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Introduction

Many phenotypes are quantitative and can be mea-

sured on a continuous scale. For instance, allocations

of resources to growth, survival, defence, male and

female function or offspring production are continu-

ously varying strategies. Body shape and size, rates of

transcription, enzymatic fluxes, intensities of desires,

dates of first flowering or maximum flight speed are all

phenotypes belonging to a continuum. Because of such

a prevalence of continuous phenotypes in natural

populations, it is relevant to try to understand their

evolutionary dynamics and stationary distributions

under the joint pressure of mutation, natural selection

and random genetic drift. Nevertheless, few studies

have analytically addressed the evolution of quantita-

tive phenotypes under the action of these three

evolutionary forces, and they often focus on situations

of frequency-independent selection, where the recipi-

ent of the expression of the phenotype is the actor

alone (e.g. Lande, 1976; Bürger et al., 1989; Bürger &

Lande, 1994).

Because resources come in finite supply, many pheno-

typic traits are actually subject to frequency-dependent

selection at the intraspecific level, where the behaviour of

one individual affects the fitness of others. These include

resource competition efforts, mating and foraging tactics,

sex ratio, optimal dispersal, parent–offspring conflict,

anisogamy, storage effects, levels of social learning or

waiting times in attrition fighting. The evolution of

continuous phenotypes with frequency-dependent

selection is more complicated to analyse than without,
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Abstract

Many traits and/or strategies expressed by organisms are quantitative

phenotypes. Because populations are of finite size and genomes are subject

to mutations, these continuously varying phenotypes are under the joint

pressure of mutation, natural selection and random genetic drift. This article

derives the stationary distribution for such a phenotype under a mutation–

selection–drift balance in a class-structured population allowing for demo-

graphically varying class sizes and/or changing environmental conditions. The

salient feature of the stationary distribution is that it can be entirely

characterized in terms of the average size of the gene pool and Hamilton’s

inclusive fitness effect. The exploration of the phenotypic space varies

exponentially with the cumulative inclusive fitness effect over state space,

which determines an adaptive landscape. The peaks of the landscapes are

those phenotypes that are candidate evolutionary stable strategies and can be

determined by standard phenotypic selection gradient methods (e.g. evolu-

tionary game theory, kin selection theory, adaptive dynamics). The curvature

of the stationary distribution provides a measure of the stability by conver-

gence of candidate evolutionary stable strategies, and it is evaluated explicitly

for two biological scenarios: first, a coordination game, which illustrates that,

for a multipeaked adaptive landscape, stochastically stable strategies can be

singled out by letting the size of the gene pool grow large; second, a sex-

allocation game for diploids and haplo-diploids, which suggests that the

equilibrium sex ratio follows a Beta distribution with parameters depending on

the features of the genetic system.
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and simplifying assumptions are necessary in order to

make the analysis tractable. Key assumptions include

removing from the analysis one or several evolutionary

forces, generally mutation and/or genetic drift, and

focusing on a two-allele system coding for mutant and

resident phenotypes, where the mutant deviates pheno-

typically only by small magnitude from the resident.

Under these general assumptions, and at the risk of

oversimplifying the presentation, one can identify three

interrelated approaches for studying the evolution of

continuous phenotypes.

The first could be labelled classical evolutionary game

or kin selection theory for continuous phenotypes (e.g.

Maynard Smith, 1982; Eshel, 1983; Taylor, 1989; Parker

& Maynard Smith, 1990; Bulmer, 1994; Taylor & Frank,

1996; Frank, 1998; Pen, 2000; Ohtsuki & Iwasa, 2004;

Vincent & Brown, 2005; Lion & Gandon, 2009). Here,

the population is assumed to be of total infinite size.

Genetic drift at the global scale is thus removed from the

model and mutations are not explicitly considered in the

formalization, as one is essentially interested in charac-

terizing the end points of the evolutionary dynamics.

These are the candidate evolutionary stable strategies

(ESS). In practice, they are obtained from phenotypic

selection gradients often through the form of the opti-

mization of an individual fitness function (Maynard

Smith, 1982; Parker & Maynard Smith, 1990; Vincent &

Brown, 2005).

Because stable strategies are identified by comparing

the fitness of pairs of strategies, namely, by focusing on

the mutant-resident system, implicit in classical evolu-

tionary game theory is an evolutionary dynamic that is

assumed decomposable into two time scales (Eshel, 1996;

Hammerstein, 1996; Eshel et al., 1998): first, a fast time

scale of short-term evolution. This is the time scale

during which a novel mutation appears in a population

monomorphic for a resident phenotype, and is either

eliminated or selected to fixation before any other new

mutation appears. The superposition of several of these

trait-substitution events yields the second, slower time

scale of steady long-term evolution of the phenotype.

Evolution is thus regarded as a step-by-step transforma-

tion of the phenotype caused by the successive invasion

of rare mutant alleles. The orbit of the phenotype in state

space eventually converges towards a singular point, a

cycle, or is altered forever in a strange attractor (Eshel,

1996; Hammerstein, 1996; Eshel et al., 1998).

The second approach to the evolution of continuous

phenotypes is adaptive dynamics. This broadens the first

by focusing not only on phenotypic selection gradients

but also on the time course of evolution (e.g. Dieckmann

& Law, 1996; Geritz et al., 1998; Ferrière et al., 2002;

Waxman & Gavrilets, 2005; Champagnat et al., 2006;

Dercole & Rinaldi, 2008; Leimar, 2009; Zu et al., 2010).

Here, evolution is also assumed to be decomposable into

a two-time scale dynamics, but long-term evolution is

made more explicit by the incorporation into the

formalization of mutation rates and the evaluation of

the time dynamics of the phenotype itself. In addition to

characterizing candidate ESS and other singular points

(phenotypic values at which the local selection gradient

vanishes), the adaptive dynamics approach also allows

one to explicitly track the changes in phenotype along

the orbits in phenotype space towards singular points or

through other attractors (Dercole & Rinaldi, 2008). But

as under classical game theory, the stochastic effects

introduced by genetic drift are often ignored in practice

and candidate ESS are obtained from phenotypic selec-

tion gradients by way of the optimization of an individual

fitness function (Geritz et al., 1998; Dercole & Rinaldi,

2008).

The third approach to the evolution of continuous

phenotypes under frequency-dependent selection may

be called kin selection (or inclusive fitness) theory for

finite populations (e.g. Rousset & Billiard, 2000; Letur-

que & Rousset, 2002; Roze & Rousset, 2003; Rousset,

2004; Rousset & Ronce, 2004; Taylor et al., 2007a, b).

Here, as under the two other approaches, a two-time

scale evolutionary dynamic is assumed. As under classical

evolutionary game theory, mutations to all possible

phenotypes are not explicitly taken into account in the

formalization. But, in contrast to the two other

approaches, short-term phenotypic evolution is explicitly

determined from changes (perturbations) of the fixation

probability of a mutant allele introduced into a mono-

morphic population of residents. The fixation probability

captures the effect of both natural selection and random

genetic drift on the evolutionary dynamics, from the

appearance of a mutant until its loss from or fixation in

the population. Importantly, the fixation probability

perturbations turn out to be proportional to phenotypic

selection gradients for weak selection intensities, so that

in practice candidate ESS are obtained from the optimi-

zation of an individual fitness function, as under the two

other approaches (Leturque & Rousset, 2002; Rousset,

2004).

The identification of singular points of the evolutionary

dynamics for continuous phenotype is thus obtained by

broadly similar methods throughout evolutionary biology,

and whether evolution occurs in finite populations (sto-

chastic systems) or infinite populations (deterministic

systems). But in the presence of several singular points,

which may occur when the adaptive landscape is multi-

peaked,thelong-termbehaviourofastochastic systemmay

differ markedly from that of a deterministic system. Con-

stant dynamic shocks introduced by the flow of mutations

and the sampling effects occurring in finite population may

accumulate and tip the balance from one singular point to

the other. For a multipeaked fitness landscape, a higher

peak may then eventually be singled out by the evolution-

ary dynamics even if the population can remain locked in a

suboptimal peak for a very long time. This state space

exploration process due to the interaction between muta-

tion, selection and drift is ingrained in population genetics
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(Wright, 1931; Barton et al., 2007; Hartl & Clark, 2007) and

used as an equilibrium selection device in game theory

(Foster & Young, 1990; Binmore et al., 1995), but it has not

been much explored in the context of the evolution of

continuous phenotypes.

In this article, the substitution rate approach to the

separation between short- and long-term evolution of

population genetics (Gillespie, 1983, 1991; Orr, 1998; Sella

&Hirsh,2005) isused inorder toderiveadiffusionequation

for the evolution of a continuous phenotype. Mutation,

natural selection and random genetic drift are allowed to

jointly affect the evolutionary dynamic when it takes place

in a class-structured population with demographically

varying class sizes and/or changes in environmental con-

ditions. The approach highlights strong links between the

adaptive dynamics framework and the direct fitness (or

neighbour-modulated) method of kin selection theory.

The article is organized as follows: Model introduces the

biological assumptions of the model and specifies the

separation of time scales hypothesis. Analysis derives a

phenotypic substitution rate for class-structured popula-

tions(fast timescale)andadiffusionequationfor long-term

phenotypic evolution (slow time scale). Stationary Distri-

bution in Terms of Phenotypic Selection Gradient connects

the stationary distribution of the slow process to standard

phenotypic selection gradients. Applications presents two

applications of the stationary distribution, and Discussion

discusses the results.

Model

Biological assumptions

Consider a population where individuals express a quanti-

tative phenotype, which may affect the vital rates of the

actor (e.g. fecundity, survival,mating)andpossiblythoseof

other individuals in the population, the recipients of the

actor’s phenotype. The quantitative phenotype is assumed

to be determined by a one-locus genetic basis with a

continuumofpossiblealleliceffects (Kimura,1965;Bürger,

2000).

The individuals in this population are assumed to be

structured into a finite number of classes. This class

structure could result from the presence of males and

females, of age-classes, of group of individuals located at

different positions in the habitat, or from any life-history

feature causing different individuals to be in different

developmental, physiological or environmental states

(Taylor, 1990; Frank, 1998; Caswell, 2000; Rousset,

2004). The number of individuals in class i is written Ni

and the vector s ” (N0,N1,N2...) denotes a state of the

population, which gives the number of individuals in each

class i at a census point. Individuals in different classes, like

males and females, may have different ploidies, and gi

denotes the ploidy of an individual of class i.

When this population is monomorphic for phenotypic

value z (no genetic variation) and conditional on its

nonextinction, the change in the class structure is

assumed to be determined by a transition probability

Pr(s¢ | s,z) from state s in a parental generation to state s¢
in the offspring generation (a list of functionals is given in

Tables 1 and 2). This defines a homogeneous Markov

chain (Karlin & Taylor, 1975; Grimmett & Stirzaker,

2001), which may be driven by both endogenous

(demographic) and exogenous (environmental) factors.

This Markov chain is assumed irreducible and may then

eventually enter the stationary probability Pr(s|z) of

being in state s when the population is monomorphic

for z (Karlin & Taylor, 1975; Grimmett & Stirzaker,

2001). Under this process, and conditional on producing

a class-i individual, an individual of class j with pheno-

typic value z is assumed to transmit to this descendant a

mutant gene that codes for phenotype z + d with proba-

bility lij(d,z), where the mutation distribution is assumed

to be symmetric around z, so that it has zero mean. For

diploids, the phenotype z + d obtains if the class-i

offspring is made homozygous for the mutant allele.

The model thus allows for dominance (e.g. Roze &

Rousset, 2003), and I will refer to a gene coding for

phenotype z + d as a d mutant.

Separation of time scales

With a high mutation rate in one or several classes of

individuals, the population is very unlikely to ever be

Table 1 List of functionals.

Symbol Definition

k(d, z) Substitution rate of a z population by a d mutant.

Ni(s, z) Number of class i individuals in a state s population fixed for z.
�NðzÞ Average number of gene copies in a population fixed for z.

Pr(s | z) Stationary probability of state s in a population fixed for z.

Pr(s¢ | s, z) Forward transition probability in a z population from state

s in a parental generation to state s¢ in the offspring

generation.

Pr(s | s¢, z) Backward transition probability in a z population. This is the

probability that a population in state s¢ in an offspring

generation descends from a population in state in the

parental generation (a prime generally refers to an

offspring generation)

wij(s¢, s, z) Expected number of class-i individuals in a population

in state s¢ descending from a single class j individual in

a population fixed for z and in state s.

gi Ploidy of a class i individual.

tij Probability that a gene in a class i individual is a copy of a

gene from a class j individual.

fij(s¢, s, z) Probability that a gene sampled in a class i individual

when the population is in state s¢ is a copy of a gene

of a class j individual when the population was in state

s in the parental generation.

ai(s, z) Probability that a gene randomly sampled from a z

population descends from a class i individual in the

distant past, conditional on the population being in state

s in the distant past. This is the reproductive value of

class i conditional on the population being in state s.
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strictly monomorphic for a given trait value and several

alleles may simultaneously segregate in the population.

This results in a joint demographic and genetic stochastic

process describing both the number of individuals in each

class in the population and the alleles they carry. A state

of this demo-genetic process can be characterized by the

number of each allele in each class of individuals, thus

yielding a multidimensional Markov chain on an

uncountable state space (Meyn & Tweedie, 2009). Owing

to the fact that this process has no absorbing states, it may

in the long run reach a stationary distribution, which

provides the phenotypic distribution in the population

under a mutation–selection–drift balance. Nevertheless,

the analysis of such a demo-genetic stochastic process is

very involved mathematically even in the simple case of

a haploid iteroparous panmictic population without class

structure (Champagnat & Lambert, 2007),

It is thus relevant to make simplifying assumptions in

order to reduce the state space of the process and to allow

for more general life-cycle features or life-history modes.

This can be achieved by assuming a separation of time

between short- and long-term evolution, as it allows

reducing the multidimensional Markov chain to a one-

dimensional process, whose state space is the range of

values z can take. The separation of time into fast and

slow process is now fully endorsed and z(t) will denote

the value of the evolving phenotype at time t, which

refers to the slow time scale. The phenotypic value z(t) is

a random variable, and the shorthand notation

p(z,t) ” p(z(t) ¼ z | z(0) ¼ z0) is used to denote the prob-

ability density function that a uniform randomly sampled

member of the population at time t expresses phenotypic

value z, conditional on the initial phenotypic value in the

population being z0 at t ¼ 0.

Call k(d,z) the number of d mutants, which are

produced over one iteration of the life cycle in a

monomorphic population for z at a demographic equi-

librium, and that will fix in the population. If the process

was run for a long time, then k(d,z) would give the

substitution rate per life-cycle iteration of a z population

by a d mutant, but a certain amount of time may occur

for this substitution to take place (e.g. Kimura, 1971;

Gillespie, 1991). The separation of time-scale assumption

for z(t) is introduced by assuming that the substitution by

a d mutant is instantaneous and occurs over an infini-

tesimally small time step of the z(t) process:

lim
Dt!0

pðzðt þ DtÞ ¼ z þ djzðtÞ ¼ zÞ
Dt

¼ kðd; zÞ ð1Þ

for d „ 0 where p(z(t + Dt) ¼ z + d | z(t) ¼ z) is the prob-

ability density that the population is monomorphic for

z + d at time t + Dt given that it was monomorphic for z

at t. Hence, k(d,z) gives the instantaneous substitution

rate from phenotypic state z to z + d at the level of the

population.

Analysis

Fast dynamics: phenotypic substitution

Substitution rate
Although the model allows for a fluctuating demography

and/or environments in a class-structured population,

the substitution rate of a d mutant can be expressed in a

compact form as

kðd; zÞ ¼ �NðzÞlðzÞuðd; zÞ�plðd; zÞ; ð2Þ

where �NðzÞ is the average number of gene copies in a

population monomorphic for z, l(z) is the probability that

a randomly sampled gene from this population mutates,

u(d,z) is the probability that the mutant is a d mutant,

and �plðd; zÞ is the average fixation probability in a

population monomorphic for z of a single d mutant (see

Appendix A, eqns A-1–A-11, for a derivation and Table 3

for explicit expressions of these functionals). The sub-

script l in �plðd; zÞ emphasizes that this quantity may

Table 2 List of functionals.

Symbol Definition

lij (d, z) Probability that when a class j individual with phenotype

z produces a class i individual, the descendant is a d mutant.

l(z) Probability that a mutation arises in a z population.

u(d, z) Probability that, conditional on a mutation arising in a z

population, the mutation codes for a d mutant.

Mi(s, d, z) Number of d mutants of class i in a z population in state s.

M(d, z) Average number of d mutant produced in a z population.

p(z(t) ¼ z) Probability density function that phenotypic value z obtains

at time t. The forward transition probability density from

phenotypic state z at time t to z + d at time Dt for the

process is p(z(t + Dt) ¼ z + d | z(t) ¼ z).

pi (s, d, z) Fixation probability in a z population in state s of a single d

mutant residing in a class i individual.

�plðd; zÞ Average fixation probability in a z population of a single d

mutant.

�pðd; zÞ Average fixation probability in a z population of a single d

mutant when the mutation rate is the same across classes.

�p�lðzÞ Average fixation probability in a z population of a neutral

mutant.

_�plðzÞ First-order perturbation of �plðd; zÞ.
S(z) Localized selection gradient: first-order perturbation of �pðd; zÞ.

Table 3 Substitution rate quantities.

Full expressions
�NðzÞ ¼

P
s

P
igiNiðs; zÞPrðs j zÞ

lðzÞ ¼
P

s

P
i

R
Miðs; d; zÞdd

� �
Prðs j zÞ=�NðzÞ

uðd; zÞ ¼ Mðd; zÞ=½�NðzÞlðzÞ�
�plðd; zÞ ¼

P
s

P
ipiðs; d; zÞMiðs; d; zÞPrðs j zÞ=Mðd; zÞ

Miðs0; d; zÞ ¼ giN iðs; zÞ
P

s

P
jPrðs j s0; zÞfijðs0; s; zÞlijðd; zÞ

Mðd; zÞ ¼
P

s

P
iMiðs; d; zÞPrðs j zÞ

Same mutation rate across classes and demographic states

½lijðd; zÞ ¼ lðd; zÞ�
�NðzÞ ¼

P
s

P
igiNiðs; zÞPrðs j zÞ

lðzÞ ¼
R

lðd; zÞdd

uðd; zÞ ¼ lðd; zÞ=lðzÞ
�pðd; zÞ ¼

P
s

P
ipiðs; d; zÞgiNiðs; zÞPrðs j zÞ=�NðzÞ
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depend on the class-specific mutation probability distri-

bution, lij(d,z). If individuals in different classes have

different mutation rates, the probability that a d mutant

arises in a given class depends on class-specific mutation

rates, and this will affect the average fixation probability

of the d mutant.

The expression for the substitution rate given in eqn. 2

connects with at least three previous formalizations.

First, it is formally similar to the standard expression for

the substitution rate in the field of molecular evolution

(Kimura, 1971, eqn. 4.2), which does not consider

demographic structures, but stipulates that the substitu-

tion rate of a particular mutant depends on the number
�NðzÞlðzÞuðd; zÞ of such mutants produced over one

iteration of the life cycle and the fraction �plðd; zÞ that

eventually reaches fixation. Second, for neutral genes,

eqn. 2 reduces to the substitution rate for age-structured

populations (Charlesworth, 1980; Pollak, 1982). Third

and foremost, eqn. 2 reduces to the jump rate derived by

Champagnat & Lambert (2007, eqn. 7), who considered

the evolution of a continuous phenotype under selection

in an iteroparous panmictic population without class

structure subject to a birth and death demographic

process (e.g. Karlin & Taylor, 1975; Grimmett &

Stirzaker, 2001). This result is proved in Appendix A,

eqns A-17–A-23, and it points to a first connection with

the adaptive dynamics approach.

Substitution rate for small phenotypic deviations
Besides some special very cases, like the Moran process

(Ewens, 2004), the fixation probability �plðd; zÞ cannot be

calculated exactly, but it is conveniently approximated

by assuming mutants with only small phenotypic devia-

tions relative to the phenotype of residents (Rousset,

2004). This assumption is used by way of a Taylor

expansion of the average fixation probability around

d ¼ 0, which gives

�plðd; zÞ ¼ �p�lðzÞ þ d _�pðzÞ þ Oðd2Þ; ð3Þ

where �p�lðzÞ � �plð0; zÞ is the fixation probability of a

neutral mutant, calculated from an evolutionary pro-

cess where there is no selection (d ¼ 0), and
_�plðzÞ � d�plðd; zÞ=dd is the first-order derivative of

�plðd; zÞ with respect to d evaluated at d ¼ 0. This Taylor

expansion of the fixation probability will be used in the

substitution rate (eqn. 2) in order to derive an expression

for the probability density function p(z,t).

Slow dynamics: long-term phenotypic evolution

Diffusion equation
Because the instantaneous change in phenotypic value is

given by k(d, z) (eqn. 1), the z(t) process is entirely

determined by k(d, z) and the time dynamic of p(z, t)

follows a so-called master equation with jump rate given

by the substitution rate (Gardiner, 2009, and see

Appendix B, eqns B-1 and B-2). But owing to the

assumption of small phenotypic deviations (eqn. 3), the

function p(z, t) that phenotype z obtains at t satisfies

the simpler equation

@pðz; tÞ
@t

¼ � @

@z
½aðzÞpðz; tÞ� þ 1

2

@2

@z2
½bðzÞpðz; tÞ�; ð4Þ

where

aðzÞ ¼ �NðzÞlðzÞr2ðzÞ _�plðzÞ
bðzÞ ¼ �NðzÞlðzÞr2ðzÞ�p�lðzÞ;

ð5Þ

are, respectively, the infinitesimal mean and variance of

the change in phenotype, which depend on the variance

r2(z) of the mutant step size distribution: r2(z) ¼
�d2u(d, z)dd (see Appendix B, eqns. B-4–B-10, for a

derivation). The mean change in phenotype, a(z), deter-

mines the general direction of evolution of the pheno-

type, whose sign is given by _�plðzÞ. Fluctuations around

the mean path due to mutations and genetic drift are

described by b(z).

Equation 4 is a diffusion equation for the change in

phenotype (e.g. Kimura, 1964; Karlin & Taylor, 1981;

Gillespie, 1991; Ewens, 2004; Gardiner, 2009), where

higher-than-second-order moments of phenotypic devia-

tions have been neglected as large d deviations are

assumed unlikely to occur. This diffusion equation is also

the solution of the stochastic differential equation for the

random variable z(t) (Karlin & Taylor, 1981, p. 376),

which has been called the canonical diffusion of adaptive

dynamics when it was derived as a limiting result in a

haploid iteroparous panmictic population without class

structure (Champagnat & Lambert, 2007).

Equation 4 thus points to a second link with the

adaptive dynamics approach, and it can be thought of as

an extension of the diffusion equation to diploid and/or

haplo-diploid systems with class structure and broader

life-history modes, thus including spatially structured

populations as a special case. The derivation of eqn. 4 is

heuristic because the separation of time scales was

imposed by way of eqn. 1. The diffusion was not derived

as a limiting process when the mutation rate vanishes in

a demo-genetic model with multiple alleles as in Cham-

pagnat & Lambert (2007). By imposing the separation of

time-scale assumption, however, one markedly gains in

generality and the connection to previous work is more

direct, a point that is illustrated below.

Stationary distribution
The diffusion equation for the phenotype (eqn. 4)

describes the evolution of z under the joint action of

mutation, natural selection and random genetic drift. But

because mutations are constantly introduced into the

population, there is no absorbing state with only one

allele fixed in the population forever. The stochastic

process may then eventually settle into a stationary

distribution function p(z) ” limt fi ¥ p(z, t), with the

dynamics of z being subject to mutation, selection and
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drift but in a balance. This stationary distribution is given

by

pðzÞ ¼ K

lðzÞr2ðzÞ�NðzÞ�p�lðzÞ
exp 2

Z z

l

_�plðyÞ
�p�lðyÞ

dy

" #
; ð6Þ

where l is the left boundary of the state space and

K denotes the normalizing constant, which will be used

as such throughout the paper (see Appendix B,

eqns B-11 and B-12).

Stationary distribution in terms
of phenotypic selection gradient

Adaptive landscape

The stationary distribution p(z) (eqn. 6) remains a

complicated expression if r2(z) depends explicitly on

the evolving trait and if different classes of individuals

are subject to different mutation rates. But it is

reasonable to assume that the mutation machinery,

r2(z) and l(z), is independent of the particular value z

takes. Further, the mutation rate may be the same in

each class, that is, lij(d, z) ¼ l(d, z), which is likely to

be the case for sex, stage or geographically structured

populations. When this is the case, the neutral fixation

probability is simply given by the inverse of the

average number of gene copies in the population,

�p�lðzÞ ¼ 1=�NðzÞ (Appendix A, eqns A-12 and A-13),

and the stationary distribution can be written as

pðzÞ ¼ K exp 2

Z z

l

�NðyÞSðyÞdy

� �
: ð7Þ

Here, S(y) is the perturbation of the average fixation

probability of a d mutant when the mutation rate is the

same across classes, and which does no longer depend on

mutation features [SðyÞ � d�pðd; yÞ=ddjd¼ 0, see Table 3 for

the expression of �pðd; zÞ]. The function S(y) gives the slope

of the fixation probability due to the introduction of a d
mutant into the population and can be interpreted of as

an invasion condition for the d mutant (Demetrius &

Ziehe, 2007).

The extrema of p(z), which are the most and least

likely phenotypic outcomes of evolution, are deter-

mined by the extrema of the integral
R z

l
�NðyÞSðyÞdy,

which can be thought of as an adaptive landscape

(Wright, 1931; Barton et al., 2007). The distribution

p(z) shows that the exploration of the phenotypic space

at an evolutionary steady state varies exponentially

with this adaptive landscape. The internal extrema of

p(z) satisfy dp(z)/dz ¼ 0, and by the fundamental

theorem of calculus, they satisfy pðzÞ�NðzÞSðzÞ ¼ 0. As

p(z) is positive for all phenotypic values and the

Markov chain describing the resident’s demography

underlying the mutant’s gradient S(z) is conditioned on

population nonextinction ( �NðzÞ > 0), the internal

singular points are the solutions of

SðzÞ ¼ 0: ð8Þ
If a given extremum of p(z) is a local or global

maximum, then a population of residents that is in small

neighbourhood from this singular point is likely to be

replaced by a population of mutants that expresses a

phenotypic value closer to the singular point. Con-

versely, if a population is located at a minimum of p(z),

then a mutant that expresses a phenotypic value away

from that of the resident is likely to invade. The local

curvature of p(z) at an extremum thus describes whether

a population will converge or diverge from the singular

point and should be indicative of the stability by

convergence of that point. One can then say that an

internal singular point z is stable by convergence (Eshel,

1983; Taylor, 1989; Christiansen, 1991; Rousset, 2004) if

S(z) ¼ 0 and d2p(z)/dz2 < 0. From eqn. 7 and as p(z) > 0

and N(z) > 0, this inequality can be written as

dSðzÞ
dz

< 0: ð9Þ

Intuitively, the singular points of S(z) and the strategies

stable by convergence should correspond to those points

obtained by previous methods (e.g. evolutionary games

theory, kin selection theory, adaptive dynamics) when

the gene pool is made large. But what exactly is the

functional form of S(z)?

Localized selection gradient

The interesting feature about S(z) is that it is essentially

nothing else but a standard phenotypic selection gradi-

ent. In particular, for a haploid semelparous panmictic

population of constant size without any further division

into classes and family interactions, one has

SðzÞ ¼ @wðz�; z0Þ
@z�

�����
z�¼z0¼z

; ð10Þ

where w(z•,z0) is the fitness of a focal individual

expressing phenotype z• when the remaining individuals

in the population express phenotype z0, and the deri-

vative is evaluated at the phenotypic values of the

resident (Rousset & Billiard, 2000; Rousset, 2004).

The function w(z•,z0) is an individual fitness function

as usually used in evolutionary game theory, kin selec-

tion (or inclusive fitness) theory or adaptive dynamics

(e.g. Maynard Smith, 1982; Eshel, 1983; Taylor, 1989;

Parker & Maynard Smith, 1990; Bulmer, 1994; Dieck-

mann & Law, 1996; Taylor & Frank, 1996; Frank, 1998;

Geritz et al., 1998; Vincent & Brown, 2005; Waxman &

Gavrilets, 2005; Dercole & Rinaldi, 2008; Leimar, 2009),

although fitness means here the expected total number

of individuals descending from a focal individual after

one full iteration of the life cycle of the organism [thus

including itself through survival and its offspring in

order to have a full count of gene frequencies over one
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life-cycle iteration such that w(z,z) ¼ 1]. This shows that

the extrema of p(z) correspond to the singular points

obtained by evolutionary game theory, kin selection

theory or adaptive dynamics. Further, the condition of

stability by convergence of these singular points (eqn. 8

and ineq. 9) corresponds to expressions obtained previ-

ously (Eshel, 1983; Taylor, 1989; Geritz et al., 1998;

Rousset, 2004).

More generally, there may be different classes of

individuals in the population, like males and females,

or different individuals subject to different numbers of

competitors, or living in different regions of the habitat

like in families or patches. Then, for the class-structured

demographic model introduced above, whose crucial

assumption is that the transition probability Pr(s¢ | s,z)

between demographic states follows a regular homo-

geneous Markov chain on a countable state space, the

function S(z) can be expressed as a ‘localized’ inclusive

fitness effect (Rousset & Billiard, 2000; Leturque &

Rousset, 2002; Rousset & Ronce, 2004; Rousset, 2006).

This is a demographically explicit version for finite

populations of Hamilton’s (1964) inclusive fitness effect.

The inclusive fitness effect is a relatedness weighted effect

on the expected number of each class of offspring over all

demographic states of all mutant carriers, which results

from the expression of all mutant alleles in the popula-

tion over all demographic states (see Rousset, 2004 for

details and Appendix A, eqns A-12–A-14). Here again,

the condition of stability by convergence (eqn. 8 and in

eqn. 9) corresponds to the condition defined previously

from inclusive fitness effects on fixation probabilities (e.g.

Rousset & Ronce, 2004, p. 129).

‘Localized’ inclusive fitness effect refers to the fact that

relatedness is not measured relative to gene identity

between pairs of individuals taken at the global scale, but

measured relative to the identity between pairs of genes

taken at the local scale, the deme of a focal actor, when the

population is geographically structured (Lehmann &

Rousset, 2010, section 5.b, see also Appendix A right after

eqn. A-14). But otherwise, S(z) is similar in baseline

structure to the selection gradients obtained by the

application of the direct fitness method of kin selection

theory (Taylor & Frank, 1996; Frank, 1998; Rousset, 2004;

Taylor et al., 2007b). Hence, S(z) and its ramifications

connect smoothly to standard phenotypic selection gradi-

ents routinely used by evolutionary biologists (Wenseleers

et al., 2010), and the stationary distribution p(z) can be

calculated from them provided the fitness function(s) and

the relatedness coefficients are evaluated for finite popu-

lation size (e.g. Taylor et al., 2007b).

When the mutation distribution, lij(d,z), is not the

same across classes, the functional form of _�plðzÞ has not

yet been given a clear outline in the literature, and the

neutral fixation probability �p�lðzÞ will no longer be equal

to the inverse of the average size of the gene pool. The

previous discussion, nevertheless, suggests that it may

still be expressed in terms of inclusive fitness effect on

fixation probabilities, but one where the average over

classes may depend on the class-specific mutation rate,

and this may affect the outcome of evolution. More work

is needed in order to establish what are the simplest

way(s) to evaluate _�plðzÞ in the presence of both class-

structured populations and different mutation rates in

different classes. This case may be relevant for under-

standing frequency-dependent selection in age-struc-

tured populations where the germ line is separated

from the soma. Here, only newborns usually introduce

mutations into the gene pool that may ultimately fix

in the population as mutations in the soma cannot

out-propagate alternatives.

Applications

Multipeaked fitness landscape and coordination

Pairwise interactions
An application of the results is now provided by evalu-

ating the stationary distribution p(z) under a situation of

pairwise interactions between individuals in a population

of constant size without class structure. The trait z is

assumed to vary between zero and one and to describe

investment into cooperation. The fecundity of a player

with trait value z1 when meeting a player expressing trait

value z2 is assumed to be given by

f ðz1; z2Þ ¼ 1þ z1½z2Rþð1� z2ÞS� þ ð1� z1Þ½z2T þð1� z2ÞP�;
ð11Þ

where the interaction setting can be understood by calling

R the reward for mutual cooperation, S the sucker’s

payoff, T the temptation to defect and P the punishment

for mutual defection (Hofbauer & Sigmund, 1998).

Depending on the parameter values, three different

categories of games can described by the fecundity

function f(z1,z2): (i) a game with a dominant strategy,

like the standard prisoner’s dilemma game, which can be

obtained by setting R ¼ B ) C, S ¼ )C, T ¼ B and P ¼ 0;

(ii) a game with an internal equilibrium that is stable in a

deterministic model, like the Hawk–Dove game, which

can be obtained by setting R ¼ (B ) C)/2, S ¼ 0, T ¼ B

and P ¼ B/2; and (iii) a game with an internal equili-

brium that is unstable in a deterministic model, like a

coordination game, which can be obtained by setting

S ¼ T ¼ 0 and R > P > 0. This defines a double-peaked

payoff landscape as two individuals playing this game

have a higher payoff by coordinating (on whatever

action) than those playing opposite actions.

The stationary distribution p(z) will be evaluated for

the following life cycle: (i) each of the N haploid adults in

the population interacts with another player sampled at

random from the population and then produces a large

number of juveniles according to the payoff it receives

from the interaction and (ii) each adult dies and juveniles

compete for vacant breeding spots. Exactly, N individuals

reach adulthood and form the next generation.
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Selection gradient
Because by construction the gradients _�plðzÞ or S(z)

depend only on first-order effects of selection (eqn. 7),

effects of order d2 on payoffs are not needed. To the first

order in d, the average fecundity of a focal individual

with phenotype z• (average of eqn. 11 over N ) 1

possible partners) can be simply written as f(z•,z0), where

z0 is the average phenotype of an individual randomly

sampled from the population and excluding the focal

individual. Hence, to the first order in d, the function of

an average can be taken in place of the average of a

function (Rousset, 2004, p. 95). With this, the direct

fitness function of a focal individual can be written as

wðz�; z0Þ ¼
f ðz�; z0Þ
f ðzR

0 ; z
R
0 Þ
; ð12Þ

which is the ratio of the average fecundity f(z•,z0) of a

focal individual to the average fecundity f ðzR
0 ; z

R
0 Þ in the

population, where zR
0 ¼ z�=N þ ðN � 1Þz0=N is the

average phenotype in the population including the focal

individual.

Substituting eqn. 12 into eqn. 10, one obtains

SðzÞ ¼ ðN � 2ÞðPþR� S� TÞz� ðN � 2ÞPþ ðN � 1ÞS� T

Nf ðz; zÞ :

ð13Þ
Depending on the parameter values, S(z) may be positive

or negative for all z so that z* ¼ 1 and z* ¼ 0 are

candidate singular points, as well as the internal point

z� ¼ ðN � 2ÞP � ðN � 1ÞSþ T

ðN � 2ÞðP þ R� S� TÞ ; ð14Þ

which was derived previously by other methods for

discrete strategies (Schaffer, 1988; Wild & Taylor, 2004).

As eqn. 14 may be either a stable or unstable internal

equilibrium in a deterministic model, which corresponds

to, respectively, a maxima or a minima of the adaptive

landscape, the stationary distribution may be multipea-

ked. When all parameter values are nonzero, this

stationary distribution takes a somewhat complicated

expression, which is presented in Appendix C (eqn. C-2).

The two cases of Hawk–Dove and coordination game will

now be considered separately as these are the most

relevant here.

Hawk–Dove game
In order to obtain the Hawk–Dove game (Maynard

Smith, 1982), the parameterization R ¼ (B ) C)/2, S ¼ 0,

T ¼ B and P ¼ B/2 is used. With this, the internal

singular point becomes z* ¼ BN/{C(N ) 2)} and is con-

vergence stable. The stationary distribution is

pðzÞ ¼ K 1� Cz2

Bþ 2

� �N�2

exp �
2BN tan�1 Czffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ðBþ2ÞC
p
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðBþ 2ÞC

p
0
BB@

1
CCA;
ð15Þ

which is plotted in Fig. 1 and illustrates that the variance

of the distribution is reduced as population size increases.

When population size becomes very large, stochastic

effects due to mutation and genetic drift become very

small, and all the weight of the distribution tends to be

put on the singular point z* ¼ BN/{C(N ) 2)} . B/C. The

distribution thus becomes strongly peaked at this point,

and as N fi ¥, this becomes the only phenotypic value

observed at a steady state, thereby recovering the results

found from deterministic models with otherwise exactly

similar assumptions (Rousset, 2004, p. 89).

Coordination game
In order to obtain a coordination game, the parameteri-

zation S ¼ T ¼ 0 and R > P > 0 is used. For this case, there

are two singular points, z* ¼ 0 and z* ¼ 1, which are

convergence stable, and an internal equilibrium is given

by z* ¼ P/(P + R), which is not convergence stable. In a

deterministic model, the internal equilibrium is unstable

and evolution will lead to equilibrium z* ¼ 0 if z0 < P/

(P + R), and z* ¼ 1 if z0 > P/(P + R), where z0 is the initial

condition of the system. Hence, the outcome of evolution

is path dependent as it depends on initial conditions.

In a finite population, the stationary distribution for

the coordination game is obtained from eqn. 2 as

pðzÞ ¼ K
1þ z2Rþ ð1� zÞ2P

1þ P

 !N�2

; ð16Þ

which is convex with maxima at z ¼ 0 and z ¼ 1 (Fig. 2).

When z ¼ 0, we have p(z) ¼ K, whereas when z ¼ 1, we

have p(z) ¼ K[(1 + R)/(1 + P)]N ) 2. If R > P, this func-

tion grows very large as N becomes large. Because the

0.0 0.2 0.4 0.6 0.8 1.0
z0
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p(z) p(z)

0.2 0.4 0.6 0.8 1.0
z

20

40
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80

N = 10
N = 100

N = 1000

N = 10000

N = 100000
Fig. 1 Stationary distribution p(z) for the

Hawk–Dove game (eqn. 15). The different

curves in the two panels correspond to

different population sizes (N), whereas the

other parameters values are hold constant

and given by B ¼ 0.1 and C ¼ 0.4, which

gives z* ¼ 0.25 as the singular point if the

population size is made very large.
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probability distribution is normalized, all probability mass

tends to accumulates around z ¼ 1 as N fi ¥, which

determines the stochastically stable state of the system

(Foster & Young, 1990).

That the system is very likely to reside on phenotypic

value z ¼ 1 when population size grows large is an

instance of an equilibrium selection among alternative

equilibria (Foster & Young, 1990; Binmore et al., 1995).

This illustrates that when the stochastic shocks in the

system are made very small, here by blowing up the size

of the gene pool, the analysis of the stationary distribu-

tion allows to remove the path dependence of the

evolution of z that occurs in the deterministic process.

The equilibrium z ¼ 1 can be called payoff dominant as

coordinating on this strategy leads to a higher payoff than

coordinating on equilibrium z ¼ 0 (R > P). More gener-

ally, for the coordination game S ¼ 0, R > T > 0,

R > P > 0 and P + T > R, the equilibrium point z ¼ 1 is

still payoff dominant but the equilibrium z ¼ 0 is called

risk dominant (Kandori et al., 1993; Binmore et al.,

1995). This stems from the fact that if players are unsure

of the strategy of their partner and assign a probability 1/2

to each of their partner’s action, the expected payoff of

playing the risk dominant strategy exceeds that of playing

the payoff dominant strategy (Kandori et al., 1993;

Binmore et al., 1995).

In a deterministic model, the basin of attraction of the

risk dominant strategy is larger than that of the payoff

dominant strategy. One then expects that in a model

with stochastic shocks, the population spends more time

fixed on the risk dominant strategy (Kandori et al., 1993;

Binmore et al., 1995). Although previous work has

shown that the payoff dominant strategy may be selected

for under certain conditions in finite populations with

discrete strategies (Binmore et al., 1995), a numerical

analysis of the stationary distribution for the game with

continuous strategies (eqns 2–5) suggests that the limit-

ing stationary distribution tends to be concentrated on

the risk dominant strategy. A detailed analysis of this

problem is beyond the scope of this paper.

Multiploidy and sex allocation

Assumptions and fitness functions
The model in the last section assumed the presence of only

a single class of individuals that were haploid. We now turn

to an application with males and females. The evolving

trait z is assumed to determine the primary sex ratio

produced by a female and can be thought of as the fraction

of resources allocated to producing females (or to their

survival to the reproductive stage), whereas 1 ) z repre-

sents the fraction of resources allocated to males (Taylor,

1988; Taylor & Frank, 1996; Frank, 1998). The population

is assumed to be of constant size, and for simplicity, an

equal number N of males and females are assumed to reach

the stage where they can reproduce.

The sex ratio is further assumed to be entirely under

maternal control and the evolution of z will be analysed

for a diploid and a haplo-diploid genetic system, where

males are haploid. The life cycle is as follows: (i) Each of

the N mated females in the population produces a large

number of male and female juveniles, where the ratio of

the number of females to males that reach the stage of

density-dependent competition is determined by the

evolving trait. Individuals of the parental generation

die. (ii) Density-dependent competition occurs and

exactly N males and females are sampled to form the

next generation of adults. (iii) Each female mates a large

number of times randomly with the available males.

As the trait is under maternal control, any male,

regardless of its genotype, will have the same fitness

contribution to the next generation as any other male. In

order to evaluate selection on a mutant allele, one then

needs to consider only the fitness of females because

females with different genotypes will make different

contributions to the gene pool in the next generation

(Taylor & Frank, 1996; Frank, 1998). We can then focus

on a random female and write expressions for her fitness

contribution through females, wff, and males, wmf, where

wij is the expected number of class-i individuals descend-

ing from a single class j individual (Table 1). Under the

life cycle described above, fitness through sex i of a focal

female depends on the number of sex i offspring

produced by that female relative to the average number

of sex i offspring produced in the population. This gives

wffðz�; zfÞ ¼ z�=zR
f and wfmðz�; zfÞ ¼ 1 � z�ð Þ= 1 � zR

f


 �
,

where z• is the average phenotype of the focal female

and zR
f ¼ z�=N þ ðN � 1Þzf=N is the average phenotype

of females in the population including the focal female,

whereas zf is the average phenotype excluding the focal

female.

N = 10

N = 100

N = 1000

0.0 0.2 0.4 0.6 0.8 1.0
z0
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14

p(z)

Fig. 2 Stationary distribution p(z) for the coordination game

(eqn. 16). The different curves correspond to different population

sizes (N), whereas the other parameters values are hold constant and

given by R ¼ 0.2 and P ¼ 0.1. As population size grows large, more

probability mass accumulates on z ¼ 1, and this becomes the only

equilibrium point when N fi ¥. This is the stochastically stable state

of the system.
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Selection gradient and stationary distribution
For the sex-allocation model, the localized inclusive

fitness effect can be written as

SðzÞ ¼ aftff
@wffðz�; zfÞ

@z�
þ amtmf

@wmfðz�; zfÞ
@z�

� �
L; ð17Þ

where ai is the reproductive value of class i and tij is the

probability that a gene in a class i individual descends

from a class j individual (Appendix C, eqns C-6 and C-7).

For a diploid system, we have tij ¼ 1/2 for all i and j,

which implies am ¼ 1/2 and af ¼ 1/2, whereas for a

haplo-diploid system where males are haploid, we have

tff ¼ 1/2, tfm ¼ 1/2, tmf ¼ 1 and tmm ¼ 0, which implies

am ¼ 1/3 and af ¼ 2/3 (Taylor, 1988; Taylor & Frank,

1996; Frank, 1998). In both cases, aftff ¼ amtmf.

The selection gradient also depends on the factor of

proportionality L, which accounts for evolution occurring

in a finite population and is specific to the mating system

(see Rousset, 2004 for details). It quantifies the extent to

which two genes taken in a focal female are more likely to

be identical than two genes taken at random from two

different females (Appendix C, eqns C-7 and C-8). The

proportionality factor L was equal to ‘1’ under the haploid

assumptions leading to eqn. 10, and it is here equal to 1/2

for diploids (as in deterministic models, Frank, 1998) and

(9N ) 4)/(18N ) 6) for haplo-diploids, which reduces to

1/2 when population size becomes large (Appendix C,

eqn. C-10).

The selection gradient can be evaluated explicitly as

SðzÞ ¼ ag

2�N

1� 2z

zð1� zÞ ; ð18Þ

where the size of the gene pool, �N, is equal to 4N for

diploids and 3N for haplo-diploids, and

ag ¼
N � 1 diploids
ðN�1Þð9N�4Þ
ð9N�3Þ haplo-diploids.

�
ð19Þ

For both a diploid and a haplo-diploid system, ag grows

with population size and it becomes approximately equal

to N for large population size. It now remains to integrate

the expression for S(z) in order to uncover the stationary

distribution (eqn. 6). This yields

pðzÞ ¼ zagð1� zÞagR 1

0
yagð1� yÞag dy

; ð20Þ

which is a Beta distribution with parameter 1+ag and it

satisfies eqn. 4 at equilibrium. Hence, the mean sex

ratio is 1/2, which is the value of z predicted by

previous applications of evolutionary game theory for

infinite population size but with otherwise similar

assumptions (Taylor & Frank, 1996; Frank, 1998), and

is independent of the features of the genetic system. By

contrast, the variance of the Beta sex-ratio distribution

is given by 1/(12 + 8ag). This results in a lower variance

in the sex-ratio distribution for diploids in small popu-

lations, and the variance vanishes for the diploid and

haplo-diploid system as population size becomes very

large.

Discussion

The stationary distribution of a one-locus continuous

phenotype under a mutation–selection–drift balance in a

class-structured population has been derived under the

assumptions of weak selection intensities and a separa-

tion of time scales between short- and long-term evolu-

tion. If mutation rates are the same across classes and the

mutation machinery is independent of the evolving

phenotype, the stationary distribution can be entirely

characterized in terms of the average size of the gene pool

and Hamilton’s (1964) inclusive fitness effect for demo-

graphically structured populations of finite size (Rousset,

2004; Rousset & Ronce, 2004; Taylor et al., 2007b).

The stationary distribution shows that the exploration

of the phenotypic space at steady state varies exponen-

tially with the inclusive fitness effect cumulated over

state space, which determines an adaptive landscape

(eqn. 7, Figs 1 and 2). For a multipeaked fitness land-

scape, the various peaks of the landscape are those

phenotypes that are candidate evolutionary stable strat-

egies. The curvature of the stationary distribution at a

candidate evolutionary stable strategy provides a natural

measure of its stability by convergence (eqn. 8 and

ineq. 9), which is consistent with those obtained in

previous analyses (Eshel, 1983; Taylor, 1989; Geritz et al.,

1998; Rousset, 2004).

The results of this paper support Gillespie’s (1991)

enthusiasm that the separation of time between long-

and short-term evolution makes tractable an apparently

intractable model, which captures realistic aspects of

natural populations, such as finite size, frequency-

dependent selection, class structure, varying demography

and mutation rates. Further, the stationary distribution

of the phenotype can be expressed in terms of standard

quantities; namely, phenotypic selection gradient

obtained as derivatives of individual fitness functions

weighted by relatedness coefficients, which are com-

monly used in evolutionary biology (Wenseleers et al.,

2010). These standard approaches thus allows one to

obtain an approximate, but calculable estimate of the

phenotypic distribution, the drift load or the variance in

phenotype maintained in a population at a mutation–

selection–drift balance, to which relaxing assumptions

can be compared. In addition to identifying candidate

evolutionary stable strategies, the stationary distribution

also allows one to select among such alternatives and to

identify stochastically stable strategies (Foster & Young,

1990, Binmore et al., 1995) by letting the average size of

the gene pool grow large.

The results of this paper also point to connections

between the adaptive dynamics framework (Dieckmann &

Law, 1996; Geritz et al., 1998; Dercole & Rinaldi, 2008)

and the direct fitness method of kin selection theory
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(Taylor & Frank, 1996; Rousset, 2004; Wenseleers et al.,

2010). The model developed here was inspired by these

two approaches: in particular, the emphasis of adaptive

dynamics on evaluating the time dynamics of evolving

phenotypes and the emphasis of kin selection theory

for finite populations on stochastic elements affecting

the fate of mutant alleles. Here, as has already been

suggested for branching points determination (Ajar,

2003), the direct fitness method of kin selection theory

can be envisioned as adaptive dynamics at the intraspe-

cific level with mutant–mutant interactions. Such inter-

actions are difficult to avoid in small populations, as two

interacting individuals are likely to descend from the

same recent common ancestor.

One main limitation of the model from a theoretical

point of view is the heuristic assumption of a separation

of time scales between short- and long-term evolution

(eqn. 1). Conditions on the mutation rate guaranteeing

convergence to the separation of time scales would be

interesting to document and could be addressed by more

mathematically inclined research. Evaluating expressions

for the average fixation probability of a mutant in the

presence of varying mutation rates across classes should

also be interesting, as this is relevant for the evolution in

age-structured populations. From a more biological

perspective, one main limitation of the model is its

one-dimensional phenotypic nature. Addressing the

co-evolution of multiple phenotypic traits and/or multi-

species interactions opens avenues for future explora-

tions.
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Appendix A: substitution rate

Arbitrary mutation distributions

In this appendix, eqn. 2 of the main text for the

substitution rate k(d, z) is derived. This gives the expected

number of d mutants produced in a monomorphic

population for z and that will fix in the population. This

is also the expectation over all demographic states of the

expected number NFix(s, d, z) of d mutants produced in a

monomorphic population for z in state s and that will

ultimately fix in the population. Namely,

kðd; zÞ ¼
X

s

NFixðs; d; zÞPr(s j zÞ ðA-1Þ

with

NFixðs; d; zÞ ¼
X

s0

X
j

X
i

piðs0; d; zÞwijðs0; s; zÞgitij

� lijðd; zÞNjðs; zÞPrðs0 j s; zÞ; ðA-2Þ

where pi(s¢,d,z) is the fixation probability of a d mutant

when arising as a single copy in a class i individual when
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the population is monomorphic for z and in demographic

state s¢; wij (s¢, s; z) is the expected number of class-i

individuals in a population in state s¢ produced by a

single class-j individual in a population in state s and

monomorphic for z; gi is the ploidy of a class i individual;

tij is the probability that a gene randomly sampled in a

class-i offspring descends from a class-j individual (gitij is

the number of class-i genes descending from a class-j

individual); lij(d,z) is the probability that this gene codes

for phenotypic deviation d; and Nj(s,z) is the number of

individuals in class j in demographic state s in a

population monomorphic for z.

In order to simplify eqns A-1 and A-2, it is useful to use

Pr(sjs0; zÞ � Pr(s0 j s; zÞPrðs j zÞ
Pr(s0 j zÞ ; ðA-3Þ

which is the backward transition probability that a

population in state s¢ in the offspring generation (a prime

always refers to the offspring generation) derives from a

population in state s in the parental generation (e.g.

Karlin, 1968; Rousset & Ronce, 2004). We will also use

fijðs0; s; zÞ �
wijðs0; s; zÞgitijNjðs; zÞ

giNiðs0; zÞ

¼ wijðs0; s; zÞtijNjðs; zÞ
Niðs0; zÞ

;

ðA-4Þ

which is the probability that a gene sampled in a class i

individual when the population is in state s¢ in the offspring

generation isacopyofageneofaclass j individualwhenthe

population was in state s in the parental generation (e.g.

Charlesworth, 1980; Rousset & Ronce, 2004), and is ob-

tained as the ratio of the number of genes in class i des-

cending from class j to the total number of genes in class i.

Substituting these expressions into eqns A-1 and A-2 yields

kðd; zÞ ¼
X

s0

X
i

piðs0; d; zÞMiðs0; d; zÞPr(s0 j zÞ; ðA-5Þ

where

Miðs0; d; zÞ ¼ giNiðs0; zÞ
X

s

X
j

Pr(s j s0; zÞfijðs0; s; zÞlijðd; zÞ

ðA-6Þ
is the number of d mutants in class i when the population

is in demographic state s¢.
Equation A-6 allows us to evaluate the expected

number M(d,z) of d mutants produced in a population

monomorphic for z. This is

Mðd; zÞ ¼
X

s

X
i

Miðs; d; zÞPr(s j zÞ: ðA-7Þ

and as �M(d,z)dd gives the total expected number of

mutants produced in the population, regardless of their

type, we have

uðd; zÞ � Mðd; zÞR
Mðd; zÞdd

¼ Mðd; zÞ
�NðzÞlðzÞ ; ðA-8Þ

which is the probability that, among all possible mutants,

a d mutant is produced in a population monomorphic for

z, where lðzÞ ¼
R

Mðd; zÞdd=�NðzÞ is the probability that

a mutant arises in the population and �NðzÞ ¼P
s Nðs; zÞPr(s j zÞ is the expected total number of homol-

ogous genes in the population, which is the average over

all states of the total number N(s,z) ¼
P

iNi(s,z)gi(z) of

genes when the population is in state s.

Equation A-6 also allows us to compute

qiðs; d; zÞ ¼
Miðs; d; zÞP
i Miðs; d; zÞ

qðs; d; zÞ ¼
P

i Miðs; d; zÞ
� �

Pr(s j zÞ
Mðd; zÞ ;

ðA-9Þ

where qi(s,d,z) is the probability that a d mutant arises in

an class-i individual when the population is in state s and

when the parental generation is monomorphic for z and

q(s,d,z) is the probability that the d mutant arises when

the population is in state s. Averaging pi(s,d,z) over these

quantities yields

�plðd; zÞ �
X

s

X
i

piðs; d; zÞqiðs; d; zÞqðs; d; zÞ

¼
X

s

X
i

piðs; d; zÞMiðs; d; zÞPr(s j zÞ=Mðd; zÞ:

ðA-10Þ
which is the average fixation probability of a single

d mutant in the population and where the subscript

l emphasizes that the fixation probability may depend on

the mutation distributions lij(d,z).

With the above quantities (eqns A-6–A-10), algebraic

rearrangements show that we can write eqn. A-5 as

kðd; zÞ ¼ �NðzÞlðzÞuðd; zÞ�plðd; zÞ: ðA-11Þ

Same mutation distributions across classes

The above expressions can be simplified when lij(d,z) ¼
l(d,z). In this case, we have

Miðs0; d; zÞ ¼ giNiðs0; zÞ
X

s

X
j

Pr(s j s0; zÞfijðs0; s; zÞlðd; zÞ

¼ lðd; zÞgiNiðs0; zÞ
X

s

Prðs j s0; zÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
1

X
j

fijðs0; s; zÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
1

¼ lðd; zÞgiNiðs0; zÞ;
ðA-12Þ

whereby Mðd; zÞ ¼ lðd; zÞ�NðzÞ. The average fixation

probability (eqn. A-10) then no longer depends on the

mutation rate and can be written as

�pðd; zÞ ¼
X

s

X
i

piðs; d; zÞ
giNiðs; zÞPr(s j zÞ

�NðzÞ : ðA-13Þ

Under neutrality, pi(s,0,z) ¼ ai(s,z)/[giNi(s,z)], where

1/[giNi(s,z)] is the initial mutant frequency in class i and
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ai(s,z) is the probability that a gene randomly sampled in

the population descends in a distant past s from an

individual from class i, conditional on the population

being in state s in the distant past s and monomorphic for

z (Leturque & Rousset, 2002; Rousset & Ronce, 2004).

The reproductive value ai(s,z) also provides the ultimate

contribution to the population of a gene lineage presently

taken in a class i individual when the population is in

state s. As
P

iai(s, z) ¼ 1, the average fixation probability

of a neutral mutant reduces to �pð0; zÞ ¼ 1=�NðzÞ.
When the d mutant is not neutral, the perturbation

SðzÞ ¼ d�pðd; zÞ=ddjd¼ 0 of the average fixation probability

(eqn. A-13) of the d mutant has been given a distinctive

outline by Rousset & Ronce (2004), eqn. 23) for the case

without dominance as it can be written under the form of

an inclusive fitness effect:

SðzÞ ¼ lim
m!0

1

1� Qo

�
X

s

X
s0

X
i

X
j

X
c2A

aiðs0; zÞ
@

@zc

fijðs0; s; zÞPrðs0 j s; zÞ
� �"

Qjcðs; zÞPrðs j zÞ
#
;

ðA-14Þ
where ¶[fij(s¢, s, z)Pr(s¢ | s,z)]/¶zc is the change, due to

all actors of category c expressing the mutant deviation

d, of the probability that a gene taken in a class i

individual in a state s¢ population descends from an

individual in class j and from a population in state s

(the derivatives are evaluated at zc ¼ z for all c). The set

of actors A ¼ f�; 0; 1; 2; . . .g includes a representative

individual (focal individual) with phenotype denoted z•
and each class of individual because individuals from

any class may affect the vital rates of a focal individual

belonging to any class. The functions Pr(s¢ | s, z) and

fijðs0; s; zÞ ¼
wijðs0; s; zÞtijNjðs; zÞ

Niðs0; zÞ
; ðA-15Þ

now depend on mutant phenotypes through the vector

z ” (z•, z0, z1, z2, …) of average phenotypes of the

individuals in each class (see Rousset, 2004; Rousset &

Ronce, 2004 for details).

The phenotypic selection gradient S(z) also depends

on the mutation rate v used to evaluate the coefficients

Q in a neutral model in a finite population (Malécot,

1975; Gillespie, 2004). For practical applications, the

infinite alleles model of mutation is convenient to use

(Kimura & Crow, 1964). With this, Qjc(s,z) gives the

probability that two homologous genes randomly sam-

pled, one from class j and the other from class c, are

identical-by-descent (Rousset, 2004). More specifically,

when the two genes are sampled in a focal actor of

class j [Qj•(s,z) coefficient], they are sampled with

replacement. In the remaining cases, the two genes are

assumed to be randomly sampled from two distinct

individuals (without replacement), one from class j and

the other from class c, which describes an actor–

recipient relation. One can also write S(z) in terms of

identity coefficients where genes are always sampled

with replacement (Rousset & Ronce, 2004, eqn. 23).

Either way yields the same results provided the

definition of the actors’ phenotypes appearing in

fij(s¢, s, z)Pr(s¢ | s, z) matches the definition of the

identity coefficients (Rousset, 2004). Finally, we need

Qo, which is defined from

1� Qo ¼ 2m�NðzÞ þ Oðm2Þ: ðA-16Þ
With this, in a geographically structured population of

constant size �NðzÞ, Qo is equivalent to the probability of

identity between a pair of homologous genes sampled

without replacement in the same patch (Leturque &

Rousset, 2002; Rousset, 2002, 2003, 2004); hence, the

term ‘localized’ inclusive fitness effect. Equation 2 was

obtained by rearranging eqn. 23 of Rousset & Ronce

(2004) and using 1/(1 ) Qo) in place of their 1=½2m�NðzÞ�.

Birth–death reproductive process

Here, an expression for k(d,z) will be given for a haploid

panmictic population without class structure and follow-

ing a birth–death reproductive protocol (Karlin & Taylor,

1975; Grimmett & Stirzaker, 2001). This allows to

connect the present formalization with the model of

Champagnat & Lambert (2007). For a birth–death

reproductive protocol, a demographic state can be taken

to be population size n (s ” n) and b(n,z) will denote the

birth rate of a single individual in a population of size n

that is monomorphic for z and d(n,z) denotes the death

rate of an individual in a population of size n (Cham-

pagnat & Lambert, 2007, p. 2).

For a birth and death process, the transition probability

Pr(n¢ | n,z) from size n in a parental generation to size n¢
in an offspring generation is nonzero per time interval h

only for the following transitions

Prðnþ 1 j n; zÞ¼bðn; zÞnhþ oðhÞ (‘birth’ in the population)

Prðn� 1 j n; zÞ¼dðn; zÞnhþ oðhÞ (‘death’ in the population)

Prðn j n; zÞ¼1� bðn; zÞ þ dðn; zÞ½ �nh

þ oðhÞ (‘no transition’).

ðA-17Þ
There is no class structure under this birth–death setting,

and the average fixation probability (eqn. A-10) can be

written as

�plðd;zÞ¼
X

n0
pðn0;z;dÞMðn0;z;dÞPrðn0;zÞ=Mðd;zÞ; ðA-18Þ

where p(n¢,z,d) is the fixation probability of a single d
mutant when it arises in a population of size n¢. Because

eqn. A-17 entails that at most one mutant can enter the

population per time step, which occurs when there is a
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birth in the population, the number of d mutants that

enter a population of size n¢ is

Mðn0; z; dÞ ¼
X

n

f ðn0; n; zÞlðn0; n; z; dÞPrðn j n0; zÞ; ðA-19Þ

where f(n¢,n,z) is the probability that a gene taken in a

population of size n¢ in the offspring generation, which

was of size n in the parental generation, descends from

an individual in the parental generation. We also have

l(n¢,n,z,d), which is the probability that a d mutant is

produced when the parental generation is of size n and

the descendant generation is of size n¢. Here, the

mutation rate is written as a function of demographic

states, and this could also have been done for the

model introduced above [eqns A-1–A-11 could have

been written in terms of lij(s¢, s, z, d)], but introducing

this dependence will not change the final expressions,

and as it seems rather specific to birth–death processes,

it was not introduced above for ease of presentation.

Because mutations can occur only when there is a

birth, one has l(n + 1, n, z, d) ‡ 0, zero otherwise, and

the shorthand notation l(z,d) ” l(n + 1, n, z, d) will be

used. Further, f(n + 1, n) ¼ 1 and f(n, n) ¼ 1, f(Æ, n) ¼ 0

otherwise. With this, we have

Mðn0; z; dÞ ¼ f ðn0; n0 � 1; zÞlðn0; n0 � 1; z; dÞPrðn0 � 1 j n0; zÞ
¼ lðz; dÞPrðn0 � 1 j n0; zÞ;

ðA-20Þ
where Pr(n¢ ) 1 | n¢,z) is the probability that a population

of size n¢ descends from a population of size n¢ ) 1

(backward transition probability). As a d mutant can be

produced in a z population only if it is not extinct, we

have M(n¢, z, d) ¼ 0 for n¢ < 2, otherwise

Mðn0; z;dÞPrðn0; zÞ ¼ lðz;dÞPrðn0 �1 jn0; zÞPrðn0; zÞ
¼ lðz;dÞPrðn0 jn0 �1; zÞPrðn0 �1; zÞ
¼ lðd; zÞbðn0 �1; zÞðn0 �1Þ

Prðn0 �1; zÞhþ oðhÞ;
ðA-21Þ

where care must be taken with the notations in this

equation as Pr(n¢ ) 1 | n¢,z) has to be read as a backward

transition probability, whereas Pr(n¢ | n¢ ) 1,z) as a for-

ward transition probability, which is given by eqn. A-17.

From the above

Mðd; zÞ ¼
X

n0
Mðn0; z; dÞPrðn0; zÞ

¼
X
n0	2

lðd; zÞbðn0 � 1; zÞðn0 � 1ÞPrðn0 � 1; zÞhþ oðhÞ

¼
X
n	1

lðd; zÞbðn; zÞnPrðn; zÞhþ oðhÞ;

ðA-22Þ
and the average fixation probability can be written

�plðd; zÞ ¼
X
n	1

pðnþ 1; z; dÞ bðn; zÞnPrðn; zÞP
n	1 bðn; zÞnPrðn; zÞ þ oðhÞ:

ðA-23Þ
Substituting eqns A-22 and A-23 along with eqn. A-8

into eqn. A-11 and assuming that the substitution rate

is for a continuous time reproductive process

evaluated as a rate per unit time h as h fi 0; that is,

kðd; zÞ ¼ limh!0
�NðzÞlðzÞuðd; zÞ�plðd; zÞ=h, produces

kðd; zÞ ¼ lðz; dÞ
X
n	1

bðn; zÞnPrðn; zÞ
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bðzÞMðz;dÞ

�plðd; zÞ|fflfflfflffl{zfflfflfflffl}
vðz;zþdÞ

: ðA-24Þ

This is the jump rate for the continuous time reproduc-

tive scheme derived by Champagnat & Lambert (2007,

eqn. 7), where their notations are used in the under-

braces in order to highlight the connection.

Appendix B: trait-substitution sequence

Master equation

Here, a partial differential equation for p(z,t) expressed in

terms of the substitution rate k(d,z) will be presented by

applying standard results of stochastic processes derived

in Gardiner (2009). In particular, the probability density

function p(z,t) of a Markov chain with instantaneous

transition rate

lim
Dt!0

pðzðt þ DtÞ ¼ z0 j zðtÞ ¼ zÞ
Dt

� Tðz0 j zÞ ðB-1Þ

from state z to z¢ for z¢ „ z follows the so-called master

equation

@pðz; tÞ
@t

¼
Z

Tðz j z0Þpðz0; tÞ � Tðz0 j zÞpðz; tÞ½ �dz0; ðB-2Þ

where the first term describes the fact that p(z,t) is

increased by all changes from state z¢ to z and the second

term that t is decreased by all changes from z to z¢
(Gardiner, 2009, eqn. 3.5.2).

In order to express eqn. B-2 in terms of k(d,z), I follow

directly along the lines of Gardiner (2009, p. 276) and

make a change of variables in eqn. B-2 by substituting

z¢ ¼ z ) d in the first term, z¢ ¼ z + d in the second term,

and then use

Tðz þ d j zÞ � kðd; zÞ; ðB-3Þ
whereby the master equation becomes

@pðz; tÞ
@t

¼
Z

kðz � d; dÞpðz � d; tÞ � kðd; zÞpðz; tÞ½ �dd

ðB-4Þ
(Gardiner, 2009, eqn. 11.2.24).
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By way of a Taylor expansion of eqn. B-4 around d ¼ 0,

we obtain

@pðz; tÞ
@t

¼
Z X1

n¼1

ð�dÞn

n!

@n

@zn
kðd; zÞpðz; tÞ½ �

 !
dd

¼
X1
n¼1

ð�1Þn

n!

@n

@zn
anðzÞpðz; tÞ½ �;

ðB-5Þ

where

anðzÞ ¼
Z

dnkðd; zÞdd ðB-6Þ

is the n-th jump moment of the substitution process.

Diffusion equation

Here, a diffusion equation for p(z, t) will be derived from

eqn. B-5 by taking into account only jumps of small

magnitude in d. In order to obtain the limit of small

jumps, the mutation distribution u(d, z) is assumed to

have been rescaled so that it describes a distribution of

only small phenotypic deviation around z. For an

unscaled mutation distribution, say u(�, z), which can

accommodate phenotypic deviations � of any length, a

rescaled distribution allowing only for small deviations

can be obtained as u(�/d, z)/d, which integrates up to one:

�[u(�/d, z)/d]dd ¼ 1 (Dercole & Rinaldi, 2008).

For ease of presentation, I assume that the distribution

u(d,z) used in the main text has been rescaled to allow

only small jumps and substitute eqn. 3 of the main text

into eqn. 2, whereby

kðd; zÞ ¼ �NðzÞlðzÞuðd; zÞ �p�lðzÞ þ d _�plðzÞ
h i

þOðd2Þ; ðB-7Þ

which, on substitution into the jump moments

(eqn. B-6), gives

a1ðzÞ ¼ �NðzÞlðzÞ
Z

d�p�lðzÞ þ d2 _�plðzÞ þ Oðd3Þ
h i

uðd; zÞdd

a2ðzÞ ¼ �NðzÞlðzÞ
Z

d2�p�lðzÞ þ Oðd3Þ
h i

uðd; zÞdd

anðzÞ ¼ �NðzÞlðzÞ
Z

Oðd3Þuðd; zÞdd if n > 2:

ðB-8Þ
The mutation distribution was assumed symmetric,

which implies that the mean deviation is zero: �du(d,

z)dd ¼ 0. Defining r2(z) ” �d2u(d,z)dd as the variance of

the mutant deviation when the reference phenotype is z

and assuming that higher central moments vanish,

�dnu(d, z)dd fi 0 for n > 2, gives

a1ðzÞ ¼�NðzÞlðzÞr2ðzÞ _�plðzÞ
a2ðzÞ ¼�NðzÞlðzÞr2ðzÞ�p�lðzÞ
anðzÞ ¼0 if n > 2:

ðB-9Þ

Substituting these jump moments back into eqn. B-5

yields

@pðz; tÞ
@t

¼ � @

@z
aðzÞpðz; tÞ½ � þ 1

2

@2

@z2
bðzÞpðz; tÞ½ �; ðB-10Þ

which is a diffusion equation for the change in pheno-

type, where a(z) ” a1(z) and b(z) ” a2(z) are the infini-

tesimal mean and variance of the process (e.g. Kimura,

1964; Karlin & Taylor, 1981; Gillespie, 1991; Ewens,

2004; Gardiner, 2009).

Stationary distribution

The long-term phenotypic distribution is given by p(z) ¼
limt fi ¥ p(z, t), which is characterized by an evolutionary

steady-state ¶p(z)/¶t ¼ 0. In order to obtain the probability

density function p(z), it is useful to express eqn. 4 as ¶p(z,

t)/¶t ¼ )¶J(z, t)/¶z, where J(z, t) is the probability flux

through z at time t (Kimura, 1964, p. 187; Gillespie, 1991,

p. 157; Gardiner, 2009, p. 119). At steady state, the

probability flux J(z) ¼ limt fi ¥ J(z,t) is given by

JðzÞ ¼ aðzÞpðzÞ � 1

2

@

@z
bðzÞpðzÞ½ �: ðB-11Þ

The diffusion process is assumed to have reflecting

boundaries so that J(z) ¼ 0 for all z 2 [l, r] (Gardiner,

2009, pp. 119–121). The stationary distribution can then

be obtained by substituting y(z) ¼ log (p(z)) into J(z) ¼0,

which gives a(z) ) (1/2)¶b(z)/¶z ) (1/2)b(z)¶y(z)/¶z ¼0

(e.g. Kimura, 1964; Gillespie, 1991; Ewens, 2004; Gard-

iner, 2009), and can be solved by integration to give

pðzÞ ¼ K

bðzÞ exp 2

Zz

l

aðyÞ
bðyÞ dy

2
4

3
5; ðB-12Þ

where K is a normalization constant ensuring thatR r

l
pðzÞdz ¼ 1.

Appendix C: application

Pairwise interaction game

Here, we present the explicit expression for p(z) for the

pairwise interaction game. From eqns 11 and 20, one has

SðzÞ ¼ ðN � 2ÞðPþ R� S� TÞz � ðN � 2ÞPþ ðN � 1ÞS� T

N 1þ zðSþ TÞ þ z2ðR� S� TÞ þ Pð1� zÞ2
� � :

ðC-1Þ
Although the calculation of the integral

R z

0
2NSðyÞdy for

the stationary distribution (eqn. 7) is difficult, it can

readily be achieved by a computational software program

such as Mathematica (Wolfram, 2003). The stationary

distribution can then be written as

pðzÞ ¼ Ke�XðzÞNYðzÞN�2; ðC-2Þ
where

YðzÞ ¼ 1þ Pð1� zÞ2 þ z Sþ T þ zðR� S� TÞ½ �
1þ P

: ðC-3Þ

and
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with V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R þ 4PðR þ 1Þ � ðS þ TÞð4 þ S þ TÞ

p
and tan )1(x) is the inverse function of the tangent.

When z ¼ 0, we have from eqns C-2 and C-3 that

p(0) ¼ K. The strategy z ¼ 1 then gets more probability

mass if

e�Xð1ÞNYð1ÞN�2 > 1 ðC-5Þ

because it entails p(1) > K. For a coordination game

with parameterization R > P > 0, R > T > 0, and S ¼ 0,

it can be checked numerically that if the condition

P + T > R holds, then e)X(1)NY(1)N)2 usually goes to

zero as N grows very large. Hence, the stochastic system

tends to spend most of its time on the risk dominant

strategy (z ¼ 0), rather than on the payoff dominant

strategy (z ¼ 1).

Sex-allocation game

Here, we derive the expression of S(z) for the sex-

allocation model by simplifying eqn. A-14 according to

the specificity of the assumptions described in the main

text. The population is assumed to be of constant size,

and there are only two classes of individuals (males

and females) with equal number of adults in each

class. This entails that the fitness functions do not

depend on demographics states, fij ¼ wij in eqn. A-14,

and the sum over i and j in eqn. A-14 runs over the

set f, m of classes of individuals. Further, the repro-

ductive values and the probabilities of identity-

by-descent do not depend on the evolving trait. As

the sex ratio is assumed to be fully under maternal

control, the set of actors can be written as A ¼ f�; fg
and the vector of phenotypes as z ” (z•, zf), where z• is

the phenotype of a focal female and zf is the average

phenotype among females in the population but

excluding the focal female (zR
f ¼ z�=N þ ðN � 1Þzf=N

is the average phenotype of females in the popu-

lation including the focal female). Further, any

male regardless of its genotype will have the same

fitness through sons and daughters than any other

male. So the fitness contributions of males are con-

stants and can be removed from the calculations of the

selection gradient (e.g. Taylor & Frank, 1996; Frank,

1998).

From all these considerations, it follows that eqn. A-14

can be simplified to

SðzÞ ¼ lim
m!0

1

1� Qo

aftff
@wffðz�; zfÞ

@z�
Qf þ

@wffðz�; zfÞ
@zf

Qff

� ��

þamtmf

@wmfðz�; zfÞ
@z�

Qf þ
@wmfðz�; zfÞ

@zf

Qff

� ��
; ðC-6Þ

where Qff is the probability of identity between two

homologous genes randomly sampled in two different

females and Qf ” Qf• is the probability of identity between

two homologous genes randomly sampled with replace-

ment from the same female (coancestry with self). This is

equal to Qf ¼ (1 + F)/2, where F is the probability of

identity between homologous genes taken in the same

individual (inbreeding coefficient).

Using the zero sum property of the partial derivatives

[e.g. ¶wff(z•, zf)/¶z• ¼ )¶wff(z•, zf)/¶zf, Rousset, 2004], we

can further reduce the inclusive fitness effect to

SðzÞ ¼ aftff
@wffðz�; zfÞ

@z�
þ amtmf

@wmfðz�; zfÞ
@z�

� �
L; ðC-7Þ

where

L � lim
m!0

Qf�Qff

1� Qo

� �
: ðC-8Þ

In order to close the model, we need the expressions for

Qf, Qff and Qo. These can be obtained by applying

standard calculations for probabilities of identity-by-

descent (Karlin, 1968; Rousset, 2004). For instance, for

a haplo-diploid model with haploid males and diploid

females, the probabilities of identity-by-descent satisfy

the following recursions at equilibrium

Qff ¼ c
1

4
ðPfQf þ ð1� PfÞQffÞ þ

1

2
Qfm

�

þ 1

4
ðPm þ ð1� PmÞQmmÞ

�

Qfm ¼ c
1

2
PfQf þ ð1� PfÞQffð Þ þ 1

2
Qfm

� �
Qmm ¼ c PfQf þ ð1� PfÞQff½ �

Qf ¼
1þ F

2

F ¼ cQfm;

ðC-9Þ

where c ¼ (1 ) m)2 and Pf ¼ Pm ¼ 1/N are the probabil-

ities that two individuals descend from, respectively, the

XðzÞ ¼ 2ðT � SÞ tan�1 ðSþ T � 2Pð1� zÞ þ 2zðR� S� TÞÞ=Vð Þ þ tan�1 ð2P � S� TÞ=Vð Þ½ �
V

ðC-4Þ
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same female and male (e.g. Taylor, 1988). Solving these

equations and using �NðzÞ ¼ 3N in eqn. A-16, one can

then evaluate eqn. C-8. Similar calculations for a diploid

reproductive system (where the right members of the

three first lines in eqn. 8 are all equal to the right

member of the first line) and using �NðzÞ ¼ 4N in eqn.

A-16 show that

L ¼
1
2

diploid

9N�4
18N�6

haplo-diploid.

8<
: ðC-10Þ
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