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Abstract

In the traditional actuarial risk model, if the surplus is negative, the company is

ruined and has to go out of business. In this paper we distinguish between ruin

(negative surplus) and bankruptcy (going out of business), where the probability

of bankruptcy is a function of the level of negative surplus. The idea for this notion

of bankruptcy comes from the observation that in some industries, companies can

continue doing business even though they are technically ruined. Assuming that

dividends can only be paid with a certain probability at each point of time, we de-

rive closed-form formulas for the expected discounted dividends until bankruptcy

under a barrier strategy. Subsequently, the optimal barrier is determined, and

several explicit identities for the optimal value are found. The surplus process of

the company is modeled by a Wiener process (Brownian motion).
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1 Introduction

Classical risk theory had been synonymous with ruin theory. The central problem had

been to calculate the (hopefully small) probability of ruin of a nonlife insurance com-

pany. However, it is unrealistic to assume that the surplus of a company can increase

without bounds. Also, a main goal of a company should be the paying of dividends to

its shareholders. The seminal paper of de Finetti (1957) studies the criterion of maxi-

mizing expected discounted dividends until possible ruin of a company. If an optimal

dividend strategy is applied, ruin is typically certain in the long run. Thus, de Finetti’s

idea marked a drastic departure from classical risk theory.

De Finetti’s dividend problem has been an inspiration to substantial research in

actuarial science. Two recent survey papers are Avanzi (2009) and Albrecher and Thon-

hauser (2009). In general, the optimal dividend strategy can be complicated. However,

in certain cases, it is a barrier strategy, and then the problem is reduced to finding the

optimal barrier, a number.

It should be pointed out that dividends are a major topic of study in corporate

finance. Indeed, within a few years of the publication of de Finetti (1957), and appar-

ently independent of it, the following related papers appeared: Shubik and Thompson

(1959), Miyasawa (1962), and Takeuchi (1962). The companies modeled in these papers

are not necessarily insurance companies; this is also the situation in our paper.

We make a distinction between ruin and bankruptcy. In the traditional actuarial

model, if the surplus is negative, the company is ruined and has to go out of business.

In particular, no dividends are paid after ruin. In this paper, a company with a nega-

tive surplus is assumed to be able to continue doing business as usual, until bankruptcy

takes place. Thus, ruin is the situation when the surplus is negative, and bankruptcy

means that the company goes out of business. We also assume that the probability of

bankruptcy is a function of the level of negative surplus. The idea for this notion of

bankruptcy comes from the observation that in some industries, companies can con-
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tinue doing business even though they are technically ruined.

Motivated by Albrecher et al. (2010), we assume that at each point of time, div-

idends can only be paid with a certain probability. As a consequence, the dividend

payments under a barrier strategy constitute a discrete sequence of random variables,

which has some practical appeal. The traditional continuous dividends can be retrieved

from such a model as a limiting case.

This paper aims to obtain results that are intuitive, transparent or esthetical. For

this reason, the surplus process of the company is modeled by a Wiener process (Brow-

nian motion).

2 The model

As in Gerber and Shiu (2004), the basic surplus process of a company is modelled by a

Wiener process with expected increment µ > 0 per unit time and variance σ2 per unit

time. However, the model is extended in two ways. First, if the surplus is negative,

bankruptcy is not automatic. For a precise formulation, we introduce the bankruptcy

rate function ω(x) ≥ 0, x ≤ 0. This is a non-increasing (typically a decreasing) function;

whenever the negative surplus is x, ω(x)dt is the probability of bankruptcy within dt

time units. The second extension concerns the dividends to the shareholders of the

company. The dividends can only be paid at certain random times and thus constitute

a discrete sequence of random variables. As in Albrecher et al. (2010), it is assumed that

the waiting times between successive dates when dividends can be paid are independent

random variables with a common exponential distribution of mean 1/γ. In other words,

at any time the probability that a dividend can be paid within dt time units is γ dt.

Remarks: (i) Without loss of generality, we assume that the bankruptcy rate function

is positive for x < 0 and zero for x > 0. The case where it is positive for x below a

critical level and zero above this level can be reduced to the case where the critical level
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is zero.

(ii) If ω(x) is infinite for x ≤ x0 < 0 and ω(x) > 0 for x > x0, bankruptcy occurs at the

latest when the surplus drops to x0. In a sense, x0 is the level of ”certain bankruptcy”.

This concept differs from that of absolute ruin in Gerber (1971).

3 Barrier strategies

A barrier dividend strategy is given by a parameter b ≥ 0. If at a potential dividend-

payment time the surplus is above b, the excess is paid as a dividend. Dividends are

discounted at a constant force of interest δ > 0. Let V (x; b) denote the expectation

of the discounted dividends until bankruptcy, considered as a function of the initial

surplus x and subject to the barrier strategy with parameter b. Here, x is any real

number, not necessarily positive. The function V (x; b) is characterized by the system

of differential equations

σ2

2
V ′′(x; b) + µV ′(x; b)− [δ + ω(x)] V (x; b) = 0, x < 0, (1)

σ2

2
V ′′(x; b) + µV ′(x; b)− δ V (x; b) = 0, 0 < x < b, (2)

σ2

2
V ′′(x; b) + µV ′(x; b)− δ V (x; b) + γ[x− b− V (x; b) + V (b; b)] = 0, x > b, (3)

together with the requirements that V (x; b) and V ′(x; b) are continuous functions of x,

that V (−∞; b) = 0, and that V (x; b) is linearly bounded for x →∞.

Equations (1)–(3) can be derived from the fact that the expected instantaneous total

return (over a time interval of length dt) must be the sum of the expected instantaneous

change of value and the expected instantaneous dividend. For example, if x > b, this

is the condition that

V (x; b) δ dt = {E[dV ]− [V (x; b)− V (b; b)] γ dt}+ (x− b) γ dt,

4



where E[dV ] = σ2

2
V ′′(x; b) dt + µV ′(x; b) dt. From this, (3) follows. Similarly, if x < 0,

the condition is that

V (x; b) δ dt = E[dV ]− V (x; b) ω(x) dt,

from which (1) follows.

Remark. Because V (x; b) and V ′(x; b) are continuous functions, it follows from (1)

that V ′′(x; b) is discontinuous whenever the monotone function ω(x) has a jump.

4 Alternative interpretations for V (x; b)

In equation (1), the force of interest δ and the bankruptcy rate ω(x) play the same

mathematical role, because only their sum matters. Based on this observation and to

make the point, we introduce two alternative ”extreme” models. They both yield the

same function V (x; b) as an expectation.

Let

ν(x) =





δ + ω(x) if x < 0,

δ if x > 0.

Then equations (1)–(3) can be written as

σ2

2
V ′′(x; b) + µV ′(x; b)− ν(x) V (x; b) = 0, x < b, (4)

σ2

2
V ′′(x; b) + µV ′(x; b)− ν(x) V (x; b) + γ[x− b− V (x; b) + V (b; b)] = 0, x > b. (5)

In the first alternative model, the rate of bankruptcy is zero (that is, there is no

bankruptcy in this model) and the function ν(x) plays the role of a surplus-dependent

force of interest, because ω(x) has been added to δ. In some sense it reflects the serious-

ness of the financial situation of the company. In the second alternative model, the force

of interest is zero and bankruptcy takes place according to the modified bankruptcy rate

function ν(x), the sum of the original bankruptcy rate ω(x) and a constant termination
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rate δ. That is, δ dt is the probability that the company will become bankrupt, due to

external events or circumstances, within dt time units. (In a Lévy process framework,

this is often referred as an ”exponential killing” of a process.) In both models, V (x; b)

satisfies equations (4) and (5) and is therefore the same function. However note that

in each model, V (x; b) is the expectation of an underlying random variable, and that

these random variables are not the same.

In Section 3, we applied the fact that the expected instantaneous total return (over

an interval of length dt) is the sum of the expected instantaneous change of value and

the expected instantaneous dividend. It is instructive to compare this decomposition

in the two models. In the first alternative model, we have

V (x; b) ν(x) dt = E[dV ] + 0, x < b,

V (x; b) ν(x) dt = {E[dV ]− [V (x; b)− V (b; b)] γ dt}+ (x− b) γ dt, x > b.

In the second alternative model, the expected total return is zero. Hence, the decom-

position is

0 = E[dV ]− V (x; b) ν(x) dt, x < b,

0 = {E[dV ]− V (x; b) ν(x) dt− [V (x; b)− V (b; b)] γ dt}+ (x− b) γ dt, x > b.

Either decomposition leads to equations (4) and (5).

5 An auxiliary function

In the spirit of Gerber et al. (2006), we introduce a function h(x), −∞ < x < ∞.

It is unique only up to a constant factor and defined by the following property: Let

−∞ < x < y < ∞. Given the initial surplus x, the expectation of a discounted

contingent payment of 1 at the time when the surplus reaches the level y, provided that
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bankruptcy has not occurred in the meantime, is h(x)/h(y). In the framework of Lévy

processes the function h(x), apart from a constant factor, is the scale function.

The function h(x) is a solution of the differential equations

σ2

2
h′′(x) + µh′(x)− [δ + ω(x)] h(x) = 0, x < 0, (6)

σ2

2
h′′(x) + µh′(x)− δ h(x) = 0, x ≥ 0, (7)

with the requirement that h(x) and h′(x) are continuous, and that h(−∞) = 0. From

(7) it follows that

h(x) = Aerx + B esx, x ≥ 0, (8)

where r > 0 and s < 0 are the solutions of the characteristic equation

σ2

2
ξ2 + µξ − δ = 0. (9)

Because of the continuity conditions at x = 0, we can express A and B by h(0) and

h′(0). We find that

A =
h′(0)− s h(0)

r − s
, B =

rh(0)− h′(0)

r − s
. (10)

Remark. If there is a finite x0 as in Remark (ii) of Section 2, then the condition

h(−∞) = 0 is changed to h(x0) = 0 and the variable x in equation (6) is restricted to

x0 < x < 0.

6 The determination of V (x; b)

By interpretation, we see that

V (x; b) =
h(x)

h(b)
V (b; b), x ≤ b. (11)

Hence, we have the factorization formula

V (x; b) = C(b) h(x), x ≤ b, (12)
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with C(b) = V (b; b)/h(b).

A particular solution of the inhomogeneous differential equation (3) is the linear

function

v(x) =
γ

δ + γ
[x− b + V (b; b)] +

µγ

(δ + γ)2
, x > b. (13)

Hence,

V (x; b) = D esγ(x−b) + v(x), x > b, (14)

where sγ < 0 is the negative solution of the characteristic equation

σ2

2
ξ2 + µξ − (δ + γ) = 0. (15)

Setting x = b in (14), we obtain

D = V (b; b)− v(b)

=
δ

δ + γ
V (b; b)− µγ

(δ + γ)2
. (16)

Then, from (12), (14) and (16), and the continuity of V (x; b) at x = b, we find that

V (x; b) =

(
δ

δ + γ
C(b)h(b)− µγ

(δ + γ)2

)
esγ(x−b)

+
γ

δ + γ
[x− b + C(b)h(b)] +

µγ

(δ + γ)2
, x > b. (17)

Finally, the continuity of V ′(x; b) at x = b leads to the condition that

C(b) h′(b) = sγ

(
δ

δ + γ
C(b)h(b)− µγ

(δ + γ)2

)
+

γ

δ + γ
, (18)

which yields

C(b) =

γ
δ+γ

− sγ
µγ

(δ+γ)2

h′(b)− sγ
δ

δ+γ
h(b)

. (19)

After substitution in (12) and (17), we have closed-form expressions for V (x; b).

Remarks. (i) The classical model of continuous dividends can be retrieved as the

limiting case γ →∞. In the limit, (19) reduces to C(b) = 1/h′(b), and hence (12) to

V (x; b) =
h(x)

h′(b)
, x ≤ b. (20)

(ii) If bankruptcy is defined in the traditional sense, V (0; b) = 0 of course. The results

for V (x; b) remain valid, if we set h(x) = erx − esx, or B = −A.
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7 The optimal dividend barrier

The optimal dividend barrier b∗ is defined as the value of b which maximizes V (x; b) in

(12), that is, which maximizes C(b). We shall assume that b∗ > 0. Then the condition

for b∗ is that the derivative of the denominator in (19) vanishes,

h′′(b∗)− sγ
δ

δ + γ
h′(b∗) = 0. (21)

Using (8), we obtain

b∗ =
1

r − s
ln

B
(
−s2 + sγ

δ
δ+γ

s
)

A
(
r2 − sγ

δ
δ+γ

r
) , (22)

with A and B given by (10).

Remarks. (i) Let rγ denote the positive solution of the quadratic equation (15). Then

δ

δ + γ
=

r s

rγ sγ

. (23)

After substitution in (22), we obtain an alternative expression for the optimal dividend

barrier:

b∗ =
1

r − s
ln
−B s2(rγ − r)

Ar2(rγ − s)
. (24)

It is instructive to write this expression as a sum:

b∗ =
1

r − s
ln

s2

r2
+

1

r − s
ln
−B

A
+

1

r − s
ln

rγ − r

rγ − s
. (25)

This has the following interpretation. The first term on the right-hand side is the

optimal dividend barrier in the classical model, where bankruptcy is defined in the

traditional way and dividends are continuous; see, for example, formula (6.2) of Gerber

and Shiu (2004). The second and third term are negative adjustment terms. They show

nicely the separate effects of the bankruptcy rate function and the discreteness of the

dividends on lowering the optimal dividend barrier. For example, formula (25) shows

that b∗ is an increasing function of rγ and with that of γ.

(ii) In Albrecher et al. (2011) it is shown that for constant bankruptcy rate ω(x) ≡ γ
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the optimal strategy for maximizing the expectation of discounted dividend payments

until bankruptcy is indeed a barrier strategy. We note that the search for the optimal

barrier is also meaningful in cases where the optimal strategy is not a barrier strategy.

8 Results for V (x; b) at x = b = b∗

The first result is that

V ′(b∗; b∗) = 1. (26)

In the case of continuous dividends, V ′(b; b) = 1 for any b > 0; this follows immediately

from (20). However, if γ is finite, (26) is not obvious and has to be verified. From (12)

and (19), we have

V ′(b∗; b∗) = C(b∗)h′(b∗)

=

γ
δ+γ

− sγ
µγ

(δ+γ)2

h′(b∗)− sγ
δ

δ+γ
h(b∗)

h′(b∗). (27)

Using (7) and the optimality condition (21), we find that

δh(b∗) =
σ2

2
h′′(b∗) + µh′(b∗)

=

(
σ2

2
sγ

δ

δ + γ
+ µ

)
h′(b∗). (28)

Hence,

V ′(b∗; b∗) =

γ
δ+γ

− sγ
µγ

(δ+γ)2

1− σ2

2
s2

γ
δ

(δ+γ)2
− sγ

µ
δ+γ

. (29)

As a solution of the quadratic equation (15), sγ satisfies

σ2

2
s2

γ = −µ sγ + (δ + γ). (30)

Upon substitution in (29) and simplification we obtain indeed (26).

The second result is that

V (b∗; b∗) =
µ

δ
− µ

δ + γ
+

1

sγ

. (31)
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This generalizes the classical result

V (b∗; b∗) =
µ

δ
(32)

in the case of continuous dividends (γ →∞), which has been found by Gerber (1972)

and is (7.1) in Gerber and Shiu (2004). It is remarkable that V (b∗; b∗), unlike b∗, does

not depend on the bankruptcy rate function ω(x).

For a proof of (31), we use the formula

V (b∗; b∗) =
h(b∗)
h′(b∗)

. (33)

To verify it, we differentiate (11), set x = b = b∗ in the resulting equation, and use (26).

Next, we combine (7) and (21) to see that

(
σ2

2
sγ

δ

δ + γ
+ µ

)
h′(b∗)− δ h(b∗) = 0. (34)

From this and (33) it follows that

V (b∗; b∗) =
µ

δ
+

σ2

2
sγ

1

δ + γ
.

Finally, to obtain (31), we substitute for σ2

2
sγ according to (30).

Remarks: (i) From (26) and (11), it follows that

V (x; b∗) =
h(x)

h′(b∗)
, x ≤ b∗. (35)

This formula should be compared with (20), which is for arbitrary b, but valid only in

the limit γ → ∞. The function h does not depend on the value of γ, hence formula

(35) is valid for any γ. The dependence on γ comes in through b∗, which is a function

of γ.

(ii) The optimal dividend barrier b∗ is at the same time the optimal financial capital

in the following sense. Let P (x; b) denote the expected discounted profit if the barrier

strategy with parameter b is applied, that is,

P (x; b) = V (x; b)− x.
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Equation (26) shows that P ′(b∗; b∗) = 0, and from (2), (26) and (31) we see that

V ′′(b∗; b∗) = −2δ

σ2

(
µ

δ + γ
− 1

sγ

)
.

Thus P ′′(b∗; b∗) = V ′′(b∗; b∗) is negative. It follows that P (x; b∗) is maximal for the

financial capital x = b∗. Because this result is in line with intuition, it is also an

indirect explanation of V ′(b∗; b∗) = 1.

(iii) Formula (31) can be derived without (26) as a starting point. From (12) and (19)

we find that

V (b∗; b∗) = C(b∗)h(b∗) =

γ
δ+γ

− sγ
µγ

(δ+γ)2

h′(b∗)
h(b∗) − sγ

δ
δ+γ

.

Now we substitute according to (34) and use basic algebra to obtain (31).

(iv) From the continuity of V (x; b) and V ′(x; b) and equations (2) and (3) it follows

that V ′′(x; b) is continuous at x = b. Now we differentiate (2) and (3) to see that the

discontinuity of V ′′′(x; b) at x = b is

V ′′′(b+; b)− V ′′′(b−; b) =
2γ

σ2
[V ′(b; b)− 1].

Because of (26), this discontinuity vanishes if b = b∗. Hence V ′′′(x; b∗) is continuous at

x = b∗. Such a condition is called a smooth-pasting condition in literature on optimal

stopping and a high contact condition in finance literature.

(v) Originally, the expression on the right-hand side of (32) is interpreted as the present

value of a perpetuity-certain at rate µ. By observing that 1/δ is also the expectation

of an exponentially distributed random variable with parameter δ, we can rewrite (32)

in a form that is appealing within the framework of the second alternative model of

Section 4:

V (b∗; b∗) = µE(Tδ),

where Tδ is an exponentially distributed termination time of the process, i.e., under

the optimal barrier strategy and with the initial surplus at the optimal barrier, the ex-

pected present value of dividend payments equals the undiscounted sum of a continuous

payment stream of rate µ until the expected termination time of the process.
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9 Constant and piecewise constant bankruptcy rate

functions

We first look at the case where ω(x) ≡ ω (constant). Then (6) is a differential equation

with constant coefficients, and we may set h(x) = erωx, x < 0, where rω is the positive

solution of the characteristic equation

σ2

2
ξ2 + µξ − (δ + ω) = 0.

According to (10), we have

A =
rω − s

r − s
, B = − rω − r

r − s
.

By (25), the optimal dividend barrier is

b∗ =
1

r − s
ln

s2

r2
+

1

r − s
ln

rω − r

rω − s
+

1

r − s
ln

rγ − r

rγ − s
. (36)

The symmetry between the roles of rω and rγ is remarkable and somewhat unexpected.

Note that for ω = γ, formula (36) is the diffusion limit of formula (24) in Albrecher et

al. (2010), where a compound Poisson process with exponential jumps was considered.

Now suppose that ω(x) is piecewise constant,

ω(x) = ωk, xk−1 < x < xk,

k = 1, . . . , n, where x0 = −∞, xn = 0 and x1 < x2 < · · · < xn−1 < 0. Typically,

ω1 > ω2 > · · · > ωn > 0. (37)

It follows that

h(x) = Ak erkx + Bk eskx, xk−1 < x < xk,

where rk > 0 and sk < 0 are the solutions of the equation

σ2

2
ξ2 + µξ − (δ + ωk) = 0.
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Note that under (37) we have rk+1 < rk and sk+1 > sk for k = 1, . . . , n − 1. We

can determine the coefficients recursively, starting with A1 = 1, B1 = 0. From the

continuity of h(x) and h′(x) at x = xk, it follows that

Ak+1 erk+1xk + Bk+1 esk+1xk = Ak erkxk + Bk eskxk ,

Ak+1rk+1 erk+1xk + Bk+1sk+1 esk+1xk = Akrk erkxk + Bksk eskxk .

Thus,

Ak+1 (rk+1 − sk+1) erk+1xk = Ak(rk − sk+1)e
rkxk + Bk(sk − sk+1) eskxk (38)

and

Bk+1 (sk+1 − rk+1) esk+1xk = Ak(rk − rk+1)e
rkxk + Bk(sk − rk+1) eskxk . (39)

In view of (25), the ultimate goal is to calculate the ratio ρ = −B/A, where A = An,

B = Bn. Hence it is useful to establish a direct recursion for ρk = −Bk/Ak. From (38)

and (39) we see that

ρk+1 = e(rk+1−sk+1)xk
(rk − rk+1) erkxk + ρk(rk+1 − sk) eskxk

(rk − sk+1) erkxk + ρk(sk+1 − sk) eskxk
, k = 1, . . . , n− 1,

with starting value ρ1 = 0.

10 Other bankruptcy rate functions

For more general bankruptcy rate functions ω(x), one has two possibilities. On the one

hand, one can approximate ω(x) by a piecewise constant function and then follow the

procedure of the previous section to obtain an approximation for ρn = −B/A. In fact

one can obtain upper and lower bounds by using piecewise constant upper and lower

bounds for ω(x).

Alternatively, for certain specific forms of ω(x), one may be able to solve the dif-

ferential equation (6) explicitly, which then gives the exact expression of

−B

A
=

r h(0)− h′(0)

s h(0)− h′(0)
=

r h(0)/h′(0)− 1

s h(0)/h′(0)− 1
.
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This is illustrated by two examples:

(i) If ω(x) = −x, the differential equation (6) with boundary condition h(−∞) = 0 has

the solution (apart from an arbitrary multiplicative constant)

h(x) = exp
(
− µ

σ2
x
)

Ai

(−2x + 2δ + µ2/σ2

41/3σ2/3

)
,

where

Ai(z) =
1

π

∫ ∞

0

cos

(
t3

3
+ z t

)
dt

is the Airy function (see e.g. Polyanin and Zaitsev (1994, p.7)). This results in

−B

A
=

(
(µ + rσ2) Ai(z0) + 21/3σ4/3 Ai′(z0)

) (
(µ + sσ2) Ai(z0) + 21/3σ4/3 Ai′(z0)

)

(µ Ai(z0) + 21/3σ4/3 Ai′(z0))
2

with z0 = (2δ + µ2/σ2)/(41/3σ2/3).

(ii) If

ω(x) =





1
1+x

, −1 < x < 0,

∞, x ≤ −1,

survival is only possible for a surplus exceeding x0 = −1. The differential equation (6)

for −1 < x < 0 with boundary condition h(−1) = 0 has the solution (apart from an

arbitrary multiplicative constant)

h(x) = e−(xµ+(1+x)z1)/σ2

(1 + x) M

(
1− 1

z1

, 2, 2(1 + x)z1/σ
2

)

with z1 =
√

µ2 + 2δσ2 (see e.g. Polyanin and Zaitsev (1994, p.21)). Here

M(a, b, z) =
∞∑

k=0

a(a + 1)(a + k − 1)

b(b + 1)(b + k − 1)

zk

k!

denotes the Kummer confluent hypergeometric function. Using M ′(a, b, z) = a
b
M(a +

1, b + 1, z), the factor −B/A is then given by

−B

A
=

(g1 − g2)(g3 − g4)

(g5 − g6)2
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with

g1 = (z1 − 1) M

(
2− 1

z1

, 3,
2z1

σ2

)
,

g2 = (µ + (r − 1)σ2 + z1)M

(
1− 1

z1

, 2,
2z1

σ2

)
,

g3 = (µ + (s− 1)σ2 + z1)M

(
1− 1

z1

, 2,
2z1

σ2

)
,

g4 = (z1 − 1) M

(
2− 1

z1

, 3,
2z1

σ2

)
,

g5 = (σ2 − µ + z1)M

(
1− 1

z1

, 2,
2z1

σ2

)
,

g6 = (z1 + 1) M

(
1− 1

z1

, 3,
2z1

σ2

)
.
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