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In the domain of cognitive arithmetic, the size effect corresponds
to an increase in solution times as a function of the size of the oper-
ands involved in the problems. In this study, we tracked the evolu-
tion of size effects associated with tie and non-tie addition
problems across development. We scrutinized the progression of
solution times for very small problems involving operands from
2 to 4, larger problems, and 1-problems (problems involving 1 as
one of the operands) in children from Grade 1 to Grade 5 and
adults. For the first time, we document the presence of a size effect
for tie problems with a sum up to 8 in Grade 1 children. In contrast,
from Grade 3 until adulthood, this size effect could not be evi-
denced. Crucially, for non-tie problems, whereas a general size
effect is observed when contrasting small one-digit additions with
large additions, we show that, from Grade 1 until adulthood, a con-
tinuous size effect as a function of the sum of the problems is not
observed. In fact, for all age groups, medium problems with sums
of 8, 9, and 10 do not present a size effect at all. Given that the
problem size effect is sometimes referred to as one of the most
robust and reliable effects in the numerical cognition literature,
our results necessarily challenge its theoretical interpretation.
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Introduction

Researchers have studied strategies in the domain of mental arithmetic for a long time (see
Campbell, 2015, for a review). Despite the impressive amount of research devoted to this important
theoretical and educational topic, it is surprising that some basic assumptions in this domain are still
under debate (Baroody, 2018; Chen & Campbell, 2018). Nowadays, one of the most debated effects is
the size effect, according to which addition problems involving small operands such as 4 + 2 are solved
more quickly than problems involving larger operands such as 7 + 6 (Campbell, 1995; Campbell & Xue,
2001; Chen, Loehr, & Campbell, 2019; LeFevre, Sadesky, & Bisanz, 1996; Thevenot, Barrouillet, Castel, &
Uittenhove, 2016; Uittenhove, Thevenot, & Barrouillet, 2016; see Ashcraft & Guillaume, 2009, for a
review). Describing the evolution of the size effect for tie and non-tie problems across development
was the objective of the current article. Through a longitudinal and cross-sectional approach, we
aimed at furthering understanding of the source of the size effect.

The most common explanations of size effects are given within a retrieval framework (Ashcraft,
1992; Campbell, 1995; Siegler & Shrager, 1984). In this framework, the strategy used to solve arithmetic
problems shifts with practice from counting to direct retrieval of answers from long-term memory.
Within this theory, problem size effects are explained by frequency and interference effects. Frequency
effects correspond to the fact that smaller problems aremore often solved by participants and therefore
are solvedmore quickly because of bettermental access (Hamann&Ashcraft, 1986). Interference effects
correspond to the fact that problems with larger operands share their sums with more other problems
than smaller problems, which produces larger fan effects and again more difficulties in accessing
answers for larger problems. Moreover, mental representations of larger numbers overlap more than
smaller numbers with mental representations of their neighbors (Campbell, 1995; Campbell &
Graham, 1985; Campbell & Timm, 2000). More precisely, whereas mental representations of relatively
small numbers are very distinct from each other, the representations of larger numbers become fuzzier
due to shared representations (Pinel, Piazza, Le Bihan, & Dehaene, 2004). The memory association
between large problems and their answers would also be weaker than that for small problems because
large problems have been associated with more wrong answers than small problems during the course
of development (Siegler & Shrager, 1984). Indeed, more counting steps in larger problems necessarily
increase the likelihood ofmistakes. Another explanation of the problem size effect is that reversal to less
mature strategies than retrieval, such as counting and decomposition, occurs for some trials (e.g.,
LeFevre et al., 1996). Given that strategies derived from counting are usually considered slower than
retrieval, and given that larger problems often require more counting steps than smaller problems, lar-
ger problems take longer to solve than smaller problems. Consequently, when occasional reversal to
nonretrieval strategies occurs, solution times are longer for larger problems (Groen & Parkman, 1972).

Interestingly, for addition, the systematic observation of a size effect is specific to non-tie problems,
which correspond to problems with different operands. For tie problems, which are constructed with
repeated operands (e.g., 4 + 4), the effect is not always observed, at least in adults (LeFevre, Shanahan,
& DeStefano, 2004). When observed, size effects are always smaller for tie problems than for non-tie
problems (e.g., Campbell & Gunter, 2002). The fact that the retrieval process of tie problems is not sub-
jected to the same effects as non-tie problems was interpreted by LeFevre, Smith-Chant, Hiscock,
Daley, and Morris (2003), who suggested that non-tie problems are less often retrieved than tie prob-
lems. Therefore, more frequent resort to counting procedures in the case of non-tie problems than of
tie problems would necessarily result in a larger size effect for the former than for the latter. Never-
theless, even when only problems where participants report retrieval are considered, size effects are
still observed for the two types of problems and, according to Campbell and Gunter (2002), are still
larger for non-tie problems than for tie problems. Therefore, additional interpretations were needed
because it was necessary to explain why these two categories of problems do not suffer from the same
interference and frequency effects. One of the interpretations is that non-tie problems activate two
families of answers, each associated with one operand. Because tie problems contain only one oper-
and, only one family is activated, and therefore they suffer from less interference (Graham &
Campbell, 1992). Another interpretation is that tie problems could be represented in a memory
2



J. Bagnoud et al. Journal of Experimental Child Psychology 201 (2021) 104987
network partially separated from that of non-tie problems. Tie and non-tie problems therefore would
constitute two different categories of problems, with weak interferences across categories. In that
case, tie problems would suffer from less interference effect because interferences within the small
tie problem network would necessarily be weaker than those within the larger non-tie problem net-
work (Campbell & Oliphant, 1992; Graham & Campbell, 1992). These interpretations lead to the idea
that memory access would be more efficient for tie problems than for non-tie problems (Ashcraft &
Battaglia, 1978; Campbell & Gunter, 2002; LeFevre et al., 2004). This memory access hypothesis would
also explain why, irrespective of problem size effects, tie problems are solved more quickly than non-
tie problems. Even though an interpretation in terms of faster encoding was initially given to explain
this tie advantage (Blankenberger, 2001), all researchers now agree that this explanation is not suffi-
cient (Campbell & Gunter, 2002; LeFevre et al., 2004).

Therefore, we know that tie problems constitute a special category of problem with shorter solu-
tion times than non-tie problems and little to no size effect. However, we do not know whether these
particularities are observable from the beginning of learning or are acquired through learning. One
approach to answering this question is to precisely analyze the pattern of solution times for tie prob-
lems during development. This was the first goal of our article. If tie problems present null or little size
effects from the beginning of acquisition, this would imply that they are never solved through count-
ing procedures and therefore that they are learned by rote in early education. Alternatively, counting
procedures can initially be applied to tie problems, and associations between operands and answers
could be constructed with practice. In this case, a substantial size effect should be observed at the
beginning, but not at the end, of acquisition. For non-tie problems, substantial size effects will be
observed at the beginning of learning because of the use of counting strategies. Such effects should
decrease across development until only residual size effects due to interference and frequency effects
within retrieval networks are observed. Nevertheless, such size effects could be limited to very small
problems because it has been documented in adults that non-tie addition problems with a sum from 7
to 10 do not present a size effect (Uittenhove et al., 2016). Exactly as for tie problems, we do not know
whether such a plateau is observable from the beginning of learning or is acquired through learning.
Within non-tie problems, 1-problems (problems involving 1 as one of the operands) are also supposed
to constitute a special category. They are indeed often viewed as solved by a rule consisting in uttering
the next number after the operand that is not equal to 1 in the numerical sequence (i.e., the number-
after rule; e.g., Baroody, 1995; Baroody, Eiland, Purpura, & Reid, 2012). To the best of our knowledge, a
precise description of 1-problem solution times depending on the size of the operands has never been
provided, and therefore it is impossible to know whether problem size effects are also observable for
this category of problems from the beginning of learning and throughout development. Tracking the
evolution of non-tie problems for each of these categories (i.e., small problems, sum 7 to 10 problems,
and 1-problems) constituted the second goal of our article.

To answer our research questions, we tested 133 children (from the beginning of Grade 1 until Grade
5) and 34 adults. More precisely, we tested two different groups of children at the beginning and at the
end of Grade 1, whereas we followed the same children from Grade 3 to 5. In addition to the cross-
sectional approach, this longitudinal approach over 3 years allowed us to precisely track the develop-
mental changes around the critical point where strategy is supposed to shift from counting to retrieval
(Ashcraft & Fierman, 1982). Participants were asked to solve simple addition problems involving oper-
ands from 1 to 9. All participants solved the 81 problems constructed with these operands except first
graders, for whom problems with a sum higher than 10 were too difficult. Consequently, they solved
only the 45 problems with operands from 1 to 9 with a sum up to 10. We measured solution times
and, as already explained, were especially interested in potential differences across development
between tie and non-tie problems and between the different categories of problems mentioned above.

Method

Participants

In total, 133 children from the beginning of first grade to fifth grade and 34 adults were involved in
this study. The data of 4 children were discarded because these children presented too many missing
3
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data. Cross-sectional analyses involved 37 first graders (13 female) tested three months after the
beginning of the year (mean age = 6 years 10 months, SD = 5 months), 41 first graders (19 female)
tested three months before the end of the year (mean age = 7 years 3 months, SD = 5 months), 51
fourth graders (26 female; mean age = 9 years 9 months, SD = 5 months), and 34 undergraduate stu-
dents (22 females; mean age = 21 years 5 months, SD = 3 years 10 months). The 51 children who were
assessed in fourth grade were also tested in third grade (mean age = 8 years 9 months, SD = 5 months)
and fifth grade (mean age = 10 years 9 months, SD = 5 months). We tested children individually in
French-speaking public schools in Switzerland. Approval from the local ethics committee of the psy-
chology department at the University of Lausanne and parental consent were obtained before starting
the experiment. The undergraduate students all were in their first year of psychology studies at the
University of Lausanne and received course credit for participation. In accordance with the canton
de Vaud policy, approval from the ethics committee was not needed because the experiment involved
adult participants without a lack of discernment.

Materials and procedure

We tested participants individually on different tasks, but here we focus on the main arithmetic
task. In this task, we asked participants to solve simple additions and to give their responses orally.
The additions involved operands from 1 to 9. This task was designed using the DMDX software
(Forster & Forster, 2003). Each trial began with a ready signal (‘‘$$$”) displayed at the center of a com-
puter screen for 500 ms. Then, two operands separated by a ‘‘+” sign were presented simultaneously
and remained at the center of the screen until the response was given orally. Finally, a blank screen
was displayed for 500 ms before the start of the next trial. Children were presented with the problems
across two experimental sessions of 30 min. Six blocks of problems, each containing all 81 problems
presented once in random order, were constructed for children from Grade 3 to Grade 5. For a given
participant, therefore, one problem could not be presented more often than another. Because it was
not always possible to present all the blocks within the experimental time frame, some children were
presented with only four or five blocks. To avoid excessive fatigue, only three blocks were presented to
younger children. Adults were also presented with three blocks. Before the experimental phase, par-
ticipants needed to solve 5 to 10 training additions, which allowed them to become familiarized with
the task and allowed the experimenter to test the voice key sensitivity. Training problems were cho-
sen randomly from the pool of problems presented to participants and were always the same for each
age group.

The voice key stopped the timer when participants gave their response, but to correct voice key
imprecision, solution times were manually adjusted for each response at the onset of the answer vocal
signal using CheckVocal (Protopapas, 2007). These numerous imprecisions were due to environmental
noise and failure of detection. In 6.73% of the trials, the computer did not record the answer at all, so
we removed these trials from the analyses.

Problems were classified into different categories. We considered four categories for non-tie prob-
lems. Following Barrouillet and Thevenot (2013), small problems were constructed with operands
smaller than or equal to 4, medium problems contained at least one operand larger than 4 and their
sum was smaller than or equal to 10, and large problems had a sum larger than 10. One peculiarity of
this classification is that two problems having the same sum belong to two different size categories.
Indeed, whereas 3 + 4 belongs to the small category, 5 + 2 belongs to the medium category. We con-
sidered 1-problems as one of the operands as the fourth category of non-tie problems. For tie prob-
lems, this categorization was not retained because 1-problems and medium problems would have
been represented by only one problem each (1 + 1 and 5 + 5, respectively). Therefore, following
Wilson, Revkin, Cohen, Cohen, and Dehaene (2006), we considered only two subcategories of prob-
lems: small tie problems with a sum smaller than 10 and large tie problems with a sum larger than 10.

Analytical and statistical approach

To begin with, we conducted overall analyses between tie and non-tie problem solution times to
assess whether a tie advantage could be observed throughout development. Then, we studied the
4
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evolution of the problem size effect for tie and non-tie problems separately, focusing on the different
categories of problems.

To better understand problem size effects, we capitalized on our longitudinal approach and aimed
at determining whether tie and non-tie problem size effects in Grade 5 could be predicted by chil-
dren’s problem-solving speed 2 years earlier. Finally, we looked at individual differences to determine
whether our general pattern of results was driven by the majority of our participants.

For solution times, which presented a skewed distribution, we calculated median values for each
participant and each problem. In contrast, we calculated mean values for the percentages of correct
responses. We performed statistical analyses on R (R Core Team, 2017). The data containing the aver-
aged solution times for each problem and each age group are available on the Open Science Frame-
work (OSF) (doi:https://doi.org//10.17605/osf.io/etgbs).

Because parts of our data are not cross sectional but rather longitudinal, we performed analyses on
three different sets of data for general analyses of variance (ANOVAs). The first set on which we con-
ducted an ANOVA was the cross-sectional data set of Grade 1 children (beginning and end of Grade 1),
the second was the longitudinal data set (Grade 3, Grade 4, and Grade 5), and the last was the data set
from the adult group. When needed, results were corrected for violation of the sphericity assumption
using the Greenhouse–Geisser correction. All the results were Holm corrected.
Results

Accuracy

A precise description of the mean percentages of correct answers for each category of problems in
each age group can be found in Table 1. A noticeable result is that, on average, accuracy was higher for
tie problems than for non-tie problems.

Solution times

Tie versus non-tie problems
Mean solution times depending on the problem sums for tie and non-tie problems are represented

in Fig. 1 for each age group. The similarity in the distribution of solution times across age groups is
striking for problems with a sum up to 10. We confirmed this similarity through a series of Holm-
corrected correlational analyses conducted on solution times depending on the sum for tie and
non-tie problems altogether. These analyses, which are reported in detail in the online supplementary
material, revealed correlations ranging from .95 to .99 (Table S1).

To analyze the difference between tie and non-tie problems, we conducted a series of ANOVAs on
solution times. Size effects were not statistically considered in these analyses but are analyzed in the
following parts of this Results section. For Grade 1 children, we conducted an ANOVA with age group
(beginning or end) as a between-factor variable and problem type (tie or non-tie) as a within-factor
variable. There was a significant main effect of problem type, F(1, 76) = 288.98, p < .001, gp2 = .79, with
shorter solution times for tie problems (1932 ms) compared with non-tie problems (3414 ms), as well
Table 1
Mean percentages of correct answers for each problem type, problem category, and age group.

Age group Non-tie problems Tie problems

1-Problems Small Medium Large Small Large

Beginning of Grade 1 96.94 89.49 82.58 95.47
End of Grade 1 98.67 95.12 92.93 96.83
Grade 3 97.39 96.64 96.50 91.62 98.99 91.70
Grade 4 97.98 97.29 96.95 93.84 98.56 95.89
Grade 5 97.46 97.09 96.84 93.00 98.56 97.17
Adults 99.33 97.55 98.09 94.83 99.02 99.02

5



Fig. 1. Mean solution time (with standard errors) for tie and non-tie problems depending on their sums for each age group.
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as a main effect of age group, F(1, 76) = 11.85, p < .001, gp2 = .13, with longer solution times at the
beginning of Grade 1(3655 ms) than at the end of Grade 1 (2893 ms). The interaction between the
two variables was not significant, F(1, 76) = 1.65, p = .20.

For the longitudinal data set, we conducted an ANOVA with age group (Grade 3, Grade 4, or Grade
5) and problem type (tie or non-tie) as within-factor variables. The analysis indicated a main effect of
problem type, F(1, 50) = 115.64, p < .001, gp2 = .70, with shorter solution times for tie problems
(1439 ms) than for non-tie problems (2345 ms). The results also revealed a main effect of age group,
F(1.41, 70.70) = 123.58, p < .001, gp2 = .71. Contrasts indicated that solution times in Grade 3 (2730 ms)
were significantly longer than those in Grade 4 (2179 ms), t(100) = 9.55, p < .001, which in turn were
longer than solution times in Grade 5 (1825 ms), t(100) = 6.04, p < .001. The interaction between age
group and problem type was significant, F(1.39, 69.61) = 5.48, p = .01, gp2 = .10, showing that the
difference between tie and non-tie solution times decreased with age. However, a series of Holm-
corrected contrasts revealed that the difference was significant for all age groups: Grade 3,
t(81) = 10.87, p < .001; Grade 4, t(81) = 9.29, p < .001; Grade 5, t(81) = 8.12, p < .001.

For adults, we conducted a one-way ANOVA with problem type (tie or non-tie) as a within-factor
variable, which indicated a significant difference between tie problems (895 ms) and non-tie problems
(1235 ms), F(1, 33) = 72.83, p < .001, gp2 = .69.

These results revealed that, in each age group, solution times were shorter for tie problems than for
non-tie problems. Moreover, as observable in Fig. 1, tie and non-tie problems seem to present different
developmental patterns, and thus we considered them separately in the following analyses.

Non-tie problems
We conducted Holm-corrected linear regression analyses to determine which predictors could

account for the best for non-tie problem solution time distributions. To determine the best predictor
to characterize the problem size effect, we employed the variables commonly used to describe it to
fit non-tie solution times for all age groups together.When large problemswere excluded, analyseswith
the first operand (O1), second operand (O2), largest operand (maximum), or smallest operand (mini-
mum), or with the sum of the squared operands (O12 + O22), as the predictor were not significant: min-
imum, F(1, 2) = 10.74, p = .41, and Fs < 1 for the other predictors. In contrast, the product of the operands,
the sum of the operands squared ([O1 + O2]2), and the sum of the operands all were significant predic-
tors, R2

adj = .75, F(1, 15) = 50.16, p < .001; R2adj = .78, F(1, 6) = 25.52, p = .01; and R2adj = .87, F(1, 6) = 47.86,
p = .003, respectively. As can be seen, the sum of the operands best fit solution times. Whenwe considered
each age group separately, the sum of the problem was still the best significant predictor for each group
6
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(see Table S2 in supplementarymaterial). The slopeswith respect to the sumwere 298ms at the beginning
of Grade 1, 229ms at the end of Grade 1, 150ms in Grade 3, 104ms in Grade 4, 85ms in Grade 5, and 34ms
for adults. With large problems, which were not solved by first graders, the sum of the problem remained
the best predictor of solution times for all age groups together: sum, R2adj = .93, F(1, 13) = 194.10, p < .001;
sum squared, R2adj = .88, F(1, 13) = 100.33, p < .001;minimum, R2adj = .82, F(1, 6) = 31.84, p = .005;maximum,
R2adj = .73, F(1, 6) = 20.18, p = .01; product, R2adj = .65, F(1, 29) = 56.95, p < .001; second operand, R2adj = .55, F(1,
7) = 10.97, p = .03; first operand, R2adj = .47, F(1, 7) = 7.98, p = .03; sumof the squared operands, R2adj = .38, F(1,
32) = 20.88, p < .001.Whenwe considered each age group separately, solution timeswere best predicted by
the sum for Grade 3 and Grade 4 children, by the maximum for Grade 5 children, and by the second oper-
and for adults (see Table S3 in supplementary material). Even though the sum was not the best predictor
for Grade 5 and adult solution times, it was still a good fit with a difference of adjusted R2, with the best
predictor ofmaximum .03. Because the sumof the problembest fit the solution time in the vastmajority of
cases, we used it to characterize the problem size effect.

Even though the sum of the problem significantly predicted solution times for each age group, a
close look at solution time distributions according to the problem sum showed that, already from
Grade 1, solution times did not linearly increase with the sum of the problems (Fig. 1). To characterize
the problem size effect more precisely, we focused on solution time distribution according to problem
category. When solution times were rescaled for each age group (Fig. 2), impressive similarities in
these patterns for each category of problem were observed across development.

Small non-tie problems. Because small non-tie solution times follow a linear pattern throughout devel-
opment, it was possible to fit themwith a linear regression for each participant, with the problem sum
as the predictor. The slopes were extracted and Holm-corrected t-tests were performed to assess
whether they were statistically greater than 0 for each age group. This was indeed the case, with t
(36) = 6.00, p < .001 for beginning of Grade 1; t(40) = 5.62, p < .001 for end of Grade 1; t(50) = 6.74,
p < .001 for Grade 3; t(50) = 6.20, p < .001 for Grade 4; t(50) = 6.23, p < .001 for Grade 5; and t
(33) = 4.52, p < .001 for adults.

Medium non-tie problems. Concerning medium problems, and in sharp contrast to small problems,
solution time distributions were not linear. This was true for each age group. In fact, medium prob-
lems barely presented a problem size effect, especially for sums to 8, 9, and 10. To scrutinize this pla-
teau, we performed an ANOVA on solution times for each data set (Grade 1, longitudinal, or adult)
with age group and problem sum (sum to 8, sum to 9, or sum to 10) as variables (see Table S4 in sup-
plementary material for complete results of analysis). Interestingly, the significant differences in solu-
tion times with respect to problem sum always contradicted classical size effects, with longer solution
times for smaller problems compared with larger problems. More precisely, solution times were sig-
nificantly different between sum to 8 and sum to 10 problems for Grade 5, t(265) = 2.95, p = .03, and
Grade 4, t(265) = 3.59, p = 003, and between sum to 9 and sum to 10 problems for adults, t(66) = 2.57,
p = .04.

Furthermore, it is striking that, for each age group, problems with a sum to 7 were solved quickly
when they belonged to the medium category rather than the small category. We confirmed this
through a series of Holm-corrected t-tests, showing that this difference was significant in each age
group: t(32) = 2.99, p = .02 for beginning of Grade 1; t(39) = 5.04, p < .001 for end of Grade 1; t
(50) = 4.04, p = .001 for Grade 3; t(50) = 2.84, p = .02 for Grade 4; t(50) = 2.75, p = .02 for Grade 5;
and t(33) = 3.51, p = .005 for adults. Note that children who presented missing data were removed
from this analysis.

1-Problems. Finally, 1-problems presented a limited size effect throughout development and an M
shape with systematic decrease in solution times around 4 + 1 and 5 + 1 problems. A closer examina-
tion of solution times (Fig. 3) confirmed the M�shaped distribution with a decrease at sum to 5 and
sum to 6 problems. This pattern of distribution was particularly puzzling because it appeared from the
beginning of Grade 1, where solution times were about 2000 to 3000 ms, and persisted until adult-
hood, where solution times were about 700 to 900 ms.
7



Fig. 2. Mean non-tie problem solution times (with standard errors) for each age group and each problem category according to
the sum of the problem.
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Large non-tie problems. For large problems, and as observable in Fig. 2, there was an increase in solu-
tion times between sum to 11 and sum to 13 problems for each age group. For sum to 13 problems, the
problem size effect was less clear. For sum to 15 problems and regardless of age group, solution times
did not monotonically increase with respect to the sum.

Tie problems
For a given tie problem, the first (O1), second (O2), largest (maximum), and smallest (minimum)

operands all are equal to the same value. Consequently, among the classical predictors of solution
8



Fig. 3. Mean non-tie 1-problem solution times (with standard errors) for each age group according to the sum of the problem.
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times, it is possible to consider only the sum and the sum of the operands squared (i.e., [O1 + O2]2).
Our analyses revealed that the two variables predicted equally well tie problem solution times (see
Table S5 in supplementary material for detailed results of analyses). Therefore, and for the sake of clar-
ity and simplicity, we represented size effects for tie problems using the sum of the problems.

Small tie problems. In Grade 3, solution times for problems with sums up to 10 were relatively con-
stant across sums (Fig. 4). In contrast, in Grade 1, and especially at the beginning of Grade 1, solution
times monotonically increased with the sums of the problems until the sum to 8 problems, and they
abruptly decreased for the sum to 10 problems. When we removed 5 + 5 problems from the analyses,
9



Fig. 4. Mean tie problem solution time (with standard errors) according to the sum of the problem for each age group and each
problem category.
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solution times in Grade 1 were predicted by the sums of the problems [beginning of Grade 1, R2
adj = .94,

F(1, 2) = 52.29, p = .04, slope of 186 ms; end of Grade 1, R2adj = .81, F(1, 2) = 13.94, p = .07, slope of 104 ms]
and by the sums of the problems squared [beginning of Grade 1, sum squared, R2adj = .84, F(1, 2) = 16.51,
p = .06, slope of 18 ms; end of Grade 1, R2adj = .89, F(1, 2) = 25.80, p = .07, slope of 11 ms]. This demon-
strated the existence of a size effect for small problems with sums up to 8 in Grade 1 children. By con-
trast, and concerning the same problems, none of the predictors accounted for solution time
distributions from Grade 3 [for the sums: Grade 3, F(1, 2) = 6.73, p = .24, slope of 14 ms; Grade 4, F(1,
2) = 17.71, p = .10, slope of 19 ms; Grade 5, F(1, 2) = 1.87, p = .61, slope of 11 ms; adults, F < 1, slope
of 15 ms; for the sums squared: Grade 3, F(1, 2) = 3.39, p = .24; Grade 4, F(1, 2) = 8.38, p = .10; Grade
5, F < 1; adults, F < 1, slopes of 1 ms for all age groups from Grade 3]. Therefore, no evidence existed
for an increase in solution times for tie problems with sums up to 8 from Grade 3 to adulthood.

Large tie problems. For each age group, large problems presented longer solution times than small
problems (Fig. 4). Nevertheless, solution time patterns for large tie problems changed throughout
development, with shorter solution times for 9 + 9 problems than for 7 + 7 and 8 + 8 problems until
Grade 5 but longer solution times for 9 + 9 problems than for smaller problems in adults.

Longitudinal profiles
We used our longitudinal approach to determine whether the problem solution speed in Grade 3

could predict the problem size effects in Grade 5. We calculated the problem size effects only for small
problems because they followed a general linear trend for both tie and non-tie problems, contrary to
the other categories of problems that we studied. More precisely, for fifth graders, we fitted solution
times with a linear regression for small tie and non-tie problems separately using the problem sum as
the predictor. We then extracted slopes from these regressions to characterize the tie and non-tie
problem size effect. Finally, we performed linear regressions to assess whether Grade 5 slopes could
be predicted by the mean solution times of children in Grade 3 (i.e., overall problem-solving speed).
The results indicated that the problem-solving speed in Grade 3 significantly predicted small non-
tie problem slopes, R2

adj = .44, F(1, 49) = 39.52, p < .001, with larger slopes for slower children. In contrast,
problem-solving speed did not predict small tie problem slopes, F(1, 49) = 1.77, p = .19.

Individual differences
For non-tie problems, we found a classical problem size effect pattern in 53.67% of our participants

for small problems (i.e., sum to 7 > sum to 6 > sum to 5) but in only 16.67% of our participants for
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medium problems (i.e., sum to 10 > sum to 9 > sum to 8). For small tie problems, we found a classical
problem size effect pattern in 20.38% of our participants (i.e., sum to 8 > sum to 6 > sum to 4). We per-
formed chi-square for goodness of fit tests to determine whether the percentage of participants show-
ing the classical size effect pattern differed across groups. The analyses revealed nonsignificant results
for small non-tie problems, v2(5, N = 139) = 1.20, p = .94, and medium non-tie problems, v2(5, N =
44) = 3.11, p = .68, as well as for small tie problems, v2(5, N = 53) = 8.58, p = .13 (see the ‘‘Individual
differences” section of the supplementary material for more information).
Discussion

In this study, we tracked the evolution of one-digit addition problem solving through development
by considering specific categories of problems. We observed solution times associated with 1-
problems and small, medium, and large additions in children from Grade 1 to Grade 5 and in adults.
We were especially interested in the progression of size effects in tie and non-tie problems within the
categories mentioned above. We thought that this approach could be valuable for studying the puz-
zling effects of the current literature in more depth. Among these effects, we focused our attention
on tie problems, which present null or very limited size effects compared with non-tie problems
(e.g., LeFevre et al., 2004). We also focused on medium problems with sums of 7, 8, 9, and 10, which
were also reported as not presenting size effects (Uittenhove et al., 2016). In addition, we focused on
problems involving 1 (i.e., 1-problems), which are sometimes considered to be part of a special cate-
gory and are solved through the use of the number-after rule (e.g., Baroody, 1995).

We showed that, from the beginning of Grade 1, 1-problems are solved more quickly than any
other problems whatever the size of the other operand might be (from 3 to 9). Moreover, they never
present the classical size effect because their solution times are relatively constant across problems
despite an M-shaped distribution. This M-shaped distribution is created via a decrease in the solution
times for 4 + 1 and 5 + 1 problems. These peculiarities (i.e., short and relatively constant solution times
across problems and the M-shaped distribution) give credit to the hypothesis that 1-problems are pro-
cessed differently from other problems, starting at the beginning of learning. The idea that the
number-after rule is used to solve them is coherent with the general pattern that we observed even
though, to our knowledge, existing theories do not account for shorter solution times for 4 + 1 and
5 + 1 problems. Note that the conclusion that a rule is used for very small problems stands in oppo-
sition to Uittenhove et al.’s (2016) assumption that very small 1-problems all are processed through
automatic counting. This discrepancy between conclusions stems from 1-problems involving 4, which
showed a decrease in solution times compared with smaller problems for all age groups in the current
study. Uittenhove et al. did not observe such a decrease in adults.

Concerning tie problems, we showed for the first time that size effects can be documented for small
problems in young children. Indeed, we observed steep slopes from problems ranging from 1 + 1 to
4 + 4. This result suggests that children do not systematically learn the answers associated with tie
problems by rote at the beginning of schooling. In fact, small tie problems behave exactly as retrieval
models could predict. The shift from counting to retrieval is indeed perfectly operationalized in a shift
from steep slopes associating solution times and sums in the early stage of development to flat slopes
from Grade 3. In fact, from Grade 3 to adulthood, 83% of our population showed no size effect for small
tie problems (i.e., sum up to 10). Note, however, that this consistency in the behavior of our population
from Grade 3 was not as obvious in Grade 1, where we observed the size effect in only 23% of children
for problems ranging from 2 + 2 to 4 + 4. However, the problem of 5 + 5 constitutes an exception to the
model just described. In Grade 1, solution times for this problem are shorter than they are for smaller
problems. This is probably due to the fact that children have already memorized the answer 10
because they know that they have 10 fingers, with 5 fingers on each hand (e.g., McLennan, 2019). Still,
from Grade 3, this early special status of 5 + 5 no longer affects solution times. From this developmen-
tal point, a difference in solution times between this problem and smaller problems is no longer
observed. Another problem that presents a peculiarity in our data set is 3 + 3 in adults. Unexpectedly,
this problem led to longer solution times than what would have been expected. We must admit that
11
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we do not have any plausible explanation for this phenomenon, but among the bulk of our results it
might be deemed a negligible result.

Large tie one-digit problems, which we studied only from Grade 3, led to longer solution times than
smaller problems, and their distribution was quite hectic and changed across age groups. Some inter-
pretations given in the past for non-tie problems can be put forward here. First, they might lead to a
mixture of retrieval and procedure strategies (LeFevre et al., 1996). Second, the procedures used might
strongly depend on the nature of the problem (Chen & Campbell, 2014) and on individuals’ habits and
preferences (e.g., 9 + 9 can be solved by adding 10 and 10 and subtracting 2 or by rounding up only one
of the operands, 10 + 9–1; e.g., Lemaire & Lecacheur, 2011).

Before concluding concerning tie problems, we need to explore the reason behind their relatively
short solution times compared with non-tie problems from the beginning of learning. Several inter-
pretations are provided in the literature. As already noted in the Introduction, tie problems could ben-
efit from an encoding advantage over non-tie problems because repeated operands are perceptively
apprehended more quickly than different operands (Blankenberger, 2001). Moreover, tie problems
could be accessed more easily from memory than non-tie problems (LeFevre et al., 2004). Finally,
answers to non-tie problems could be better accessed when the larger operand is presented first
(i.e., Max + Min rather than Min + Max; Groen & Parkman, 1972). During the solving process, a stage
consisting of the comparison of the sizes of the operands therefore would be needed to determine
whether operands are presented in the preferred order. This stage is obviously not necessary for tie
problems, hence the existence of shorter solution times for this category of problems than for non-
tie problems (Butterworth, Zorzi, Girelli, & Jonckheere, 2001).

Concerning small non-tie addition problems involving operands from 2 to 4, their developmental
pattern in solution times does not follow the same trajectory as that of tie problems. We observed a
significant size effect created by a monotonic increase in solution times in each age group from the
beginning of learning until adulthood. This result pattern was observed for the majority of our partic-
ipants. The only change over the course of development was the size of the slope associated with the
sums of the problems and the solution times, which decreased with age and practice. Two main expla-
nations drawn from two concurrent theoretical models of the literature can be provided here. First, it
is possible that the shift between counting to retrieval never occurs. This is coherent with some the-
ories, such as the automatized counting theory, suggesting that even adults rely on procedural strate-
gies to solve very simple problems. This theory assumes that the development of expertise for non-tie
problems consists of the acceleration of one-unit step counting until automatization rather than a shift
from counting to retrieval (Fayol & Thevenot, 2012; Mathieu, Epinat-Duclos, Léone, et al., 2018;
Mathieu, Epinat-Duclos, Sigovan, et al., 2018; Mathieu, Gourjon, Couderc, Thevenot, & Prado, 2016;
Uittenhove et al., 2016). Within this framework, only the answers of tie problems are eventually
retrieved from memory, and this is the reason why no size effect was observed for this category of
problems. On the contrary, linear increases in solution times, depending on the sizes of problems,
would reflect counting. Interestingly, Svenson (1985) already presented the idea that very simple
addition problems involving the operands of 1 and 2 are solved using one-unit step counting proce-
dures. The use of reasoning strategies such as two-step counting could also explain the pattern of
results obtained in the current study for small non-tie problems (Baroody & Coslick, 1998; Purpura,
Baroody, Eiland, & Reid, 2016). Second, and alternatively, residual size effects in older children and
adults could reflect the increasing interference and decreasing frequency and strength of associations
between answers and operands with an increase in the magnitude of the operands within the retrieval
networks (Campbell, 1995; Hamann & Ashcraft, 1986; Siegler & Shrager, 1984). Nevertheless, and as
addressed in the next paragraph, these latter explanations are difficult to defend in light of the results
that we obtained for the medium problems.

Concerning non-tie medium problems—that is, problems with sums up to 10 and at least one oper-
and larger than 4—it is striking to note that no size effect can be observed whatever the age group of
the participants may be. Indeed, solution times for problems with sums of 8, 9, and 10 do not increase.
This result cannot be due to a lack of power in our analyses because, as can be seen in Fig. 2, a pattern
wherein solution times increase monotonically across the three sums never occurs on average in our
age groups. In fact, when solution times vary across the sums of 8, 9, and 10, inverse size effects can be
observed. Moreover, individual difference analyses indicate that only 17% of our participants
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presented a classical size effect for such problems. This lack of size effect could be due to the fact that
sum to 10 problems are often viewed as having a special status and could be retrieved more easily
than other problems (e.g., Aiken & Williams, 1973), probably because they often serve as anchors
for problem decompositions (e.g., 4 + 7 is 7 + 3 = 10 + 1; Chen & Campbell, 2018). However, our results
showed a plateau between problems with sums from 8 to 10, not just a decrease in the solution times
for sum to 10 problems. Still, Chen and Campbell (2018) argued that sum to 10 and sum to 9 problems
artificially drive the lack of size effect for medium problems, which could benefit from the sum to 10
problem memory advantage. In light of the current results, we think that this line of reasoning does
not hold because the absence of size effect for medium problems is observable even in young children,
who are unanimously viewed as using counting procedures to solve such problems. Even if it could be
considered that sum to 10 problems already have a special memory status at an early age, extensive
memory practice should be necessary before sum to 9 problems could benefit from such a sum to 10
advantage. In addition, whatever the age of participants, solution times for problems with sums to 7
within the medium category are shorter than those within the small category, which is in contradic-
tion with the existence of classical size effects. Once the lack of size effect for medium problems is
admitted, an interpretation of size effects for small non-tie problems in terms of retrieval time vari-
ations is difficult to defend. Undeniably, medium problems should not be immune from the interfer-
ence, frequency, and strength of association effects and therefore should present size effects in
continuity with small problems. However, we think that the automatized counting theory is not
defeated by the fact that size effects are observed only for the small category of problems. Indeed,
counting theories suggesting the use of quick and automatized procedures are often limited to very
small problems involving operands from 2 to 4 (Uittenhove et al., 2016) or even 1 or 2 (Svenson,
1985). The rationale behind this limitation is that too many steps due to large operands cannot be exe-
cuted quickly, and individuals might prefer other strategies, including retrieval, for such larger prob-
lems (Thevenot, Dewi, Bagnoud, Uittenhove, & Castel, 2020). Nevertheless, nowadays this lack of
variations for problems with sums to 8, 9, and 10 comes with no definite theoretical explanation. Fur-
ther investigation might address the possibility that extreme variability in the use of arithmetic strate-
gies or in the application of heuristics and rules can affect average solution times to such an extent
that no size effect is observable. This idea stems from the fact that a similar plateau is observed for
large problems with a sum ranging from about 13 to 17, and the results of such large problems are
usually not considered to be retrieved from memory (e.g., in adults: Chen & Campbell, 2014; in 10-
year-old children: Fanget, Thevenot, Castel, & Fayol, 2011).

To conclude, an important aspect of our data set is that it provides support for a theory advocating
that the developmental pattern for small tie problem consists of a shift from counting to retrieval,
whereas the developmental pattern for small non-tie problems consists of the acceleration of counting
procedures until automatization. Another argument for this conclusion might be found in the results
concerning the individual profiles that we established from our longitudinal approach. We showed
that the overall speed of arithmetic problem solving in Grade 3 predicts the magnitude of size effects
for small non-tie problems but not for small tie problems in Grade 5. This might suggest that the same
cognitive mechanisms do not drive tie and non-tie problem-solving processes. This is coherent with
the idea that the counting speed in Grade 3 predicts the counting speed in Grade 5 for non-tie prob-
lems. Counting speed would not logically predict the retrieval speed for tie problems in Grade 5. Nev-
ertheless, it is also possible to advocate that non-tie problems are not all solved through retrieval in
Grade 5. Rather, massively resorting to this strategy will occur later during development. As already
explained, this is not what our results suggest, but further longitudinal studies on a broader age range
might be useful for addressing these questions.

To sum up, we showed in the current research that 1-problems constitute a special category of
problems from the beginning of learning because they are solved more quickly than any other prob-
lems, whatever the size of the problem, and because they never present classical size effects. Without
providing direct evidence for the use of a specific strategy, our results are coherent with the idea that a
1-problem is solved using a rule according to which its sum is the number after the other operand in
the count sequence (e.g., Baroody, 1995). In contrast to 1-problems, small tie problems present clas-
sical size effects at the beginning of learning that quickly disappear during the course of development.
The evolution of small tie problem solving therefore is very likely to consist of a shift from counting
13
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strategies to retrieval. A drastically different process appears to account for the evolution of small
non-tie problem solving, which seems to consist of the acceleration of counting procedures until
automatization. This conclusion is based on the observation of clear classical size effects throughout
development whatever the age of individuals may be. Retrieval time variations fail to account for
these effects given that we showed here that solution times do not continuously increase with the size
of problems. Therefore, our research questions the existence of one of the supposedly most robust and
reliable effects described in the numerical cognition literature, namely the size effect.

A final point that deserves to be discussed is related to educational practices and the question of
the generalization of our results. In the French-speaking part of Switzerland, where testing took place
in the current study, children are supposed to have memorized all simple addition facts by the end of
Grade 2. However, teachers can choose the concrete educational tools adopted to reach this goal. Over-
practicing counting (e.g., 5 + 3 is 6, 7, 8), promoting finger counting, and implementing rote learning,
especially for tie and sum to 10 problems, are among these tools. Nevertheless, informal interviews
with teachers in the French-speaking part of Switzerland revealed that addition problems are never
learned by rote as systematically as multiplication tables. Investigating the evolution of addition size
effects in countries where rote learning is practiced more intensively, such as the Dutch-speaking part
of Belgium (De Smedt, 2016), therefore might be very interesting for pursuing our line of research.
Note, however, that education does not always seem to influence individuals’ performance and strate-
gies in arithmetic. Campbell and Xue (2001) showed that in Asian and Canadian adults, culture, more
than education, was the key determinant in the rate of retrieval in mental arithmetic. Investigating the
role of children’s home numeracy environments in addition size effects might therefore also constitute
an interesting future line of research.
Acknowledgment

This work was funded by the Swiss National Science Foundation (100014_152543 and
100019_169208).
Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jecp.2020.
104987.
References

Aiken, L. R., & Williams, E. N. (1973). Response times in adding and multiplying single-digit numbers. Perceptual and Motor Skills,
37, 3–13.

Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. Cognition, 44, 75–106.
Ashcraft, M. H., & Battaglia, J. (1978). Cognitive arithmetic: Evidence for retrieval and decision processes in mental addition.

Journal of Experimental Psychology: Human Learning and Memory, 4, 527–538.
Ashcraft, M. H., & Fierman, B. A. (1982). Mental addition in third, fourth, and sixth graders. Journal of Experimental Child

Psychology, 33, 216–234.
Ashcraft, M. H., & Guillaume, M. M. (2009). Mathematical cognition and the problem size effect. In B. H. Ross (Ed.), Psychology of

learning and motivation (pp. 121–151). San Diego: Academic Press.
Baroody, A. J. (1995). The role of the number-after rule in the invention of computational shortcuts. Cognition and Instruction, 13,

189–219.
Baroody, A. J. (2018). A commentary on Chen and Campbell (2017): Is there a clear case for addition fact recall? Psychonomic

Bulletin & Review, 25, 2398–2405.
Baroody, A. J., & Coslick, R. T. (1998). Fostering children’s mathematical power. Mahwah, NJ: Lawrence Erlbaum.
Baroody, A. J., Eiland, M. D., Purpura, D. J., & Reid, E. E. (2012). Fostering at-risk kindergarten children’s number sense. Cognition

and Instruction, 30, 435–470.
Barrouillet, P., & Thevenot, C. (2013). On the problem-size effect in small additions: Can we really discard any counting-based

account?. Cognition, 128, 35–44.
Blankenberger, S. (2001). The arithmetic tie effect is mainly encoding-based. Cognition, 82, B15–B24.
Butterworth, B., Zorzi, M., Girelli, L., & Jonckheere, A. R. (2001). Storage and retrieval of addition facts: The role of number

comparison. Quarterly Journal of Experimental Psychology A, 54, 1005–1029.
Campbell, J. I. D. (1995). Mechanisms of simple addition and multiplication: A modified network-interference theory and

simulation. Mathematical Cognition, 1, 121–164.
14

https://doi.org/10.1016/j.jecp.2020.104987
https://doi.org/10.1016/j.jecp.2020.104987
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0005
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0005
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0010
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0015
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0015
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0020
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0020
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0025
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0025
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0030
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0030
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0035
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0035
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0040
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0045
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0045
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0050
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0050
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0055
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0060
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0060
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0065
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0065


J. Bagnoud et al. Journal of Experimental Child Psychology 201 (2021) 104987
Campbell, J. I. D. (2015). How abstract is arithmetic?. In R. C. Kadosh & A. Dowker (Eds.), The Oxford handbook of numerical
cognition (pp. 140–157). Oxford, UK: Oxford University Press.

Campbell, J. I. D., & Graham, D. J. (1985). Mental multiplication skill: Structure, process, and acquisition. Canadian Journal of
Psychology/Revue Canadienne de Psychologie, 39, 338–366.

Campbell, J. I. D., & Gunter, R. (2002). Calculation, culture, and the repeated operand effect. Cognition, 86, 71–96.
Campbell, J. I. D., & Oliphant, M. (1992). Representation and retrieval of arithmetic facts: A network-interference model and

simulation. In J. I. D. Campbell (Ed.), Advances in Psychology, vol. 91: The nature and origins of mathematical skills. Amsterdam:
North-Holland, pp. 331–364.

Campbell, J. I. D., & Timm, J. C. (2000). Adults’ strategy choices for simple addition: Effects of retrieval interference. Psychonomic
Bulletin & Review, 7, 692–699.

Campbell, J. I. D., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology: General, 130,
299–315.

Chen, Y., & Campbell, J. I. D. (2014). Generalization effects in Canadian and Chinese adults’ simple addition. Canadian Journal of
Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 68, 152–157.

Chen, Y., & Campbell, J. I. D. (2018). ‘‘Compacted” procedures for adults’ simple addition: A review and critique of the evidence.
Psychonomic Bulletin & Review, 25, 739–753.

Chen, Y., Loehr, J. D., & Campbell, J. I. D. (2019). Does the min-counting strategy for simple addition become automatized in
educated adults? A behavioural and ERP study of the size congruency effect. Neuropsychologia, 124, 311–321.

Fanget, M., Thevenot, C., Castel, C., & Fayol, M. (2011). Retrieval from memory or use of procedures for addition in children: The
use of the operand-recognition paradigm in 10-year-old children. Swiss Journal of Psychology, 70, 35–39.

De Smedt, B. (2016). Individual differences in arithmetic fact retrieval. In D. B. Berch, D. C. Geary, & K. Mann-Koepke (Eds.),
Development of mathematical cognition: Neural substrates and genetic influences (pp. 219–243). San Diego, CA: Elsevier
Academic Press.

Fayol, M., & Thevenot, C. (2012). The use of procedural knowledge in simple addition and subtraction problems. Cognition, 123,
392–403.

Forster, K. I., & Forster, J. C. (2003). DMDX: A window display program with millisecond accuracy. Behavior, Research Methods,
Instruments, & Computers, 35, 116–124.

Graham, D. J., & Campbell, J. I. D. (1992). Network interference and number-fact retrieval: Evidence from children’s
alphaplication. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 46, 65–91.

Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79, 329–343.
Hamann, M. S., & Ashcraft, M. H. (1986). Textbook presentations of the basic addition facts. Cognition and Instruction, 3, 173–192.
LeFevre, J. A., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: Reassessing the problem size effect

in adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 216–230.
LeFevre, J. A., Shanahan, T., & DeStefano, D. (2004). The tie effect in simple arithmetic: An access-based account. Memory &

Cognition, 32, 1019–1031.
LeFevre, J. A., Smith-Chant, B. L., Hiscock, K., Daley, K. E., & Morris, J. (2003). Young adults’ strategic choices in simple arithmetic:

Implications for the development of mathematical representations. In A. J. Baroody & A. Dowker (Eds.), The development of
arithmetic concepts and skills: Constructing adaptive expertise (pp. 203–228). Mahwah, NJ: Lawrence Erlbaum.

Lemaire, P., & Lecacheur, M. (2011). Age-related changes in children’s executive functions and strategy selection: A study in
computational estimation. Cognitive Development, 26, 282–294.

Mathieu, R., Epinat-Duclos, J., Léone, J., Fayol, M., Thevenot, C., & Prado, J. (2018). Hippocampal spatial mechanisms relate to the
development of arithmetic symbol processing in children. Developmental Cognitive Neuroscience, 30, 324–332.

Mathieu, R., Epinat-Duclos, J., Sigovan, M., Breton, A., Cheylus, A., Fayol, M., ... Prado, J. (2018). What’s behind a ‘‘+” sign?
Perceiving an arithmetic operator recruits brain circuits for spatial orienting. Cerebral Cortex, 28, 1673–1684.

Mathieu, R., Gourjon, A., Couderc, A., Thevenot, C., & Prado, J. (2016). Running the number line: Rapid shifts of attention in
single-digit arithmetic. Cognition, 146, 229–239.

McLennan, D. M. P. (2019). Joyful number talks in kindergarten. Journal of Teaching and Learning, 13, 43–54.
Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and

luminance during comparative judgments. Neuron, 41, 983–993.
Protopapas, A. (2007). CheckVocal: A program to facilitate checking the accuracy and response time of vocal responses from

DMDX. Behavior Research Methods, 39, 859–862.
Purpura, D. J., Baroody, A. J., Eiland, M. D., & Reid, E. E. (2016). Fostering first graders’ reasoning strategies with basic sums: The

value of guided instruction. Elementary School Journal, 117, 72–100.
R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical

Computing. URL: https://www.R-project.org/.
Siegler, R. S., & Shrager, J. (1984). Strategy choices in addition and subtraction: How do children know what to do? In C. Sophian

(Ed.), The origins of cognitive skills (pp. 229–293). Hillsdale, NJ: Lawrence Erlbaum.
Svenson, O. (1985). Memory retrieval of answers of simple additions as reflected in response latencies. Acta Psychologica, 59,

285–304.
Thevenot, C., Barrouillet, P., Castel, C., & Uittenhove, K. (2016). Ten-year-old children strategies in mental addition: A counting

model account. Cognition, 146, 48–57.
Thevenot, C., Dewi, J., Bagnoud, J., Uittenhove, K., & Castel, C. (2020). Scrutinizing patterns of solution times in alphabet-

arithmetic tasks favors counting over retrieval models. Cognition, 200. 104272.
Uittenhove, K., Thevenot, C., & Barrouillet, P. (2016). Fast automated counting procedures in addition problem solving: When

are they used and why are they mistaken for retrieval? Cognition, 146, 289–303.
Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of ‘‘The Number Race”, an

adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 20.
15

http://refhub.elsevier.com/S0022-0965(20)30441-0/h0070
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0070
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0075
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0075
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0080
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0085
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0085
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0085
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0090
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0090
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0095
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0095
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0100
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0100
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0105
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0105
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0105
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0110
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0110
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0115
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0115
http://refhub.elsevier.com/S0022-0965(20)30441-0/h9015
http://refhub.elsevier.com/S0022-0965(20)30441-0/h9015
http://refhub.elsevier.com/S0022-0965(20)30441-0/h9015
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0120
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0120
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0125
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0125
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0130
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0130
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0135
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0140
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0145
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0145
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0150
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0150
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0155
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0155
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0155
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0160
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0160
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0165
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0165
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0170
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0170
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0170
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0175
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0175
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0180
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0185
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0185
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0190
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0190
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0195
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0195
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0205
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0205
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0210
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0210
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0215
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0215
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0220
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0220
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0225
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0225
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0230
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0230
http://refhub.elsevier.com/S0022-0965(20)30441-0/h0230

	Developmental changes in size effects for simple tie and non-tie addition problems in 6- to�12-year-old children and adults
	Introduction
	Method
	Participants
	Materials and procedure
	Analytical and statistical approach

	Results
	Accuracy
	Solution times
	Tie versus non-tie problems
	Non-tie problems
	Small non-tie problems
	Medium non-tie problems
	1-Problems
	Large non-tie problems

	Tie problems
	Small tie problems
	Large tie problems

	Longitudinal profiles
	Individual differences


	Discussion
	Acknowledgment
	Appendix A Supplementary material
	References


