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Abstract

A dose-response strategymay not only allow investigation of the impact of foods and nutrients on human health but may also

reveal differences in the response of individuals to food ingestion based on their metabolic health status. In a randomized

crossover study, we challenged 19 normal-weight (BMI: 20–25 kg/m2) and 18 obese (BMI: >30 kg/m2) men with 500, 1000,

and 1500 kcal of a high-fat (HF) meal (60.5% energy from fat). Blood was taken at baseline and up to 6 h postprandially and

analyzed for a range of metabolic, inflammatory, and hormonal variables, including plasma glucose, lipids, and C-reactive

protein and serum insulin, glucagon-like peptide-1, interleukin-6 (IL-6), and endotoxin. Insulin was the only variable that could

differentiate the postprandial response of normal-weight and obese participants at each of the 3 caloric doses. A significant

response of the inflammatory marker IL-6 was only observed in the obese group after ingestion of the HF meal containing

1500 kcal [net incremental AUC (iAUC) = 22.9 6 6.8 pg/mL 3 6 h, P = 0.002]. Furthermore, the net iAUC for triglycerides

significantly increased from the 1000 to the1500 kcalmeal in the obese group (5.06 0.5mmol/L3 6 h vs. 6.06 0.5mmol/L3 6 h;

P = 0.015) but not in the normal-weight group (4.36 0.5 mmol/L3 6 h vs. 4.86 0.5 mmol/L3 6 h; P = 0.31). We propose that

caloric dose-response studies may contribute to a better understanding of the metabolic impact of food on the human organism.

This study was registered at clinicaltrials.gov as NCT01446068. J. Nutr. 144: 1517–1523, 2014.

Introduction

The response of the organism to food ingestion evidently
depends on the nutritional quality of the ingested food and on
the health status of the person ingesting the food. The production

of insulin in response to the ingestion of carbohydrates offers one
of the most spectacular examples illustrating the importance of
these 2 aspects because both the glycemic index of food (1) and
the insulin resistance of humans (2) dramatically influence post-
prandial glucose concentrations.

The increased awareness that metabolic, hormonal, and
inflammatory pathways intimately regulate each other (3,4) led
to a broadening of the spectrum of biologic pathways investi-
gated in nutritional studies. The last decade has thus witnessed a
steady increase in the number of nutritional biomarkers aimed at
characterizing the health status of enrolled participants, their
intake of nutrients, and the effect of these nutrients on their
metabolism (5,6). Still, for many of these biomarkers, demon-
strating a differential impact of food quality or the health status
of the investigated participants on postprandial metabolism and
inflammation is challenging. For example, although high caloric
intake was shown to trigger a postprandial inflammatory res-
ponse in both healthy participants and participants with meta-
bolic disorders (7–14), these studies failed to provide conclusions
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regarding appropriate experimental conditions (e.g., caloric dose,
participants, inflammatory variables) likely to induce a significant
postprandial inflammatory response. In particular, these studies
do not address whether metabolic disorders are associated with an
increased postprandial inflammatory response, or whether ele-
vated postprandial concentrations of inflammatory markers, such
as IL-6, are simply observed as a result of higher baseline values.

The nonpharmacologic nature of nutrition certainly contrib-
utes to the difficulty in demonstrating significant changes in
nutritional biomarkers where only marginal changes are ob-
served in response to nutritional interventions (4). In addition,
endogenous phenomena such as the circadian rhythm are tightly
connected to metabolic pathways and the immune system (15)
and may thus contribute to the observed postprandial changes in
the concentrations of the investigated variables. Finally, human
biology is systemic and, as such, characterized by robustness
(16). The robustness of a biologic system can, however, be
challenged by integrating dose-response strategies into study
designs (17). Surprisingly, although food quantity evidently influ-
ences the metabolic impact of nutrients on the organism, only a few
nutritional studies have made use of a dose-response strategy to
challenge the robustness of the organism in nutritional interven-
tions. In this context, the Biomarkers of Nutrition for Development
(BOND) Project, which was created to develop a consensus on the
development of nutritional biomarkers, emphasizes the need for
conducting dose-response studies (5,6). In line with this policy, we
propose that dose-response studies should allow for a better
understanding of the impact of food on human metabolism.

The aim of this study was therefore to investigate the dose-
dependent effect of a high-fat (HF)11 meal on postprandial meta-
bolism and inflammation in 2 groups of participants differing in
their metabolic health status (i.e., normal-weight and obese par-
ticipants). In particular, this study investigated the following: 1) the
caloric dose of the HF meal needed to induce a postprandial
response; 2) the contribution of the dose-response strategy to
differentiate the postprandial response of the 2 groups of partic-
ipants; and 3) the impact of the caloric dosing on the identification
of correlations between the fasting and postprandial concentrations
of the investigated variables.

Biochemical analyses were undertaken to quantify metabolic
and hormonal variables [glucose, insulin, blood lipids, glucagon-
like peptide-1 (GLP-1)] as well as inflammatory mediators [C-
reactive protein (CRP), IL-6, endotoxin]. Serum endotoxin was
analyzed as an additional marker of inflammation being associated
with metabolic disorders (18) and HF meal–induced inflammation
(19–23).

Participants and Methods

Participants. Normal-weight (n = 19, BMI: 20–25 kg/m2, waist circum-

ference: <94 cm) and obese (n = 18, BMI: >30 kg/m2, waist circumference:
>102 cm) men, between 25 and 55 y of age, were recruited from the region

of Berne, Switzerland. The 2 groups were age-matched so that the mean

age was not substantially different between the normal-weight and obese

participants. The participants� anthropometric measurements (weight,
height,waist circumference) were measured on the first study day. The BMI

was calculated as weight divided by the square of height (kg/m2). All

participants signed an informed consent form after written and oral

explanation of the procedures involved with this study. Participants were
excluded if they had any past or present cardiovascular disease, diagnosed

diabetes or inflammatory condition, or were taking any medications in-

fluencing the study outcome measurements (inflammation markers, lipids

analyses). Further exclusion criteria were current smokers, food allergy,

and impaired kidney or liver function. The participants were not allowed
to take dietary supplements, such as vitamins, 2 wk prior to the start of the

study until its end. In addition, blood donations were not allowed 3 mo

before the start of the study until its end.

Study design. The study was conducted at the University Hospital,

Berne, Switzerland. Approval for the study was obtained from the Ethics

Committee of the Canton Berne (KEK number 006/11). The study is

reported according to the checklist published in the Consolidated
Standards of Reporting Trials Statement. In the crossover study design,

each participant had to consume 3 different caloric doses of a HF meal

(500, 1000, 1500 kcal) with at least 1 wk of a washout period between
the test meals during which participants were requested to stick to their

habitual diet. Randomization of the test meals was performed with the

excel randomization function by allocating the 6 possible sequences of test

meal administration (ABC, ACB, BAC, BCA, CAB, CBA) to the 2 blocks
‘‘normal-weight participants’’ (n = 19) and ‘‘obese participants’’ (n = 18).

Blood was collected from participants who fasted overnight (10 h) prior to

each test meal consumption between 0800 and 0900 (t = 0 h), as well as 1,

2, 4, and 6 h after the beginning of the test meal consumption by using an
indwelling peripheral venous catheter. During the study days, the

participants were not allowed to consume any additional foods or

beverages except 1 L of water provided during the postprandial period.

Test meals composition. The HF meals consisted of bread, palm fat,

salami, and boiled eggs, obtained from Swiss supermarkets (Table 1).

Palm fat was chosen as it is rich in the saturated palmitic acid, which was
shown to induce inflammation in adipocytes as measured by mRNA

expression of IL-6 and TNF-a (24). The 3 HF meals had the same

macronutrient composition with 61% of the energy originating from fat,

21% from carbohydrates, and 18% from proteins. The HF meal
composition was adapted from the study of Nappo et al. (12) showing

that, compared with a high-carbohydrate meal, a high-fat meal sig-

nificantly increased plasma concentrations of the inflammation markers

IL-6 and TNF-a in healthy participants and showed a more sustained
increase in diabetic patients. Table 1 also shows the macronutrient

composition of the HF meal as calculated from the package labels of the

individual foods. Total fatty acid composition was analyzed by gas
chromatography after an extraction method developed for meat at our

laboratory at Agroscope, Switzerland (25). The 3 HF meals only differed

in their energy content: meal A contained 500 kcal, meal B contained

1000 kcal, and meal C contained 1500 kcal. To keep the ratio of liquid
to solid food constant, participants had to drink 200 mL, 400 mL, and

600 mL of Vittel water during consumption of meal A, B, and C,

respectively. During the 6 h postprandial period, the participants were

provided with 1 L of Vittel water but were not asked to drink it.

TABLE 1 Composition of the 500-kcal HF test meal A
administered to the normal-weight and obese men participating
in the study1

Proteins Carbohydrates Fats2 Energy

g g g kcal

Bread (58 g) 5.8 25.5 0.9 135

Palm fat (13 g) 0.0 0.0 13.0 117

Sausage (52 g) 13.5 0.5 17.2 210

Boiled eggs (26 g) 3.4 0.3 2.9 40

Macronutrient 22.7 26.3 34.0 —

Macronutrient, kcal 91 107 303 —

Macronutrient, % 18.2 21.3 60.5 —

1 Test meals B and C had the same composition but 2 and 3 times as many calories as

meal A, i.e., 1000 and 1500 kcal, respectively. HF, high-fat.
2 The fatty acid composition of the test meals was as follows (g/kg test meal): SFAs =

89.1 g/kg, 16:0 = 62.4 g/kg, 18:0 = 18.0 g/kg, unsaturated fatty acids = 120 g/kg,

MUFAs = 93.1 g/kg, 18:1n–9 = 83.3 g/kg, PUFAs = 26.6 g/kg, n–3 fatty acids = 1.7 g/kg,

n–6 fatty acids = 24.7 g/kg.

11 Abbreviations used: CRP, C-reactive protein; GLP-1, glucagon-like peptide-1;

HF, high-fat; iAUC, incremental AUC; nparLD, nonparametric longitudinal data;

VAI, visceral adiposity index.
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Analyses of the routine variables insulin, glucose, CRP, and lipids

(TGs, total cholesterol, and HDL cholesterol). Blood was collected at

fasting status (0 h) and 1, 2, 4, and 6 h postprandial via an indwelling
peripheral venous catheter (Vasofix Safety; B. Braun Melsungen). Sarstedt

tubes were used for blood collection for serum insulin (S-Monovette

4.7-mL Z-gel) and for plasma glucose, CRP, and lipids analyses (Li-Hep-gel).

Samples were immediately sent for analyses to accredited laboratories
of the University Hospital in Berne. Insulin was measured by an electro-

chemiluminescent sandwich-immunoassay (Modular E170; Roche), glucose

by enzymatic determination with hexokinase (Modular P800; Roche), CRP

with a high-sensitivity immune turbidimetric test enhanced with latex
particles (Modular P800; Roche), TGs with the glycerol-3-phosphate

oxidase-phenol 1 aminophenazone-method (Modular P800; Roche),

total cholesterol with the cholesterol oxidase- phenol 1 aminophenazone
method (Modular P800; Roche), and HDL cholesterol with an enzymatic

test for direct quantitative determination (Modular P800; Roche).

The HOMA-IR was calculated from baseline glucose and insulin

concentrations as previously described (26). The visceral adiposity index
(VAI) was calculated from the BMI, waist circumference, baseline TGs,

and HDL cholesterol as described by Amato et al. (27).

Analyses of IL-6, endotoxin, and GLP-1. For IL-6, endotoxin, and

GLP-1 analyses, blood samples were collected at time 0 (fasting) and 1,
2, 4, and 6 h postprandial into S-Monovette (7.5-mL Z-gel) tubes and

incubated for 25 min at room temperature. After centrifugation for

10 min at 1500 3 g, serum was split into 1.5-mL aliquots and immediately

snap-frozen in a mixture of dry ice and ethanol and stored at 280�C until
analysis. IL-6 was measured with a high-sensitivity multiplex cytokine

assay (Bio-Plex; Bio-Rad) by using the same kit lot for all samples to

avoid lot-to-lot variability (28). The sensitivity of the kit, as provided by
the manufacturer, was 0.2 pg/mL. The intra-assay CV was#5% and the

inter-assay CV was#10%. Endotoxin was measured with commercially

available Kinetic-Quantitative Chromogenic Limulus Amebocyte Lysate

Assay (QCL-1000 LAL; Lonza). The assay was previously validated
for human use with an intra-assay CV of 3.9 6 0.5% and an inter-

assay CVof 9.66 0.8%, with the recovery rate for endotoxin noted at

82.0 6 3.3% as previously detailed (29). Total GLP-1 was analyzed

with the Multi Species GLP-1 Total ELISA kit (EZGLP1T-36K; Merck
Millipore).

Statistical methods. Statistical analyses of the study were performed

with SYSTAT 13.0 (Systat Software) and R version 2.15.2 (http://www.

R-project.org) with the R library nonparametric longitudinal data
(nparLD) (30) and R library R Commander (31).

The number of participants per group was estimated by power

analysis (power = 0.80; significance level a = 5%) with SYSTAT 13.0,
based on the study by Nappo et al. (12) who investigated postprandial

IL-6 in healthy participants and type 2 diabetic patients fed 760 kcal of

HF and high-carbohydrate meals.

Differences between normal-weight and obese participants in the
anthropometric and baseline blood variables were assessed by theMann-

Whitney U test and ANOVA-type statistics of the R library nparLD,

respectively (a = 5%). Time-dependent changes in the concentrations of

the investigated variables after the consumption of the 3 HFmeals by the
normal-weight and obese participants were analyzed by pairwise

comparison of the postprandial time points (t = 1, 2, 4, and 6 h) with

the baseline time point (t = 0 h), testing the zero hypothesis H0: Y(0) = Y

(t) (ANOVA-type statistics of the R library nparLD). To investigate if
there was an overall significant postprandial response in the variables,

the following zero hypothesis was tested by using the Wilcoxon signed

rank test H0: net incremental AUC (net iAUC) = 0. The net iAUC was
calculated by subtracting the 2iAUC from the +iAUC, which are the

areas of excursion below and above the baseline values, respectively, by

using the trapezoid method. The net iAUC was chosen to minimize

biologically irrelevant deviations from the baseline values by solely
calculating the +iAUC. This strategy particularly favors the postprandial

analysis of variables such as IL-6 that only weakly change postpran-

dially. The net iAUC was also used to evaluate the dose-dependent effect

of the HF meal on the participants� postprandial response. For this, the
Wilcoxon test was used on the net iAUC values for pairwise comparison

of the 3 test meals. Differences between normal-weight and obese

participants in the respective dose-response to the HF meals were tested

with the Mann-Whitney U test on the net iAUC values.
Spearman rank correlation coefficients were calculated to quantify

relations among the variables (anthropometric variables, fasting values,

and net iAUC data). No correction for multiple testing was applied

because it would have been ‘‘family-wise" testing in a situation where
pairwise correlations are of interest and unduly conservative by the

number of tests.

Results

Baseline characteristics. The baseline characteristics of the
study population are shown in Table 2. In both groups, the
baseline values remained stable throughout the course of
the study (data not shown). Age and height were not signif-
icantly different between the 2 groups. As expected, weight,
BMI, and waist circumference were significantly higher in the
obese than in the normal-weight participants (P < 0.001).
Furthermore, fasting concentrations of insulin, glucose, TGs,
CRP, and GLP-1, as well as the ratio of total cholesterol to
HDL cholesterol, were significantly higher in the obese group
(P < 0.05). HDL cholesterol was significantly higher in the
normal-weight participants (P = 0.004). Fasting concentrations
of total cholesterol and the inflammatory markers IL-6 and
endotoxin were not significantly different between the 2
groups. The HOMA-IR and VAI, calculated from anthropo-
metric and baseline blood variables, were significantly higher
in the obese group. Taking 2.6 as the HOMA-IR cut-off value for
insulin resistance (32), all obese participants except 1 (HOMA-IR
= 2.1) were considered insulin resistant and all normal-weight
participants except 1 (HOMA-IR = 3.2) were considered insulin
sensitive. Removing these 2 participants from the analysis did
not alter the significant differences in the baseline metabolic and

TABLE 2 Baseline characteristics of the normal-weight and
obese men participating in the study1

Baseline variable
Normal-weight

(n = 19)
Obese
(n = 17)

Age, y 40.6 6 9.2 44.1 6 8.0

Height, m 1.8 6 0.1 1.8 6 0.1

Weight, kg 77.2 6 6.6* 123 6 17*

BMI, kg/m2 23.6 6 1.4* 38.8 6 4.9*

Waist circumference, cm 85.3 6 4.4* 127 6 10*

Glucose (normal range: 3.3–5.5), mmol/L 4.9 6 0.5* 5.3 6 0.5*

Insulin (normal range: 2.6–24.9), mU/L 6.0 6 2.9* 19.1 6 7.4*

HOMA-IR (normal range: ,2.6) 1.3 6 0.7* 4.5 6 1.8*

TGs (normal range: ,2.3), mmol/L 1.0 6 0.5* 1.5 6 0.7*

Cholesterol (normal range: ,5.2), mmol/L 5.2 6 0.8 5.5 6 1.1

HDL cholesterol (normal range: .1.0), mmol/L 1.5 6 0.3* 1.2 6 0.3*

Total:HDL cholesterol (normal range: ,5.0) 3.6 6 1.1* 4.7 6 1.3*

VAI 1.0 6 0.7* 2.0 6 1.1*

CRP (normal range: ,5.0), mg/L 0.9 6 0.9* 3.0 6 3.0*

IL-6, pg/mL 20.4 6 8.1 17.6 6 7.3

Endotoxin, EU/mL 2.3 6 0.5 2.5 6 0.6

GLP-1, pmol/L 31.8 6 15.8* 48.0 6 20.6*

1 Values are means 6 SDs. *Indicates a significant difference between the 2 groups,

P, 0.05. Glucose, CRP, TGs, cholesterol, and HDL cholesterol were analyzed in plasma.

Insulin, IL-6, endotoxin, and GLP-1 were analyzed in serum. One of the obese

participants was excluded from the statistical analyses because his baseline glucose,

insulin, and TG concentrations increased during the course of the study. CRP, C-reactive

protein; EU, endotoxin units; GLP-1, glucagon-like peptide-1; VAI, visceral adiposity index.
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inflammatory variables between the 2 groups (data not shown),
and therefore the 2 participants were maintained in their
respective group, i.e., normal-weight and obese, for all further
analyses.

In a complementary approach, Spearman rank correla-
tions between the baseline characteristics (anthropometric
measurements, fasting values) were calculated for all partic-
ipants and are illustrated in the form of a heat map in Figure

1. This analysis identified a range of positive correlations
between anthropometric (body weight, BMI, waist circum-
ference), metabolic (glucose, insulin, TGs), and inflammatory
(CRP, endotoxin) variables. GLP-1 also correlated positively
with various variables such as BMI, VAI, insulin, TGs, and
CRP. HDL cholesterol, on the other hand, correlated nega-
tively with all other variables except with total cholesterol
and IL-6. Finally, no significant correlation involving IL-6
was identified.

Postprandial response to the 3 caloric doses of the HF test

meal. An integrated analysis of the postprandial data for the
metabolic, hormonal, and inflammatory variables measured
between 0 and 6 h following the ingestion of the HFmeals by the
normal-weight and obese participants is shown in the form of
the net iAUC inTable 3 (Supplemental Table 1 gives the individual
values at 0, 1, 2, 4, and 6 h and associated statistics for the same
data set).

For all variables, except IL-6, at least 1 caloric dose of the test
meal led to an overall significant postprandial response in the
normal-weight participants. A dose-response could be demon-
strated for glucose, insulin, TGs, HDL cholesterol, total:HDL
cholesterol, IL-6, and endotoxin because the net iAUC after
ingestion of the 1500 kcal meal was significantly different than

after ingestion of the 500 kcalmeal. Formost of the aforementioned
variables, except glucose and IL-6, a dose-response could already
be demonstrated by increasing the caloric dose from 500 to
1000 kcal. No dose-response could be demonstrated for total
cholesterol, CRP, and GLP-1.

In the obese group, a dose-response could be demonstrated
for all variables except CRP. For insulin, TGs, HDL cholesterol,
total:HDL cholesterol, and GLP-1, a dose-response could be
identified by increasing the caloric dose from 500 to 1000 kcal.
For insulin and TGs, a further significant increase in the net
iAUC from the 1000 kcal meal to the 1500 kcal meal was
noticed.

Differences in the postprandial response between normal-

weight and obese participants. For each variable investi-
gated, Table 3 shows whether the postprandial response of
normal-weight and obese participants can be differentiated by
comparing their net iAUCs after ingestion of the same caloric
dose of the HF meal. The insulin response of the normal-weight
and obese participants was different for each of the 3 caloric
doses tested. Of note, the net iAUC of insulin following the
ingestion of the 500 kcal meal by the obese participants was at
least as elevated as the net iAUC of the normal-weight participants
after ingestion of the 1500 kcal meal. The glucose, cholesterol,
and total:HDL cholesterol response was also different, albeit not
at all 3 caloric doses investigated.

For TGs, HDL cholesterol, CRP, IL-6, endotoxin, and
GLP-1, none of the caloric doses led to the identification of a
significant difference in the postprandial response between
normal-weight and obese participants. Looking at each group
individually, however, we noted that the net iAUC of TGs
significantly increased from the 1000 kcal meal to the 1500

FIGURE 1 Spearman rank correlations between baseline characteristics (anthropometric measurements, fasting values) calculated for all

participants. Positive correlations ($0.2) are indicated with an orange color code, whereas negative correlations (#20.2) are indicated with a blue

color code. All color-coded correlations were significant (P , 0.05). Glucose, CRP, TGs, cholesterol, and HDL cholesterol were analyzed in

plasma. Insulin, IL-6, endotoxin, and GLP-1 were analyzed in serum. CRP, C-reactive protein; GLP-1, glucagon-like peptide-1; VAI, visceral

adiposity index.
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kcal meal in the obese but not in the normal-weight group.
Also, a significant postprandial effect in the net iAUC for IL-6
could only be demonstrated in the obese group after ingestion
of the 1500 kcal meal. In this context, it should be mentioned
that we also found a significant positive correlation between
the HOMA-IR and the postprandial IL-6 response after the
1500 kcal meal (r = 0.34, P = 0.04). Finally, although no
significant dose-response could be demonstrated for GLP-1 in
the normal-weight group, a dose-response effect for GLP-1 was
observed between the 500 and 1000 kcal meal in the obese
group.

Correlations between fasting and postprandial values of

the investigated variables. Spearman rank correlations were
calculated between the baseline characteristics (anthropometric
measurements, fasting values) and the postprandial responses
calculated by the net iAUC. Supplemental Figure 1 shows these
correlations in the form of a heat map for the pooled dataset
including both groups of participants separated by the caloric
dose administered. Of note, the fasting and postprandial concen-
trations correlated significantly and positively at all 3 caloric
doses investigated for insulin (meal A: r = 0.65, P < 0.01; meal
B: r = 0.83, P < 0.01; meal C: r = 0.77, P < 0.01) and TGs (meal
A: r = 0.53, P < 0.01; meal B: r = 0.64, P < 0.01; meal C: r = 0.51,
P < 0.01). On the other hand, the baseline concentrations of
GLP-1 correlated negatively with the corresponding postprandial
GLP-1 response, the correlation coefficients increasing as the
caloric dose of the HFmeal increased (meal A: r =20.23, P = 0.19;
meal B: r = 20.46, P < 0.01; meal C: r = 20.61, P < 0.01).

Correlations between the postprandial values of the

investigated variables. The postprandial information, as eval-
uated by the net iAUC, was also used to identify the transient
relation between the absorption of food and its metabolic and
inflammatory postprandial effects. Supplemental Figure 2 shows
these correlations in the form of a heat map for the pooled dataset
comprising both groups of participants and all 3 caloric doses
administered. In particular, besides the well-known relation be-
tween postprandial glucose and insulin (r = 0.51, P < 0.05), we
also noted a significant positive correlation between postprandial
TGs and endotoxin (r = 0.49, P < 0.05).

Discussion

In agreement with the literature, most of the baseline charac-
teristics in our study differentiated the 2 groups composed of 19
normal-weight and 17 obese participants. Also, a majority of the
correlations between the baseline characteristics of our study
population was significant, highlighting the relation between
metabolic, inflammatory, and hormonal processes (7,14,33,34).
Taken together, these baseline characteristics led us to conclude
that the selection of participants and blood variables was
appropriate to investigate the impact of increasing caloric doses
of a HF meal on human metabolic functions.

The postprandial changes observed in variables such as
glucose, insulin, and TGs are unequivocally due to the ingestion
of food. However, endogenous metabolic processes, in particular
the circadian rhythm (15), may confound the contribution of
food ingestion to postprandial changes observed in the concen-
trations of variables such as IL-6 and endotoxin. Except for CRP,
for all investigated variables a dose-response effect could be
demonstrated. We therefore conclude that the observed post-
prandial changes are directly related to the ingestion of the HF
meal rather than mirroring endogenous phenomena.

Differences between the normal-weight and obese participants
in the insulin response evidently reflected the insulin resistance of
the obese group. In this case, a caloric dose-response strategy
would not have been necessary to allow for a differentiation in the
postprandial response between the 2 groups. Melanson et al. (35)
advocated that meal size may strongly influence hormonal and
metabolite responses and, therefore, should be considered in the
design of nutritional intervention studies. In that context, we
identified no significant difference in the postprandial TG response
between the normal-weight and obese groups upon consumption of
500, 1000, and 1500 kcal of the HF test meal. However, pairwise
comparisons of the test meals showed a significant increase in the
net iAUC for TGs from the 1000 kcal meal to the 1500 kcal meal in
the obese group but not in the normal-weight group. Interestingly,
fasting TG concentrations, which were higher in the obese group,
also correlated positively with the postprandial TG response. These
findings may reflect differences in metabolic flexibility and satura-
tion processes between the 2 groups in agreement with previous
studies reporting an impaired TG clearance in obese participants
(36,37).

TABLE 3 Postprandial response of metabolic, hormonal, and inflammatory variables in normal-weight
and obese men after having consumed 500, 1000, and 1500 kcal of the HF meal1

Net iAUC

Normal-weight (n = 19) Obese (n = 17)

500 kcal 1000 kcal 1500 kcal 500 kcal 1000 kcal 1500 kcal

Glucose, mmol/L 3 6 h 22.6 6 0.4a,*,y 21.8 6 0.6a,b,y 21.1 6 0.5b,*,y 21.2 6 0.5b,*,y 20.4 6 0.6b 1.8 6 1.0a,*

Insulin, mU/L 3 6 h 12.9 6 3.2c,*,y 39.0 6 5.3b,*,y 63.9 6 9.3a,*,y 67 6 11c,*,y 186 6 26b,*,y 321 6 45a,*,y

TGs, mmol/L 3 6 h 1.9 6 0.3b,y 4.3 6 0.5a,y 4.8 6 0.5a,y 2.4 6 0.4c,y 5.0 6 0.5b,y 6.0 6 0.5a,y

Cholesterol, mmol/L 3 6 h 21.1 6 0.3y 21.2 6 0.2*,y 21.3 6 0.2y 20.4 6 0.2a,b 20.1 6 0.2b,* 20.8 6 0.2a,y

HDL cholesterol, mmol/L 3 6 h 20.3 6 0.1b,y 20.7 6 0.1a,y 20.6 6 0.1a,y 20.2 6 0.1b,y 20.6 6 0.2a,y 20.5 6 0.1a,y

Total:HDL cholesterol 0.2 6 0.2b 1.2 6 0.3a,y 0.9 6 0.3a,*,y 0.4 6 0.3b 2.3 6 0.6a,y 1.8 6 0.3a,*,y

CRP, mg/L 3 6 h 0.1 6 0.2 20.2 6 0.1y 20.3 6 0.1y 20.3 6 0.2 20.4 6 0.3 20.7 6 0.5

IL-6, pg/mL 3 6 h 29.3 6 4.9b 5.8 6 6.7a,b 9.9 6 5.6a 22.1 6 5.7b 0.8 6 6.3a,b 22.9 6 6.8a,y

Endotoxin, EU/mL 3 6 h 0.4 6 0.4c 1.8 6 0.6b,y 2.9 6 0.5a,y 0.4 6 0.8b 1.2 6 1.1a,b 2.7 6 0.4a,y

GLP-1, pmol/L 3 6 h 46.6 6 11.5y 63.8 6 15.7y 88.1 6 25.5y 47.6 6 8.2b,y 70.6 6 9.5a,y 76.1 6 12.8a,y

1 Values are means6 SEMs. Within a group, labeled means in a row without a common letter differ, P, 0.05. *Indicates different from the

corresponding normal-weight, P, 0.05. yIndicates a significant postprandial effect, P , 0.05, testing the zero hypothesis H0: net iAUC = 0.

Glucose, CRP, TGs, cholesterol, and HDL cholesterol were analyzed in plasma. Insulin, IL-6, endotoxin, and GLP-1 were analyzed in serum.

CRP, C-reactive protein; EU, endotoxin units; GLP-1, glucagon-like peptide-1; HF, high-fat; iAUC, incremental AUC.
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Obese participants may react stronger to meal-induced stress
than do normal-weight participants (8,9). The caloric dose
needed to provoke a postprandial inflammatory response is,
however, not known. Here we report a significant postprandial
response for the inflammation marker IL-6 in the obese group after
consumption of the 1500-kcal meal. These data are in agree-
ment with previous studies reporting a more pronounced
inflammatory response by insulin-resistant participants than
by insulin-sensitive individuals (8). The data also highlights
the importance of considering both the metabolic status of the
participants and the caloric dose of the ingested meal while
investigating the inflammatory response of the organism to
food consumption.

One mechanism potentially linking nutrition to inflammation
is the postprandial translocation of endotoxin from the gut into
the circulation, a phenomenon that may be increased in patients
with metabolic disorders (20–22). In addition, metabolic endo-
toxemia was identified as a causative factor in the onset of
insulin resistance, obesity, and diabetes (38). In line with these
studies, our participants had a postprandial increase in serum
endotoxin concentration following the consumption of the
HF meals. Interestingly, the net iAUC of endotoxin correlated
positively, although modestly, with the postprandial TG re-
sponse. The postprandial exposure to endotoxin may thus be
linked to the absorption of TGs, supporting the hypothesis that
fat may facilitate endotoxin absorption from the gut during the
secretion of chylomicrons (39–41).

Several studies reported a reduced postprandial GLP-1 re-
sponse in obese or insulin-resistant participants (42–45). By
comparing the net iAUCs between the normal-weight and obese
groups, we could not identify a significant difference in the
GLP-1 response at any of the caloric doses investigated. How-
ever, we noted that fasting GLP-1 concentrations, which were
higher in the obese group, correlated negatively with the post-
prandial GLP-1 response. Although not corroborated by the
data presented in Supplemental Figure 1, this may suggest that
participants with a higher BMI may indeed have an impaired
GLP-1 response to the ingestion of food.

Altogether, our data provide novel insights into the relation
between nutrition, metabolic health, and postprandial adapta-
tions. However, the study suffers from certain limitations that need
to be formally outlined here. First, the studywas only conducted in
male participants to avoid confounding factors related to repro-
ductive hormone processes in females. Second, blood pressure was
not assessed, and hypertensive participants may respond differ-
ently to meal-induced stress, e.g., in their TG response (46). Third,
we did not standardize the caloric content of the HF meals to the
body surface, age, or physical activity of the participants. Instead,
we focused on a simple dose-response study design with a broad
range of caloric content (500–1500 kcal) covering both suboptimal
and excess calories in both the normal-weight and obese partici-
pants participating in our study.

The strength of our study lies in its dose-response design. By
varying the caloric content of the HF meal we were able to better
differentiate the postprandial response of participants with a
different metabolic health status. Indeed, although insulin did
not request a caloric dose-response to differentiate normal-weight
from obese participants, other metabolic (TGs) and inflammatory
(IL-6) markers could only be differentiated by challenging the
participants with increasing caloric doses of a HFmeal. Thus, we
demonstrated that caloric dose-response challenges can reveal
metabolic adaptations resulting from the immediate impact
of food on the organism, which may be indicative of long-term
effects ultimately shifting the balance between health and

disease. We propose that the dose-response strategy presented
in this study could be used to compare the nutritional quality
of different types of foods by challenging a well-defined
metabolic group of participants with increasing caloric doses
of those foods.
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