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SUMMARY

Abnormal development can lead to deficits in adult brain function, a trajectory likely underlying 

adolescent-onset psychiatric conditions such as schizophrenia. Developmental manipulations 

yielding adult deficits in rodents provide an opportunity to explore mechanisms involved in a 

delayed emergence of anomalies driven by developmental alterations. Here we assessed whether 

oxidative stress during presymptomatic stages causes adult anomalies in rats with a neonatal 

ventral hippocampal lesion, a developmental rodent model useful for schizophrenia research. 

Juvenile and adolescent treatment with the antioxidant N-acetyl cysteine prevented the reduction 

of prefrontal parvalbumin interneuron activity observed in this model, as well as 

electrophysiological and behavioral deficits relevant to schizophrenia. Adolescent treatment with 

the glutathione peroxidase mimic ebselen also reversed behavioral deficits in this animal model. 

These findings suggest that presymptomatic oxidative stress yields abnormal adult brain function 

in a developmentally compromised brain, and highlight redox modulation as a potential target for 

early intervention.

© 2014 Elsevier Inc. All rights reserved.
¶Correspondence to: patricio.odonnell@pfizer.com; kim.do@chuv.ch.. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Author contributions: MC, KQD, and POD designed the experiments; JHC, DSC, EL, HAT, PP, CP, GGC, ES, EP conducted 
experiments; JHC, DSC, EL, HAT, ES, KQD, POD, analyzed the data; JK and LEH provided materials; JHC, DSC, MC, KQD, POD 
wrote the manuscript.

All other authors have nothing to disclose.

HHS Public Access
Author manuscript
Neuron. Author manuscript; available in PMC 2015 September 03.

Published in final edited form as:
Neuron. 2014 September 3; 83(5): 1073–1084. doi:10.1016/j.neuron.2014.07.028.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Developmental insults can yield adolescent or adult brains with heightened vulnerability to 

deleterious environmental factors, an interaction likely to play a role in neuropsychiatric 

disorders of adolescent onset (O'Donnell, 2011). Despite intense research efforts, we still do 

not understand the mechanisms that could link genetic risk and early developmental 

disturbances with adult deficits. Among the hypotheses being advanced, oxidative stress 

stands out as a strong possible mechanism (Cabungcal et al., 2013b; Do et al., 2009; 

O'Donnell, 2012b). This idea is supported by the observation of various polymorphisms in 

genes encoding glutathione (GSH) synthesis conferring risk for schizophrenia (Gysin et al., 

2007; Tosic et al., 2006). GSH, the most abundant endogenous antioxidant, is responsible 

for maintaining cellular oxidative balance (Do et al., 2009). Decreased GSH levels have 

been observed in peripheral tissues, cerebrospinal fluid, and postmortem brains of 

schizophrenia patients (Do et al., 2000; Gawryluk et al., 2011; Yao and Keshavan, 2011), 

and the GSH precursor N-acetyl cysteine (NAC) increases peripheral GSH levels and 

improves neurophysiological deficits in patients (Berk et al., 2008; Carmeli et al., 2012; 

Lavoie et al., 2008). Furthermore, brain GSH levels assessed with magnetic resonance 

spectroscopy are decreased in the prefrontal cortex (PFC) of patients with schizophrenia (Do 

et al., 2000). However, while mounting evidence does suggest a role of oxidative stress in 

schizophrenia, the time course and neural substrates of oxidative stress induced by 

developmental disturbances are not well understood, and whether oxidative stress is causal 

to behavioral deficits remains to be determined.

Several rodent models have been designed to test possible developmental 

pathophysiological scenarios in major psychiatric disorders. Mice with GSH deficit or 

mitochondrial dysfunction, for example, show schizophrenia-related electrophysiological, 

morphological, and behavioral anomalies (Steullet et al., 2010). As these deficits are 

reversed with NAC (Cabungcal et al., 2013a; Otte et al., 2011), GSH is likely critical for 

proper postnatal brain maturation. Another example is the latent neuropathological alteration 

induced by maternal immune activation, which becomes evident when combined with 

juvenile social isolation (Giovanoli et al., 2013). A widely used tool to assess developmental 

trajectories of adult-onset prefrontal cortical deficit is the neonatal ventral hippocampal 

lesion (NVHL). This procedure yields adult animals with PFC-dependent 

electrophysiological, neurochemical, and behavioral anomalies related to phenomena 

observed in schizophrenia, all of which emerge during adolescence (O'Donnell, 2011; Tseng 

et al., 2009). Of note, NVHL rats show altered prefrontal inhibitory interneuron maturation 

during adolescence (Tseng et al., 2008), highlighting this as a model of developmentally 

induced, late-onset alterations in prefrontal cortical excitation-inhibition balance. The 

NVHL is therefore a useful tool to test whether oxidative stress is responsible for adult 

deficits in a model that does not directly manipulate GSH or alter redox status, which is 

important to determine whether oxidative stress is a consequence of developmental cortical 

deficits. Here, we tested whether antioxidant treatment with NAC during juvenile and 

adolescent periods affects maturation of NVHL rats; the aim was to assess whether restoring 

redox balance prevented adult deficits in a developmentally compromised brain.
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RESULTS

One of the most replicated findings in schizophrenia research is a reduction of markers 

associated with cortical inhibitory interneurons (Lewis et al., 2012). Adult NVHL rats 

exhibit electrophysiological anomalies caused by altered cortical interneuron maturation, 

characterized by abnormal modulation by dopamine (Tseng et al., 2008). We tested whether 

parvalbumin (PV) positive interneurons in the PFC, including the dorsal prelimbic and 

anterior cingulate cortex (ACC), are altered in NVHL rats using unbiased stereological 

counting techniques. Between postnatal day (P) 21 and P61, the number of PV 

immunoreactive interneurons (PVI) increased in sham-operated rats, but not in NVHL rats 

(Figure 1A, B). In juvenile rats (P21), there was no significant difference in PVI counts 

between NVHL and sham rats, but adult (P61) NVHL rats showed significantly fewer PVI 

in the PFC compared to sham rats. The PVI reduction was prevented with NAC treatment 

starting at P5 (i.e., 2 days prior to the hippocampal lesion) and lasting into adolescence (P50; 

Figure 1A-C), suggesting juvenile oxidative stress induced by the neonatal lesion impairs 

PVI maturation. Caspase 3 labeling did not reveal apoptotic activation in the PFC of NVHL 

rats (data not shown), suggesting that reduced PVI immunoreactivity more likely reflects 

reduced interneuron activity than cell loss.

To assess oxidative stress, we quantified DNA oxidation with 8-oxo-7, 8-dihydro-20-

deoxyguanine (8-oxo-dG) labeling. At P21, NVHL rats exhibited a massive increase in 8-

oxo-dG staining in the PFC compared to sham rats, in both pyramidal neurons and 

interneurons, which was completely prevented by NAC treatment (Figure 2A, B). When 

NVHL rats reached adulthood (P61), they still showed increased 8-oxo-dG, albeit less than 

at P21 (Figure 2C, D). We also observed an increase in 3-Nitrotyrosine (3-NT) levels in 

adult PFC of NVHL rats. 3-NT indicates nitration of proteins due to oxidative and 

nitrosative stress (Radi, 2004), and its increase in NVHL rats was prevented by NAC 

treatment during development (Figure 3). Thus, juvenile NAC treatment decreased multiple 

markers of oxidative stress in adult NVHL rats to levels comparable to control rats, without 

affecting the extent of the lesion (Figure S1). A possible explanation for the levels of 

oxidative stress detected in the adult PFC following an NVHL is the reduced glutamatergic 

input from ventral hippocampus during development, as blocking NMDA receptors induces 

oxidative stress in PVI (Behrens et al., 2007). Our data indicate that impairing hippocampal 

inputs to the PFC during a critical developmental period elicits PFC oxidative stress in 

juvenile rats that has deleterious effects on the adolescent maturation of PVI.

To determine the types of interneurons expressing oxidative stress in NVHL rats, we co-

labeled 8-oxo-dG with PV, calbindin (CB) and calretinin (CR). In addition to pyramidal 

neurons, increased 8-oxo-dG staining was observed in PVI, but not in CB or CR 

interneurons (Figure 4). About 50% of PVI were co-labeled with 8-oxo-dG, indicating 

oxidative stress is pervasive in this cell population. A marker of PVI maturation is Wisteria 

Floribunda agglutinin (WFA), a lectin that recognizes the perineuronal nets (PNN) 

enwrapping mature cortical PVI. The NVHL lesion reduced WFA staining (Figure 5), 

suggesting that PVI in adult PFC of NVHL rats show an immature phenotype. These 

extracellular matrix alterations were restored with juvenile NAC treatment (Figure 5). PVI 

may be highly exposed to increased oxidative stress because they make up the majority of 
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fast-spiking interneurons and their high energy metabolism may generate more reactive 

oxygen species than non-fast spiking neurons. It is possible that juvenile PVI are functional 

while exhibiting oxidative stress, with the deleterious effects of oxidative stress becoming 

evident upon periadolescent PVI maturation.

If juvenile oxidative stress is the cause of physiological anomalies observed in adult NVHL 

rats, NAC treatment should rescue these alterations. We conducted whole-cell recordings 

from pyramidal neurons in adult brain slices containing the medial PFC of SHAM (n=12), 

NVHL (n=16), and NAC-treated NVHL rats (n=14). As previously shown in adult NVHL 

rats and other rodent models of schizophrenia (Niwa et al., 2010; Tseng et al., 2008), the 

dopamine D2-dependent modulation of excitatory postsynaptic potentials (EPSPs) in layer 

V pyramidal cells was lost in NVHL rats (Figure 6A-C). This loss is likely due to abnormal 

maturation of PFC interneurons, as the normal adult D2 modulation includes a GABA-A 

receptor component (Tseng and O'Donnell, 2007), but oxidative stress in pyramidal neurons 

may also play a role. To determine whether altered PVI-dependent PFC synaptic responses 

are due to oxidative stress, rats were treated with NAC during development and then tested 

for D2 modulation of PFC physiology. NAC treatment rescued the D2 modulation of 

synaptic responses in NVHL rats (Figure 6A-C), indicating that juvenile and adolescent 

oxidative stress in NVHL rats alters function of local circuits in the adult PFC.

The abnormal dopamine modulation of PFC function in NVHL rats is also observed in vivo. 

We performed in vivo intracellular recordings in 38 pyramidal neurons from adult rats (n=9 

SHAM, n=5 NVHL, and n=7 NAC-treated NVHL). Baseline activity was consistent with 

what has been previously reported for PFC pyramidal neurons (Lewis and O'Donnell, 2000), 

and was not significantly affected by lesion status or NAC treatment. All recorded cells 

exhibited spontaneous transitions between the resting membrane potential (down state; 

−76.2 ± 1.1 mV) and the up state (−67.6 ± 0.7 mV). Up states occurred at a frequency of 0.6 

± 0.1 Hz with a duration of 523.6 ± 24.7 ms. The majority of cells (n=21) fired 

spontaneously at a rate of 2.1 ± 0.7 Hz. As previously reported (O'Donnell et al., 2002), in 

vivo intracellular recordings from anesthetized adult NVHL rats revealed an abnormal 

increase in pyramidal cell firing in response to burst stimulation of the Ventral Tegmental 

Area (VTA) (Figure 6D, E) compared to sham rats. This abnormal increase in firing was 

prevented by juvenile NAC treatment (Figure 6D, E). These data indicate that abnormal 

dopamine function in the PFC of NVHL rats depends on oxidative stress during juvenile and 

adolescent stages.

Abnormal cortical synaptic function in adult NVHL rats should yield altered information 

processing that would be prevented by NAC treatment if it depended on oxidative stress. We 

tested mismatch negativity (MMN) using auditory evoked potentials in an oddball paradigm 

in SHAM (n=6), NVHL (n=3), and NAC-treated NVHL rats (n=3). MMN has high 

translational relevance, as it is attenuated in schizophrenia patients (Javitt et al., 1993) and in 

animal models (Ehrlichman et al., 2009). We implanted EEG electrodes in NVHL, NAC-

treated NVHL, and sham rats. MMN was significantly different among groups, with NAC 

treatment improving MMN in NVHL rats (Figures 7A, B). This observation is consistent 

with the effect of NAC on MMN in patients (Lavoie et al., 2008), and indicates the NVHL 

model reproduces an important disease marker that can be prevented by juvenile antioxidant 
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treatment. As MMN depends on NMDA receptor function (Umbricht et al., 2000) and 

NMDA hypofunction in PVI is suspected in schizophrenia, it is possible that MMN 

improvement with NAC results from restored PVI activity.

To assess whether juvenile oxidative stress leads to behavioral deficits, we used a behavioral 

paradigm tested in both animal models and schizophrenia patients. Prepulse inhibition of the 

acoustic startle response (PPI) is a measure of sensorimotor gating that is reduced in patients 

(Geyer and Braff, 1987) and NVHL rats (Lipska et al., 1995). We tested PPI in adult sham 

(n=11), NAC-treated sham (n=12), NVHL (n=9), and NAC-treated NVHL rats (n=17). 

Juvenile NAC treatment prevented the reduced PPI observed in untreated NVHL rats 

(Figure 8A). In addition to loss of PVI maturation and electrophysiological anomalies, 

developmental oxidative stress in juvenile NVHL rats can cause schizophrenia-relevant 

adult behavioral deficits.

The beneficial effect of NAC treatment reported above includes a large postnatal treatment 

that starts prior to the lesion and stops once rats become young adults. For these results to 

have a full translational value, it is critical to determine whether NAC is efficacious when 

started at an age that corresponds to the time when prodromal stages can be identified in 

humans. In another set of rats, we administered NAC in the drinking water starting at P35, 

an age that in rats is equivalent to early adolescence. We tested for PPI deficits in adult sham 

(n=15), untreated NVHL (n=12), and NAC-treated NVHL rats (n=14). Although there was 

only a trend for a deficit in untreated NVHL rats compared to shams in this group, there was 

a significant difference between untreated and treated NVHL (Figure 8B). The data indicate 

that GSH precursors such as NAC can still be effective even if initiated after oxidative stress 

has begun.

One important caveat of NAC is that it also alters glutamate levels by virtue of its action on 

the cysteine-glutamate transporter (Moussawi et al., 2009). To test whether redox 

modulation and not glutamate level changes were responsible for NAC effects in NVHL 

rats, we assessed the effect of two other antioxidants that do not alter glutamate. Ebselen is a 

glutathione peroxidase (GPx) mimic (Muller et al., 1984) that induces GPx expression (Kil 

et al., 2007) and enhances GSH levels in neurons, replenishing GSH depleted by neurotoxic 

mechanisms (Pawlas and Malecki, 2007). We tested PPI in adult vehicle-treated SHAM 

(n=10), ebselen-treated SHAM (n=7), vehicle-treated NVHL (n=8), and ebselen-treated 

NVHL rats (n=9). Ebselen treatment during adolescence reversed PPI deficits in NVHL rats 

(Figure 8C). In another group of rats, we assessed the effects of the NADPH oxidase 

inhibitor and antioxidant apocynin, in this case delivered through juvenile and adolescent 

stages. We tested PPI in adult vehicle-treated SHAM (n=10), apocynin-treated SHAM 

(n=11), vehicle treated NHVL (n=7), and apocynin-treated NVHL (n=5). We again observed 

a reversal of PPI deficits (Figure 8D). The data indicate that elevation of GSH and not 

glutamate during adolescence rescues PPI deficits in NVHL rats.

DISCUSSION

We observed increased level of oxidative stress immunolabeling in the PFC of juvenile 

NVHL rats, along with a decrease in PV cell counts, PPI deficit, altered dopamine 
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modulation of local PFC circuits, and deficits in evoked-related potentials in the EEG of 

adult NVHL rats. All these deficits were prevented with NAC treatment from P5 to P50. PPI 

deficits were also prevented if NAC treatment was initiated during adolescence (P35) and by 

two other redox modulators. Our data suggest that oxidative stress in prefrontal cortex is a 

core feature mediating alterations induced by the NVHL, and antioxidant treatment prevents 

these alterations. Presymptomatic oxidative stress, highly present in PVI and also observed 

in pyramidal neurons, is therefore responsible for diverse schizophrenia-relevant phenomena 

in a neurodevelopmental model that does not entail a direct manipulation of redox pathways.

Oxidative stress can affect PFC function via several mechanisms. With high levels of 

oxidative stress, cell damage or death can occur via membrane lipid peroxidation, DNA 

mutagenesis, alterations in chromatin structure, inactivation of critical enzymes, or 

activation of kinase and caspase cascades (Bitanihirwe and Woo, 2011). Redox imbalance 

can also lead to brain development disturbances by affecting redox-sensitive cysteine 

residues at the DNA-binding sites of transcription factors (Haddad, 2002) and affecting 

mitochondrial DNA, highly susceptible to oxidation (Jones and Go, 2010). Furthermore, 

many synaptic proteins include regulatory redox sites; for example, NMDA receptors 

become hypofunctional following oxidation (Steullet et al., 2006). We detected oxidative 

stress and nitrosative stress in PFC pyramidal neurons and PVI in juvenile rats with a NVHL 

prior to the onset of electrophysiological and behavioral deficits. This indicates PVI may 

still be somewhat functional, and that upon their periadolescent maturation the deleterious 

effect of oxidative stress renders them into a diseased state as revealed by the reduction in 

PV and PNN labeling. Our data indicate that redox alterations in the NVHL model 

encompass both oxidative and nitrosative stress, and treatments that increase GSH (NAC 

and ebselen) or decrease reactive oxygen species (ROS) generation (ebselen and apocynin) 

prevent adult-onset behavioral deficits. The increases in 3NT levels point to dysregulation of 

nitric oxide (NO) and arginine signaling, as well as nitrosative stress, as reported in 

schizophrenia (Yao et al., 2004). Whether this dysregulation implicates the various isoforms 

of NO synthase (nNOS, eNOS, or iNOS) is still unknown. Thus, the NVHL model presents 

a widespread alteration in redox pathways that could be reversed by targeting different 

modulators, such as GSH, GPx, and NADPH oxidase.

Oxidative stress is also seen in another animal model of schizophrenia: the dominant 

negative DISC1 (DN-DISC1) mouse (Johnson et al., 2013). Similar to our findings, DN-

DISC1 mice show increased 8-oxo-dG staining in the PFC that is associated with several 

behavioral deficits (Johnson et al., 2013). Our results add to this observation by showing a 

causal link between heightened oxidative stress in the PFC and the electrophysiological and 

behavioral deficits associated with schizophrenia, as the anti-oxidant NAC prevents both the 

increase in oxidative stress and electrophysiological and behavioral deficits in NVHL rats.

PFC physiology was dysfunctional in adult NVHL rats, and this deficit was prevented by 

NAC treatment. We used several endpoints to assess PFC function, including dopamine 

modulation of synaptic responses in pyramidal neurons in slices, in vivo intracellular 

recordings of responses to VTA stimulation, and auditory evoked potentials. Recordings 

from pyramidal neurons showed loss of D2-mediated attenuation of cortico-cortical EPSPs 

in slices and exaggerated firing evoked by VTA stimulation in vivo in adult NVHL rats, as 
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we had reported previously (O'Donnell et al., 2002; Tseng et al., 2008). Both the slice D2 

attenuation of pyramidal cell synaptic responses and the in vivo silencing of pyramidal 

neurons by VTA stimulation are dependent on activation of FSI by dopamine in naïve rats 

(Tseng and O'Donnell, 2007). The absence of alterations in these responses in NAC-treated 

NVHL rats indicates that oxidative stress during postnatal development has a deleterious 

effect on dopamine-modulated FSI-pyramidal cell interactions. Currently, there is a debate 

as to whether interneurons or pyramidal neurons are the primary site of dysfunction in 

schizophrenia. Our data are agnostic to which cell type is primarily affected and highlights 

oxidative stress as a cause of altered interactions between pyramidal neurons and inhibitory 

interneurons.

Oxidative stress could be brought up in the NVHL model by a number of mechanisms. First, 

this could be the result of the administration of an excitotoxic agent, such as ibotenic acid. 

Our previous work showing that neonatal ventral hippocampal injection of the bacterial 

endotoxin LPS yielded anomalies similar to the NVHL (Feleder et al., 2010) suggests this 

could be the case. However, a variation of this model in which the hippocampus was just 

reversibly inactivated produces similar behavioral alterations as the lesion (Lipska et al., 

2002), suggesting the excitotoxic damage in the NVHL may not be what causes the deficits. 

It is more likely that the loss of hippocampal-prefrontal synaptic activity and/or the loss of 

trophic factors in the PFC induced by the loss of hippocampal inputs during a critical 

developmental stage may affect the developing prefrontal cortical neurons. This possibility 

is supported by work by Margarita Behrens showing that NMDA receptor antagonists can 

induce oxidative stress in PV interneurons (Behrens et al., 2007; Behrens et al., 2008). Thus, 

oxidative stress in NVHL rats may be a consequence of network developmental alterations.

Mismatch negativity is a measure of high translational relevance. MMN tests the attribution 

of saliency to deviant auditory stimuli, and it is disrupted in schizophrenia patients (Javitt et 

al., 1993). Here, we report MMN deficits in NVHL rats, which are prevented by NAC 

treatment. As MMN is dependent on NMDA receptor activity (Ehrlichman et al., 2009), it is 

likely that oxidative stress impairs NMDA-dependent synaptic cortical mechanisms 

involved in processing of salient vs. common signals. The functional assessment of the 

impact of antioxidant treatment was complemented by testing of sensorimotor integration 

with PPI. Both juvenile and adolescent-only NAC treatment prevented adult PPI deficits in 

NVHL rats. The observation that adolescent treatment with NAC or ebselen is sufficient to 

prevent PPI deficits has important implications for redox mechanisms as potential targets for 

schizophrenia treatment. We showed that it is possible to prevent or reverse a deficit even if 

antioxidant treatment is initiated after the development of oxidative stress. As ultra-high risk 

subjects for schizophrenia cannot be identified until adolescence, our finding keeps open the 

possibility that redox modulation can be beneficial even if initiated once high risk has been 

identified.

Our data reveal that presymptomatic oxidative stress can cause aberrant adult PFC function 

in NVHL rats. This developmental manipulation is a well-established model of altered 

cortical excitation-inhibition balance. As is the case with any schizophrenia- related models, 

the NVHL should not be seen as reproducing the disease (there is no such thing as a 

schizophrenic rat). In addition, the model entails a lesion, which is not observed in 

Cabungcal et al. Page 7

Neuron. Author manuscript; available in PMC 2015 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



schizophrenia. However, the NVHL and other developmental models have been useful to 

test specific hypotheses about developmental trajectories of electrophysiological and 

behavioral phenomena of relevance to the disease (O'Donnell, 2013). Major strengths of the 

NVHL model include the adolescent onset of deficits and the ability to reproduce 

phenomena observed in schizophrenia when translatable measures are evaluated (O'Donnell, 

2012a). Remarkably, the NVHL model converges with several other manipulations used as 

animal models for schizophrenia research in producing loss of PVI immunolabeling and 

altered excitation-inhibition balance (O'Donnell, 2011). Despite their limitations, the 

behavioral and physiological endpoints we used here are widely used to assess integrity of 

cortical inhibitory networks and their impact on pyramidal cell activity. Inhibitory networks, 

developing at the time of the lesion and beyond, play a crucial role in experience-dependent 

refinement of neural networks (Hensch, 2005) that extends into adolescence. This role may 

be reflected in cognitive training during adolescence preventing cognitive impairments in 

adult NVHL rats (Lee et al., 2012) and adolescent stress unmasking latent neuropathology in 

mice with maternal immune activation (Giovanoli et al., 2013). Adolescence is therefore a 

critical developmental stage in which pathophysiological conditions involving oxidative 

stress can affect a still developing PFC, but it yet provides a window of opportunity for 

therapeutic intervention. This suggests that antioxidants or redox regulators without serious 

side effects may prove effective to reduce conversion in subjects at risk for psychiatric 

disorders by preventing pathophysiological changes associated with loss of cortical 

pyramidal cell and PVI function.

Experimental Procedures

Animals

Timed-pregnant Sprague-Dawley rats were obtained at gestational days 13-15 from Charles 

River (Wilmington, MA) and were individually housed with free access to food and water in 

a temperature- and humidity-controlled environment with a 12:12h light/dark cycle (lights 

on at 7:00 AM). When pups reached P5, half of the dams received NAC in their drinking 

water. Pups were left undisturbed until P7-9 when healthy offspring were randomly 

separated and received either NVHL or sham surgery. At P21, male and female pups were 

either transcardially perfused with 4% paraformaldehyde for immunocytochemistry or 

weaned and housed in groups of two to three, counterbalanced across lesion status. NAC 

treatment lasted throughout adolescence until P50. After reaching adulthood (>P60), animals 

were either perfused with 4% paraformaldehyde for immunocytochemistry, perfused with 

artificial cerebrospinal fluid (aCSF) for slice electrophysiology, utilized for in vivo 

intracellular recordings, or tested for PPI or MMN. All experiments were approved by the 

University of Maryland School of Medicine Institutional Animal Care and Use Committee.

Neonatal ventral hippocampal lesion surgery

Between P7 and P9, pups (15-20 g) received either an excitotoxic lesion of the ventral 

hippocampus (NVHL) or sham procedure, as previously described (Chambers and Lipska, 

2011). Pups were anesthetized with hypothermia and secured to a Styrofoam platform 

attached to a stereotaxic frame (David Kopf Instruments, Tujunga, CA). NVHL rats received 

a bilateral infusion of ibotenic acid (10 μg/μl in aCSF, 0.3 μl/side; Tocris, Minneapolis, MN) 
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into the ventral hippocampus (3 mm rostral to Bregma, 3.5 mm lateral to midline, and 5 mm 

from surface) at a rate of 0.15 μl/min. Sham surgeries were done in exactly the same fashion, 

but the guide cannula was lowered only 3 mm and without any liquid infusion to control for 

the surgical procedure while avoiding hippocampal damage. After the surgery, wounds were 

clipped and when pups activity level had returned to normal, they were returned to their 

dams and remained undisturbed until the wound clips were removed and rats weaned at P21.

In all rats, lesions were verified by sectioning (40 μm) the dorsal and ventral hippocampus 

using a freezing microtome. Sections were mounted on glass slides and Nissl stained. The 

hippocampus was examined microscopically for evidence of bilateral damage, which 

typically included cell loss, thinning, gliosis, cellular disorganization and enlarged ventricles 

(Chambers and Lipska, 2011).

Antioxidant pretreatment regimen

NAC (BioAdvantexPharma, Mississauga, Ontario, Canada) was administered in the 

drinking water at 900 mg/l. NAC treatment started at P5 or at P35, and previous work in 

mice has shown that NAC consumed by the dam is transmitted to the pups through her milk 

(das Neves Duarte et al., 2012). NAC treatment ended at P50. Fresh solutions were prepared 

every 2-3 days. Ebselen (Sound Pharmaceuticals Inc., Seattle, WA) was administered i.p. 5 

days a week starting at P35 until the day of PPI testing (P60). Stock ebselen solution (20 

mg/ml DMSO, frozen aliquots) was diluted 1:5 in sterile water and administered at a dose of 

10 mg/kg. Control animals received an equivalent concentration of DMSO diluted 1:5 in 

water. Apocynin (Sigma-Aldrich, St. Louis, MO) was administered in the drinking water at 

a target dose of 100 mg/kg (Nwokocha et al., 2013). Prior to weaning at P21, drinking water 

contained a dose of 2 g apocynin per 0.5 l of water, to ensure delivery through the dam's 

milk. Apocynin concentration was lowered after weaning to 750 mg/l to best approximate 

the target dose. Treatment lasted from P5 to P50 with fresh solutions prepared every other 

day.

Immunohistochemistry

Immunohistochemistry and stereological quantification—A total of 18 (P21) and 

25 (P61) male rats were anesthetized, perfused and their brains fixed as previously described 

(Cabungcal et al., 2006). Coronal sections (40 μm) were used to investigate the inhibitory 

circuitry of anterior cingulate cortex (ACC). Brain sections were immunolabeled for 

parvalbumin (PV) as described previously (Steullet et al., 2010). PV-immunoreactive cell 

(cell bodies) count was quantified in ACC using the StereoInvestigator 7.5 software (MBF 

Bioscience Inc, Williston, VT, USA). Briefly, stereological counting started with low 

magnification (x2.5 objective) to identify and delineate the boundaries of the region of 

interest (ROI) on 2-4 consecutive sections from each animal. The ACC (at Bregma 

approximately 0.70-1.70 mm) was delineated from the secondary motor (M2) cortical 

regions following the anatomical cytoarchitectonic areas given by Paxinos and Watson 

(Paxinos and Watson, 1998). The selected region of interest (ROI) included the majority of 

the cingulate cortex area 1 (cg1) and part of cingulate cortex area 2 (cg2). A small 

intermediate allowance was set between ACC and M2 regions to ensure that the ROI in 

ACC did not overlap with the secondary motor cortex. A counting box (optical dissector) 

Cabungcal et al. Page 9

Neuron. Author manuscript; available in PMC 2015 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



within the section thickness and sampling frames adapted to ACC were used to analyze and 

count neurons (Schmitz and Hof, 2005). The counting boxes (40 x 40 μm with 15 μm in 

depth) were placed by the software in each sampling frame starting from a random position 

inside the ROI of the ACC. Counting was carried out using higher magnification (x40 

objective). PV cells were counted when they were in focus at the surface of the box until out 

of focus at 15-μm depth of the counting box. A 5-μm guard zone was used to distance from 

artifacts that can be influenced by tissue shrinkage due to the immunopreparation 

processing. We used 25 counting frames in the ROI volume of the ACC for P21 and P61 

rats.

Immunofluorescence staining, confocal microscopy and image analysis—
Oxidative stress was visualized using an antibody against 8-oxo-7, 8-dihydro-20-

deoxyguanine (8-Oxo-dG), a DNA adduct formed by the reaction of OH radicals with the 

DNA guanine base (Kasai, 1997). Because of the proximity of the electron transport chain, 

mitochondrial DNA is prone to oxidative damage: levels of oxidized bases in DNA and 

levels of 8-oxo-dG are higher in mitochondria than in the nucleus. To assess 8-oxodG and 3-

Nitrotyrosine (3NT) labeling in various types of interneurons, coronal sections between 

Bregma 0.70-1.70 mm were incubated for about 36 hours with rabbit polyclonal anti-PV, 

anti-calbindin-28k (anti-CB), or anti-calretinin (anti-CR) (1:2500; Swant, Bellinzona, 

Switzerland) primary antibodies together with the mouse monoclonal anti-8-oxo-dG (1:350; 

AMS Biotechnology, Bioggio-Lugano, Switzerland) primary antibody or mouse monoclonal 

anti-nitrotyrosine (1:1000; Chemicon International, Temecula, USA) primary antibody. To 

enable visualization of the PNN that surrounds PV cells, sections were incubated in a 

solution containing the biotin-conjugated lectin Wisteria floribunda agglutinin (WFA) 

(Hartig et al., 1994). Sections were first incubated with PBS + Triton 0.3% + sodium azide 

(1 g/l) containing 2% normal horse serum, followed by 36-hour incubation with rabbit 

polyclonal anti-PV (1:2500) and biotin conjugated-WFA (1:2000; Sigma). Sections were 

washed, incubated with appropriate fluorescent secondary antibodies (goat anti-mouse 

immunoglobulin G (1:300; Alexa Fluor 488; Molecular Probes, Eugene, Oregon), anti-rabbit 

immunoglobulin G (1:300; CY3; Chemicon International, Temecula, California), CY2-

Streptavidin conjugate (1:300; Chemicon), and counterstained with 100 ng/ml DAPI (4'-6-

diamidino-2-phenylindole; Vector Laboratories, California, USA). Sections were visualized 

with a Zeiss Confocal Microscope equipped with x10, x20, x40 and x63 Plan-NEOFLUAR 

objectives. All peripherals were controlled with LSM 510 software (Carl Zeiss AG, 

Switzerland). Z stacks of 9 images (with a 2.13 μm interval) were scanned (1024 × 1024 

pixels) for analysis in IMARIS 7.3 software (Bitplane AG, Switzerland). All images of Z 

stacks were filtered with a Gaussian filter tool to remove unwanted background noise and 

sharpen cell body contours. An ROI as defined in the stereological procedure was created in 

ACC. The ROI was masked throughout the Z stacks to isolate regional subvolumes of the 

ACC in which PV-, CB-, and CR-expressing interneurons were analyzed. To quantify 8-

oxo-dG, the staining intensity and number of labelled voxels within the ROI were measured. 

To quantify 8-oxo-dG in PV-, CB- and CR-cells, we used the Coloc module of the IMARIS 

software to calculate the proportion of all PV-immunolabeled voxels (respectively, CB- and 

CR-immunolabeled voxels), which were also 8-oxo-dG-immnolabeled. Coloc gives the 

count of colocalized voxels between the immunolabeled profiles of interest. To quantify the 
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number of PV immunoreactive neurons surrounded by PNN, we used the spots module to 

assign spot markings on profile-labelled voxels that fall within a given size. The channels 

for PV and WFA immunolabeling were chosen, and profile size criterion (>9 and 4 μm, 

respectively) was defined to quantify labelled profiles above these sizes. Spots generated for 

PV that contacted and/or overlapped with spots generated for WFA were considered as those 

PVI surrounded by PNN (WFA-positive PVI).

Slice electrophysiology

Starting at P60, male rats were anesthetized with chloral hydrate (400 mg/kg, i.p.) 15 min 

before being decapitated. Brains were quickly removed from the skull into ice-cold artificial 

CSF (aSCF) oxygenated with 95% O2-5% CO2 and containing the following (in mM): 125 

NaCl, 25 NaHCO3, 10 glucose, 3.5 KCl, 1.25 NaH2PO4, 0.1 CaCl2 and 3 MgCl2, pH 7.45 

(295-300 mOsm). Coronal slices (300 μm thick) containing the medial PFC were obtained 

with a vibratome in ice-cold aCSF and incubated in warm (~35°C) aCSF solution constantly 

oxygenated with 95% O2-5% CO2 for at least 45 min before recording. The recording aCSF 

(with 2 CaCl2 and 1 MgCl2) was delivered to the recording chamber with a pump at the rate 

of 2 ml/min.

Patch electrodes (7-10 MΩ) were obtained from 1.5 mm borosilicate glass capillaries (World 

Precision Instruments) with a Flaming-Brown horizontal puller (P97; Sutter Instruments) 

and filled with a solution containing 0.125% Neurobiotin and the following (in mM): 115 K-

gluconate, 10 HEPES, 2 MgCl2, 20 KCl, 2 MgATP, 2 Na2-ATP, and 0.3 GTP, pH 7.25-7.30 

(280-285 mOsm). Quinpirole (5 μM, Tocris) was freshly mixed into oxygenated recording 

aCSF every day before an experiment. Both control and drug-containing aCSF were 

oxygenated continuously throughout the experiments.

All experiments were conducted at 33-35°C and prelimbic or ACC PFC pyramidal cells 

from layer V were identified under visual guidance using infrared (IR) differential 

interference contrast video microscopy with a 40X water-immersion objective (Olympus 

BX-51WI). The image was detected with an IR-sensitive CCD camera and displayed on a 

monitor. Whole-cell current-clamp recordings were performed with a computer-controlled 

amplifier (Multiclamp 700A; Molecular Devices), digitized (Digidata 1322; Molecular 

Devices), and acquired with Axoscope 9 (Molecular Devices) at a sampling rate of 10 kHz. 

Electrode potentials were adjusted to zero before recording without correcting the liquid 

junction potential. Baseline activity in each neuron was monitored for 10 minutes during 

which membrane potential and input resistance (measured with the slope of a current-

voltage (I/V) plot obtained with 500-ms-duration depolarizing and hyperpolarizing pulses) 

were measured.

Synaptic responses were tested in pyramidal neurons with electrical stimulation of 

superficial layers with a bipolar electrode made from a pair of twisted Teflon-coated 

Tungsten wires (tips separated by ~200 μm) and placed ~500 μm lateral to the vertical axis 

of the apical dendrite of the recorded neuron. Stimulation pulses (20-400 μA; 0.5 ms) were 

delivered every 15 s. The intensity was adjusted to evoke EPSPs with about half of the 

maximal amplitude. Throughout the experiment, changes in input resistance were monitored 

with repeated hyperpolarizing steps, and the cell was discarded when input resistance 
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changed more than 20% during the course of the experiment. The amplitude of evoked 

EPSPs was measured with Clampfit 9.0 and averaged over 10 sweeps before and after 7 

minutes of application of quinpirole. This period was chosen for consistency, with 

differences revealed by previous investigations of D2 modulation of PFC activity in rodent 

models of schizophrenia (Niwa et al., 2010; Tseng et al., 2008). At the end of each 

experiment, slices were placed in 4% paraformaldehyde and processed for DAB staining 

using standard histochemical techniques to verify morphology and location of the neurons.

In Vivo intracellular recordings

Female rats were anesthetized with choral hydrate (400 mg/kg, i.p) and placed on a 

stereotaxic apparatus (Kopf Instruments). Anesthesia was maintained through recording 

procedures with continuous choral hydrate (24-30 mg/kg/h) via an intraperitoneal catheter. 

Body temperature was maintained at approximately 37°C using a thermal probe-controlled 

heat pad (Fine Science Tools). Concentric bipolar stimulating electrodes (0.5 mm diameter, 

0.5 mm pole separation; Rhodes Medical Instruments Inc.) were lowered into the VTA (5.8 

mm caudal to bregma; 0.5-0.8 mm lateral to midline; 7-8 mm from surface) for stimulation. 

Recording sharp micro-electrodes were pulled from borosilicate glass (1 mm O.D.; World 

Precision Instruments) on a horizontal Flaming-Brown puller (Sutter Instruments). Sharp 

electrodes (50-110 MΩ) were filled with 2% Neurobiotin (Vector Laboratories) in 2M 

potassium acetate. Microelectrodes were lowered into the medial PFC using a hydraulic 

manipulator (Trent Wells, Coulterville, CA). Recordings were made in current clamp, and 

signals were acquired using a Neurodata Amplifier (Cygnus), digitized at 10 kHz using a 

Digidata A/D converter (Molecular Devices) and Axoscope 9 software (Molecular Devices) 

for offline analyses.

Microelectrodes were advanced through the medial PFC until a neuron was impaled. 

Neurons included in this study had a resting membrane potential more negative than – 60 

mV and action potentials with amplitudes ≥ 40 mV from threshold. To determine responses 

to endogenous dopamine, the VTA was stimulated with trains of 5 pulses at 20 Hz, delivered 

every 10 seconds. Eight to ten sweeps were used to determine cell firing in response to VTA 

stimulation. Firing was measured in the 500 ms epoch following the last VTA pulse in all 

sweeps, and compared among experimental groups. At the end of the experiment, animals 

were killed with anesthesia overdose, and their brains removed for histological verification 

of lesion status and electrode placement.

Mismatch Negativity

NVHL, NAC-treated NVHL, and sham female rats were implanted with chronic EEG 

electrodes under isoflurane anesthesia. Electrodes were constructed with 2 mm diameter 

silver disks coated with silver chloride, and glued on top of bregma, a location equivalent to 

human vertex, and the contacts led to an Omnetics connector on top of the head. Upon a 4-

week recovery, rats were first habituated to the recording chamber, a 30 x 50 cm plexiglass 

box enclosed within a stainless steel box. NNM sessions consisted of exposing the rat to 

approximately 2,000 tones at two different frequencies (7 or 9 kHz; 30 ms duration) 

separated by 400 ms, with 95% of the repetitions at one frequency (standard) and 5% at the 

other frequency (deviant). Tones were delivered with a speaker mounted inside the 
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enclosure using a TDT RZ6 system (Tucker Davis), and were counterbalanced so half of the 

time the deviant was either frequency. EEG signals were acquired using a 32 channel 

Omniplex system (Plexon Instruments) at 1 kHz sampling rate. For analysis, 300 ms epochs 

around the tone were selected, filtered at 1-30 Hz, baseline-corrected to the 100 ms prior to 

the stimulus, and averaged separately for standard and deviant tones. A difference wave was 

constructed by subtracting the standard wave from the deviant wave, and MMN was 

quantified by measuring the area under the curve in the period between 35 and 100 ms after 

the stimulus. All rats were exposed to three sessions in three different days, and values were 

averaged across sessions for every animal.

Prepulse inhibition

Starting at P60, both male and female rats were tested for PPI, as described previously 

(Feleder et al., 2010). As PPI deficits in NVHL rats are most evident when rats are 

challenged with apomorphine (Lipska et al., 1995), we injected apomorphine (0.1 mg/kg, 

i.p.) immediately prior to the PPI test session. Rats were placed in a sound-attenuated startle 

chamber (San Diego Instruments, San Diego, CA) with a 70 dB background white noise. 

After a 5 min adaptation period, the PPI test was initiated with pseudorandom trials every 15 

to 25 sec. Either pulse (120 dB), prepulse (75 dB, 80 dB, or 85 dB), no pulse or prepulse + 

pulse were delivered. Trials lasted 23 min and 8 to 10 repetitions of pulse or prepulse + 

pulse trials were acquired, while null or prepulse only trials were repeated five times for 

each prepulse amplitude. Startle magnitude was measured using an acceleration-sensitive 

transducer, and PPI was calculated as the ratio in startle between prepulse + pulse and pulse 

alone and is expressed as percent reduction. The initial trials (all pulse alone) were used for 

habituation and not included in the analysis. Trials were excluded from analysis when the 

animal was moving in the chamber, and sessions were excluded from analysis when startle 

amplitude was low or more than 50% of trials were excluded for any prepulse + pulse 

combination. If a PPI session was discarded, rats were tested again a week later.

Statistics—The mean numbers of PV-immunoreactive cells per tissue volume in the ACC 

were compared among treatment groups using one-way ANOVA followed by post-doc 

Dunnett multiple comparisons. The mean number of PV-cells, PV-cell intensity, WFA- 

positive PV and WFA-positive intensity, the overall 8-oxo-dG, and WFA labelling were 

compared among groups using multivariate ANOVA (Wilk's Lambda) followed by post-hoc 

Dunnett test for multiple comparisons. Electrophysiology data were compared using a 1-way 

ANOVA with group as between-subject variable. PPI data were compared using a repeated-

measures 2-way ANOVA with lesion status and treatment as between-subject variables, and 

prepulse intensity as within-subject variable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

- Presymptomatic antioxidant treatment prevents loss of parvalbumin in NVHL rats

- Antioxidant treatment prevents altered prefrontal electrophysiology in NVHL rats

- Prepulse inhibition deficits are prevented by antioxidants
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Figure 1. A NVHL blocks the adolescent increase in PV interneuron labeling in the PFC
(A) Representative micrographs of prefrontal PV staining in juvenile (P21) and adult (P61) 

SHAM, NVHL, and NAC-treated NVHL rats. Scale bar is 80 μm. See Suppl. Fig 1 for 

lesion extent. (B) Bar graphs illustrating PV cell counts using unbiased stereology at P21 

(left) and P61 (right) in all four treatment groups. PV cell count increased between P21 and 

P61 in SHAM, but not in NVHL rats. Juvenile NAC treatment rescued the progression in 

PV cell numbers in NVHL rats. ANOVA F(5,36)=4.7, p=0.002. Age: F(1,36)=10.2, p=0.003, 

Lesion: F(1,36)=1.36, p=0.11, Lesion x Age: F(1,36)=6.7, p=0.014, Treatment: F(1,36)=3.9, 

p=0.057, Treatment x Age: n.s. (C) Diagram illustrating the time course of NAC treatment 

and juvenile (P21) and adult (P61) assessments. In this and all other figures, data are 

expressed as mean ± SEM, *p<0.05.
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Figure 2. Oxidative stress shown with 8-oxo-dG in the PFC of NVHL rats
(A) Representative micrographs showing double labeling for PV (red) and 8-oxo-dG (green) 

in the PFC in the four groups at P21. Scale bar is 10 μm. (B) Summary of the datashowing 

that an NVHL causes a massive increase in 8-oxo-dG labeling in the PFC at P21 that is 

prevented with juvenile NAC treatment. Top graph illustrates 8-oxo-dG fluorescence 

intensity and the bottom graph quantifies the number of labeled voxels in each group. 

ANOVA for 8-oxo-dG intensity: F(3,14)=13.7, p=0.00002, Lesion F(1,14)=18.4, p=0.008, 

Treatment F(1,14)=9.6, p=0.008, Lesion x Treatment F(1,14)=13.0, p=0.003. (C) 

Representative micrographs showing double labeling for PV (red) and 8-oxo-dG (green) in 

the PFC at P61. Scale bar is 10 μm. (D) Summary of the data showing that the NVHL 

increases 8-oxo-dG in the PFC at P61, which is prevented with juvenile NAC treatment. 

ANOVA for 8-oxo-dG intensity: F(3,18)=7.8, p=0.001, Lesion F(1,18)=12.5, p=0.002, 

Treatment F(1,18)=0.13, p=n.s., Lesion x Treatment F(1,18)=10.8, p=0.004.
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Figure 3. Oxidative stress in the PFC of adult NVHL rats shown with 3-NT
(A) Representative micrographs showing triple labeling for 3-NT (green), WFA (blue) and 

PV (red) in the three groups. Scale bar is 100 μm. b, (B) Summary of the data showing that 

an NVHL causes a significant increase in 3-NT labeling in the PFC at P61 that is prevented 

with juvenile NAC treatment. Top graph illustrates 3-NT fluorescence intensity in each 

group. One-way ANOVA for 3-NT intensity revealed a very significant effect of treatment 

(F(2,53)=85.2, p<0.0001). Comparisons between each pairs using Tukey-Kramer also showed 

significant differences (P<0.0001) for SHAM versus NVHL and NVHL versus NAC.
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Figure 4. The NVHL causes increased oxidative stress in PV, but not CR and CB interneurons, 
which is prevented by developmental NAC treatment
(A) Micrographs showing 8-oxo-dG labeling (green) of parvalbumin (PV)-, calretinin (CR)-

and calbindin (CB)-positive interneurons (red) in the PFC of SHAM, NVHL and NAC-

treated NVHL rats. Scale bar is 10 μm. (B) Summary of the data. In PV interneurons, 8-oxo-

dG labeling increased following an NVHL lesion, which was prevented with NAC treatment 

(Treatment: F(2,65)=212.97, p<0.0001). ***p<0.001.
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Figure 5. Perineuronal nets (PNN) are reduced in the PFC of adult NVHL rats, but rescued by 
juvenile NAC treatment
(A) Representative micrographs showing double labeling of PV (red) and Wisteria 

floribunda agglutinin (WFA; green), which labels PNN. Scale bar is 10 μm. (B) Plots 

illustrating PV interneuron (PVI) counts (top) and the number of cells co-labeled with PV 

and WFA (bottom). PVI count is reduced following an NVHL lesion, and this reduction is 

prevented with juvenile NAC treatment. (Overall effect: F(8,16)=3.8, p=0.01, PVI count: 

F(2,11)=15.3, p<0.0007). The number of WFA PVI decreases in NVHL rats compared to 

controls, and this reduction is prevented with juvenile NAC treatment (PNN count: 

F(2,11)=28.5, p<0.0001). **p<0.01, ***p<0.001.
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Figure 6. Electrophysiological deficits are rescued by NAC treatment in NVHL rats
(A) Representative traces of excitatory post-synaptic potentials (EPSP) evoked by 

superficial layer electrical stimulation in adult PFC before (black trace) and after (green 

trace) bath application of the D2-agonist quinpirole (5 μM). (B) Neurobiotin-filled layer V 

pyramidal cell in the PFC; the relative position of the bipolar stimulating electrode and the 

recording electrode are shown schematically. (C) Bar graphs illustrating the magnitude of 

EPSP attenuation by quinpirole in slices from SHAM, NVHL, and NAC-treated NVHL rats. 

In sham rats, quinpirole reduces the size of the synaptic response, whereas in NVHL rats this 

attenuation is absent. NAC treatment during development reverses this deficit in NVHL 

animals (ANOVA: F(2,39)=3.328, p=0.046). (D) Traces from in vivo intracellular recordings 

in PFC pyramidal neurons showing responses to electrical stimulation of the ventral 

tegmental area (VTA) with trains of 5 pulses at 20 Hz in anesthetized SHAM (top), NVHL 

(middle), and NAC-treated NVHL (bottom) rats. Each panel is an overlay of 5 traces that 

illustrate the representative type of response observed in each group, with NVHL showing 

enhanced firing following VTA stimulation, while firing is sparse in SHAM and NAC-

treated NVHL rats. (E) Bar graph illustrating group data for action potential firing in the 500 

ms epoch following VTA stimulation in all three groups. ANOVA: F(2,37)=4.5, p<0.05; 

NVHL firing was higher than in shams (post-hoc Tukey's q=3.9, p<0.05) and higher than in 

NAC-treated NVHL rats (post-hoc Tukey's q=3.6, p<0.05). In all electrophysiology 

experiments data from SHAM and NAC-treated SHAM rats were combined as they did not 

show differences.
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Figure 7. Mismatch negativity (MMN) deficits are rescued by NAC treatment
(A) Representative traces of auditory evoked potentials from standard (blue) and deviant 

(red) stimuli in a sham (n=6; top), NVHL (n=3; middle), and NAC-treated NVHL rat (n=3; 

bottom). The green box highlights the epoch in which the negativity was measured (35-100 

ms following the stimulus). All traces are averages of at least 80 repetitions. (B) Group data 

comparing MMN measured as the area under the curve in the highlighted region reveal a 

significant difference among groups (ANOVA: F(2,11)=9.742; p=0.006). The data illustrated 

are averages from 3 different sessions in each rat. A post-hoc comparison between NVHL 

and NVHL+NAC revealed a significant difference (Bonferroni test; p=0.005).
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Figure 8. Prepulse inhibition deficits were rescued with antioxidant treatment
(A) Prepulse inhibition deficits were observed in NVHL rats when challenged with 

apomorphine (0.1 mg/kg, i.p.). This deficit was completely reversed with juvenile NAC 

treatment (Lesion: F(1,42)=3.529 p=0.067, Treatment: F(1,42)=1.644, p=0.207, Lesion x 

Treatment: F(1,42)=5.730, p=0.021). n=12-16, * p<0.05 compared to NVHL. (B) In another 

group of rats, NAC was administered starting at P35, stopped at P50, and the rats tested for 

PPI at P61. The bar graph illustrates PPI at three different prepulse intensities in this group 

with adolescent NAC treatment. ANOVA: group effect F(2,28)=3.364, p<0.045; post-hoc 

tests revealed only a trend for a difference in PPI in NVHL compared to SHAM (LSD, 

p=0.069), and a significant difference between NVHL and NAC-treated NVHL (LSD, 

p=0.016). (C) Some animals received ebselen from P35 and were tested for PPI at P61. 

There was a significant lesion effect (F(1,28)=7.11; p=0.013) and a significant lesion status 

by treatment interaction (F(1,28)=7.09; p=0.013). (D) Another set of animals received 

apocynin and were tested for PPI. We observed a significant lesion by treatment interaction 

(F(1,25)=4.8; p=0.038).

Cabungcal et al. Page 26

Neuron. Author manuscript; available in PMC 2015 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Serveur Académique Lausannois SERVAL serval.unil.ch
	Author Manuscript
	Faculty of Biology and Medicine Publication
	Published in final edited form as:

