerable increases in rain cell size over the city (Figures S1 and S3 in Sup-
porting Information S1). In Atlanta, Mote et al. (2007) pointed to rainfall enhancements mainly over the urban
core and downwind (eastern) part of the city. Our results also displayed maximum intensification in those lo-
cations (Figure S1 in Supporting Information S1 and Figure 3). They also reported the highest downwind rainfall
rates in the evening to midnight hours, and although we did not spot maximum intensification then (we found it
occurred around midday; Figure 5), we found that these hours showed the highest initiation occurrences
(Figure 8). The general agreement of our results with these detailed city‐specific analyzes reveals that our
methodology can capture urban impacts across different study areas.

5. Conclusions
We have presented a climatological analysis of the space‐time property changes of intense summertime
(convective) rainfall in urban areas. Using high‐resolution weather radar data, we examined eight urban areas
located in different geographical regions and with varying climates. Heavy summertime storms were tracked with
a storm‐tracking algorithm, allowing us to detect where urban impacts occurred, relative to each storm's direction
of motion. Our results suggest that cities and their surroundings act to critically modify rainfall properties.
Rainfall intensities are higher over cities and/or their peripheries, compared to their surroundings and this effect is
positively linked to the city size (i.e., the larger the metropolitan area, the more intense the rainfall is). The spatial
structure of rainfall is altered over cities, and in most cases, rainfall becomes more heterogeneous—that is more
localized and spatially clustered. Lastly, urban areas experience more initiations of heavy rainfall, especially in
the afternoon to evening hours. Our findings suggest that further urbanization, which would result in larger and
denser cities, has the potential to substantially enhance changes in the properties of heavy summer rainfall. As a
result of these changes, the flood risk in large cities may be exacerbated beyond what is expected due to climate
change‐induced rainfall intensification and the increase in impervious surfaces.

Data Availability Statement
We used the following weather radar data sets for our analyzes: the fourth‐generation weather radar system of
MeteoSwiss (Germann et al., 2015); the RADKLIM quasi gauge‐adjusted five‐minute precipitation rate from the
Deutscher Wetterdienst (DWD) (Winterrath et al., 2018); the 1 km Resolution UK Composite Rainfall Data from
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the Met Office Nimrod System (Golding, 1998) via the NCAS British Atmospheric Data Centre (Met Of-
fice, 2003); and the Multi‐RADAR Multi‐Sensor (MRMS) Archiving (J. Zhang et al., 2016) via the Iowa
Environmental Mesonet (NOAA, 2023a). We obtained the following urban boundary data sets: the administrative
boundary data sets for European study areas for 2020 from Eurostat (2020); 2020 Berlin population data from
DESTATIS (2023); 2020Milan population data from Istat (2023); 2020 London and Birmingham population data
from Nomis (2020); and the 2020 US urban area delineations and population data from the Census Bureau (2022).
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