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Towards a Bayesian evaluation of features in questioned handwritten

signatures

Abstract

In this work we propose the construction of a evaluative framework for supporting experts in questioned

signature examinations. Through the use of Bayesian networks, we envision to quantify the probative value

of well defined measurements performed on questioned signatures, in a way that is both formalised and part

of a coherent approach to evaluation.

At the current stage, our project is explorative, focusing on the broad range of aspects that relate to com-

parative signature examinations. The goal is to identify writing features which are both highly discriminant,

and easy for forensic examiners to detect. We also seek for a balance between case-specific features and

characteristics which can be measured in the vast majority of signatures. Care is also taken at preserving

the interpretability at every step of the reasoning process.

This paves the way for future work, which will aim at merging the different contributions to a single

probabilistic measure of strength of evidence using Bayesian networks.

Keywords: Bayesian networks, signature evidence, Fourier descriptors, multivariate likelihood ratio

1. Introduction

Handwritten signatures have been employed

since centuries as a means of authenticating one’s

identity on official documents. Their study has

been one of the oldest disciplines in forensic science,

yet its evaluative part did not achieve the same level

of refinement as others.

Several professional groups, such as questioned

document examiners, are trained to testify in courts

by following established examination protocols for

handwritten signatures. However, the usage of

handwritten evidence in courts raises a number of

issues. The scientific foundations of forensic hand-

writing comparisons are regularly doubted, in par-

ticular the mechanism by which forensic examiners

arrive at and state their conclusions is often ques-

tioned. Specifically, the evaluation process is highly

expert dependent and does not rely on standardized

measurements and lines of reasoning, being thus

highly dependent on the skill and proficiency of each

examiner.

The use of forensic science in legal proceedings

is based on the so-called “evaluative” framework:

instead of stating a probability for a hypothesis,

forensic experts report an expression of strength

of support against two competing hypotheses, of

forensic and legal interest[1]. To help evaluate the

strength of support, a likelihood ratio is used in or-
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der to formalise the reasoning of the expert with

respect to the relevant scientific findings.

The advantages of this evaluative framework are

multiple: while formalised reasoning is much less

liable to logical fallacies, experts will not express

their beliefs on matters for which a court is respon-

sible, notably on the hypotheses of interest. Fur-

ther, the approach clarifies that the probability of

hypotheses of interest also depends on information

other than the scientific findings, allowing thus legal

decision makers to incorporate in their reasoning a

broad range of collateral case information.

1.1. The defence hypothesis

In forensic science, case-based evidence is col-

lected and assessed under at least two competing

hypotheses, those of the prosecution and the de-

fence. In the domain of comparative forensic doc-

ument examination, evidence takes the form of ob-

served similarities and differences between ques-

tioned and reference (“known”) items. To assess its

value with respect to the competing hypotheses, the

forensic scientist needs to evaluate the rarity of such

similarities and differences in a given population of

potential writers.

The choice and the size of the relevant popula-

tion is of utmost importance, as it is very easy to

overestimate the relevance of a character trait if it

is shared by many or all the users of a determinate

writing system [2]. For example, one may compare

the writing features of a questioned item against

those of two individuals, a number of suspects, or

any other set of potential writers. If the relevant

population spans a restricted number of individu-

als, the comparison is said to be a “closed-set”: on

the other hand, if the population at large is consid-

ered, the situation is labelled “open-set” [3].

As a result, the value of the scientific findings

strongly depends on their rarity in the reference

population, though some traits might be more dis-

criminating between two individuals rather than

among a broader group of writers.

In this article we mostly focus on closed-set cir-

cumstances, leaving the possibility to extend to

open-set situations in future works.

1.2. Elements of Bayesian networks

To depict the reasoning using the previously il-

lustrated intepretative framework, consider a single

variable H which can assume two mutually exclu-

sive states Hp and Hd, respectively the prosecution

and the defence hypothesis. In a questioned signa-

ture examination scenario, we may associate e.g.,

Hp = “Person A has written the questioned signa-

ture” and Hd =“An unknown person has written the

questioned signature”. Let E be the set of findings,

as detected by the expert (e.g., similarities and dif-

ferences between the questioned signature and the

reference specimens). We denote with I the back-

ground information on the case, available to the

expert.

Relevant to the recipient of expert information

are the prior beliefs on Hp and Hd, conditioned by

the background information: these are the proba-

bilities Pr (H = hp | I) and Pr (H = hd | I), respec-

tively1. More precisely, their ratio (called prior

odds) is the relative strength of belief in H a priori.

1The reason for which hp and hd are written in lower-case

letters is explained in Section 3.
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The role of the expert is to evaluate the

probability of having observed E under hp and

hd: these terms are Pr (E | H = hp, I) and

Pr (E | H = hp, I), respectively.

Bayes’ theorem then states that the relative

strength of belief in H a posteriori is proportional

to the prior odds. In formulae:

Pr (H = hp | E, I)

Pr (H = hp | E, I)
= LR

Pr (H = hp | I)

Pr (H = hd | I)

where

LR =
Pr (E | H = hp, I)

Pr (E | H = hp, I)

is called likelihood ratio. We observe that LR pro-

vides the expression for the strength of support of

E versus the considered H: if LR > 1, E provides

more support to hp rather than hd, conditioned on

the background information, and vice versa. No-

tice that it does not imply that hp is more probable

than hd. To dissect the definition of the LR, the nu-

merator reads as the probability of having observed

E under hp: referring to the previous example, it

amounts to asking “what is the probability of ob-

serving the set of concordances and discordances

in genuine signatures of Person A?”. The denom-

inator, instead, is the probability of observing the

same set of findings in signatures that appear to

belong to Person A, but instead have been forged

by someone else: this is assessed using the relevant

population, defined in Section 1.1. In other terms,

the LR is the ratio of two probabilities that account

for, respectively, the intra- and inter - variability of

findings.

Note that to apply the evaluative framework, one

needs to specify not only the numerical values for

I

H E

Figure 1: The example in Section 1.2 as a Bayesian

network. Note that the node I is usually omitted.

the beliefs, but also the dependences between the

variables in terms of conditional probabilities. This

can be intuitively represented in a graphical nota-

tion, which enables the forensic scientist to con-

sider cases with multiple variables with differing

interdependence. The obtained graphs are named

Bayesian networks [4]: for instance, the previous

example can be represented in Figure 1. Note that

the background information I is used to condition

all relevant probabilities associated to H and E.

For the sake of simplicity, such dependence is gen-

erally just assumed without a clear representation

in the network. As a consequence, information I is

usually omitted from explicit graphical representa-

tion in Bayesian networks.

Bayesian networks are very flexible, and have

been used to support evaluative reasoning in very

different forensic branches such as firearms [5],

printed documents [6], signatures [7], forensic

medicine [8] and DNA [9]. A review on the usage of

Bayesian networks in forensic science can be found

in [10].

1.3. Hierarchical evidence evaluation

A Bayesian network can be built for a rather

generic evaluative procedure (e.g., the two-trace

problem in [11]), but its structure can also be mod-

ified in order to accommodate for missing evidence

3
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[10]. Specifically, a binary-valued node M can be

added to the network, encoding the fact that some

evidence E is expected, but has not been retrieved

(i.e., is missing). The usual assessments on the

probability of E are now conditional on M .

The flexibility of Bayesian networks allows us to

assess the probative value in complex cases, using

evidence which is more and more case-based. In

the works described later on, we envision to build

a useful model to capture the essential features of

the process of signature comparison, to help evalu-

ating evidence which can always be measured (e.g.,

physical dimensions of the signatures) up to specific

traits of one’s signature (e.g., inner angles), which

might not always be recognisable.

2. Related work

2.1. Pattern Recognition literature

A large amount of work has been recently done in

building automatic classifiers for signatures. Most

often, they exploit features which are not easy to

describe (either empirically or mathematically), or

have limited forensic interest. Such systems can

be designed to work in a multi-writer environ-

ment, with known or unknown sources. A num-

ber of literature review papers are available, such

as [12, 13, 14].

Several international competitions of automated

forensic handwriting analysis (AFHA) have also

been organised, mostly related to ICDAR con-

ferences: typically, they required participants to

test their working systems on a common signature

database, built specifically for the contest.

The literature distinguishes between studying on-

line signatures (i.e., whose speed, acceleration and

stroke-order data is recorded in real-time) and off-

line signatures (i.e., where only the finished written

signature is studied) [14], but also classifies the sig-

natures according to their “grade” of forgery. Since

an automatic approach is sought, researchers fre-

quently aim at distinguishing one’s signature from

another’s, with no attempt at forgery (i.e., ran-

dom forgery) [12]. If the forger is aware of the

victim’s name but signed in his own style, we talk

about blind forgery ; if the forger has obtained some

genuine specimens and has actively tried to repro-

duce the victim’s signature, one talks about skilled

forgery.

However, our goal is not to build an entirely

automatic system to classify signatures (which is

the goal of AFHA discipline), but to find a means

to support the forensic document examiner in his

evaluation. A fully automatic approach would be

useless to him, since, for example, by his exper-

tise he would also consider a number of characteris-

tics which are related to the context of the con-

tested specimens (e.g., type of instrument, writ-

ing position, nature of document, secondary traces

such as blood or fingermarks, and reasons behind a

forgery): an automatic approach cannot deal with

these characteristics, since they are necessarily tied

to a specific forensic case. Moreover, works in Pat-

tern Recognition literature achieve very high clas-

sification rates (see Table V in [14]), but do so in a

not forensically interesting environment, both due

to the usage of different hypotheses (e.g., writing

position, type of instrument and psychological con-

ditions) and to the way in which conclusions are

4
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reported. They also typically make no reference to

the chosen population under the defence hypothesis

(see Section 1.1).

To reconnect with the Pattern Recognition

nomenclature, the aim of this work is to study

skilled forgeries in an off-line setting. However, the

choice of features which will be examined and their

integration into the evaluative framework is very

different.

2.2. Forensic handwriting examination literature

As stated before, forensic handwriting examina-

tion is one of the oldest disciplines of forensic sci-

ence. A great deal of literature is available on the

subject, suggesting a number of traits of signatures

and handwriting to be considered for evaluation:

for example see [2, 15, 16, 17] and [18]. How-

ever, few of these works actually report quantita-

tive means for obtaining measurements, and those

who do have been often targets of criticism (see

[19] and [20]). Scarce progress was made in the

quest for the formalisation of handwriting exam-

inations until very recent years, with the advent

of increasing computational power, refined mathe-

matical techniques and sophisticated forensic tools.

Among other works, we highlight [21], [22] and [23].

Here, we chose to follow the initial part of [21] on

signatures on paintings, for multiple reasons. Her

work strives to achieve the same goals as ours, albeit

in different contexts. The analysis of painted sig-

natures deeply draws from the classical expertise in

forensic document examination, on which our work

will be based: as a consequence, the adopted fea-

tures are related only to distances and angles inside

each signature. The scope of [21] is mainly quanti-

tative, and is aimed at building an evaluative pro-

cedure under the Bayesian framework.

In [23], the authors illustrated a method to dis-

criminate writers based on the shape of the cap-

ital letter “O”, further extended to other charac-

ters in later works [24, 25, 26]. Specifically, loops

of closed characters are described in terms of har-

monic content of the shape contour, being thus

easily classifiable by a set of numbers separating,

e.g., “small, shaky and elongated loops” from “round

and smooth circles”. This method is striking in its

match between simplicity and visual effectiveness,

therefore we decided to adopt it as a part of our

framework.

3. Notation

In this section we define the notation that will be

used in this work.

Where possible, upper-case letters will denote

random variables (e.g., H), whose realisations are

indicated with lower-case letters (e.g., H = h). Vec-

tors will be underlined (e.g., X). We may also ob-

tain a number of observations from a single ran-

dom variable: the i-th realisation will be indicated

with a parenthesized superscript. For example,

s = (s(i))ni=1 is a collection of n realisations of the

random variable S.

In forensic literature it is customary to specify

the competing hypotheses by means of the variable

H taking values in {Hp, Hd}, respectively for the

prosecution and the defence. In light of previous

remarks, Hp and Hd will then be indicated in lower-

case notation (i.e., hp and hd).

In this work several signatures of a single per-
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son, denoted A, were analysed. In addition, a

number of forged specimens were provided by sev-

eral forgers. The latter are anonymously denoted

by F1, F2, F3, F4. The set of all forgers is de-

noted with FAll. We indicate the writer of the i-

th specimen with the variable w(i), taking values in

WAll = {A} ∪ FAll. Notice that w is supposed to be

known, but it will be used only for ease of notation

rather than inference.

Further definitions about the acquired corpora

are given in Table 1 and Table 2.

4. Methodology

4.1. Signature acquisition: the corpora

143 signatures of a single person A were collected

over the period of a month, writing in small batches

to avoid hand fatigue and adaptation. All signa-

tures have been written with a black ball-point pen

on unruled white paper in a normal sitting posi-

tion. As [27] reports, the absolute size of writing

is deeply affected by available space, hence enough

space has been left on the sides to prevent any re-

straining effect.

Forged samples were provided by 4 other per-

sons, with no past experience in signature forgery

and document examination. Each forger received

the authentic corpus, and was instructed to practice

forgeries to one’s liking. Each forger reproduced at

least 20 forgeries each over a week period, with a

black pen in a normal sitting position. Tracing has

been forbidden.

All collected signatures have been digitalized at

600 dpi and saved in an uncompressed grayscale for-

mat. The composition of the corpora is summarised

Writer N° Description

A nA = 143 Authentic corpus

F1 nF1
= 35

F2 nF2
= 20

F3 nF3
= 21

F4 nF4
= 20

FAll = {F1, F2, F3, F4} nF = 96 Forged corpora

WAll = {A,F1, F2, F3, F4} n = 239 Full corpus

Table 1: Composition and notation of the corpora.

in Table 1.

4.2. Signature processing

As some features require the extraction of the

contour and pixel values, each image needs to be

further processed. Specifically, each signature is iso-

lated from the background by means of a combina-

tion of morphological operators [28]. Consequently,

each pixel of the image is either part of the back-

ground or of the signature.

As no guideline is provided onto the writing pa-

per, signatures are rotated in order to compensate

for the baseline inclination, evaluated by inspection.

However, there were no cases in the corpora with

extreme slant. This step is not necessary if only

distance-based features (e.g., length of a particular

ascender, or width of a word) are retained.

The implementation of [23] necessitates to locate

closed loops in signatures. For each signature in

the corpora, at most 5 loops were identified, each

one attributable to the shape of single characters

(“a”, “b”, “o”). Loops were closed by hand if a clo-

sure did not significantly alter their shape (i.e., very

small opening, or the closing is strongly suggested

by the surrounding character traits), while missing

6
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loops (i.e., either open or not present at all) were

labelled as such. After normalizing the area of each

loop, the contour was separated using morpholog-

ical operators, and a vector of Fourier descriptors

was extracted. 4 harmonics were retained, thereby

producing 8 pairs of values (amplitude and phase)

for each loop. Harmonics greater than the fifth or-

der were discarded, as their shape contribution was

visually negligible.

4.3. Keypoints and measures

Following [21], 19 keypoints were hand picked in

order to identify features which are both relevant to

forensic examination, and easy to locate in the au-

thentic signatures. The keypoints were afterwards

matched in all corpora by human inspection. It

is worthwhile noting that a given keypoint can fail

to be present on a specimen: this information has

been retained rather than discarded, and provides a

further novelty in future works with respect to [21].

The list of chosen keypoints is graphically repre-

sented in Figure 2, along with two samples from the

corpora.

The set of keypoints serves as a basis to obtain

measurements such as distances, angles, and ra-

tios of distances. Such a list of measures is re-

ported in Table 2. To reduce the huge amount

of measurements which can be extracted, we de-

cided to initially focus only on those which can

be reliably transposed to other kinds of signatures.

Nevertheless, as mentioned in Section 1.3, fea-

tures which are highly signature-dependent (such

as Θ1,Θ2,Θ3,Φ1,Φ2) can be integrated in the

Bayesian network to provide further support to (or

against) the hypotheses.

5. Results

5.1. Absolute dimensions

The simplest analysis which can be done is to

study the absolute dimensions of signature sam-

ples, S1 and S2. Collected data is represented in

Figure 3. It is evident that layman forgers were

disregarding the absolute dimensions of the spec-

imens, thereby producing forgeries with high pro-

bative value in favour of the hypothesis of forgery

(rather than authenticity). The reasons are mul-

tiple: first of all, specimens were provided in an

electronic format rather than in a printed form, im-

pairing absolute visual comparisons between one’s

forgery and a genuine sample. Also, there were no

visual guides on the document, to reduce the afore-

mentioned restraining effect. Hence, the detected

differences are tied to the mode of presentation of

specimens to forgers.

We nevertheless chose to report this analysis, as

the method is applicable to any set of quantitative

measurements performed on every specimen. As an

example, we may repeat the same analyses on rel-

ative measurements (i.e., measurements which are

independent of absolute sizes).

From Figure 3, the visual clustering of signature

dimensions suggests us to treat them as samples

from k bivariate Gaussians, where k = 5 (i.e., num-

ber of writers in the corpora).

According to Bayes’ theorem (see Section 1.2),

in the numerator of the LR, the variability of the

signature dimensions is assessed in the genuine sig-

natures. In a real-world forensic context, as stated

in Section 1.1, one needs to specify the defence hy-

pothesis, hence the population of interest (denoted

7



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

(a) An authentic signature.

(b) A forged signature. Notice that keypoint #9 is missing.

Figure 2: Two signatures in the corpora, with marked keypoints.

Symbol Name Domain Formula

S1 Signature width [0,∞) -

S2 Signature height [0,∞) -

D1 Absolute word spacing [0,∞] |H17 −H16|

D2 Relative word spacing [0, 1] D1/S1

D3 Initial height [0,∞) |min(V1, V3)−max(V7, V8, V9))|

D4 Small caps height [0,∞) |H14 −H15|

D5 Caps height ratio [0, 1] D4/D3

D6 Absolute first name length [0,∞) |H16 −H7|

D7 Relative first name length [0, 1] D6/S1

Θ1 Angle inside upper loop of L [0°, 360°) Angle between keypoints 1, 2, 4

Θ2 Angle between ascender of L and keypoint 9 [0°, 360°) Angle between keypoints 3, 5, 9

Θ3 Angle inside G [0°, 360°) Angle between keypoints 11, 12, 13

Φ1 Slant of ascender of L [0°, 360°) Slope of line between keypoints 3, 5

Φ2 Slant of descender of G [0°, 360°) Slope of line between keypoints 12, 13

Table 2: List of keypoint-based measures. Formulae are omitted with angles and slants. Hi (Vi) denotes the horizontal

(vertical) distance in mm between the i-th keypoint and the top-left corner of the signature. Please note that Hi is

not related to the hypothesis H.
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with F). The probability of the evidence under the

defence hypothesis appears as the denominator of

the LR.

We consider the following hypotheses: H = hp =

“The questioned signature has been written by A”

vs H = hd = “The questioned signature has been

written by someone in F”.

If two writers need to be compared, our cor-

pora are able to produce 4 kinds of comparisons

with the reference material, one for each forger (i.e.

{A vs Fi}
4
i=1). In that case, F is represented by

the corpus produced by the considered forger.

If the number of potential writers remains un-

known, however, the 5-class comparison problem

becomes a two-class comparison problem, i.e., “au-

thentic” (H = hp) vs “forged” (H = hd). In the

latter case, F = {F1, F2, F3, F4} = FAll: i.e., under

hd we state that a signature has been produced by

one of the F . Notice that we consider writers in

F as being “indistinguishable” from each other, as

they are grouped together under a single distribu-

tion, the one under hd. In other words, we consider

forged specimens as having been written by a single

“virtual” writer FAll. We also observe that, under

the latter, the Gaussian structure under hd cannot

be assumed in our corpora.

To simulate a real-world comparison procedure,

we performed a leave-one out cross-validation.

From the corpora we extracted a questioned signa-

ture; the remaining part will serve as the training

data, which is used to infer the various distribu-

tional parameters. The questioned signature is fi-

nally evaluated against the updated distributions,

thereby producing a LR value. This procedure is

repeated until the corpora are exhausted, thereby
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Figure 3: Plot of signature dimensions. Colours repre-

sent the identity of the forger, where “A” marks the au-

thor of genuine specimens. To aid visual separation and

to suggest distributional hypotheses, we superimposed

the smallest ellipses covering 95% of the points [29].

producing n = 239 LR values. We expect to obtain

LRs greater than 1 in the authentic corpus, and

LRs smaller than 1 otherwise.

In the light of previous remarks, we collect S1 and

S2 in a vector, and we model the vector S = (S1, S2)

as follows:

S |H = h, µh,Σh ∼ N2(µh,Σh), (1)

where h ∈ {hp, hd} is value of the considered hy-

pothesis (H = hp in authentic signatures, H = hd

otherwise), and
(

µh,Σh

)

are respectively the max-

imum likelihood estimates of the mean and the co-

variance matrix under h. By abuse of notation, we

will write, e.g., µp instead of µhp
. In short, the

model is the following:

s(i)
∣

∣

∣
H(i) = h, µh,Σh

iid
∼ N2(µh,Σh)

∀i : wi ∈ {A} ∪ F . (2)

We are assuming that signature dimensions are

temporally indistinguishable (i.e., there is no de-

pendence on i), and their distribution corpora can

be fully described with a mean vector, and a co-

variance matrix. The model (1) is represented as a

9
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H

Σp
µp µd Σd

S

Figure 4: The model (1) represented as a Bayesian net-

work.

Bayesian network in Figure 4.

The LR value is computed by evaluating the

probability density function of the questioned pair

(S1, S2) under the competing hypotheses. In for-

mulae:

LR(i) =
f(s(i);µp,Σp)

f(s(i);µd,Σd)
∀i : wi ∈ {A} ∪ F ,

where µp, Σp, µd, Σd have been estimated us-

ing the remaining parts of the considered corpora

(i.e., for the i-th LR, all specimens with indexes

{j : wj = A ∧ j ̸= i} under hp, and all specimens

with indexes {j : wj ∈ F ∧ j ̸= i} under hd).

In Figure 5 we show the LR obtained for each

specimen under two comparison scenarios. Notice

the very large LR values: this may be due to the

fact that in our model there is no uncertainty on

the parameters of the Gaussian distributions, as we

substituted their respective maximum likelihood es-

timates. Tippett plots for all scenarios are reported

in Figure 6, while corresponding confusion matrices

are reported in Table 3.

Notice that in order to produce a fully Bayesian

model, in (1) we should specify a prior on µh, Σh

and the hypothesis H. [30] For this study, how-

ever, we substituted the maximum likelihood es-
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(b) F = {F1, F2, F3, F4}, i.e., comparison between 5 writ-

ers, hd =“The signature has been written by any of the

F”.

Figure 5: LRs obtained through cross-validation in two

different scenarios. Each point represents a questioned

signature, evaluated against the rest of the corpora. The

resulting Log LR value is represented by its colour. El-

lipses containing 95% of the competing distributions of

the S are added, while triangles and circles are super-

imposed on cases where the LR supports the wrong hy-

pothesis. Note the large difference in evidence strength

between Figure 5a and Figure 5b.

10



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

!"!#$#%&'(!!)* !"!#$#%&'(!!)+ !"!#$#%&'(!!), !"!#$#%&'(!!)- !"!#$#%&'(!!)"..

/0//

/0+1

/01/

/021

*0//

!"# !$# !%# # %# $# !"# !$# !%# # %# $# !"# !$# !%# # %# $# !"# !$# !%# # %# $# !"# !$# !%# # %# $#

&'(%#!&)

%
*!
*+

,
- ./0123045*64(370/829

:'

;26

Figure 6: Tippett plots of signature sizes under 5 different comparison scenarios. The dashed line marks LR = 1.

F = FAll F = F1 F = F2 F = F3 F = F4

Ground truth LR < 1 LR ≥ 1 LR < 1 LR ≥ 1 LR < 1 LR ≥ 1 LR < 1 LR ≥ 1 LR < 1 LR ≥ 1

Hp 4 139 4 139 0 143 2 141 11 132

Hd 79 17 34 1 20 0 18 3 18 2

Table 3: Confusion matrices across 5 different comparison scenarios.

timates in their corpora, as performed in [31]: this

both simplifies the reasoning, and greatly reduces

the amount of calculations which have to be com-

puted. A fully Bayesian modelling can be at-

tempted to account for parameter uncertainty, as

done in [30, 32, 33, 34].

A further possible extension is to also infer |F|

(i.e., the number of forgers in the corpora), and

the individual characteristics of each writer. The

fully Bayesian tools of choice are Dirichlet Process

Mixture Models [35].

5.1.1. Sensitivity to dataset size

To investigate on the sensitivity of the method

introduced in 5.1, we conducted a sensitivity anal-

ysis of the LR on the particular choice of the

dataset. Specifically, instead of using the entire au-

thentic corpus to estimate the population param-

eters (µp and Σp), we considered smaller random

subsets of specimens of increasing size (8 sizes be-

ing {5, 10, 12, 15, 20, 30, 50, 90}, while the authentic

corpus has size 143). For each subset size, we re-

peated the analysis 10 times, each time choosing a

new subset, thus obtaining 10 × 8 = 80 likelihood

ratios for each specimen, for a fixed F (the set of

possible forgers). An averaged LR can be formed

by combining the 10 repetitions for each image and

for each subset size. The arithmetic mean of such

repetitions has been indicated with the symbol LR.

It is worthwhile noting that it is possible to per-

form other kinds of aggregations, such as majority

voting. Large sample properties, however, do not

change.

Only the authentic corpus has been subsampled

for two reasons. First, the forged corpora are al-

ready very small with respect to the authentic cor-

pus (see Table 1): a further resampling could intro-
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duce artifacts in the obtained distributions. Sec-

ondly, this enables us to approach dataset sizes

which are more commonly encountered in practi-

cal cases: e.g., we computed the likelihood ratios

by comparing 20 authentic specimens and 20 forg-

eries.

To summarise the sensitivity results, we use Tip-

pett plots shown in Figure 7. To ease interpreta-

tion, we have only shown the averaged likelihood

ratio LR: also, the tails of the distributions have

been cut off to highlight the increasing spread for

smaller dataset sizes. Notice how the likelihood ra-

tio is more sensitive for forgers who produced forg-

eries with more variable sizes (e.g., F2). Also, it

reveals how important it is to consider writers sep-

arately instead of grouping them together under the

virtual writer FAll.

It can be shown that the size of the subsets heav-

ily impacts the range of the likelihood ratios ob-

tained, but does not significantly affect whether a

likelihood ratio obtained for a given specimen sup-

ports the correct hypothesis. This last effect is

shown in the confusion matrices in Table 4. For

small dataset sizes, a signature can obtain contrast-

ing LR values across repetitions. As more data

is considered for estimation of population param-

eters, the LR converges to the one obtained using

the entire dataset, as in the previous section. This

is mostly due to the fact that the maximum likeli-

hood estimators are unreliable unless the size of the

dataset is sufficiently large.

A fully Bayesian analysis would heavily reduce

this problem by leveraging on past data (repre-

sented by priors) as well as hypotheses on popu-

lation parameters. However, the development of a

fully Bayesian method is not straight-forward, and

is out of scope of the current article.

5.2. Angles and slants

As stated in Section 4.3, angles and slants are

highly dependent on the specific case. Moreover,

within the collected authentic corpus it is not ap-

parent how to define measures which are both

angle-based and easy to extend to other kinds of

signatures.

Another difficulty lies in the properties of the nu-

merical domain where angles and slants lie. Com-

mon classifiers do not reliably work, and particular

care is needed even to define the sample mean [36].

Circular statistics, and in particular Bayesian ex-

tensions, still pose many open research questions.

We nevertheless decided to briefly report our col-

lected data, leaving the possibility to expand its

analysis in future works, as suggested in Section 1.3.

Summary statistics are reported in Figures 8

and 9. Notice that angles and slants are much less

clearly distributed than the absolute dimensions of

signatures. Also, some keypoints are often miss-

ing in the corpora (e.g., keypoint 9), which leads to

the impossibility of measuring an angle or a slant.

As a consequence of this interplay, in some cases

we speculate that evidence provided by absolute

angular measurements can be dominated by other

characteristics, such as presence or absence of key-

points, or the impossibility to obtain angular mea-

surements.

5.3. Proportions and distances

In this subsection we explore a joint representa-

tion for the measures reported in Table 2. Specif-

ically, we focus on the measures D = (Dj)
7
j=1, as

12
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Figure 7: Tippett plots of sensitivity on dataset size under 5 different comparison scenarios. The LR is averaged

over 10 subsamplings for a fixed subset size. The dashed vertical line marks LR = 1.

F = FAll F = F1 F = F2 F = F3 F = F4

Ground truth Subset size LR < 1 LR ≥ 1 LR < 1 LR ≥ 1 LR < 1 LR ≥ 1 LR < 1 LR ≥ 1 LR < 1 LR ≥ 1

Hp 5 7 136 4 139 0 143 2 141 11 132

10 5 138 4 139 0 143 3 140 11 132

12 6 137 4 139 0 143 1 142 12 131

15 4 139 4 139 0 143 2 141 11 132

20 4 139 4 139 0 143 1 142 11 132

30 4 139 4 139 0 143 1 142 11 132

50 4 139 4 139 0 143 1 142 11 132

90 4 139 4 139 0 143 2 141 11 132

Hd 5 75 21 34 1 20 0 18 3 18 2

10 78 18 34 1 20 0 18 3 18 2

12 78 18 34 1 20 0 18 3 18 2

15 78 18 34 1 20 0 18 3 18 2

20 78 18 34 1 20 0 18 3 18 2

30 79 17 34 1 20 0 18 3 18 2

50 78 18 34 1 20 0 18 3 18 2

90 79 17 34 1 20 0 18 3 18 2

Table 4: Sensitivity of the confusion matrices in Table 3 to subset size across 5 different comparison scenarios. LR

denotes the likelihood ratio averaged over 10 trials for each chosen subset size.
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writers. Notice that densities of angle 4 → 5 → 9 are

extremely noisy due to the limited number of samples.
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(b) Proportion of measurable angles in a given corpus. An

angle is not measurable if any of its keypoints is missing.

Figure 8: Summary of angle-based measures.
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circular mean. Notice that densities of slant 5 → 9 are

extremely noisy due to the limited number of samples.
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(b) Proportion of measurable slants in a given corpus. A

slant is not measurable if any of its keypoints is missing.

Figure 9: Summary of slant-based measures.
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they do not suffer issues that characterise angles

and slants.

Their distributions have been summarised in Fig-

ure 10. To isolate the most discriminant features,

the article [21] proceeds with Boruta feature selec-

tion. On our corpora, however, all features are la-

belled as being important, thus defeating the goal

of the feature selection step.

Nevertheless, to gain insight into the structure of

the corpora with a joint visualisation, we explored

a representation of the observed d = {di}
7
i=1 into

a lesser-dimensional space. To this purpose, there

are a host of techniques which fall under the cate-

gory of Multidimensional Scaling (MDS): as an ex-

ample, PCA is strongly related to the simplest MDS

techniques. All MDS techniques map points to the

lesser-dimensional space such that those who are

most similar, they are represented as being closer,

while points that are very dissimilar get spread far

apart. Notice that MDS techniques work with unla-

belled (“unsupervised”) data.

In particular, we applied t-distributed Stochas-

tic Neighbor Embedding (t-SNE)[37]: this technique

is very powerful, well suited for high-dimensional

databases, and it has been specifically conceived to

map vectors from any space to a plane (R2). How-

ever, it has some drawbacks: the convergence to a

global optimum is not guaranteed, it is a stochastic

method (hence results are not easily reproducible),

and it does not provide a means to map a new point

on a past representation. Furthermore, it is often

difficult to interpret the learned characteristics, as

they are non-linear and do not have a specific geo-

metrical meaning (unlike other dimensional reduc-

tion techniques such as principal components).

The results of t-SNE have been represented in

Figure 11: notice the intrinsic similarity between

specimens produced by each forger. This gives us

hope for obtaining a statistical model capable of

distinguishing evidence from different forgers in fu-

ture works.

5.4. Marquis’ Fourier descriptors

The idea behind this approach is to decompose

each closed loop as a Fourier series of harmonic

components. Following [23], from each closed loop

we first extract the contour, we normalize its area2,

we describe it in polar coordinates as ρ = f(θ) (see

Figure 12) and we represent f with a Fourier se-

ries3:

f(θ) = A1 +
∞
∑

k=2

Ak cos (θ (k − 1) + τk)

The set of amplitudes and phases (Ak, τk)
K
k=k0

forms the Fourier descriptors, which characterize

the shape of the loop.

We chose to consider only harmonics with k ∈

{2, . . . , 5}, as A1 is tied to the loop radius, and

harmonics above k = 5 have a negligible effect on

the shape. The distribution of amplitude coeffi-

cients across letters, writers and harmonic index is

reported in Figure 13.

A number of observations can be made on Fourier

descriptors.

2The motivation behind area normalization is to be able

to measure deviations from circular shapes rather than vari-

ations in scale. As a consequence, all loops have approxi-

mately the same mean radius, represented by the term A1.
3To conform to the literature, we use a upper-case no-

tation: the distinction between random variables and their

realisations is left to the context.

15



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

!" !# !$ !% !& !' !(

&

")

"&

)*"

)*#

#*&

&*)

(*&

")*)

"

#

$

%

)*#&

)*&)

)*(&

")

#)

$)

%)

)*$

)*%

)*&

+ ," ,# ,$ ,% + ," ,# ,$ ,% + ," ,# ,$ ,% + ," ,# ,$ ,% + ," ,# ,$ ,% + ," ,# ,$ ,% + ," ,# ,$ ,%

-./01.

2
1
3
4
5
.1
67
3
85
1

Figure 10: Boxplots for all measures in Table 2.

!"#

!$#

#

$#

!$# # $# "#

%&'(')*+(,-*,).$

%
&
'
('

)*
+
(,
-*

,)
."

/0*&+1*,).-,21'*0(+3

45

6+-

7(,*+(

/

8$

8"

89

8:

Figure 11: t-SNE representation of the set of measures d. Colors (forgers) have been added afterwards. The obtained

characteristics have no specific meaning, yet they form clusters which correspond to individual writers: specimens

which are represented as being closer, are “more similar”.

16



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

θ x

y

ρ

Figure 12: A closed loop in polar coordinates. Figure

adapted from [23].

First of all, shape information can be properly

described only by considering pairs (Ak, τk). All

pairs are shown in Figure 14, distinguishing by let-

ter and writer. Notice the discriminative power of

the third harmonic.

It is necessary to note that all τks are affected

by the same problems as the angles in Section 5.2.

In fact, the τks are not necessarily restricted to

a small neighbourhood of some τ0, but can eas-

ily assume any angle in the unit circle: this de-

feats methods based on small deviations from a

common mean, or methods that do not wrap dis-

tributions around the unit circle. Consequently,

rather than building a classifier as in [23], in future

works we will seek a representation of Fourier coeffi-

cients which is free from these issues. In particular,

the Cartesian representation of Fourier descriptors

lies in the Euclidean plane. We hence conjecture

that (Ak cos τk, Ak sin τk) can be modelled as sam-

ples from Gaussian bivariate distributions, whose

parameters mainly depend on writers, letters and

harmonic index. Based on these hypotheses, one

can then apply the model described in Section 5.1

for each harmonic.

Similarly to keypoints, the presence or the ab-

sence of a loop can be a strong indicator for, or

against, the authenticity of a signature. This is not

directly expressed through Fourier coefficients, but

will be nevertheless integrated into the Bayesian

network by means of a binary node M , as stated

in Section 1.3.

6. Discussion

So far we presented brief insights on the capabil-

ities of the corpora we collected. It is clear that fu-

ture works will heavily exploit Bayesian multivari-

ate statistical models. We expect that significant

challenges will be posed by the study of individual

characteristics.

In particular, the Bayesian approach on Fourier

descriptors illustrated in Section 5.4 opens a num-

ber of research questions concerning the description

of the joint distribution of harmonic coefficients.

It is noteworthy that Fourier analysis appears in

many different technical disciplines. Any progress

achieved in this field could provide insight on the us-

age of Bayesian methods in other forensic domains

such as spectroscopy or chemistry.

Another facet to be explored is the denominator

of the likelihood ratio. As detailed in Section 5.1,

its definition changes according to the relevant pop-

ulation that is accounted for (previously noted as

F). As a consequence, one may introduce Bayesian

mixture models and non-parametric methods to au-

tomatically evaluate the presence of several classes

in the data.

The next challenge is posed by the construction of
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Figure 13: Amplitude density across harmonic indexes, writers and letters. Notice the logarithmic x axis. The third

harmonic is always the strongest.

the Bayesian network. This phase will significantly

exploit domain knowledge from forensic experts, in

order to account for interdependence between fea-

tures.

In general, there are no guidelines on how to con-

struct a sensible network. However, there are a

number of attempts in literature detailing individ-

ual aspects. As an example, a very recent study

[34] related to Marquis’ Fourier descriptors is avail-

able. Such study will serve us as a basis to integrate

them into a more general framework. Moreover,

in Section 1.3 we described the motivation behind

the evaluation of missing evidence: this section will

certainly benefit from techniques addressed to treat

missing data.

A fundamental problem underlying the project is

the very high data dimensionality. Forensic doc-

ument examiners commonly work with very few

specimens, so a good characterization of the dis-

tributions is often challenging. It is then impera-

tive to integrate techniques to perform feature se-

lection or dimensionality reduction. To this pur-

pose we can also exploit domain knowledge from

fingerprint comparison: specifically, one may aim

at introducing a biometric score between individ-

ual characteristics in signatures. Such measure

is one-dimensional, therefore drastically reducing

data dimensionality and easing inferences through

the Bayesian network.

A further extension of the work is the addition

of new measures and new features. In particular,

so far we only studied simple geometrical proper-

ties of signatures, while forensic experts commonly

rely also on other types of evidence such as pres-
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sure variations, line quality and background infor-

mation. Bayesian networks are easily extensible,

requiring the specification of the conditional distri-

butions for the desired feature, and the addition the

node(s) to the network.

We also plan to collect new forgeries of the au-

thentic corpus, as well as new corpora based on

other signatures of different complexity. Specifi-

cally, this enables us to verify assumptions stated in

Section 4.3 on universality of measures, and in Sec-

tion 1.3 on case-based evidence. Moreover, with re-

spect to Section 1.1, it also will help us to establish

the feasibility of transposing the results from closed

to open-set situations, where the relevant popula-

tion is much larger.
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Figure 14: Polar plot of pairs (Ak, τk) across harmonic indexes, writers and letters. Notice the different amplitude

scales.
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Highlights

• The problem of evidence evaluation in compar-

ative signature examinations is explored.

• We propose a set of measurements which can

be performed on signatures, along with the cor-

responding statistical models.

• The aim is to build a Bayesian network for eval-

uating evidence of different nature.
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